1
|
Daëron M. The function of antibodies. Immunol Rev 2024; 328:113-125. [PMID: 39180466 DOI: 10.1111/imr.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Antibodies have multiple biological activities. They can both recognize and act on specific antigens. They can protect against and cause serious diseases, enhance and inhibit antibody responses, enable survival, and threaten life. Which among their many, often antagonistic properties explains that antibodies were selected half a billion years ago and transmitted to mammals across millions of generations? In other words, what is the function of antibodies? Here I examine how their structure endows antibodies with unique cognitive and effector properties that contribute to their multiple biological activities. I show that rather than specific properties, antibodies have large functional repertoires. They have a cognitive repertoire and an effector repertoire that are selected from larger available repertoires, themselves drawn at random from even larger virtual repertoires. These virtual repertoires provide the adaptive immune system with immense, constantly renewed, reservoirs of cognitive and effector functions that can be actualized at any time according to the context. I propose that such a flexibility, which enables living individuals to adapt to a rapidly changing environment, and even deal with an unknown future, may provide a better selective advantage than any particular function.
Collapse
Affiliation(s)
- Marc Daëron
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université-CNRS-Inserm, Marseille, France
- Institut Pasteur-Université Paris Cité, Paris, France
- Institut d'histoire et de philosophie des sciences et des techniques (IHPST), Université Paris 1 Panthéon Sorbonne-CNRS, Paris, France
| |
Collapse
|
2
|
Liu Q, Ma H. Cancer biotherapy: review and prospect. Clin Exp Med 2024; 24:114. [PMID: 38801637 PMCID: PMC11130057 DOI: 10.1007/s10238-024-01376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Malignant tumors pose a grave threat to the quality of human life. The prevalence of malignant tumors in China is steadily rising. Presently, clinical interventions encompass surgery, radiotherapy, and pharmaceutical therapy in isolation or combination. Nonetheless, these modalities fail to completely eradicate malignant tumor cells, frequently leading to metastasis and recurrence. Conversely, tumor biotherapy has emerged as an encouraging fourth approach in preventing and managing malignant tumors owing to its safety, efficacy, and minimal adverse effects. Currently, a range of tumor biotherapy techniques are employed, including gene therapy, tumor vaccines, monoclonal antibody therapy, cancer stem cell therapy, cytokine therapy, and adoptive cellular immunotherapy. This study aims to comprehensively review the latest developments in biological treatments for malignant tumors.
Collapse
Affiliation(s)
- Qi Liu
- Zunyi Medical University, Zunyi, Guizhou, 563000, China
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China
| | - Hu Ma
- Zunyi Medical University, Zunyi, Guizhou, 563000, China.
- Department of Thoracic Oncology, The Second Affiliated Hospital of Zunyi Medical University, Guizhou, 56300, Zunyi, China.
| |
Collapse
|
3
|
Wöhner M, Brechtelsbauer S, Friedrich N, Vorsatz C, Bulang J, Liang C, Schorr L, Beschin A, Guilliams M, Ravetch J, Nimmerjahn F, Biburger M. Tissue niche occupancy determines the contribution of fetal- versus bone-marrow-derived macrophages to IgG effector functions. Cell Rep 2024; 43:113757. [PMID: 38354088 DOI: 10.1016/j.celrep.2024.113757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
Understanding the mechanisms underlying cytotoxic immunoglobulin G (IgG) activity is critical for improving therapeutic antibody activity and inhibiting autoantibody-mediated tissue pathology. While prior research highlights the important role of the mononuclear phagocytic system for removing opsonized target cells, it remains unclear which monocyte or macrophage subsets stemming from fetal or post-natal bone-marrow (BM)-associated definitive hematopoiesis are involved in target cell depletion. By using a titrated irradiation approach as well as Kupffer-cell-specific deletion of activated Fcγ receptor signaling, we establish conditions under which the contribution of BM-derived monocytes versus yolk-sac-derived liver-resident macrophages to cytotoxic IgG activity can be studied. Our results demonstrate that liver-resident macrophages originating from either fetal or adult hematopoiesis play a central role in IgG-mediated depletion of opsonized target cells from the peripheral blood under steady-state conditions, highlighting the impact of the tissue niche and not macrophage origin for cytotoxic antibody activity.
Collapse
Affiliation(s)
- Miriam Wöhner
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Sarah Brechtelsbauer
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Niklas Friedrich
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Christof Vorsatz
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Johanna Bulang
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Chunguang Liang
- Institute of Immunology, University Hospital Jena, Leutragraben 3, 07743 Jena, Germany; Department of Bioinformatics, University of Würzburg, 97074 Würzburg, Germany
| | - Lena Schorr
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alain Beschin
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; Myeloid Cell Immunology Laboratory, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Martin Guilliams
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, 9000 Ghent, Belgium; Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, 9000 Ghent, Belgium
| | - Jeffrey Ravetch
- Laboratory of Molecular Genetics & Immunology, The Rockefeller University, New York, NY, USA
| | - Falk Nimmerjahn
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | - Markus Biburger
- Department of Biology, Division of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany; FAU Profile Center Immunomedicine, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
4
|
Gong B, Huang Y, Wang Z, Wan B, Zeng Y, Lv C. BAG3 as a novel prognostic biomarker in kidney renal clear cell carcinoma correlating with immune infiltrates. Eur J Med Res 2024; 29:93. [PMID: 38297320 PMCID: PMC10832118 DOI: 10.1186/s40001-024-01687-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
PURPOSE BCL-2-associated athanogene 3 (BAG3) is an anti-apoptotic protein that plays an essential role in the onset and progression of multiple cancer types. However, the clinical significance of BAG3 in kidney renal clear cell carcinoma (KIRC) remains unclear. METHODS Using Tumor IMmune Estimation Resource (TIMER), The Cancer Genome Atlas (TCGA), and Gene Expression Omnibus (GEO) database, we explored the expression, prognostic value, and clinical correlations of BAG3 in KIRC. In addition, immunohistochemistry (IHC) of HKH cohort further validated the expression of BAG3 in KIRC and its impact on prognosis. Gene Set Cancer Analysis (GSCA) was utilized to scrutinize the prognostic value of BAG3 methylation. Gene Ontology (GO) term analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene set enrichment analysis (GSEA) were used to identify potential biological functions of BAG3 in KIRC. Single-sample gene set enrichment analysis (ssGSEA) was performed to confirm the correlation between BAG3 expression and immune cell infiltration. RESULTS BAG3 mRNA expression and protein expression were significantly downregulated in KIRC tissues compared to normal kidney tissues, associated with adverse clinical-pathological factors and poor clinical prognosis. Multivariate Cox regression analysis indicated that low expression of BAG3 was an independent prognostic factor in KIRC patients. GSEA analysis showed that BAG3 is mainly involved in DNA methylation and the immune-related pathways in KIRC. In addition, the expression of BAG3 is closely related to immune cell infiltration and immune cell marker set. CONCLUSION BAG3 might be a potential therapeutic target and valuable prognostic biomarker of KIRC and is closely related to immune cell infiltration.
Collapse
Affiliation(s)
- Binghao Gong
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yuan Huang
- Department of Neurology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Zhenting Wang
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bangbei Wan
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Yaohui Zeng
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Cai Lv
- Department of Urology, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China.
| |
Collapse
|
5
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The antitumor activities of anti-CD47 antibodies require Fc-FcγR interactions. Cancer Cell 2023; 41:2051-2065.e6. [PMID: 37977147 PMCID: PMC10842210 DOI: 10.1016/j.ccell.2023.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early-phase clinical trials have shown limited clinical benefit, suggesting that CD47 blockade alone might be insufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing insights into the mechanisms behind the efficacy of this emerging class of therapeutic antibodies. Using a mouse model humanized for CD47, SIRPα, and FcγRs, we demonstrate that local administration of Fc-engineered anti-CD47 antibodies with enhanced binding to activating FcγRs promotes tumor infiltration of macrophages and antigen-specific T cells, while depleting regulatory T cells. These effects result in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide an attractive strategy to enhance the activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA; Regeneron, Inc., Tarrytown, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
6
|
Thaller AL, Jönsson F, Fiquet O, Marie S, Doisne JM, Girelli-Zubani G, Eri T, Fernandes P, Tatirovsky E, Langa-Vives F, Bruhns P, Strick-Marchand H, Di Santo JP. A human immune system (HIS) mouse model that dissociates roles for mouse and human FcR + cells during antibody-mediated immune responses. Eur J Immunol 2023; 53:e2350454. [PMID: 37621208 DOI: 10.1002/eji.202350454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Human immune system (HIS) mice provide a model to study human immune responses in vivo. Currently available HIS mouse models may harbor mouse Fc Receptor (FcR)-expressing cells that exert potent effector functions following administration of human Ig. Previous studies showed that the ablation of the murine FcR gamma chain (FcR-γ) results in loss of antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis in vivo. We created a new FcR-γ-deficient HIS mouse model to compare host (mouse) versus graft (human) effects underlying antibody-mediated immune responses in vivo. FcR-γ-deficient HIS recipients lack expression and function of mouse activating FcRs and can be stably and robustly reconstituted with human immune cells. By screening blood B-cell depletion by rituximab Ig variants, we found that human FcγRs-mediated IgG1 effects, whereas mouse activating FcγRs were dominant in IgG4 effects. Complement played a role as an IgG1 variant (IgG1 K322A) lacking complement binding activity was largely ineffective. Finally, we provide evidence that FcγRIIIA on human NK cells could mediate complement-independent B-cell depletion by IgG1 K322A. We anticipate that our FcR-γ-deficient HIS model will help clarify mechanisms of action of exogenous administered human antibodies in vivo.
