1
|
Zhang Y, Jin Z, Liu L, Zhang D. The Strategy and Application of Gene Attenuation in Metabolic Engineering. Microorganisms 2025; 13:927. [PMID: 40284763 PMCID: PMC12029929 DOI: 10.3390/microorganisms13040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic engineering has a wide range of applications, spanning key sectors such as energy, pharmaceuticals, agriculture, chemicals, and environmental sustainability. Its core focus is on precisely modulating metabolic pathways to achieve efficient, sustainable, and environmentally friendly biomanufacturing processes, offering new possibilities for societal sustainable development. Gene attenuation is a critical technique within metabolic engineering, pivotal in optimizing metabolic fluxes and improving target metabolite yields. This review article discusses gene attenuation mechanisms, the applications across various biological systems, and implementation strategies. Additionally, we address potential future challenges and explore its potential to drive further advancements in the field.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
| | - Zhaoxia Jin
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Linxia Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
2
|
Tang J, Du K. Mitochondrial base editing: from principle, optimization to application. Cell Biosci 2025; 15:9. [PMID: 39856740 PMCID: PMC11762502 DOI: 10.1186/s13578-025-01351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In recent years, mitochondrial DNA (mtDNA) base editing systems have emerged as bioengineering tools. DddA-derived cytosine base editors (DdCBEs) have been developed to specifically induce C-to-T conversion in mtDNA by the fusion of sequence-programmable transcription activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), and split deaminase derived from interbacterial toxins. Similar to DdCBEs, mtDNA adenine base editors have been developed with the ability to introduce targeted A-to-G conversions into human mtDNA. In this review, we summarize the principles of mtDNA base-editing systems and elaborate on the evolution of different platforms of mtDNA base editors, including their deaminase replacement, engineering of DddAtox variants, structure optimization and editing outcomes. Finally, we highlight their applications in animal models and human embroys and discuss the future developmental direction and challenges of mtDNA base editors.
Collapse
Affiliation(s)
- Jinling Tang
- Clinical Laboratory Center, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
3
|
Leandro K, Rufino-Ramos D, Breyne K, Di Ianni E, Lopes SM, Jorge Nobre R, Kleinstiver BP, Perdigão PRL, Breakefield XO, Pereira de Almeida L. Exploring the potential of cell-derived vesicles for transient delivery of gene editing payloads. Adv Drug Deliv Rev 2024; 211:115346. [PMID: 38849005 PMCID: PMC11366383 DOI: 10.1016/j.addr.2024.115346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.
Collapse
Affiliation(s)
- Kevin Leandro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal
| | - David Rufino-Ramos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Emilio Di Ianni
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Sara M Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Rui Jorge Nobre
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Pedro R L Perdigão
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Xandra O Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02129, USA
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; GeneT - Gene Therapy Center of Excellence Portugal, University of Coimbra, Coimbra, Portugal; ViraVector - Viral Vector for Gene Transfer Core Facility, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
4
|
Singh PK, Devanna BN, Dubey H, Singh P, Joshi G, Kumar R. The potential of genome editing to create novel alleles of resistance genes in rice. Front Genome Ed 2024; 6:1415244. [PMID: 38933684 PMCID: PMC11201548 DOI: 10.3389/fgeed.2024.1415244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Rice, a staple food for a significant portion of the global population, faces persistent threats from various pathogens and pests, necessitating the development of resilient crop varieties. Deployment of resistance genes in rice is the best practice to manage diseases and reduce environmental damage by reducing the application of agro-chemicals. Genome editing technologies, such as CRISPR-Cas, have revolutionized the field of molecular biology, offering precise and efficient tools for targeted modifications within the rice genome. This study delves into the application of these tools to engineer novel alleles of resistance genes in rice, aiming to enhance the plant's innate ability to combat evolving threats. By harnessing the power of genome editing, researchers can introduce tailored genetic modifications that bolster the plant's defense mechanisms without compromising its essential characteristics. In this study, we synthesize recent advancements in genome editing methodologies applicable to rice and discuss the ethical considerations and regulatory frameworks surrounding the creation of genetically modified crops. Additionally, it explores potential challenges and future prospects for deploying edited rice varieties in agricultural landscapes. In summary, this study highlights the promise of genome editing in reshaping the genetic landscape of rice to confront emerging challenges, contributing to global food security and sustainable agriculture practices.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Department of Biotechnology, University Centre for Research & Development, Chandigarh University, Mohali, Punjab, India
| | | | - Himanshu Dubey
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - Prabhakar Singh
- Botany Department, Banaras Hindu University, Varanasi, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal (A Central University), Tehri Garhwal, Uttarakhand, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
5
|
Hu J, Sun Y, Li B, Liu Z, Wang Z, Gao Q, Guo M, Liu G, Zhao KT, Gao C. Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat Biotechnol 2024; 42:936-945. [PMID: 37640945 DOI: 10.1038/s41587-023-01910-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
Transcription-activator-like effector (TALE)-based tools for base editing of nuclear and organellar DNA rely on double-stranded DNA deaminases, which edit substrate bases on both strands of DNA, reducing editing precision. Here, we present CyDENT base editing, a CRISPR-free, strand-selective, modular base editor. CyDENT comprises a pair of TALEs fused with a FokI nickase, a single-strand-specific cytidine deaminase and an exonuclease to generate a single-stranded DNA substrate for deamination. We demonstrate effective base editing in nuclear, mitochondrial and chloroplast genomes. At certain mitochondrial sites, we show editing efficiencies of 14% and strand specificity of 95%. Furthermore, by exchanging the CyDENT deaminase with one that prefers editing GC motifs, we demonstrate up to 20% mitochondrial base editing at sites that are otherwise inaccessible to editing by other methods. The modular nature of CyDENT enables a suite of bespoke base editors for various applications.
Collapse
Affiliation(s)
- Jiacheng Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boshu Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | - Guanwen Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | | | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Sojka J, Šamajová O, Šamaj J. Gene-edited protein kinases and phosphatases in molecular plant breeding. TRENDS IN PLANT SCIENCE 2024; 29:694-710. [PMID: 38151445 DOI: 10.1016/j.tplants.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
Protein phosphorylation, the most common and essential post-translational modification, belongs to crucial regulatory mechanisms in plants, affecting their metabolism, intracellular transport, cytoarchitecture, cell division, growth, development, and interactions with the environment. Protein kinases and phosphatases, two important families of enzymes optimally regulating phosphorylation, have now become important targets for gene editing in crops. We review progress on gene-edited protein kinases and phosphatases in crops using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). We also provide guidance for computational prediction of alterations and/or changes in function, activity, and binding of protein kinases and phosphatases as consequences of CRISPR/Cas9-based gene editing with its possible application in modern crop molecular breeding towards sustainable agriculture.