Collapse
Affiliation(s)
- Anna Louisa Thaller
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Friederike Jönsson
- Institut Pasteur, Antibodies in Therapy and Pathology Unit, Université Paris Cité, Inserm U1222, Paris, France
| | - Oriane Fiquet
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Solenne Marie
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Giulia Girelli-Zubani
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Priyanka Fernandes
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Evgeny Tatirovsky
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - Francina Langa-Vives
- Institut Pasteur, Mouse Genetics Engineering Platform, Université Paris Cité, Paris, France
| | - Pierre Bruhns
- Institut Pasteur, Antibodies in Therapy and Pathology Unit, Université Paris Cité, Inserm U1222, Paris, France
| | - Hélène Strick-Marchand
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| | - James P Di Santo
- Institut Pasteur, Innate Immunity Unit, Université Paris Cité, Inserm U1223, Paris, France
| |
Collapse
|
7
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The Antitumor Activities of Anti-CD47 Antibodies Require Fc-FcγR interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547082. [PMID: 37455857 PMCID: PMC10347539 DOI: 10.1101/2023.06.29.547082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early phase clinical trials have shown limited signs of clinical benefit, suggesting that blockade of CD47 alone may not be sufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing new insights into the mechanisms underlying the efficacy of this emerging class of therapeutic antibodies. Using a novel mouse model humanized for CD47, SIRPα and FcγRs, we demonstrate that local administration of an Fc-engineered anti-CD47 antibody with enhanced binding to activating FcγRs modulates myeloid and T-cell subsets in the tumor microenvironment, resulting in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide a novel approach for enhancing the antitumor activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
8
|
Diethelm-Varela B, Soto JA, Riedel CA, Bueno SM, Kalergis AM. New Developments and Challenges in Antibody-Based Therapies for the Respiratory Syncytial Virus. Infect Drug Resist 2023; 16:2061-2074. [PMID: 37063935 PMCID: PMC10094422 DOI: 10.2147/idr.s379660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Since the discovery of the human respiratory syncytial virus (hRSV), multiple research efforts have been conducted to develop vaccines and treatments capable of reducing the risk of severe disease, hospitalization, long-term sequelae, and death from this pathogen in susceptible populations. In this sense, therapies specifically directed against hRSV are mainly based on monoclonal and polyclonal antibodies such as intravenous IgG (IVIG)-RSV and the monoclonal antibody palivizumab. However, these therapies are associated with significant limitations, including the need for the recruitment of a high number of convalescent volunteers who donate blood to procure IVIG-RSV and the costs associated with the need for repeated administrations of palivizumab. These limitations render this product not cost-effective for populations other than high-risk patients. These problems have underscored that it is still necessary to identify new safe and effective therapies for human use. However, these new therapies must benefit from a comparatively cheap production cost and the opportunity to be available to the high-risk population and anyone who requires treatment. Here, we review the different antibodies used to prevent the pathology caused by hRSV infection, highlighting therapies currently approved for human use and their clinical value. Also, the new, most promising candidates based on preclinical studies and clinical trial results are revised.
Collapse
Affiliation(s)
- Benjamín Diethelm-Varela
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
9
|
Batty CJ, Amouzougan EA, A Carlock M, Ross TM, Bachelder EM, Ainslie KM. Sustained delivery of CpG oligodeoxynucleotide by acetalated dextran microparticles augments effector response to Computationally Optimized Broadly Reactive Antigen (COBRA) influenza hemagglutinin. Int J Pharm 2023; 630:122429. [PMID: 36436743 PMCID: PMC9789738 DOI: 10.1016/j.ijpharm.2022.122429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
A subunit or protein-based influenza vaccine can be a safer alternative to live attenuated vaccine (Flumist) and require fewer boosts than an inactivated vaccine (e.g. Fluzone). However, to form an effective subunit vaccine, an adjuvant is often needed. In this work we used electrospray to encapsulate the hydrophilic adjuvant CpG into microparticles made from the hydrophobic biodegradable polymer acetalated dextran. To understand the rate of particle degradation on CpG release, polymer that was slow (21 h at phagosomal pH 5) and fast (0.25 h at pH 5) degrading was used to encapsulate the adjuvant. The slow-degrading particles exhibited the greatest degree of innate immune stimulation of antigen-presenting cells in vitro. In mice, the broadly acting Computationally Optimized Broadly Reactive Antigen (COBRA) Y2 influenza hemagglutinin (HA) antigen was used with CpG particles, soluble CpG, or MF-59 like adjuvant Addavax. Particles and soluble CpG elicited similar induction of anti-HA antibodies and protection against lethal influenza challenge, but the sustained release particles elicited the highest levels antibody effector functions. These results demonstrate a suitable method for encapsulation of CpG oligonucleotide in a hydrophobic particle matrix, and suggest that sustained release of CpG from Ace-DEX microparticles could potentially be used to induce potent antibody effector functions.
Collapse
Affiliation(s)
- Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eva A Amouzougan
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael A Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, NC, USA.
| |
Collapse
|
10
|
Adedeji AO, Zhong F, Getz JA, Zhong Z, Halpern W. Neutropenia in Cynomolgus Monkeys With Anti-Drug Antibodies Associated With Administration of Afucosylated Humanized Monoclonal Antibodies. Toxicol Pathol 2022; 50:910-919. [PMID: 36329562 PMCID: PMC9806483 DOI: 10.1177/01926233221131510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Removal of the core fucose from the Fc region of humanized monoclonal antibodies (afucosylated antibodies) enhances their antibody-dependent cell cytotoxicity activities in killing cancer cells. Based on the authors' experience and literature, administrations of afucosylated antibodies have been associated with neutropenia in cynomolgus monkeys. However, in a recent general toxicology study conducted with an afucosylated antibody in cynomolgus monkeys, transient neutropenia was observed and correlated with the emergence of anti-drug antibodies (ADAs) in the affected animals. To further explore the relationship between neutropenia, afucosylated antibodies, and ADAs in cynomolgus monkeys, we performed an investigational retrospective meta-analysis of data from general toxicology studies conducted with Genentech's therapeutic antibodies administered to cynomolgus monkeys between 2005 and 2021. In this analysis, transient neutropenia strongly correlated with ADA-induced inflammation in cynomolgus monkeys administered afucosylated antibodies. This may reflect the simultaneous occurrence of two distinct processes of neutrophil elimination and utilization, thus overwhelming bone marrow reserve capacity leading to transient neutropenia. The integrated analysis of immunogenicity, and anatomic and clinical pathology results from these studies highlights the correlation of transient neutropenia in cynomolgus monkeys with ADA-related inflammation, potentially exacerbated by enhanced effector function of afucosylated antibodies.
Collapse
Affiliation(s)
- Adeyemi O. Adedeji
- Genentech, South San Francisco,
California, USA,Adeyemi O. Adedeji, Safety Assessment,
Genentech (a member of the Roche Group), 1 DNA Way, South San Francisco, CA
94080, USA.
| | - Fiona Zhong
- Genentech, South San Francisco,
California, USA
| | | | - Zoe Zhong
- Genentech, South San Francisco,
California, USA
| | | |
Collapse
|
11
|
Sconocchia G, Lanzilli G, Cesarini V, Silvestris DA, Rezvani K, Arriga R, Caratelli S, Chen K, Dou J, Cenciarelli C, Toietta G, Baldari S, Sconocchia T, De Paolis F, Aureli A, Iezzi G, Irno Consalvo M, Buccisano F, Del Principe MI, Maurillo L, Venditti A, Ottaviani A, Spagnoli GC. Direct CD32 T-cell cytotoxicity: implications for breast cancer prognosis and treatment. Life Sci Alliance 2022; 5:e202201590. [PMID: 36241426 PMCID: PMC9586128 DOI: 10.26508/lsa.202201590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
The FcγRII (CD32) ligands are IgFc fragments and pentraxins. The existence of additional ligands is unknown. We engineered T cells with human chimeric receptors resulting from the fusion between CD32 extracellular portion and transmembrane CD8α linked to CD28/ζ chain intracellular moiety (CD32-CR). Transduced T cells recognized three breast cancer (BC) and one colon cancer cell line among 15 tested in the absence of targeting antibodies. Sensitive BC cell conjugation with CD32-CR T cells induced CD32 polarization and down-regulation, CD107a release, mutual elimination, and proinflammatory cytokine production unaffected by human IgGs but enhanced by cetuximab. CD32-CR T cells protected immunodeficient mice from subcutaneous growth of MDA-MB-468 BC cells. RNAseq analysis identified a 42 gene fingerprint predicting BC cell sensitivity and favorable outcomes in advanced BC. ICAM1 was a major regulator of CD32-CR T cell-mediated cytotoxicity. CD32-CR T cells may help identify cell surface CD32 ligand(s) and novel prognostically relevant transcriptomic signatures and develop innovative BC treatments.
Collapse
Affiliation(s)
- Giuseppe Sconocchia
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Valeriana Cesarini
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | | | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Roberto Arriga
- Department of Systems Medicine, the University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Ken Chen
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Stem Cell Transplantation and Cellular Therapy, Division of Cancer Medicine, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Carlo Cenciarelli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Tommaso Sconocchia
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Francesca De Paolis
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Anna Aureli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giandomenica Iezzi
- Department of Surgery, Università Svizzera Italiana, Lugano, Switzerland
| | - Maria Irno Consalvo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Buccisano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Maria I Del Principe
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Luca Maurillo
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Adriano Venditti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Alessio Ottaviani
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| | - Giulio C Spagnoli
- Department of Biomedicine Institute of Translational Pharmacology (IFT), National Research Council (CNR), Rome, Italy
| |
Collapse
|
12
|
Bi Y, Su J, Zhou S, Zhao Y, Zhang Y, Zhang H, Liu M, Zhou A, Xu J, Pan M, Zhao Y, Li F. Distinct impact of IgG subclass on autoantibody pathogenicity in different IgG4-mediated diseases. eLife 2022; 11:76223. [PMID: 35920621 PMCID: PMC9385207 DOI: 10.7554/elife.76223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
IgG4 is the least potent human IgG subclass for the FcγR-mediated antibody effector function. Paradoxically, IgG4 is also the dominant IgG subclass of pathogenic autoantibodies in IgG4-mediated diseases. Here, we show that the IgG subclass and Fc-FcγR interaction have a distinct impact on the pathogenic function of autoantibodies in different IgG4-mediated diseases in mouse models. While IgG4 and its weak Fc-FcγR interaction have an ameliorative role in the pathogenicity of anti-ADAMTS13 autoantibodies isolated from thrombotic thrombocytopenic purpura (TTP) patients, they have an unexpected exacerbating effect on anti-Dsg1 autoantibody pathogenicity in pemphigus foliaceus (PF) models. Strikingly, a non-pathogenic anti-Dsg1 antibody variant optimized for FcγR-mediated effector function can attenuate the skin lesions induced by pathogenic anti-Dsg1 antibodies by promoting the clearance of dead keratinocytes. These studies suggest that IgG effector function contributes to the clearance of autoantibody-Ag complexes, which is harmful in TTP, but beneficial in PF and may provide new therapeutic opportunity.