Collapse
Affiliation(s)
- Jiří Sojka
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
7
|
Deneault E. Recent Therapeutic Gene Editing Applications to Genetic Disorders. Curr Issues Mol Biol 2024; 46:4147-4185. [PMID: 38785523 PMCID: PMC11119904 DOI: 10.3390/cimb46050255] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Recent years have witnessed unprecedented progress in therapeutic gene editing, revolutionizing the approach to treating genetic disorders. In this comprehensive review, we discuss the progression of milestones leading to the emergence of the clustered regularly interspaced short palindromic repeats (CRISPR)-based technology as a powerful tool for precise and targeted modifications of the human genome. CRISPR-Cas9 nuclease, base editing, and prime editing have taken center stage, demonstrating remarkable precision and efficacy in targeted ex vivo and in vivo genomic modifications. Enhanced delivery systems, including viral vectors and nanoparticles, have further improved the efficiency and safety of therapeutic gene editing, advancing their clinical translatability. The exploration of CRISPR-Cas systems beyond the commonly used Cas9, such as the development of Cas12 and Cas13 variants, has expanded the repertoire of gene editing tools, enabling more intricate modifications and therapeutic interventions. Outstandingly, prime editing represents a significant leap forward, given its unparalleled versatility and minimization of off-target effects. These innovations have paved the way for therapeutic gene editing in a multitude of previously incurable genetic disorders, ranging from monogenic diseases to complex polygenic conditions. This review highlights the latest innovative studies in the field, emphasizing breakthrough technologies in preclinical and clinical trials, and their applications in the realm of precision medicine. However, challenges such as off-target effects and ethical considerations remain, necessitating continued research to refine safety profiles and ethical frameworks.
Collapse
Affiliation(s)
- Eric Deneault
- Regulatory Research Division, Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
8
|
Xie L, Feng H, Li Z, Li D, Yang X, Yuan T, Yan N, He C, Zheng J, Zuo Z, Zheng Y, Cao Y, Lu Y, Xiong XY, Zuo E. Undetectable off-target effects induced by FokI catalytic domain in mouse embryos. Genome Biol 2024; 25:51. [PMID: 38378658 PMCID: PMC10877887 DOI: 10.1186/s13059-024-03188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
The FokI catalytic domain can be fused to various DNA binding architectures to improve the precision of genome editing tools. However, evaluation of off-target effects is essential for developing these tools. We use Genome-wide Off-target analysis by Two-cell embryo Injection (GOTI) to detect low-frequency off-target editing events in mouse embryos injected with FokI-based architectures. Specifically, we test FokI-heterodimers fused with TALENs, FokI homodimers fused with RYdCas9, or FokI catalytic domains alone resulting in no significant off-target effects. These FokI genome editing systems exhibit undetectable off-target effects in mouse embryos, supporting the further development of these systems for clinical applications.
Collapse
Affiliation(s)
- Long Xie
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hu Feng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhifang Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Di Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiali Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Tanglong Yuan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nana Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chenfei He
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jitan Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Zhenrui Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yaxuan Zheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yaqi Cao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| | - Xing Yao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Erwei Zuo
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| |
Collapse
|
9
|
Liu S, Liu H, Wang X, Shi L. The immune system of prokaryotes: potential applications and implications for gene editing. Biotechnol J 2024; 19:e2300352. [PMID: 38403433 DOI: 10.1002/biot.202300352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 02/27/2024]
Abstract
Gene therapy has revolutionized the treatment of genetic diseases. Spearheading this revolution are sophisticated genome editing methods such as TALENs, ZFNs, and CRISPR-Cas, which trace their origins back to prokaryotic immune systems. Prokaryotes have developed various antiviral defense systems to combat viral attacks and the invasion of genetic elements. The comprehension of these defense mechanisms has paved the way for the development of indispensable tools in molecular biology. Among them, restriction endonuclease originates from the innate immune system of bacteria. The CRISPR-Cas system, a widely applied genome editing technology, is derived from the prokaryotic adaptive immune system. Single-base editing is a precise editing tool based on CRISPR-Cas system that involves deamination of target base. It is worth noting that prokaryotes possess deamination enzymes as part of their defense arsenal over foreign genetic material. Furthermore, prokaryotic Argonauts (pAgo) proteins, also function in anti-phage defense, play an important role in complementing the CRISPR-Cas system by addressing certain limitations it may have. Recent studies have also shed light on the significance of Retron, a reverse transcription transposon previously showed potential in genome editing, has also come to light in the realm of prokaryotic immunity. These noteworthy findings highlight the importance of studying prokaryotic immune system for advancing genome editing techniques. Here, both the origin of prokaryotic immunity underlying aforementioned genome editing tools, and potential applications of deaminase, pAgo protein and reverse transcriptase in genome editing among prokaryotes were introduced, thus emphasizing the fundamental mechanism and significance of prokaryotic immunity.
Collapse
Affiliation(s)
- Siyang Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongling Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xue Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Lei Shi
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, Zhuang W, Varshney RK. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol 2023; 43:1035-1062. [PMID: 35968922 DOI: 10.1080/07388551.2022.2093695] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/08/2022] [Indexed: 01/19/2023]
Abstract
Climate change gives rise to numerous environmental stresses, including soil salinity. Salinity/salt stress is the second biggest abiotic factor affecting agricultural productivity worldwide by damaging numerous physiological, biochemical, and molecular processes. In particular, salinity affects plant growth, development, and productivity. Salinity responses include modulation of ion homeostasis, antioxidant defense system induction, and biosynthesis of numerous phytohormones and osmoprotectants to protect plants from osmotic stress by decreasing ion toxicity and augmented reactive oxygen species scavenging. As most crop plants are sensitive to salinity, improving salt tolerance is crucial in sustaining global agricultural productivity. In response to salinity, plants trigger stress-related genes, proteins, and the accumulation of metabolites to cope with the adverse consequence of salinity. Therefore, this review presents an overview of salinity stress in crop plants. We highlight advances in modern biotechnological tools, such as omics (genomics, transcriptomics, proteomics, and metabolomics) approaches and different genome editing tools (ZFN, TALEN, and CRISPR/Cas system) for improving salinity tolerance in plants and accomplish the goal of "zero hunger," a worldwide sustainable development goal proposed by the FAO.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Ali Zeeshan Fakhar
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Rahat Sharif
- Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Luo Ju
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science (CAAS), Zhejiang, China
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology & Food Science, Cyprus University of Technology, Lemesos, Cyprus
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, Perth, Australia
| | - Rakesh K Singh
- Crop Diversification and Genetics, International Center for Biosaline Agriculture, Dubai, United Arab Emirates
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Murdoch's Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, Australia
| |
Collapse
|
11
|
Abstract
Chronic hepatitis B virus (HBV) infection is a serious disease that currently has no cure. Key forms of HBV include covalently closed circular DNA, which mediates chronic persistence, and integrated DNA, which contributes to immune evasion and carcinogenesis. These forms are not targeted by current therapies; however, gene editing technologies have emerged as promising tools for disrupting HBV DNA. Gene editor-induced double-stranded breaks at precise locations within the HBV genome can induce effects ranging from inactivation of target genes to complete degradation of the target genome. Although promising, several challenges remain in efficacy and safety that require solutions.
Collapse
Affiliation(s)
- Henrik Zhang
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Thomas Tu
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia.
| |
Collapse
|
12
|
Sauvagère S, Siatka C. CRISPR-Cas: 'The Multipurpose Molecular Tool' for Gene Therapy and Diagnosis. Genes (Basel) 2023; 14:1542. [PMID: 37628594 PMCID: PMC10454384 DOI: 10.3390/genes14081542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Since the discovery of the CRISPR-Cas engineering system in 2012, several approaches for using this innovative molecular tool in therapeutic strategies and even diagnosis have been investigated. The use of this tool requires a global approach to DNA damage processes and repair systems in cells. The diversity in the functions of various Cas proteins allows for the use of this technology in clinical applications and trials. Wide variants of Cas12 and Cas13 are exploited using the collateral effect in many diagnostic applications. Even though this tool is well known, its use still raises real-world ethical and regulatory questions.
Collapse
|
13
|
Li KL, Nakashima K, Hisata K, Satoh N. Expression and possible functions of a horizontally transferred glycosyl hydrolase gene, GH6-1, in Ciona embryogenesis. EvoDevo 2023; 14:11. [PMID: 37434168 DOI: 10.1186/s13227-023-00215-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/01/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The Tunicata or Urochordata is the only animal group with the ability to synthesize cellulose directly and cellulose is a component of the tunic that covers the entire tunicate body. The genome of Ciona intestinalis type A contains a cellulose synthase gene, CesA, that it acquired via an ancient, horizontal gene transfer. CesA is expressed in embryonic epidermal cells and functions in cellulose production. Ciona CesA is composed of both a glycosyltransferase domain, GT2, and a glycosyl hydrolase domain, GH6, which shows a mutation at a key position and seems functionless. Interestingly, the Ciona genome contains a glycosyl hydrolase gene, GH6-1, in which the GH6 domain seems intact. This suggests expression and possible functions of GH6-1 during Ciona embryogenesis. Is GH6-1 expressed during embryogenesis? If so, in what tissues is the gene expressed? Does GH6-1 serve a function? If so, what is it? Answers to these questions may advance our understanding of evolution of this unique animal group. RESULTS Quantitative reverse transcription PCR and in situ hybridization revealed that GH6-1 is expressed in epidermis of tailbud embryos and in early swimming larvae, a pattern similar to that of CesA. Expression is downregulated at later stages and becomes undetectable in metamorphosed juveniles. The GH6-1 expression level is higher in the anterior-trunk region and caudal-tip regions of late embryos. Single-cell RNA sequencing analysis of the late tailbud stage showed that cells of three clusters with epidermal identity express GH6-1, and that some of them co-express CesA. TALEN-mediated genome editing was used to generate GH6-1 knockout Ciona larvae. Around half of TALEN-electroporated larvae showed abnormal development of adhesive papillae and altered distribution of surface cellulose. In addition, three-fourths of TALEN-electroporated animals failed to complete larval metamorphosis. CONCLUSIONS This study showed that tunicate GH6-1, a gene that originated by horizontal gene transfer of a prokaryote gene, is recruited into the ascidian genome, and that it is expressed and functions in epidermal cells of ascidian embryos. Although further research is required, this observation demonstrates that both CesA and GH6-1 are involved in tunicate cellulose metabolism, impacting tunicate morphology and ecology.
Collapse
Affiliation(s)
- Kun-Lung Li
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei City, 115, Taiwan.
| | - Keisuke Nakashima
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
14
|
Liu M, Ji W, Zhao X, Liu X, Hu JF, Cui J. Therapeutic potential of engineering the mitochondrial genome. Biochim Biophys Acta Mol Basis Dis 2023:166804. [PMID: 37429560 DOI: 10.1016/j.bbadis.2023.166804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Mitochondrial diseases are a group of clinical disorders caused by mutations in the genes encoded by either the nuclear or the mitochondrial genome involved in mitochondrial oxidative phosphorylation. Disorders become evident when mitochondrial dysfunction reaches a cell-specific threshold. Similarly, the severity of disorders is related to the degree of gene mutation. Clinical treatments for mitochondrial diseases mainly rely on symptomatic management. Theoretically, replacing or repairing dysfunctional mitochondria to acquire and preserve normal physiological functions should be effective. Significant advances have been made in gene therapies, including mitochondrial replacement therapy, mitochondrial genome manipulation, nuclease programming, mitochondrial DNA editing, and mitochondrial RNA interference. In this paper, we review the recent progress in these technologies by focusing on advancements that overcome limitations.
Collapse
Affiliation(s)
- Mengmeng Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Wei Ji
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xin Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Xiaoliang Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China
| | - Ji-Fan Hu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Jiuwei Cui
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Cancer Center, First Hospital of Jilin University, Changchun, Jilin 130061, China.
| |
Collapse
|
15
|
Shahwar D, Ahn N, Kim D, Ahn W, Park Y. Mutagenesis-based plant breeding approaches and genome engineering: A review focused on tomato. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108473. [PMID: 37716439 DOI: 10.1016/j.mrrev.2023.108473] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023]
Abstract
Breeding is the most important and efficient method for crop improvement involving repeated modification of the genetic makeup of a plant population over many generations. In this review, various accessible breeding approaches, such as conventional breeding and mutation breeding (physical and chemical mutagenesis and insertional mutagenesis), are discussed with respect to the actual impact of research on the economic improvement of tomato agriculture. Tomatoes are among the most economically important fruit crops consumed worldwide because of their high nutritional content and health-related benefits. Additionally, we summarize mutation-based mapping approaches, including Mutmap and MutChromeSeq, for the efficient mapping of several genes identified by random indel mutations that are beneficial for crop improvement. Difficulties and challenges in the adaptation of new genome editing techniques that provide opportunities to demonstrate precise mutations are also addressed. Lastly, this review focuses on various effective and convenient genome editing tools, such as RNA interference (RNAi), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9), and their potential for the improvement of numerous desirable traits to allow the development of better varieties of tomato and other horticultural crops.
Collapse
Affiliation(s)
- Durre Shahwar
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea
| | - Namju Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Donghyun Kim
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Wooseong Ahn
- Daenong Seed Company, Hwasun-gun 58155, Republic of Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang 50463, Republic of Korea.
| |
Collapse
|
16
|
Kennedy MA, Hosford CJ, Azumaya CM, Luyten YA, Chen M, Morgan RD, Stoddard BL. Structures, activity and mechanism of the Type IIS restriction endonuclease PaqCI. Nucleic Acids Res 2023; 51:4467-4487. [PMID: 36987874 PMCID: PMC10201449 DOI: 10.1093/nar/gkad228] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Type IIS restriction endonucleases contain separate DNA recognition and catalytic domains and cleave their substrates at well-defined distances outside their target sequences. They are employed in biotechnology for a variety of purposes, including the creation of gene-targeting zinc finger and TAL effector nucleases and DNA synthesis applications such as Golden Gate assembly. The most thoroughly studied Type IIS enzyme, FokI, has been shown to require multimerization and engagement with multiple DNA targets for optimal cleavage activity; however, details of how it or similar enzymes forms a DNA-bound reaction complex have not been described at atomic resolution. Here we describe biochemical analyses of DNA cleavage by the Type IIS PaqCI restriction endonuclease and a series of molecular structures in the presence and absence of multiple bound DNA targets. The enzyme displays a similar tetrameric organization of target recognition domains in the absence or presence of bound substrate, with a significant repositioning of endonuclease domains in a trapped DNA-bound complex that is poised to deliver the first of a series of double-strand breaks. PaqCI and FokI share similar structural mechanisms of DNA cleavage, but considerable differences in their domain organization and quaternary architecture, facilitating comparisons between distinct Type IIS enzymes.