Collapse
Affiliation(s)
- Yanxia Bi
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Su
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengru Zhou
- Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingjie Zhao
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingdong Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Aiwu Zhou
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Jianrong Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Meng Pan
- Department of Dermatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Zhao
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fubin Li
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Regev O, Kizner M, Roncato F, Dadiani M, Saini M, Castro-Giner F, Yajuk O, Kozlovski S, Levi N, Addadi Y, Golani O, Ben-Dor S, Granot Z, Aceto N, Alon R. ICAM-1 on Breast Cancer Cells Suppresses Lung Metastasis but Is Dispensable for Tumor Growth and Killing by Cytotoxic T Cells. Front Immunol 2022; 13:849701. [PMID: 35911772 PMCID: PMC9328178 DOI: 10.3389/fimmu.2022.849701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Breast tumors and their derived circulating cancer cells express the leukocyte β2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.
Collapse
Affiliation(s)
- Ofer Regev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Marina Kizner
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Roncato
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Dadiani
- Cancer Research Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Massimo Saini
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Francesc Castro-Giner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Olga Yajuk
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Stav Kozlovski
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Nehora Levi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
Advances of research of Fc-fusion protein that activate NK cells for tumor immunotherapy. Int Immunopharmacol 2022; 109:108783. [PMID: 35561479 DOI: 10.1016/j.intimp.2022.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 12/21/2022]
Abstract
The rapid development of bioengineering technology has introduced Fc-fusion proteins, representing a novel kind of recombinant protein, as promising biopharmaceutical products in tumor therapy. Numerous related anti-tumor Fc-fusion proteins have been investigated and are in different stages of development. Fc-fusion proteins are constructed by fusing the Fc-region of the antibody with functional proteins or peptides. They retain the bioactivity of the latter and partial properties of the former. This structural and functional advantage makes Fc-fusion proteins an effective tool in tumor immunotherapy, especially for the recruitment and activation of natural killer (NK) cells, which play a critical role in tumor immunotherapy. Even though tumor cells have developed mechanisms to circumvent the cytotoxic effect of NK cells or induce defective NK cells, Fc-fusion proteins have been proven to effectively activate NK cells to kill tumor cells in different ways, such as antibody-dependent cell-mediated cytotoxicity (ADCC), activate NK cells in different ways in order to promote killing of tumor cells. In this review, we focus on NK cell-based immunity for cancers and current research progress of the Fc-fusion proteins for anti-tumor therapy by activating NK cells.
Collapse
|
15
|
Andrechak JC, Dooling LJ, Tobin MP, Zhang W, Hayes BH, Lee JY, Jin X, Irianto J, Discher DE. CD47-SIRPα Checkpoint Disruption in Metastases Requires Tumor-Targeting Antibody for Molecular and Engineered Macrophage Therapies. Cancers (Basel) 2022; 14:1930. [PMID: 35454837 PMCID: PMC9026896 DOI: 10.3390/cancers14081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
The macrophage checkpoint interaction CD47-SIRPα is an emerging target for cancer therapy, but clinical trials of monoclonal anti-CD47 show efficacy only in liquid tumors when combined with tumor-opsonizing IgG. Here, in challenging metastatic solid tumors, CD47 deletion shows no effect on tumor growth unless combined with otherwise ineffective tumor-opsonization, and we likewise show wild-type metastases are suppressed by SIRPα-blocked macrophages plus tumor-opsonization. Lung tumor nodules of syngeneic B16F10 melanoma cells with CD47 deletion show opsonization drives macrophage phagocytosis of B16F10s, consistent with growth versus phagocytosis calculus for exponential suppression of cancer. Wild-type CD47 levels on metastases in lungs of immunocompetent mice and on human metastases in livers of immunodeficient mice show that systemic injection of antibody-engineered macrophages also suppresses growth. Such in vivo functionality can be modulated by particle pre-loading of the macrophages. Thus, even though CD47-SIRPα disruption and tumor-opsonizing IgG are separately ineffective against established metastatic solid tumors, their combination in molecular and cellular therapies prolongs survival.
Collapse
Affiliation(s)
- Jason C. Andrechak
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lawrence J. Dooling
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Michael P. Tobin
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William Zhang
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brandon H. Hayes
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justine Y. Lee
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Xiaoling Jin
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
| | - Jerome Irianto
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Dennis E. Discher
- Biophysical Engineering Labs, University of Pennsylvania, Philadelphia, PA 19104, USA; (J.C.A.); (L.J.D.); (M.P.T.); (W.Z.); (B.H.H.); (J.Y.L.); (X.J.); (J.I.)
- Graduate Group of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Abstract
Species differences in IgG Fc–Fcγ receptor (FcγR) interactions have made humanized mouse models an attractive strategy to evaluate the efficacy and toxicity of human antibodies. We previously published a humanized FcγR mouse model that fully recapitulates the expression and function of these receptors in vivo. However, the immunogenicity of exogenous human IgG has made long-term assessment of antibody function challenging, since endogenous mouse anti-human IgG responses limit the duration and success of these studies. Here, we present a mouse strain that expresses human IgG1 and FcγRs, thereby conferring tolerance to chronic administration of human IgG and enabling functional assessment of antibodies. Because this strain is appropriate for chronic disease models, we expect that researchers will benefit from its use. Therapeutic human IgG antibodies are routinely tested in mouse models of oncologic, infectious, and autoimmune diseases. However, assessing the efficacy and safety of long-term administration of these agents has been limited by endogenous anti-human IgG immune responses that act to clear human IgG from serum and relevant tissues, thereby reducing their efficacy and contributing to immune complex–mediated pathologies, confounding evaluation of potential toxicity. For this reason, human antibody treatment in mice is generally limited in duration and dosing, thus failing to recapitulate the potential clinical applications of these therapeutics. Here, we report the development of a mouse model that is tolerant of chronic human antibody administration. This model combines both a human IgG1 heavy chain knock-in and a full recapitulation of human Fc receptor (FcγR) expression, providing a unique platform for in vivo testing of human monoclonal antibodies with relevant receptors beyond the short term. Compared to controls, hIgG1 knock-in mice mount minimal anti-human IgG responses, allowing for the persistence of therapeutically active circulating human IgG even in the late stages of treatment in chronic models of immune thrombocytopenic purpura and metastatic melanoma.
Collapse
|
17
|
The Expression Quantitative Trait Loci in Immune Response Genes Impact the Characteristics and Survival of Colorectal Cancer. Diagnostics (Basel) 2022; 12:diagnostics12020315. [PMID: 35204406 PMCID: PMC8871427 DOI: 10.3390/diagnostics12020315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
The impact of germline variants on the regulation of the expression of tumor microenvironment (TME)-based immune response genes remains unclear. Expression quantitative trait loci (eQTL) provide insight into the effect of downstream target genes (eGenes) regulated by germline-associated variants (eVariants). Through eQTL analyses, we illustrated the relationships between germline eVariants, TME-based immune response eGenes, and clinical outcomes. In this study, both RNA sequencing data from primary tumor and germline whole-genome sequencing data were collected from patients with stage III colorectal cancer (CRC). Ninety-nine high-risk subjects were subjected to immune response gene expression analyses. Seventy-seven subjects remained for further analysis after quality control, of which twenty-two patients (28.5%) experienced tumor recurrence. We found that 65 eQTL, including 60 germline eVariants and 22 TME-based eGenes, impacted the survival of cancer patients. For the recurrence prediction model, 41 differentially expressed genes (DEGs) achieved the best area under the receiver operating characteristic curve of 0.93. In total, 19 survival-associated eGenes were identified among the DEGs. Most of these genes were related to the regulation of lymphocytes and cytokines. A high expression of HGF, CCR5, IL18, FCER1G, TDO2, IFITM2, and LAPTM5 was significantly associated with a poor prognosis. In addition, the FCER1G eGene was associated with tumor invasion, tumor nodal stage, and tumor site. The eVariants that regulate the TME-based expression of FCER1G, including rs2118867 and rs12124509, were determined to influence survival and chromatin binding preferences. We also demonstrated that FCER1G and co-expressed genes in TME were related to the aggregation of leukocytes via pathway analysis. By analyzing the eQTL from the cancer genome using germline variants and TME-based RNA sequencing, we identified the eQTL in immune response genes that impact colorectal cancer characteristics and survival.
Collapse
|
18
|
Inter-cellular CRISPR screens reveal regulators of cancer cell phagocytosis. Nature 2021; 597:549-554. [PMID: 34497417 PMCID: PMC9419706 DOI: 10.1038/s41586-021-03879-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Monoclonal antibody therapies targeting tumour antigens drive cancer cell elimination in large part by triggering macrophage phagocytosis of cancer cells1-7. However, cancer cells evade phagocytosis using mechanisms that are incompletely understood. Here we develop a platform for unbiased identification of factors that impede antibody-dependent cellular phagocytosis (ADCP) using complementary genome-wide CRISPR knockout and overexpression screens in both cancer cells and macrophages. In cancer cells, beyond known factors such as CD47, we identify many regulators of susceptibility to ADCP, including the poorly characterized enzyme adipocyte plasma membrane-associated protein (APMAP). We find that loss of APMAP synergizes with tumour antigen-targeting monoclonal antibodies and/or CD47-blocking monoclonal antibodies to drive markedly increased phagocytosis across a wide range of cancer cell types, including those that are otherwise resistant to ADCP. Additionally, we show that APMAP loss synergizes with several different tumour-targeting monoclonal antibodies to inhibit tumour growth in mice. Using genome-wide counterscreens in macrophages, we find that the G-protein-coupled receptor GPR84 mediates enhanced phagocytosis of APMAP-deficient cancer cells. This work reveals a cancer-intrinsic regulator of susceptibility to antibody-driven phagocytosis and, more broadly, expands our knowledge of the mechanisms governing cancer resistance to macrophage phagocytosis.