Collapse
Affiliation(s)
- Madison A Kennedy
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | | | - Caleigh M Azumaya
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | - Minyong Chen
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. North, Seattle,WA 98109, USA
| |
Collapse
|
17
|
Sharma AK, Fitieh AM, Locke AJ, Ali JYH, Ismail IH. Quantification of protein enrichment at site-specific DNA double-strand breaks by chromatin immunoprecipitation in cultured human cells. STAR Protoc 2023; 4:101917. [PMID: 36520630 PMCID: PMC9758495 DOI: 10.1016/j.xpro.2022.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Here, we present a chromatin-immunoprecipitation-based protocol to quantify the recruitment of proteins adjacent to site-specific DNA double-strand breaks (DSBs), such as proteins involved in DSB repair. We describe steps to induce DSBs in U2OS osteosarcoma cells stably expressing the restriction endonucleases FokI or AsiSI. We then detail the procedures of chromatin isolation and immunoprecipitation, followed by protein elution and quantitative-PCR-based quantification of DNA. This protocol cannot be used on DSBs generated at random loci by DNA damaging agents. For complete details on the use and execution of this protocol, please refer to Fitieh et al. (2022).1.
Collapse
Affiliation(s)
- Ajit K Sharma
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Mohammed Fitieh
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Andrew J Locke
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Jana Yasser Hafez Ali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
18
|
Ben Yacoub T, Wohlschlegel J, Sahel JA, Zeitz C, Audo I. [CRISPR/Cas9: From research to therapeutic application]. J Fr Ophtalmol 2023; 46:398-407. [PMID: 36759244 DOI: 10.1016/j.jfo.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 02/10/2023]
Abstract
For several decades, genome engineering has raised interest among many researchers and physicians in the study of genetic disorders and their treatments. Compared to its predecessors, zinc-finger nucleases (ZFN) and transcription activator-like effectors (TALEN), clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) is currently the most efficient molecular tool for genome editing. This system, originally identified as a bacterial adaptive immune system, is capable of cutting and modifying any gene of a large number of living organisms. Numerous trials using this technology are being developed to provide effective treatment for several diseases, such as cancer, cardiovascular and ophthalmic disorders. In research, this technology is increasingly used for genetic disease modelling, providing meaningful models of relevant studies as well as a better understanding of underlying pathological mechanisms. Many molecular tools are now available to put this technique into practice in laboratories, and despite the technical and ethical issues raised by manipulation of the genome, CRIPSR/Cas9 offers a new breath of hope for therapeutic research around the world.
Collapse
Affiliation(s)
- T Ben Yacoub
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France.
| | - J Wohlschlegel
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France
| | - J-A Sahel
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France; CHNO des Quinze-Vingts, Inserm-DGOS CIC 1423, 75012 Paris, France; Department of ophthalmology, fondation ophtalmologique Adolphe De Rothschild, 75019 Paris, France; Department of ophthalmology, the university of Pittsburgh School of Medicine, Pittsburgh PA 15213, United States; Académie des sciences, institut de France, 75006 Paris, France
| | - C Zeitz
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France
| | - I Audo
- Sorbonne université, Inserm, CNRS, institut de la Vision, 75012 Paris, France; CHNO des Quinze-Vingts, Inserm-DGOS CIC 1423, 75012 Paris, France; Institute of ophthalmology, university College of London, London EC1V 9EL, United Kingdom
| |
Collapse
|
19
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
20
|
Genome Editing and Pathological Cardiac Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:87-101. [DOI: 10.1007/978-981-19-5642-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
21
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
22
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
23
|
Van Vu T, Das S, Hensel G, Kim JY. Genome editing and beyond: what does it mean for the future of plant breeding? PLANTA 2022; 255:130. [PMID: 35587292 PMCID: PMC9120101 DOI: 10.1007/s00425-022-03906-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/26/2022] [Indexed: 05/04/2023]
Abstract
MAIN CONCLUSION Genome editing offers revolutionized solutions for plant breeding to sustain food production to feed the world by 2050. Therefore, genome-edited products are increasingly recognized via more relaxed legislation and community adoption. The world population and food production are disproportionally growing in a manner that would have never matched each other under the current agricultural practices. The emerging crisis is more evident with the subtle changes in climate and the running-off of natural genetic resources that could be easily used in breeding in conventional ways. Under these circumstances, affordable CRISPR-Cas-based gene-editing technologies have brought hope and charged the old plant breeding machine with the most energetic and powerful fuel to address the challenges involved in feeding the world. What makes CRISPR-Cas the most powerful gene-editing technology? What are the differences between it and the other genetic engineering/breeding techniques? Would its products be labeled as "conventional" or "GMO"? There are so many questions to be answered, or that cannot be answered within the limitations of our current understanding. Therefore, we would like to discuss and answer some of the mentioned questions regarding recent progress in technology development. We hope this review will offer another view on the role of CRISPR-Cas technology in future of plant breeding for food production and beyond.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, km 02, Pham Van Dong Road, Co Nhue 1, Bac Tu Liem, Hanoi, 11917, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371, Olomouc, Czech Republic.
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, Republic of Korea.
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
24
|
Kim TH, Lee SW. Therapeutic Application of Genome Editing Technologies in Viral Diseases. Int J Mol Sci 2022; 23:5399. [PMID: 35628210 PMCID: PMC9140762 DOI: 10.3390/ijms23105399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Viral infections can be fatal and consequently, they are a serious threat to human health. Therefore, the development of vaccines and appropriate antiviral therapeutic agents is essential. Depending on the virus, it can cause an acute or a chronic infection. The characteristics of viruses can act as inhibiting factors for the development of appropriate treatment methods. Genome editing technology, including the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), is a technology that can directly target and modify genomic sequences in almost all eukaryotic cells. The development of this technology has greatly expanded its applicability in life science research and gene therapy development. Research on the use of this technology to develop therapeutics for viral diseases is being conducted for various purposes, such as eliminating latent infections or providing resistance to new infections. In this review, we will look at the current status of the development of viral therapeutic agents using genome editing technology and discuss how this technology can be used as a new treatment approach for viral diseases.
Collapse
Affiliation(s)
- Tae Hyeong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea;
| | - Seong-Wook Lee
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Korea
- R&D Center, Rznomics Inc., Seongnam 13486, Korea
| |
Collapse
|
25
|
Genome Editing: A Promising Approach for Achieving Abiotic Stress Tolerance in Plants. Int J Genomics 2022; 2022:5547231. [PMID: 35465040 PMCID: PMC9033345 DOI: 10.1155/2022/5547231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
The susceptibility of crop plants towards abiotic stresses is highly threatening to assure global food security as it results in almost 50% annual yield loss. To address this issue, several strategies like plant breeding and genetic engineering have been used by researchers from time to time. However, these approaches are not sufficient to ensure stress resilience due to the complexity associated with the inheritance of abiotic stress adaptive traits. Thus, researchers were prompted to develop novel techniques with high precision that can address the challenges connected to the previous strategies. Genome editing is the latest approach that is in the limelight for improving the stress tolerance of plants. It has revolutionized crop research due to its versatility and precision. The present review is an update on the different genome editing tools used for crop improvement so far and the various challenges associated with them. It also highlights the emerging potential of genome editing for developing abiotic stress-resilient crops.