Collapse
|
19
|
Galili U. Increasing Efficacy of Enveloped Whole-Virus Vaccines by In situ Immune-Complexing with the Natural Anti-Gal Antibody. MEDICAL RESEARCH ARCHIVES 2021; 9:2481. [PMID: 34853815 PMCID: PMC8631339 DOI: 10.18103/mra.v9i7.2481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The appearance of variants of mutated virus in course of the Covid-19 pandemic raises concerns regarding the risk of possible formation of variants that can evade the protective immune response elicited by the single antigen S-protein gene-based vaccines. This risk may be avoided by inclusion of several antigens in vaccines, so that a variant that evades the immune response to the S-protein of SARS-CoV-2 virus will be destroyed by the protective immune response against other viral antigens. A simple way for preparing multi-antigenic enveloped-virus vaccines is using the inactivated whole-virus as vaccine. However, immunogenicity of such vaccines may be suboptimal because of poor uptake of the vaccine by antigen-presenting-cells (APC) due to electrostatic repulsion by the negative charges of sialic-acid on both the glycan-shield of the vaccinating virus and on the carbohydrate-chains (glycans) of APC. In addition, glycan-shield can mask many antigenic peptides. These effects of the glycan-shield can be reduced and immunogenicity of the vaccinating virus markedly increased by glycoengineering viral glycans for replacing sialic-acid units on glycans with α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R). Vaccination of humans with inactivated whole-virus presenting α-gal epitopes (virusα-gal) results in formation of immune-complexes with the abundant natural anti-Gal antibody that binds to viral α-gal epitopes at the vaccination site. These immune-complexes are targeted to APC for rigorous uptake due to binding of the Fc portion of immunecomplexed anti-Gal to Fcγ receptors on APC. The APC further transport the large amounts of internalized vaccinating virus to regional lymph nodes, process and present the virus antigenic peptides for the activation of many clones of virus specific helper and cytotoxic T-cells. This elicits a protective cellular and humoral immune response against multiple viral antigens and an effective immunological memory. The immune response to virusα-gal vaccine was studied in mice producing anti-Gal and immunized with inactivated influenza-virusα-gal. These mice demonstrated 100-fold increase in titer of the antibodies produced, a marked increase in T-cell response, and a near complete protection against challenge with a lethal dose of live influenza-virus, in comparison to a similar vaccine lacking α-gal epitopes. This glycoengineering can be achieved in vitro by enzymatic reaction with neuraminidase removing sialic-acid and with recombinant α1,3galactosyltransferase (α1,3GT) synthesizing α-gal epitopes, by engineering host-cells to contain several copies of the α1,3GT gene (GGTA1), or by transduction of this gene in a replication-defective adenovirus vector into host-cells. Theoretically, these methods for increased immunogenicity may be applicable to all enveloped viruses with N-glycans on their envelope.
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush Medical College, Chicago, IL, USA
| |
Collapse
|
20
|
Donini R, Haslam SM, Kontoravdi C. Glycoengineering Chinese hamster ovary cells: a short history. Biochem Soc Trans 2021; 49:915-931. [PMID: 33704400 PMCID: PMC8106501 DOI: 10.1042/bst20200840] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Biotherapeutic glycoproteins have revolutionised the field of pharmaceuticals, with new discoveries and continuous improvements underpinning the rapid growth of this industry. N-glycosylation is a critical quality attribute of biotherapeutic glycoproteins that influences the efficacy, half-life and immunogenicity of these drugs. This review will focus on the advances and future directions of remodelling N-glycosylation in Chinese hamster ovary (CHO) cells, which are the workhorse of recombinant biotherapeutic production, with particular emphasis on antibody products, using strategies such as cell line and protein backbone engineering.
Collapse
Affiliation(s)
- Roberto Donini
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Stuart M. Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
21
|
Hou XX, Wang XQ, Zhou WJ, Li DJ. Regulatory T cells induce polarization of pro-repair macrophages by secreting sFGL2 into the endometriotic milieu. Commun Biol 2021; 4:499. [PMID: 33893391 PMCID: PMC8065041 DOI: 10.1038/s42003-021-02018-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
An increased number of highly active regulatory T cells (Tregs) and macrophages has been found in peritoneal fluid from women with endometriosis. Here, we show that the level of Tregs-derived soluble fibrinogen-like protein 2 (sFGL2) increases in the peritoneal fluid of women with endometriosis. Higher expression of FGL2 and its receptor CD32B is observed in eutopic endometrium and ectopic tissues. The production of sFGL2 in Tregs may be enhanced by several cytokines. sFGL2 selectively induces pro-repair macrophage polarization mainly through the activation of the SHP2-ERK1/2-STAT3 signaling pathway, and the suppression of the NF-κB signaling pathway. Furthermore, sFGL2 induces a much higher level of metallothionein (MT) expression that in turn facilitates pro-repair macrophages polarization. sFGL2-induced pro-repair macrophages promote Th2 and Tregs differentiation, creating a positive feedback loop. These findings suggest that sFGL2 secreted by Tregs skews macrophages toward a pro-repair phenotype via SHP2-ERK1/2-STAT3 signaling pathway, which is involved in the progression of endometriosis. Hou et al. discover that regulatory T-cells secrete soluble fibrinogen-like protein 2 that induces endometrial macrophages to polarize towards a pro-repair phenotype through the SHP2-ERK1/2-STAT3 signaling pathway. These data provide insights into the immunology of endometriosis.
Collapse
Affiliation(s)
- Xin-Xin Hou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Xiao-Qiu Wang
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital and Institute of Obstetrics and Gynecology, IRD, Fudan University Shanghai Medical College, Shanghai, China.
| |
Collapse
|
22
|
Improved therapeutic efficacy of unmodified anti-tumor antibodies by immune checkpoint blockade and kinase targeted therapy in mouse models of melanoma. Oncotarget 2021; 12:66-80. [PMID: 33520112 PMCID: PMC7825641 DOI: 10.18632/oncotarget.27868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
The use of specific anti-tumor antibodies has transformed the solid cancer therapeutics landscape with the relative successes of therapies such as anti-HER2 in breast cancer, and anti-EGFR in HNSCC and colorectal cancer. However, these therapies result in toxicity and the emergence of resistant tumors. Here, we showed that removing immune suppression and enhancing stimulatory signals increased the anti-tumor activity of unmodified TA99 antibodies (anti-TYRP1) with a significant reduction of growth of solid tumors and lung metastases in mouse models of melanoma. Immune checkpoint blockade enhanced the efficacy of TA99, which was associated with greater CD8+/Foxp3+, NK1.1+ and dendritic cell infiltrates, suggestive of an increased anti-tumor innate and adaptive immune responses. Further, MEK inhibition in melanoma cell lines increased the expression of melanosomal antigens in vitro, and combining TA99 and MEKi in vivo resulted in enhanced tumor control. Moreover, we found an improved therapeutic effect when YUMM tumor-bearing mice were treated with TA99 combined with MEKi and immune checkpoint blockade (anti-PD1 and anti-CTLA4). Our findings suggest that MEKi induced an increased expression of tumor-associated antigens, which in combination with anti-tumor antibodies, generated a robust adaptive anti-tumor response that was sustained by immune checkpoint inhibition therapy. We postulate that combining anti-tumor antibodies with standard-of-care strategies such as immune checkpoint blockade or targeted therapy, will improve therapeutic outcomes in cancer.
Collapse
|
23
|
Rehman FU, Al-Waeel M, Naz SS, Shah KU. Anticancer therapeutics: a brief account on wide refinements. Am J Cancer Res 2020; 10:3599-3621. [PMID: 33294257 PMCID: PMC7716164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 06/12/2023] Open
Abstract
The flustering rise in cancer incidence along with treatment anomalies has made cancer the second leading cause of death globally. The total annual economic impact of cancer is pronounced and is increasing. Besides the lack of proper curative therapy, treatment associated adverse effects, drug resistance, and tumor relapse are the instigations behind increased morbidity and mortality. Meanwhile, the survival rate has inclined impressively. In the last few decades, cancer treatment has undergone wide refinements aiming towards cancer prevention, complete tumor regression, subsiding treatment adverse effects, improving patient's life standard and avoiding tumor relapse. Chemotherapy has been successfully extended towards natural, cheaper and bioactive anti-inflammatory agents manifesting potent anticancer activity. Antibody-based cancer therapy has become well established as a vital and effective strategy for treating hematological malignancies as well as solid tumors. Individualized immunotherapy is becoming the forefront of cancer treatment enabling personalized, precise and patient's cancer mutanome specific adjustable regimen. The emergence of anti-neoangiogenesis and cancer stem cell targeting techniques have dropped cancer recurrence significantly. Advancements in hyperthermia and photodynamic therapies along with improvements in cancer vaccination have declined death rate and amplified survival rate convincingly.
Collapse
Affiliation(s)
- Fiza Ur Rehman
- Department of Pharmacy, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Mansoor Al-Waeel
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland GalwayGalway, Ireland
| | - Syeda Sohaila Naz
- Nanosciences and Technology Department, National Centre for PhysicsIslamabad, Pakistan
| | | |
Collapse
|
24
|
Galili U. Amplifying immunogenicity of prospective Covid-19 vaccines by glycoengineering the coronavirus glycan-shield to present α-gal epitopes. Vaccine 2020; 38:6487-6499. [PMID: 32907757 PMCID: PMC7437500 DOI: 10.1016/j.vaccine.2020.08.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The many carbohydrate chains on Covid-19 coronavirus SARS-CoV-2 and its S-protein form a glycan-shield that masks antigenic peptides and decreases uptake of inactivated virus or S-protein vaccines by APC. Studies on inactivated influenza virus and recombinant gp120 of HIV vaccines indicate that glycoengineering of glycan-shields to present α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) enables harnessing of the natural anti-Gal antibody for amplifying vaccine efficacy, as evaluated in mice producing anti-Gal. The α-gal epitope is the ligand for the natural anti-Gal antibody which constitutes ~1% of immunoglobulins in humans. Upon administration of vaccines presenting α-gal epitopes, anti-Gal binds to these epitopes at the vaccination site and forms immune complexes with the vaccines. These immune complexes are targeted for extensive uptake by APC as a result of binding of the Fc portion of immunocomplexed anti-Gal to Fc receptors on APC. This anti-Gal mediated effective uptake of vaccines by APC results in 10-200-fold higher anti-viral immune response and in 8-fold higher survival rate following challenge with a lethal dose of live influenza virus, than same vaccines lacking α-gal epitopes. It is suggested that glycoengineering of carbohydrate chains on the glycan-shield of inactivated SARS-CoV-2 or on S-protein vaccines, for presenting α-gal epitopes, will have similar amplifying effects on vaccine efficacy. α-Gal epitope synthesis on coronavirus vaccines can be achieved with recombinant α1,3galactosyltransferase, replication of the virus in cells with high α1,3galactosyltransferase activity as a result of stable transfection of cells with several copies of the α1,3galactosyltransferase gene (GGTA1), or by transduction of host cells with replication defective adenovirus containing this gene. In addition, recombinant S-protein presenting multiple α-gal epitopes on the glycan-shield may be produced in glycoengineered yeast or bacteria expression systems containing the corresponding glycosyltransferases. Prospective Covid-19 vaccines presenting α-gal epitopes may provide better protection than vaccines lacking this epitope because of increased uptake by APC.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Betacoronavirus/drug effects
- Betacoronavirus/immunology
- Betacoronavirus/pathogenicity
- COVID-19
- COVID-19 Vaccines
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/virology
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Genetic Engineering
- HIV Core Protein p24/chemistry
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- HIV Envelope Protein gp120/chemistry
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/immunology
- Humans
- Immunogenicity, Vaccine
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/virology
- Mice
- Pandemics/prevention & control
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/virology
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- SARS-CoV-2
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
- Trisaccharides/chemistry
- Trisaccharides/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/biosynthesis
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Uri Galili
- Department of Medicine, Rush Medical School, Chicago, IL, USA.
| |
Collapse
|
25
|
Acebes-Fernández V, Landeira-Viñuela A, Juanes-Velasco P, Hernández AP, Otazo-Perez A, Manzano-Román R, Gongora R, Fuentes M. Nanomedicine and Onco-Immunotherapy: From the Bench to Bedside to Biomarkers. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1274. [PMID: 32610601 PMCID: PMC7407304 DOI: 10.3390/nano10071274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
The broad relationship between the immune system and cancer is opening a new hallmark to explore for nanomedicine. Here, all the common and synergy points between both areas are reviewed and described, and the recent approaches which show the progress from the bench to the beside to biomarkers developed in nanomedicine and onco-immunotherapy.
Collapse
Affiliation(s)
- Vanessa Acebes-Fernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Alicia Landeira-Viñuela
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Pablo Juanes-Velasco
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Angela-Patricia Hernández
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Andrea Otazo-Perez
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Raúl Manzano-Román
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| | - Rafael Gongora
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
| | - Manuel Fuentes
- Department of Medicine and Cytometry General Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain; (V.A.-F.); (A.L.-V.); (P.J.-V.); (A.-P.H.); (A.O.-P.); (R.G.)
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain;
| |
Collapse
|
26
|
Wang TT, Ravetch JV. Functional diversification of IgGs through Fc glycosylation. J Clin Invest 2020; 129:3492-3498. [PMID: 31478910 DOI: 10.1172/jci130029] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
IgG antibodies are secreted from B cells and bind to a variety of pathogens to control infections as well as contribute to inflammatory diseases. Many of the functions of IgGs are mediated through Fcγ receptors (FcγRs), which transduce interactions with immune complexes, leading to a variety of cellular outcomes depending on the FcγRs and cell types engaged. Which FcγRs and cell types will be engaged during an immune response depends on the structure of Fc domains within immune complexes that are formed when IgGs bind to cognate antigen(s). Recent studies have revealed an unexpected degree of structural variability in IgG Fc domains among people, driven primarily by differences in IgG subclasses and N-linked glycosylation of the CH2 domain. This translates, in turn, to functional immune diversification through type I and type II FcγR-mediated cellular functions. For example, Fc domain sialylation triggers conformational changes of IgG1 that enable interactions with type II FcγRs; these receptors mediate cellular functions including antiinflammatory activity or definition of thresholds for B cell selection based on B cell receptor affinity. Similarly, presence or absence of a core fucose alters type I FcγR binding of IgG1 by modulating the Fc's affinity for FcγRIIIa, thereby altering its proinflammatory activity. How heterogeneity in IgG Fc domains contributes to human immune diversity is now being elucidated, including impacts on vaccine responses and susceptibility to disease and its sequelae during infections. Here, we discuss how Fc structures arising from sialylation and fucosylation impact immunity, focusing on responses to vaccination and infection. We also review work defining individual differences in Fc glycosylation, regulation of Fc glycosylation, and clinical implications of these pathways.
Collapse
Affiliation(s)
- Taia T Wang
- Department of Medicine, Division of Infectious Diseases, and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
27
|
Yaman S, Chintapula U, Rodriguez E, Ramachandramoorthy H, Nguyen KT. Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:879-911. [PMID: 33796822 PMCID: PMC8011581 DOI: 10.20517/cdr.2020.55] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Nanotechnology-based drug delivery platforms have been developed over the last two decades because of their favorable features in terms of improved drug bioavailability and stability. Despite recent advancement in nanotechnology platforms, this approach still falls short to meet the complexity of biological systems and diseases, such as avoiding systemic side effects, manipulating biological interactions and overcoming drug resistance, which hinders the therapeutic outcomes of the NP-based drug delivery systems. To address these issues, various strategies have been developed including the use of engineered cells and/or cell membrane-coated nanocarriers. Cell membrane receptor profiles and characteristics are vital in performing therapeutic functions, targeting, and homing of either engineered cells or cell membrane-coated nanocarriers to the sites of interest. In this context, we comprehensively discuss various cell- and cell membrane-based drug delivery approaches towards cancer therapy, the therapeutic potential of these strategies, and the limitations associated with engineered cells as drug carriers and cell membrane-associated drug nanocarriers. Finally, we review various cell types and cell membrane receptors for their potential in targeting, immunomodulation and overcoming drug resistance in cancer.
Collapse
Affiliation(s)
- Serkan Yaman
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Yaman S and Chintapula U contributed equally to this work
| | - Edgar Rodriguez
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
| | - Harish Ramachandramoorthy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA
- Joint Bioengineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Correspondence Address: Dr. Kytai T. Nguyen, Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd ERB244, Arlington, TX 76010, USA. E-mail:
| |
Collapse
|
28
|
Caratelli S, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Pastore D, Cenciarelli C, Venditti A, Del Principe MI, Lauro D, Landoni E, Du H, Savoldo B, Ferrone S, Dotti G, Sconocchia G. In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer 2020; 146:236-247. [PMID: 31479522 PMCID: PMC8711771 DOI: 10.1002/ijc.32663] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/03/2023]
Abstract
Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.
Collapse
Affiliation(s)
- Sara Caratelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Alessio Ottaviani
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Giuseppe Sconocchia
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
29
|
Yarian F, Alibakhshi A, Eyvazi S, Arezumand R, Ahangarzadeh S. Antibody-drug therapeutic conjugates: Potential of antibody-siRNAs in cancer therapy. J Cell Physiol 2019; 234:16724-16738. [PMID: 30908646 DOI: 10.1002/jcp.28490] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
Codelivery is a promising strategy of targeted delivery of cytotoxic drugs for eradicating tumor cells. This rapidly growing method of drug delivery uses a conjugate containing drug linked to a smart carrier. Both two parts usually have therapeutic properties on the tumor cells. Monoclonal antibodies and their derivatives, such as Fab, scFv, and bsAb due to targeting high potent have now been attractive candidates as drug targeting carrier systems. The success of some therapeutic agents like small interfering RNA (siRNA), a small noncoding RNAs, with having problems such as enzymatic degradation and rapid renal filtration need to an appropriate carrier. Therefore, the aim of this study is to review the recent enhancements in development of antibody drug conjugates (ADCs), especially antibody-siRNA conjugates (SRCs), its characterizations and mechanisms in innovative cancer therapy approaches.