Collapse
|
26
|
Hou Y, Zhang X, Sun X, Qin Q, Chen D, Jia M, Chen Y. Genetically modified rabbit models for cardiovascular medicine. Eur J Pharmacol 2022; 922:174890. [PMID: 35300995 DOI: 10.1016/j.ejphar.2022.174890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/23/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Genetically modified (GM) rabbits are outstanding animal models for studying human genetic and acquired diseases. As such, GM rabbits that express human genes have been extensively used as models of cardiovascular disease. Rabbits are genetically modified via prokaryotic microinjection. Through this process, genes are randomly integrated into the rabbit genome. Moreover, gene targeting in embryonic stem (ES) cells is a powerful tool for understanding gene function. However, rabbits lack stable ES cell lines. Therefore, ES-dependent gene targeting is not possible in rabbits. Nevertheless, the RNA interference technique is rapidly becoming a useful experimental tool that enables researchers to knock down specific gene expression, which leads to the genetic modification of rabbits. Recently, with the emergence of new genetic technology, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated protein 9 (CRISPR/Cas9), major breakthroughs have been made in rabbit gene targeting. Using these novel genetic techniques, researchers have successfully modified knockout (KO) rabbit models. In this paper, we aimed to review the recent advances in GM technology in rabbits and highlight their application as models for cardiovascular medicine.
Collapse
Affiliation(s)
- Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xia Sun
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China; School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
27
|
Cao G, Xuan X, Zhang R, Hu J, Dong H. Gene Therapy for Cardiovascular Disease: Basic Research and Clinical Prospects. Front Cardiovasc Med 2021; 8:760140. [PMID: 34805315 PMCID: PMC8602679 DOI: 10.3389/fcvm.2021.760140] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, the vital role of genetic factors in human diseases have been widely recognized by scholars with the deepening of life science research, accompanied by the rapid development of gene-editing technology. In early years, scientists used homologous recombination technology to establish gene knock-out and gene knock-in animal models, and then appeared the second-generation gene-editing technology zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) that relied on nucleic acid binding proteins and endonucleases and the third-generation gene-editing technology that functioned through protein-nucleic acids complexes-CRISPR/Cas9 system. This holds another promise for refractory diseases and genetic diseases. Cardiovascular disease (CVD) has always been the focus of clinical and basic research because of its high incidence and high disability rate, which seriously affects the long-term survival and quality of life of patients. Because some inherited cardiovascular diseases do not respond well to drug and surgical treatment, researchers are trying to use rapidly developing genetic techniques to develop initial attempts. However, significant obstacles to clinical application of gene therapy still exists, such as insufficient understanding of the nature of cardiovascular disease, limitations of genetic technology, or ethical concerns. This review mainly introduces the types and mechanisms of gene-editing techniques, ethical concerns of gene therapy, the application of gene therapy in atherosclerosis and inheritable cardiovascular diseases, in-stent restenosis, and delivering systems.
Collapse
Affiliation(s)
- Genmao Cao
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xuezhen Xuan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ruijing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Hu
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Honglin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
28
|
Abrosimova LA, Kuznetsov NA, Astafurova NA, Samsonova AR, Karpov AS, Perevyazova TA, Oretskaya TS, Fedorova OS, Kubareva EA. Kinetic Analysis of the Interaction of Nicking Endonuclease BspD6I with DNA. Biomolecules 2021; 11:1420. [PMID: 34680052 PMCID: PMC8533099 DOI: 10.3390/biom11101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Nicking endonucleases (NEs) are enzymes that incise only one strand of the duplex to produce a DNA molecule that is 'nicked' rather than cleaved in two. Since these precision tools are used in genetic engineering and genome editing, information about their mechanism of action at all stages of DNA recognition and phosphodiester bond hydrolysis is essential. For the first time, fast kinetics of the Nt.BspD6I interaction with DNA were studied by the stopped-flow technique, and changes of optical characteristics were registered for the enzyme or DNA molecules. The role of divalent metal cations was estimated at all steps of Nt.BspD6I-DNA complex formation. It was demonstrated that divalent metal ions are not required for the formation of a non-specific complex of the protein with DNA. Nt.BspD6I bound five-fold more efficiently to its recognition site in DNA than to a random DNA. DNA bending was confirmed during the specific binding of Nt.BspD6I to a substrate. The optimal size of Nt.BspD6I's binding site in DNA as determined in this work should be taken into account in methods of detection of nucleic acid sequences and/or even various base modifications by means of NEs.
Collapse
Affiliation(s)
- Liudmila A. Abrosimova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Natalia A. Astafurova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | | | - Andrey S. Karpov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (N.A.A.); (A.S.K.)
| | - Tatiana A. Perevyazova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya Str. 3, 142290 Puschino, Russia;
| | - Tatiana S. Oretskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| | - Olga S. Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Lavrentiev Avenue 8, 630090 Novosibirsk, Russia;
| | - Elena A. Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia; (T.S.O.); (E.A.K.)
| |
Collapse
|
29
|
Arnesen JA, Hoof JB, Kildegaard HF, Borodina I. Genome Editing of Eukarya. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Xu M, Weng Q, Ji J. Applications and advances of CRISPR/Cas9 in animal cancer model. Brief Funct Genomics 2021; 19:235-241. [PMID: 32124927 DOI: 10.1093/bfgp/elaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Indexed: 01/18/2023] Open
Abstract
The recent developments of clustered regularly interspaced short palindromic repeats(CRISPR)/-associate protein 9 (CRISPR/Cas9) have got scientific interests due to the straightforward, efficient and versatile talents of it. Furthermore, the CRISPR/Cas9 system has democratized access to gene editing in many biological fields, including cancer. Cancer development is a multistep process caused by innate and acquired mutations and leads to the initiation and progression of tumorigenesis. It is obvious that establishing appropriate animal cancer models which can simulate human cancers is crucial for cancer research currently. Since the emergence of CRISPR/Cas9, considerable efforts have been taken by researchers to apply this technology in generating animal cancer models. Although there is still a long way to go we are happy to see the achievements we have made and the promising future we have.
Collapse
|
31
|
Zhang Y, Li M. Genome Editing Technologies as Cellular Defense Against Viral Pathogens. Front Cell Dev Biol 2021; 9:716344. [PMID: 34336867 PMCID: PMC8320169 DOI: 10.3389/fcell.2021.716344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 12/26/2022] Open
Abstract
Viral infectious diseases are significant threats to the welfare of world populations. Besides the widespread acute viral infections (e.g., dengue fever) and chronic infections [e.g., those by the human immunodeficiency virus (HIV) and hepatitis B virus (HBV)], emerging viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), pose great challenges to the world. Genome editing technologies, including clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) proteins, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs), have played essential roles in the study of new treatment for viral infectious diseases in cell lines, animal models, and clinical trials. Genome editing tools have been used to eliminate latent infections and provide resistance to new infections. Increasing evidence has shown that genome editing-based antiviral strategy is simple to design and can be quickly adapted to combat infections by a wide spectrum of viral pathogens, including the emerging coronaviruses. Here we review the development and applications of genome editing technologies for preventing or eliminating infections caused by HIV, HBV, HPV, HSV, and SARS-CoV-2, and discuss how the latest advances could enlighten further development of genome editing into a novel therapy for viral infectious diseases.