Collapse
Affiliation(s)
- Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Alibakhshi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Eyvazi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
30
|
Moreno L, Perez C, Zabaleta A, Manrique I, Alignani D, Ajona D, Blanco L, Lasa M, Maiso P, Rodriguez I, Garate S, Jelinek T, Segura V, Moreno C, Merino J, Rodriguez-Otero P, Panizo C, Prosper F, San-Miguel JF, Paiva B. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin Cancer Res 2019; 25:3176-3187. [PMID: 30692097 DOI: 10.1158/1078-0432.ccr-18-1597] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/26/2018] [Accepted: 01/14/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Knowledge about the mechanism of action (MoA) of monoclonal antibodies (mAb) is required to understand which patients with multiple myeloma (MM) benefit the most from a given mAb, alone or in combination therapy. Although there is considerable research about daratumumab, knowledge about other anti-CD38 mAbs remains scarce. EXPERIMENTAL DESIGN We performed a comprehensive analysis of the MoA of isatuximab. RESULTS Isatuximab induces internalization of CD38 but not its significant release from MM cell surface. In addition, we uncovered an association between levels of CD38 expression and different MoA: (i) Isatuximab was unable to induce direct apoptosis on MM cells with CD38 levels closer to those in patients with MM, (ii) isatuximab sensitized CD38hi MM cells to bortezomib plus dexamethasone in the presence of stroma, (iii) antibody-dependent cellular cytotoxicity (ADCC) was triggered by CD38lo and CD38hi tumor plasma cells (PC), (iv) antibody-dependent cellular phagocytosis (ADCP) was triggered only by CD38hi MM cells, whereas (v) complement-dependent cytotoxicity could be triggered in less than half of the patient samples (those with elevated levels of CD38). Furthermore, we showed that isatuximab depletes CD38hi B-lymphocyte precursors and natural killer (NK) lymphocytes ex vivo-the latter through activation followed by exhaustion and eventually phagocytosis. CONCLUSIONS This study provides a framework to understand response determinants in patients treated with isatuximab based on the number of MoA triggered by CD38 levels of expression, and for the design of effective combinations aimed at capitalizing disrupted tumor-stroma cell protection, augmenting NK lymphocyte-mediated ADCC, or facilitating ADCP in CD38lo MM patients.See related commentary by Malavasi and Faini, p. 2946.
Collapse
Affiliation(s)
- Laura Moreno
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Cristina Perez
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Irene Manrique
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Diego Alignani
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Daniel Ajona
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain.,Solid Tumors Program, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00443, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Laura Blanco
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Marta Lasa
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Patricia Maiso
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Idoia Rodriguez
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Sonia Garate
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Tomas Jelinek
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Victor Segura
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Cristina Moreno
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Juana Merino
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Paula Rodriguez-Otero
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Carlos Panizo
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Felipe Prosper
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Jesus F San-Miguel
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), Instituto de Investigación Sanitaria de Navarra (IDISNA), CIBER-ONC number CB16/12/00369 and CB16/12/00489, Pamplona, Spain.
| |
Collapse
|
31
|
IL-15 enhanced antibody-dependent cellular cytotoxicity mediated by NK cells and macrophages. Proc Natl Acad Sci U S A 2018; 115:E10915-E10924. [PMID: 30373815 DOI: 10.1073/pnas.1811615115] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The goal of cancer immunotherapy is to stimulate the host immune system to attack malignant cells. Antibody-dependent cellular cytotoxicity (ADCC) is a pivotal mechanism of antitumor action of clinically employed antitumor antibodies. IL-15 administered to patients with metastatic malignancy by continuous i.v. infusion at 2 μg/kg/d for 10 days was associated with a 38-fold increase in the number and activation status of circulating natural killer (NK) cells and activation of macrophages which together are ADCC effectors. We investigated combination therapy of IL-15 with rituximab in a syngeneic mouse model of lymphoma transfected with human CD20 and with alemtuzumab (Campath-1H) in a xenograft model of human adult T cell leukemia (ATL). IL-15 greatly enhanced the therapeutic efficacy of both rituximab and alemtuzumab in tumor models. The additivity/synergy was shown to be associated with augmented ADCC. Both NK cells and macrophages were critical elements in the chain of interacting effectors involved in optimal therapeutic responses mediated by rituximab with IL-15. We provide evidence supporting the hypothesis that NK cells interact with macrophages to augment the NK-cell activation and expression of FcγRIV and the capacity of these cells to become effectors of ADCC. The present study supports clinical trials of IL-15 combined with tumor-directed monoclonal antibodies.
Collapse
|
32
|
Benonisson H, Sow HS, Breukel C, Claassens JWC, Brouwers C, Linssen MM, Redeker A, Fransen MF, van Hall T, Ossendorp F, Arens R, Verbeek S. FcγRI expression on macrophages is required for antibody-mediated tumor protection by cytomegalovirus-based vaccines. Oncotarget 2018; 9:29392-29402. [PMID: 30034625 PMCID: PMC6047664 DOI: 10.18632/oncotarget.25630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/03/2018] [Indexed: 01/06/2023] Open
Abstract
Cytomegalovirus (CMV)-based vaccine vectors are promising vaccine platforms because they induce strong and long-lasting immune responses. Recently it has been shown that vaccination with a mouse CMV (MCMV) vector expressing the melanoma-specific antigen TRP2 (MCMV-TRP2) protects mice against outgrowth of TRP2-positive B16 melanoma tumors, and this protection was dependent on the induction of IgG antibodies. Here we demonstrate that, although mice lacking all receptors for the Fc part of IgG (FcγRs) develop normal IgG responses after MCMV-TRP2 vaccination, the protection against B16 melanoma was completely abrogated, indicating that FcγRs are indispensable in the downstream effector pathway of the polyclonal anti-TRP2 antibody response. By investigating compound FcγR-deficient mouse strains and by using immune cell type-specific cell ablation we show that the IgG antibody-mediated tumor protection elicited by MCMV-TRP2 mainly depends on FcγRI expression on macrophages, whereas FcγRIV plays only a modest role. Thus, tumor-specific antibody therapy might benefit from combination therapy that recruits FcγRI-expressing pro-inflammatory macrophages to the tumor micro-environment.
Collapse
Affiliation(s)
- Hreinn Benonisson
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Heng Sheng Sow
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Cor Breukel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jill W C Claassens
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Conny Brouwers
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Margot M Linssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anke Redeker
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjef Verbeek
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
33
|
Abstract
IgG antibodies mediate a diversity of immune functions by coupling of antigen specificity through the Fab domain to signal transduction via Fc-Fc receptor interactions. Indeed, balanced IgG signaling through type I and type II Fc receptors is required for the control of proinflammatory, anti-inflammatory, and immunomodulatory processes. In this review, we discuss the mechanisms that govern IgG-Fc receptor interactions, highlighting the diversity of Fc receptor-mediated effector functions that regulate immunity and inflammation as well as determine susceptibility to infection and autoimmunity and responsiveness to antibody-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Taia T Wang
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Rony Dahan
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jad Maamary
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York 10065;
| |
Collapse
|
34
|
Brandsma AM, Hogarth PM, Nimmerjahn F, Leusen JHW. Clarifying the Confusion between Cytokine and Fc Receptor "Common Gamma Chain". Immunity 2017; 45:225-6. [PMID: 27533005 DOI: 10.1016/j.immuni.2016.07.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Arianne M Brandsma
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht 3584, The Netherlands
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne 3004, Australia
| | - Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Jeanette H W Leusen
- Immunotherapy Laboratory, Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht 3584, The Netherlands.
| |
Collapse
|
35
|
They L, Michaud HA, Becquart O, Lafont V, Guillot B, Boissière-Michot F, Jarlier M, Mollevi C, Eliaou JF, Bonnefoy N, Gros L. PD-1 blockade at the time of tumor escape potentiates the immune-mediated antitumor effects of a melanoma-targeting monoclonal antibody. Oncoimmunology 2017; 6:e1353857. [PMID: 29123966 DOI: 10.1080/2162402x.2017.1353857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022] Open
Abstract
Tumor antigen-targeting monoclonal antibodies (TA-targeting mAbs) are used as therapeutics in many malignancies and their capacity to mobilize the host immunity puts them at the forefront of anti-cancer immunotherapies. Both innate and adaptive immune cells have been associated with the therapeutic activity of such antibodies, but tumor escape from mAb-induced tumor immune surveillance remains one of the main clinical issues. In this preclinical study, we grafted immunocompetent and immunocompromised mice with the B16F10 mouse melanoma cell line and treated them with the TA99 TA-targeting mAb to analyze the immune mechanisms associated with the tumor response and resistance to TA99 monotherapy. In immunocompetent mice TA99 treatment strongly increased the fraction of CD8 and CD4 effector T cells in the tumor compared with isotype control, highlighting the specific immune modulation of the tumor microenvironment by TA99. However, in most mice, TA99 immunotherapy could not prevent immune effector exhaustion and the recruitment of regulatory CD4 T cells and consequently tumor escape from immune surveillance. Remarkably, anti-PD-1 treatment at the time of tumor emergence restored the Th1 effector functions of CD4 and CD8 T cells as well as of natural killer and γδT cells, which translated into a significant slow-down of tumor progression and extended survival. Our findings provide the first evidence that PD-1 blockade at the time of tumor emergence can efficiently boost the host anti-tumor immune response initiated several weeks before by the TA-targeting mAb. These results are promising for the design of combined therapies to sensitize non-responder or resistant patients.
Collapse
Affiliation(s)
- Laetitia They
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Henri-Alexandre Michaud
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Ondine Becquart
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France.,Département de Dermatologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier cedex 5, France
| | - Virginie Lafont
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Bernard Guillot
- Département de Dermatologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier cedex 5, France
| | | | - Marta Jarlier
- Biometrics Unit, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Caroline Mollevi
- Biometrics Unit, Institut Régional du Cancer Montpellier, Montpellier, France
| | - Jean-François Eliaou
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France.,Département d'Immunologie, Centre Hospitalier Universitaire de Montpellier et Faculté de Médecine, Université de Montpellier, Hôpital Saint-Eloi, Montpellier cedex 5, France
| | - Nathalie Bonnefoy
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Laurent Gros
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; Université Montpellier; Institut Régional du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
36
|
Matlung HL, Szilagyi K, Barclay NA, van den Berg TK. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer. Immunol Rev 2017; 276:145-164. [PMID: 28258703 DOI: 10.1111/imr.12527] [Citation(s) in RCA: 407] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field.