Collapse
|
32
|
Eksi YE, Sanlioglu AD, Akkaya B, Ozturk BE, Sanlioglu S. Genome engineering and disease modeling via programmable nucleases for insulin gene therapy; promises of CRISPR/Cas9 technology. World J Stem Cells 2021; 13:485-502. [PMID: 34249224 PMCID: PMC8246254 DOI: 10.4252/wjsc.v13.i6.485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/02/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted genome editing is a continually evolving technology employing programmable nucleases to specifically change, insert, or remove a genomic sequence of interest. These advanced molecular tools include meganucleases, zinc finger nucleases, transcription activator-like effector nucleases and RNA-guided engineered nucleases (RGENs), which create double-strand breaks at specific target sites in the genome, and repair DNA either by homologous recombination in the presence of donor DNA or via the error-prone non-homologous end-joining mechanism. A recently discovered group of RGENs known as CRISPR/Cas9 gene-editing systems allowed precise genome manipulation revealing a causal association between disease genotype and phenotype, without the need for the reengineering of the specific enzyme when targeting different sequences. CRISPR/Cas9 has been successfully employed as an ex vivo gene-editing tool in embryonic stem cells and patient-derived stem cells to understand pancreatic beta-cell development and function. RNA-guided nucleases also open the way for the generation of novel animal models for diabetes and allow testing the efficiency of various therapeutic approaches in diabetes, as summarized and exemplified in this manuscript.
Collapse
Affiliation(s)
- Yunus E Eksi
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Ahter D Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bahar Akkaya
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey
| | - Bilge Esin Ozturk
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States
| | - Salih Sanlioglu
- Department of Gene and Cell Therapy, Akdeniz University Faculty of Medicine, Antalya 07058, Turkey.
| |
Collapse
|
33
|
Zhu X, Zhang Y, Yang X, Hao C, Duan H. Gene Therapy for Neurodegenerative Disease: Clinical Potential and Directions. Front Mol Neurosci 2021; 14:618171. [PMID: 34194298 PMCID: PMC8236824 DOI: 10.3389/fnmol.2021.618171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/07/2021] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases (NDDs) is complex and diverse. Over the decades, our understanding of NDD has been limited to pathological features. However, recent advances in gene sequencing have facilitated elucidation of NDD at a deeper level. Gene editing techniques have uncovered new genetic links to phenotypes, promoted the development of novel treatment strategies and equipped researchers with further means to construct effective cell and animal models. The current review describes the history of evolution of gene editing tools, with the aim of improving overall understanding of this technology, and focuses on the four most common NDD disorders to demonstrate the potential future applications and research directions of gene editing.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hubin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang, China
| |
Collapse
|
34
|
Kim YC, Kang Y, Yang EY, Cho MC, Schafleitner R, Lee JH, Jang S. Applications and Major Achievements of Genome Editing in Vegetable Crops: A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:688980. [PMID: 34178006 PMCID: PMC8231707 DOI: 10.3389/fpls.2021.688980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 05/04/2023]
Abstract
The emergence of genome-editing technology has allowed manipulation of DNA sequences in genomes to precisely remove or replace specific sequences in organisms resulting in targeted mutations. In plants, genome editing is an attractive method to alter gene functions to generate improved crop varieties. Genome editing is thought to be simple to use and has a lower risk of off-target effects compared to classical mutation breeding. Furthermore, genome-editing technology tools can also be applied directly to crops that contain complex genomes and/or are not easily bred using traditional methods. Currently, highly versatile genome-editing tools for precise and predictable editing of almost any locus in the plant genome make it possible to extend the range of application, including functional genomics research and molecular crop breeding. Vegetables are essential nutrient sources for humans and provide vitamins, minerals, and fiber to diets, thereby contributing to human health. In this review, we provide an overview of the brief history of genome-editing technologies and the components of genome-editing tool boxes, and illustrate basic modes of operation in representative systems. We describe the current and potential practical application of genome editing for the development of improved nutritious vegetables and present several case studies demonstrating the potential of the technology. Finally, we highlight future directions and challenges in applying genome-editing systems to vegetable crops for research and product development.
Collapse
Affiliation(s)
- Young-Cheon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Yeeun Kang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| | - Eun-Young Yang
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | - Myeong-Cheoul Cho
- National Institute of Horticultural and Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju-gun, South Korea
| | | | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office, Wanju-gun, South Korea
| |
Collapse
|
35
|
Tumuluri VS, Rajgor V, Xu SY, Chouhan OP, Saikrishnan K. Mechanism of DNA cleavage by the endonuclease SauUSI: a major barrier to horizontal gene transfer and antibiotic resistance in Staphylococcus aureus. Nucleic Acids Res 2021; 49:2161-2178. [PMID: 33533920 PMCID: PMC7913695 DOI: 10.1093/nar/gkab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Acquisition of foreign DNA by Staphylococcus aureus, including vancomycin resistance genes, is thwarted by the ATP-dependent endonuclease SauUSI. Deciphering the mechanism of action of SauUSI could unravel the reason how it singularly plays a major role in preventing horizontal gene transfer (HGT) in S. aureus. Here, we report a detailed biochemical and structural characterization of SauUSI, which reveals that in the presence of ATP, the enzyme can cleave DNA having a single or multiple target site/s. Remarkably, in the case of multiple target sites, the entire region of DNA flanked by two target sites is shred into smaller fragments by SauUSI. Crystal structure of SauUSI reveals a stable dimer held together by the nuclease domains, which are spatially arranged to hydrolyze the phosphodiester bonds of both strands of the duplex. Thus, the architecture of the dimeric SauUSI facilitates cleavage of either single-site or multi-site DNA. The structure also provides insights into the molecular basis of target recognition by SauUSI. We show that target recognition activates ATP hydrolysis by the helicase-like ATPase domain, which powers active directional movement (translocation) of SauUSI along the DNA. We propose that a pile-up of multiple translocating SauUSI molecules against a stationary SauUSI bound to a target site catalyzes random double-stranded breaks causing shredding of the DNA between two target sites. The extensive and irreparable damage of the foreign DNA by shredding makes SauUSI a potent barrier against HGT.
Collapse
Affiliation(s)
| | - Vrunda Rajgor
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shuang-Yong Xu
- New England Biolabs Inc., Research Department, Ipswich, MA 01938, USA
| | - Om Prakash Chouhan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
36
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
37
|
Hillary VE, Ceasar SA. Genome engineering in insects for the control of vector borne diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 179:197-223. [PMID: 33785177 DOI: 10.1016/bs.pmbts.2020.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insects cause many vector-borne infectious diseases and have become a major threat to human health. Although many control measures are undertaken, some insects are resistant to it, exacerbated by environmental changes which is a major challenge for control measures. Genetic studies by targeting the genomes of insects may offer an alternative strategy. Developments with novel genome engineering technologies have stretched our ability to target and modify any genomic sequence in Eukaryotes including insects. Genome engineering tools such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and most recently discovered, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) systems hold the potential to control the vector-borne diseases. In this chapter, we review the vector control strategy undertaken by employing three major genome engineering tools (ZFNs, TALENs, and CRISPR/Cas9) and discuss the future prospects of this system to control insect vectors. Finally, we also discuss the CRISPR-based gene drive system and its concerns due to ecological impacts.