Collapse
Affiliation(s)
- Hanke L Matlung
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Katka Szilagyi
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Neil A Barclay
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Timo K van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Cell Biology and Immunology, VU medical Center, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Bournazos S, Ravetch JV. Diversification of IgG effector functions. Int Immunol 2017; 29:303-310. [PMID: 28472280 PMCID: PMC5890892 DOI: 10.1093/intimm/dxx025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
IgG is the major immunoglobulin class produced during an immune response against foreign antigens and efficiently provides protection through its bifunctional nature. While the Fab domains confer highly specific recognition of the antigen, the Fc domain mediates a wide range of effector functions that modulate several aspects of innate and adaptive immunity. Engagement of the various types of Fcγ receptors (FcγRs) by an IgG Fc domain can activate distinct immunomodulatory pathways with pleiotropic functional consequences for several leukocyte types. Fc effector functions are not limited to phagocytosis and cytotoxicity of IgG-opsonized targets but exhibit remarkable diversity and include modulation of leukocyte activity and survival, cytokine and chemokine expression, maturation of antigen-presenting cells, antigen processing and presentation, B-cell selection and IgG affinity maturation, as well as regulation of IgG production. These functions are initiated upon specific interactions of the Fc domain with the various types of FcγRs-a process that is largely determined by the structural heterogeneity of the IgG Fc domain. Modulation of the Fc-associated glycan structure and composition along with differences in the primary amino acid sequence among the IgG subclasses represent the two main diversification mechanisms of the Fc domain that generate a spectrum of Fc domain phenotypes with distinct affinity for the various FcγR types and differential capacity to activate immunomodulatory pathways.
Collapse
Affiliation(s)
- Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
38
|
Braster R, Grewal S, Visser R, Einarsdottir HK, van Egmond M, Vidarsson G, Bögels M. Human IgG3 with extended half-life does not improve Fc-gamma receptor-mediated cancer antibody therapies in mice. PLoS One 2017; 12:e0177736. [PMID: 28542406 PMCID: PMC5438146 DOI: 10.1371/journal.pone.0177736] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/02/2017] [Indexed: 01/01/2023] Open
Abstract
Background Current anti-cancer therapeutic antibodies that are used in the clinic are predominantly humanized or fully human immunoglobulin G1 (IgG1). These antibodies bind with high affinity to the target antigen and are efficient in activating the immune system via IgG Fc receptors and/or complement. In addition to IgG1, three more isotypes are present in humans, of which IgG3 has been found to be superior compared to human IgG1 in inducing antibody dependent cell cytotoxicity (ADCC), phagocytosis or activation of complement in some models. Nonetheless, no therapeutic human IgG3 mAbs have been developed due to the short in vivo half-life of most known IgG3 allotypes. In this manuscript, we compared the efficacy of V-gene matched IgG1 and IgG3 anti-tumour mAb (TA99) in mice, using natural variants of human IgG3 with short- or long half-life, differing only at position 435 with an arginine or histidine, respectively. Results In vitro human IgG1 and IgG3 did not show any differences in opsonisation ability of B16F10-gp75 mouse melanoma cells. IgG1, however, was superior in inducing phagocytosis of tumour cells by mouse macrophages. Similarly, in a mouse peritoneal metastasis model we did not detect an improved effect of IgG3 in preventing tumour outgrowth. Moreover, replacing the arginine at position 435 for a histidine in IgG3 to enhance half-life did not result in better suppression of tumour outgrowth compared to wild type IgG3 when injected prior to tumour cell injection. Conclusion In conclusion, human IgG3 does not have improved therapeutic efficacy compared to human IgG1 in a mouse tumour model.
Collapse
Affiliation(s)
- Rens Braster
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Simran Grewal
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Helga K. Einarsdottir
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Marijn Bögels
- Department of Molecular Cell Biology and Immunology, VU University Medical Centre, Amsterdam, The Netherlands
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: Successful Agents and Novel Approaches. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:289-383. [PMID: 28325214 DOI: 10.1016/bs.ircmb.2016.10.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since their discovery, antibodies have been viewed as ideal candidates or "magic bullets" for use in targeted therapy in the fields of cancer, autoimmunity, and chronic inflammatory disorders. A wave of antibody-dedicated research followed, which resulted in the clinical approval of a first generation of monoclonal antibodies for cancer therapy such as rituximab (1997) and cetuximab (2004), and infliximab (2002) for the treatment of autoimmune diseases. More recently, the development of antibodies that prevent checkpoint-mediated inhibition of T cell responses invigorated the field of cancer immunotherapy. Such antibodies induced unprecedented long-term remissions in patients with advanced stage malignancies, most notably melanoma and lung cancer, that do not respond to conventional therapies. In this review, we will recapitulate the development of antibody-based therapy, and detail recent advances and new functions, particularly in the field of cancer immunotherapy. With the advent of recombinant DNA engineering, a number of rationally designed molecular formats of antibodies and antibody-derived agents have become available, and we will discuss various molecular formats including antibodies with improved effector functions, bispecific antibodies, antibody-drug conjugates, antibody-cytokine fusion proteins, and T cells genetically modified with chimeric antigen receptors. With these exciting advances, new antibody-based treatment options will likely enter clinical practice and pave the way toward more successful control of malignant diseases.
Collapse
Affiliation(s)
- D Hendriks
- Department of Surgery, Translational Surgical Oncology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - G Choi
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - M de Bruyn
- Department of Obstetrics & Gynecology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | - V R Wiersma
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands.
| | - E Bremer
- Department of Hematology, Section Immunohematology, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands; University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
40
|
Lehmann B, Biburger M, Brückner C, Ipsen-Escobedo A, Gordan S, Lehmann C, Voehringer D, Winkler T, Schaft N, Dudziak D, Sirbu H, Weber GF, Nimmerjahn F. Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response. Sci Immunol 2017; 2:2/7/eaah6413. [PMID: 28783667 DOI: 10.1126/sciimmunol.aah6413] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
Despite recent advances in activating immune cells to target tumors, the presence of some immune cells, such as tumor-associated macrophages (TAMs) or tumor-associated neutrophils (TANs), may promote rather than inhibit tumor growth. However, it remains unclear how antibody-dependent tumor immunotherapies, such as cytotoxic or checkpoint control antibodies, affect different TAM or TAN populations, which abundantly express activating Fcγ receptors. In this study, we show that the tissue environment determines which cellular effector pathways are responsible for antibody-dependent tumor immunotherapy. Although TAMs derived from Ly6Chigh monocytes recruited by the CCL2-CCR2 axis were critical for tumor immunotherapy of skin tumors, the destruction of lung tumors was CCL2-independent and required the presence of colony-stimulating factor 2-dependent tissue-resident macrophages. Our findings suggest that TAMs may have a dual role not only in promoting tumor growth in certain tissue environments on the one hand but also in contributing to tumor cell destruction during antibody-mediated immunotherapy on the other hand.
Collapse
Affiliation(s)
- Birgit Lehmann
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Markus Biburger
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christin Brückner
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Andrea Ipsen-Escobedo
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Sina Gordan
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Christian Lehmann
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Thomas Winkler
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Horia Sirbu
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Georg F Weber
- Department of Surgery, University Hospital Erlangen, Krankenhausstr. 12, 91054 Erlangen, Germany
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erwin-Rommel-Str. 3, 91058 Erlangen, Germany.
| |
Collapse
|
41
|
Barnhart BC, Quigley M. Role of Fc-FcγR interactions in the antitumor activity of therapeutic antibodies. Immunol Cell Biol 2016; 95:340-346. [PMID: 27974746 DOI: 10.1038/icb.2016.121] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/08/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
The use of antibody therapy for cancer has steadily increased in recent years and has become standard treatment for numerous tumor types. It is now appreciated that the clinical activity of these antibodies relies upon their specific interactions with Fc receptors in addition to the well-studied target-binding region. The interactions mediated by antibody Fc domains can strongly affect the functional outcome of antibody therapy. The Fc portion of an antibody defines its interaction with numerous immune cells and has become an intense area of research as selecting the optimal Fc can greatly enhance the activity as well as mechanism of action of therapeutic antibodies. Recent advances in antibody engineering have enabled the development of antibodies that have altered Fc receptor interactions to take advantage of these findings. Engineering the Fc can fulfill diverse functions such as enhancing effector function for killing of tumor cells or depletion of unwanted immune subsets, enhancing agonist receptor signaling on particular immune cells or eliminating interaction with Fc receptors to avoid cellular depletion or toxicity in normal tissues. This review highlights important data and studies examining the role of Fc-Fc receptor interactions in therapeutic antibodies with a considerations for the future of engineered antibody therapy.
Collapse
Affiliation(s)
| | - Michael Quigley
- Immuno-Oncology Discovery Research, Bristol-Myers Squibb Company, Princeton, NJ, USA
| |
Collapse
|
42
|
Khalil DN, Postow MA, Ibrahim N, Ludwig DL, Cosaert J, Kambhampati SRP, Tang S, Grebennik D, Kauh JSW, Lenz HJ, Flaherty KT, Hodi FS, Lawrence DP, Wolchok JD. An Open-Label, Dose-Escalation Phase I Study of Anti-TYRP1 Monoclonal Antibody IMC-20D7S for Patients with Relapsed or Refractory Melanoma. Clin Cancer Res 2016; 22:5204-5210. [PMID: 27797971 PMCID: PMC5117650 DOI: 10.1158/1078-0432.ccr-16-1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/04/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Tyrosinase-related protein-1 (TYRP1) is a transmembrane glycoprotein that is specifically expressed in melanocytes and melanoma cells. Preclinical data suggest that mAbs targeting TYRP1 confer antimelanoma activity. IMC-20D7S is a recombinant human IgG1 mAb targeting TYRP1. Here, we report the first-in-human phase I/Ib trial of IMC-20D7S. EXPERIMENTAL DESIGN The primary objective of this study was to establish the safety profile and the MTD of IMC-20D7S. Patients with advanced melanoma who progressed after or during at least one line of treatment or for whom standard therapy was not indicated enrolled in this standard 3 + 3 dose-escalation, open-label study. IMC-20D7S was administered intravenously every 2 or 3 weeks. RESULTS Twenty-seven patients were enrolled. The most common adverse events were fatigue and constipation experienced by nine (33%) and eight (30%) patients, respectively. There were no serious adverse events related to treatment, no discontinuations of treatment due to adverse events, and no treatment-related deaths. Given the absence of dose-limiting toxicities, an MTD was not defined, but a provisional MTD was established at the 20 mg/kg every 2-week dose based on serum concentration and safety data. One patient experienced a complete response. A disease control rate, defined as stable disease or better, of 41% was observed. CONCLUSION IMC-20D7S is well tolerated among patients with advanced melanoma with evidence of antitumor activity. Further investigation of this agent as monotherapy in selected patients or as part of combination regimens is warranted. Clin Cancer Res; 22(21); 5204-10. ©2016 AACR.