Collapse
Affiliation(s)
- V Edwin Hillary
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India
| | - S Antony Ceasar
- Division of Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, Tamil Nadu, India; Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Kalamassery, Kochi, India.
| |
Collapse
|
38
|
Doroftei B, Ilie OD, Puiu M, Ciobica A, Ilea C. Mini-Review Regarding the Applicability of Genome Editing Techniques Developed for Studying Infertility. Diagnostics (Basel) 2021; 11:diagnostics11020246. [PMID: 33562517 PMCID: PMC7915733 DOI: 10.3390/diagnostics11020246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Infertility is a highly debated topic today. It has been long hypothesized that infertility has an idiopathic cause, but recent studies demonstrated the existence of a genetic substrate. Fortunately, the methods of editing the human genome proven to be revolutionary. Following research conducted, we identified a total of 21 relevant studies; 14 were performed on mice, 5 on zebrafish and 2 on rats. We concluded that over forty-four genes in total are dispensable for fertility in both sexes without affecting host homeostasis. However, there are genes whose loss-of-function induces moderate to severe phenotypic changes in both sexes. There were situations in which the authors reported infertility, exhibited by the experimental model, or other pathologies such as cryptorchidism, cataracts, or reduced motor activity. Overall, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 are techniques that offer a wide range of possibilities for studying infertility, even to create mutant variants. It can be concluded that ZFNs, TALENs, and CRISPR/Cas9 are crucial tools in biomedical research.
Collapse
Affiliation(s)
- Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania; (B.D.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, no 34, 700038 Iasi, Romania
- Origyn Fertility Center, Palace Street, no 3C, 700032 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania;
- Correspondence:
| | - Maria Puiu
- Department of Microscopic Morphology, Faculty of Medicine, University of Medicine and Pharmacy “Victor Babeș”, Eftimie Murgu Square, no 2, 300041 Timișoara, Romania;
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania;
| | - Ciprian Ilea
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania; (B.D.); (C.I.)
- Clinical Hospital of Obstetrics and Gynecology “Cuza Voda”, Cuza Voda Street, no 34, 700038 Iasi, Romania
| |
Collapse
|
39
|
Dell' Amico C, Tata A, Pellegrino E, Onorati M, Conti L. Genome editing in stem cells for genetic neurodisorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:403-438. [PMID: 34175049 DOI: 10.1016/bs.pmbts.2020.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The recent advent of genome editing techniques and their rapid improvement paved the way in establishing innovative human neurological disease models and in developing new therapeutic opportunities. Human pluripotent (both induced or naive) stem cells and neural stem cells represent versatile tools to be applied to multiple research needs and, together with genomic snip and fix tools, have recently made possible the creation of unique platforms to directly investigate several human neural affections. In this chapter, we will discuss genome engineering tools, and their recent improvements, applied to the stem cell field, focusing on how these two technologies may be pivotal instruments to deeply unravel molecular mechanisms underlying development and function, as well as disorders, of the human brain. We will review how these frontier technologies may be exploited to investigate or treat severe neurodevelopmental disorders, such as microcephaly, autism spectrum disorder, schizophrenia, as well as neurodegenerative conditions, including Parkinson's disease, Huntington's disease, Alzheimer's disease, and spinal muscular atrophy.
Collapse
Affiliation(s)
- Claudia Dell' Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Alice Tata
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Enrica Pellegrino
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy; Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy.
| | - Luciano Conti
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
40
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
41
|
Park HJ, Kong MJ, Jang HJ, Cho JI, Park EJ, Lee IK, Frøkiær J, Norregaard R, Park KM, Kwon TH. A nonbiodegradable scaffold-free cell sheet of genome-engineered mesenchymal stem cells inhibits development of acute kidney injury. Kidney Int 2021; 99:117-133. [PMID: 32853632 DOI: 10.1016/j.kint.2020.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/15/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022]
Abstract
Cell therapy using genome-engineered stem cells has emerged as a novel strategy for the treatment of kidney diseases. By exploiting genome editing technology, human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) secreting an angiogenic factors or an anti-inflammatory factor were generated for therapeutic application in acute kidney injury. Junction polymerase chain reaction analysis verified zinc finger nucleases-assisted integration of the desired gene into the hUC-MSCs. Flow cytometry and differentiation assays indicated that genome editing did not affect the differentiation potential of these mesenchymal stem cells. Protein measurement in conditioned media with the use of ELISA and immunoblotting revealed the production and secretion of each integrated gene product. For cell therapy in the bilateral ischemia-reperfusion mouse model of acute kidney injury, our innovative scaffold-free cell sheets were established using a non-biodegradable temperature-responsive polymer. One of each type of scaffold-free cell sheets of either the angiogenic factor vascular endothelial grown factor or angiopoietin-1, or the anti-inflammatory factor erythropoietin, or α-melanocyte-stimulating hormone-secreting hUC-MSCs was applied to the decapsulated kidney surface. This resulted in significant amelioration of kidney dysfunction in the mice with acute kidney injury, effects that were superior to intravenous administration of the same genome-engineered hUC-MSCs. Thus, our scaffold-free cell sheets of genome-engineered mesenchymal stem cells provides therapeutic effects by inhibiting acute kidney injury via angiogenesis or anti-inflammation.
Collapse
Affiliation(s)
- Hye-Jeong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Min Jung Kong
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Hyo-Ju Jang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Jeong-In Cho
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Eui-Jung Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea
| | - In-Kyu Lee
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Jørgen Frøkiær
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikke Norregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Kwon Moo Park
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea; Department of Anatomy, School of Medicine, Kyungpook National University, Taegu, Korea
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu, Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Taegu, Korea.
| |
Collapse
|
42
|
Schwarze LI, Głów D, Sonntag T, Uhde A, Fehse B. Optimisation of a TALE nuclease targeting the HIV co-receptor CCR5 for clinical application. Gene Ther 2021; 28:588-601. [PMID: 34112993 PMCID: PMC8455333 DOI: 10.1038/s41434-021-00271-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/05/2023]
Abstract
Disruption of the C-C-Chemokine-receptor-5 (CCR5) gene induces resistance towards CCR5-tropic HIV. Here we optimised our previously described CCR5-Uco-TALEN and its delivery by mRNA electroporation. The novel variant, CCR5-Uco-hetTALEN features an obligatory heterodimeric Fok1-cleavage domain, which resulted in complete abrogation of off-target activity at previously found homodimeric as well as 7/8 in silico predicted, potential heterodimeric off-target sites, the only exception being highly homologous CCR2. Prevailing 18- and 10-bp deletions at the on-target site revealed microhomology-mediated end-joining as a major repair pathway. Notably, the CCR5Δ55-60 protein resulting from the 18-bp deletion was almost completely retained in the cytosol. Simultaneous cutting at CCR5 and CCR2 induced rearrangements, mainly 15-kb deletions between the cut sites, in up to 2% of T cells underlining the necessity to restrict TALEN expression. We optimised in vitro mRNA production and showed that CCR5-on- and CCR2 off-target activities of CCR5-Uco-hetTALEN were limited to the first 72 and 24-48 h post-mRNA electroporation, respectively. Using single-cell HRMCA, we discovered high rates of TALEN-induced biallelic gene editing of CCR5, which translated in large numbers of CCR5-negative cells resistant to HIVenv-pseudotyped lentiviral vectors. We conclude that CCR5-Uco-hetTALEN transfected by mRNA electroporation facilitates specific, high-efficiency CCR5 gene-editing (30%-56%) and it is highly suited for clinical translation subject to further characterisation of off-target effects.