Collapse
Affiliation(s)
- Danny N Khalil
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York
| | - Michael A Postow
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York
| | | | | | | | | | | | | | | | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | - F Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Jedd D Wolchok
- Memorial Sloan Kettering Cancer Center, Ludwig Center for Cancer Immunotherapy, New York, New York.
| |
Collapse
|
43
|
Chiang AW, Li S, Spahn PN, Richelle A, Kuo CC, Samoudi M, Lewis NE. Modulating carbohydrate-protein interactions through glycoengineering of monoclonal antibodies to impact cancer physiology. Curr Opin Struct Biol 2016; 40:104-111. [PMID: 27639240 DOI: 10.1016/j.sbi.2016.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
Diverse glycans on proteins impact cell and organism physiology, along with drug activity. Since many protein-based biotherapeutics are glycosylated and these glycans have biological activity, there is a desire to engineer glycosylation for recombinant protein-based biotherapeutics. Engineered glycosylation can impact the recombinant protein efficacy and also influence many cell pathways by first changing glycan-protein interactions and consequently modulating disease physiologies. However, its complexity is enormous. Recent advances in glycoengineering now make it easier to modulate protein-glycan interactions. Here, we discuss how engineered glycans contribute to therapeutic monoclonal antibodies (mAbs) in the treatment of cancers, how these glycoengineered therapeutic mAbs affect the transformed phenotypes and downstream cell pathways. Furthermore, we suggest how systems biology can help in the next generation mAb glycoengineering process by aiding in data analysis and guiding engineering efforts to tailor mAb glycan and ultimately drug efficacy, safety and affordability.
Collapse
Affiliation(s)
- Austin Wt Chiang
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Shangzhong Li
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Philipp N Spahn
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Anne Richelle
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Chih-Chung Kuo
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, CA, USA
| | - Mojtaba Samoudi
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, CA, USA; The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, CA, USA.
| |
Collapse
|
44
|
Swisher JFA, Feldman GM. The many faces of FcγRI: implications for therapeutic antibody function. Immunol Rev 2016; 268:160-74. [PMID: 26497519 DOI: 10.1111/imr.12334] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fcγ receptor I (FcγRI or CD64) is the sole human Fc receptor with high affinity for monovalent IgG. While it contains an immunoreceptor tyrosine-based activation motif in its cytoplasmic domain, binding of FcγRI can result in a complex array of activating and inhibitory outcomes. For instance, binding of monomeric IgG provides a low-intensity tonic signal through FcγRI that is necessary for full interferon γ receptor signaling in the same cell. Interaction of FcγRI with larger high-avidity complexes can result in phagocytosis, the generation of reactive oxygen species, as well as the synthesis and release of inflammatory cytokines. However, numerous reports also document potent anti-inflammatory effects brought about by FcγRI engagement with immune complexes such as the inhibition of IFNγ and TLR4 signaling, and secretion of interleukin-10. This has led to conflicting hypotheses regarding the function of FcγRI, especially with regard to its role in the efficacy of several therapeutic monoclonal antibodies. While many of these issues are still unclear, continued characterization of the regulation and context dependence of FcγRI function, as well as the molecular mechanisms responsible for these various outcomes, will improve our understanding of FcγRI biology as well as the therapeutic strategies designed to harness or constrain its actions.
Collapse
Affiliation(s)
- Jennifer F A Swisher
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Gerald M Feldman
- Laboratory of Immunobiology, Division of Biotechnology Research and Review IV, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
45
|
Gordan S, Biburger M, Nimmerjahn F. bIgG time for large eaters: monocytes and macrophages as effector and target cells of antibody-mediated immune activation and repression. Immunol Rev 2016; 268:52-65. [PMID: 26497512 DOI: 10.1111/imr.12347] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mononuclear phagocytic system consists of a great variety of cell subsets localized throughout the body in immunological and non-immunological tissues. While one of their prime tasks is to detect, phagocytose, and kill intruding microorganisms, they are also involved in maintaining tissue homeostasis and immune tolerance toward self through removal of dying cells. Furthermore, monocytes and macrophages have been recognized to play a critical role for mediating immunoglobulin G (IgG)-dependent effector functions, including target cell depletion, tissue inflammation, and immunomodulation. For this, monocyte and macrophage populations are equipped with a complex set of Fc-receptors, enabling them to directly interact with pro- or anti-inflammatory IgG preparations. In this review, we will summarize the most recent findings, supporting a central role of monocytes and macrophages for pro- and anti-inflammatory IgG activity.
Collapse
Affiliation(s)
- Sina Gordan
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Biburger
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Department of Biology, Institute of Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
46
|
Ng S, Deng J, Chinnadurai R, Yuan S, Pennati A, Galipeau J. Stimulation of Natural Killer Cell-Mediated Tumor Immunity by an IL15/TGFβ-Neutralizing Fusion Protein. Cancer Res 2016; 76:5683-5695. [PMID: 27488533 DOI: 10.1158/0008-5472.can-16-0386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/19/2016] [Indexed: 11/16/2022]
Abstract
The clinical efficacy of immune cytokines used for cancer therapy is hampered by elements of the immunosuppressive tumor microenvironment such as TGFβ. Here we demonstrate that FIST15, a recombinant chimeric protein composed of the T-cell-stimulatory cytokine IL15, the sushi domain of IL15Rα and a TGFβ ligand trap, can overcome immunosuppressive TGFβ to effectively stimulate the proliferation and activation of natural killer (NK) and CD8+ T cells with potent antitumor properties. FIST15-treated NK and CD8+ T cells produced more IFNγ and TNFα compared with treatment with IL15 and a commercially available TGFβ receptor-Fc fusion protein (sTβRII) in the presence of TGFβ. Murine B16 melanoma cells, which overproduce TGFβ, were lysed by FIST15-treated NK cells in vitro at doses approximately 10-fold lower than NK cells treated with IL15 and sTβRII. Melanoma cells transduced to express FIST15 failed to establish tumors in vivo in immunocompetent murine hosts and could only form tumors in beige mice lacking NK cells. Mice injected with the same cells were also protected from subsequent challenge by unmodified B16 melanoma cells. Finally, mice with pre-established B16 melanoma tumors responded to FIST15 treatment more strongly compared with tumors treated with control cytokines. Taken together, our results offer a preclinical proof of concept for the use of FIST15 as a new class of biological therapeutics that can coordinately neutralize the effects of immunosuppressive TGFβ in the tumor microenvironment while empowering tumor immunity. Cancer Res; 76(19); 5683-95. ©2016 AACR.
Collapse
Affiliation(s)
- Spencer Ng
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Raghavan Chinnadurai
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Shala Yuan
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Andrea Pennati
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, School of Medicine, Emory University, Atlanta, Georgia. Winship Cancer Institute, Emory University, Atlanta, Georgia. Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
47
|
Georgoudaki AM, Prokopec K, Boura V, Hellqvist E, Sohn S, Östling J, Dahan R, Harris R, Rantalainen M, Klevebring D, Sund M, Brage S, Fuxe J, Rolny C, Li F, Ravetch J, Karlsson M. Reprogramming Tumor-Associated Macrophages by Antibody Targeting Inhibits Cancer Progression and Metastasis. Cell Rep 2016; 15:2000-11. [DOI: 10.1016/j.celrep.2016.04.084] [Citation(s) in RCA: 423] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 03/02/2016] [Accepted: 04/21/2016] [Indexed: 01/05/2023] Open
|
48
|
Chu D, Zhao Q, Yu J, Zhang F, Zhang H, Wang Z. Nanoparticle Targeting of Neutrophils for Improved Cancer Immunotherapy. Adv Healthc Mater 2016; 5:1088-93. [PMID: 26989887 DOI: 10.1002/adhm.201500998] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/07/2016] [Indexed: 11/08/2022]
Abstract
Cancer immunotherapy using tumor-specific monoclonal antibodies presents a novel approach for cancer treatment. A monoclonal antibody TA99 specific for gp75 antigen of melanoma initiates neutrophil recruitment in tumor responsible for cancer therapy. Here, a strategy is reported for hijacking neutrophils in vivo using nanoparticles (NPs) to deliver therapeutics into tumor. In a mouse model of melanoma, it is shown that systemically delivered albumin NPs increase in tumor when TA99 antibody is injected; and the NP tumor accumulation is mediated by neutrophils. After the administration of pyropheophorbide-a loaded albumin NPs and TA99, photodynamic therapy significantly suppresses the tumor growth and increases mouse survival compared with treatment with the NPs or TA99. The study reveals a new avenue to treat cancer by NP hitchhiking of immune systems to enhance delivery of therapeutics into tumor sites.
Collapse
Affiliation(s)
- Dafeng Chu
- Department of Pharmaceutical Sciences; College of Pharmacy; Washington State University; Spokane WA 99210 USA
| | - Qi Zhao
- Faculty of Health Sciences; University of Macau; Macau China
| | - Jian Yu
- Moores Cancer Center; University of California; San Diego La Jolla CA 92093 USA
| | - Faya Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; Washington State University; Spokane WA 99210 USA
| | - Hui Zhang
- Department of Pharmaceutical Sciences; College of Pharmacy; Washington State University; Spokane WA 99210 USA
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences; College of Pharmacy; Washington State University; Spokane WA 99210 USA
| |
Collapse
|
49
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|
50
|
Nimmerjahn F. Translating Inhibitory Fc Receptor Biology into Novel Therapeutic Approaches. J Clin Immunol 2016; 36 Suppl 1:83-7. [DOI: 10.1007/s10875-016-0249-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
|