Collapse
Affiliation(s)
- Lea Isabell Schwarze
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| | - Dawid Głów
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Sonntag
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Almut Uhde
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- grid.13648.380000 0001 2180 3484Department of Stem Cell Transplantation, Research Department Cell and Gene Therapy, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany ,grid.452463.2German Centre for Infection Research (DZIF), partner site Hamburg, Hamburg, Germany
| |
Collapse
|
43
|
Pearl Millet Blast Resistance: Current Status and Recent Advancements in Genomic Selection and Genome Editing Approaches. Fungal Biol 2021. [DOI: 10.1007/978-3-030-60585-8_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Ely A, Singh P, Smith TS, Arbuthnot P. In vitro transcribed mRNA for expression of designer nucleases: Advantages as a novel therapeutic for the management of chronic HBV infection. Adv Drug Deliv Rev 2021; 168:134-146. [PMID: 32485207 DOI: 10.1016/j.addr.2020.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) remains a significant worldwide medical problem. While diseases caused by HIV infection, tuberculosis and malaria are on the decline, new cases of chronic hepatitis B are on the rise. Because often fatal complications of cirrhosis and hepatocellular carcinoma are associated with chronic hepatitis B, the need for a cure is as urgent as ever. Currently licensed therapeutics fail to eradicate the virus and this is attributable to persistence of the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Elimination or inactivation of the viral cccDNA is thus a goal of research aimed at hepatitis B cure. The ability to engineer nucleases that are capable of specific cleavage of a DNA sequence now provides the means to disable cccDNA permanently. The scientific literature is replete with many examples of using designer zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs) to inactivate HBV. However, important concerns about safety, dose control and efficient delivery need to be addressed before the technology is employed in a clinical setting. Use of in vitro transcribed mRNA to express therapeutic gene editors goes some way to overcoming these concerns. The labile nature of RNA limits off-target effects and enables dose control. Compatibility with hepatotropic non-viral vectors is convenient for the large scale preparation that will be required for advancing gene editing as a mode of curing chronic hepatitis B.
Collapse
|
45
|
Moscoso CG, Steer CJ. Liver targeted gene therapy: Insights into emerging therapies. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 34:9-19. [PMID: 33357766 DOI: 10.1016/j.ddtec.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 10/23/2020] [Accepted: 11/03/2020] [Indexed: 12/24/2022]
Abstract
The large number of monogenic metabolic disorders originating in the liver poses a unique opportunity for development of gene therapy modalities to pursue curative approaches. Various disorders have been successfully treated via liver-directed gene therapy, though most of the advances have been in animal models, with only limited success in clinical trials. Pre-clinical data in animals using non-viral approaches, including the Sleeping Beauty transposon system, are discussed. The various advances with viral vectors for liver-directed gene therapy are also a focus of this review, including retroviral, adenoviral, recombinant adeno-associated viral, and SV40 vectors. Genome editing techniques, including zinc finger nucleases, transcription activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR), are also described. Further, the various controversies in the field with regards to somatic vs. germline editing using CRISPR in humans are explored, while also highlighting the myriad of preclinical advances. Lastly, newer technologies are reviewed, including base editing and prime editing, which use CRISPR with exciting adjunctive properties to avoid double-stranded breaks and thus the recruitment of endogenous repair mechanisms. While encouraging results have been achieved recently, there are still significant challenges to overcome prior to the broad use of vector-based and genome editing techniques in the clinical arena. As these technologies mature, the promise of a cure for many disabling inherited metabolic disorders is within reach, and urgently needed.
Collapse
Affiliation(s)
- Carlos G Moscoso
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | - Clifford J Steer
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455 USA.
| |
Collapse
|
46
|
The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucleases, RNA interference, and Cre/loxP. CHEMTEXTS 2020. [DOI: 10.1007/s40828-020-00126-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractThe huge progress in whole genome sequencing (genomic revolution) methods including next generation sequencing (NGS) techniques allows one to obtain data on genome sequences of all organisms, ranging from bacteria to plants to mammals, within hours to days (era of whole genome/exome sequencing) (Goodwin et al. in Nat Rev Genet 17:333–351, 2016; Levy and Myers in Annu Rev Genomics Hum Genet 17:95–115, 2016; Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). Today, within the era of functional genomics the highest goal is to transfer this huge amount of sequencing data into information of functional and clinical relevance (genome annotation project). The World Health Organization (WHO) estimates that more than 10,000 diseases in humans are monogenic, i.e., that these diseases are caused by mutations within single genes (Jackson et al. in Essays Biochem 62:643–723, 2018). NGS technologies are continuously improving while our knowledge on genetic mutations driving the development of diseases is also still emerging (Giani et al. in Comput Struct Biotechnol J 18:9–19, 2020). It would be desirable to have tools that allow one to correct these genetic mutations, so-called genome editing tools. Apart from applications in biotechnology, medicine, and agriculture, it is still not concisely understood in basic science how genotype influences phenotype. Firstly, the Cre/loxP system and RNA-based technologies for gene knockout or knockdown are explained. Secondly, zinc-finger (ZnF) nucleases and transcription activator-like effector nucleases (TALENs) are discussed as targeted genome editing systems. Thirdly, CRISPR/Cas is presented including outline of the discovery and mechanisms of this adaptive immune system in bacteria and archaea, structure and function of CRISPR/Cas9 and its application as a tool for genomic editing. Current developments and applications of CRISPR/Cas9 are discussed. Moreover, limitations and drawbacks of the CRISPR/Cas system are presented and questions on ethical concerns connected to application of genome editing tools are discussed.
Collapse
|
47
|
Hu M, Cherkaoui I, Misra S, Rutter GA. Functional Genomics in Pancreatic β Cells: Recent Advances in Gene Deletion and Genome Editing Technologies for Diabetes Research. Front Endocrinol (Lausanne) 2020; 11:576632. [PMID: 33162936 PMCID: PMC7580382 DOI: 10.3389/fendo.2020.576632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
The inheritance of variants that lead to coding changes in, or the mis-expression of, genes critical to pancreatic beta cell function can lead to alterations in insulin secretion and increase the risk of both type 1 and type 2 diabetes. Recently developed clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene editing tools provide a powerful means of understanding the impact of identified variants on cell function, growth, and survival and might ultimately provide a means, most likely after the transplantation of genetically "corrected" cells, of treating the disease. Here, we review some of the disease-associated genes and variants whose roles have been probed up to now. Next, we survey recent exciting developments in CRISPR/Cas9 technology and their possible exploitation for β cell functional genomics. Finally, we will provide a perspective as to how CRISPR/Cas9 technology may find clinical application in patients with diabetes.
Collapse
Affiliation(s)
- Ming Hu
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ines Cherkaoui
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Shivani Misra
- Metabolic Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
48
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
49
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
50
|
Abrosimova LA, Samsonova AR, Perevyazova TA, Yunusova AK, Artyukh RI, Romanova EA, Zheleznaya LA, Oretskaya TS, Kubareva EA. The Role of Cysteine Residues in the Interaction of Nicking Endonuclease BspD6I with DNA. Mol Biol 2020. [DOI: 10.1134/s0026893320040020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|