1
|
Wooten M, Takushi B, Ahmad K, Henikoff S. Aclarubicin stimulates RNA polymerase II elongation at closely spaced divergent promoters. SCIENCE ADVANCES 2023; 9:eadg3257. [PMID: 37315134 DOI: 10.1126/sciadv.adg3257] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/08/2023] [Indexed: 06/16/2023]
Abstract
Anthracyclines are a class of widely prescribed anticancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we used Cleavage Under Targets and Tagmentation (CUT&Tag) to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation affect chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of noncanonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the cancer-killing activity of aclarubicin is driven by the disruption of nucleosomes and RNA polymerase II.
Collapse
Affiliation(s)
| | | | - Kami Ahmad
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
2
|
Wooten M, Takushi B, Ahmad K, Henikoff S. Aclarubicin stimulates RNA polymerase II elongation at closely spaced divergent promoters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523323. [PMID: 36712130 PMCID: PMC9882078 DOI: 10.1101/2023.01.09.523323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anthracyclines are a class of widely prescribed anti-cancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we utilized CUT&Tag to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of elongating RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation impacts chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally-oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of non-canonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the anti-cancer activity of aclarubicin is driven by the effects of nucleosome disruption on RNA polymerase II, chromatin accessibility and DNA structures.
Collapse
Affiliation(s)
- Matthew Wooten
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
| | | | - Kami Ahmad
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
| | - Steven Henikoff
- Fred Hutchinson Cancer Center, Seattle, WA 98109-1024, USA
- Howard Hughes Medical Institute
| |
Collapse
|
3
|
Common Markers and Small Molecule Inhibitors in Golgi Studies. Methods Mol Biol 2022; 2557:453-493. [PMID: 36512231 PMCID: PMC10178357 DOI: 10.1007/978-1-0716-2639-9_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this chapter, we provide a detailed guide for the application of commonly used small molecules to study Golgi structure and function in vitro. Furthermore, we have curated a concise, validated list of endomembrane markers typically used in downstream assays to examine the consequent effect on the Golgi via microscopy and western blot after drug treatment. This chapter will be useful for researchers beginning their foray into the field of intracellular trafficking and Golgi biology.
Collapse
|
4
|
Usta HM, Forough M, Persil Çetinkol Ö. Coumarin 6H-fused fluorescent probe for highly sensitive detection of coralyne using oligonucleotide-modified silver nanoparticles. Anal Bioanal Chem 2022; 414:7299-7313. [PMID: 35976422 DOI: 10.1007/s00216-022-04282-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
In this study, a novel, rapid, and sensitive fluorescence sensing platform was developed for the detection of coralyne (COR) by the conjugation of coumarin 6H (C6H) fluorescent dye with oligonucleotide-modified silver nanoparticles [(dT)32-AgNPs]. In the presence of COR, a remarkable and rapid decrease in the fluorescence signal of the probe with a quenching efficiency of around 62% was observed. The quenching response of the system towards COR was possibly due to the displacement of thymidine-rich deoxyoligonucleotides by COR on the surface of AgNPs. The complementary experiments with an adenine-rich single strand as well as with two different secondary structures (i.e., duplex and triplex) revealed a favorable sequence specificity of the sensing platform. The influence of key parameters including the incubation time and temperature was evaluated and optimized to achieve the highest performance. The linear range of 10-183 nM with a correlation coefficient of R = 0.9982 and a limit of detection of 5.24 nM were obtained under the optimized conditions. The selectivity of the proposed probe towards COR was revealed by the evaluation of its response to other small molecules that have molecular structures similar to COR. Finally, the successful applicability of the system was shown with the obtained average recoveries in the range of 87.28-104.52% in human urine samples.
Collapse
Affiliation(s)
- Hatice Müge Usta
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Mehrdad Forough
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey
| | - Özgül Persil Çetinkol
- Department of Chemistry, Middle East Technical University, 06800, Çankaya, Ankara, Turkey.
| |
Collapse
|
5
|
van der Westhuizen D, Bezuidenhout DI, Munro OQ. Cancer molecular biology and strategies for the design of cytotoxic gold(I) and gold(III) complexes: a tutorial review. Dalton Trans 2021; 50:17413-17437. [PMID: 34693422 DOI: 10.1039/d1dt02783b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This tutorial review highlights key principles underpinning the design of selected metallodrugs to target specific biological macromolecules (DNA and proteins). The review commences with a descriptive overview of the eukaryotic cell cycle and the molecular biology of cancer, particularly apoptosis, which is provided as a necessary foundation for the discovery, design, and targeting of metal-based anticancer agents. Drugs which target DNA have been highlighted and clinically approved metallodrugs discussed. A brief history of the development of mainly gold-based metallodrugs is presented prior to addressing ligand systems for stabilizing and adding functionality to bio-active gold(I) and gold(III) complexes, particularly in the burgeoning field of anticancer metallodrugs. Concepts such as multi-modal and selective cytotoxic agents are covered where necessary for selected compounds. The emerging role of carbenes as the ligand system of choice to achieve these goals for gold-based metallodrug candidates is highlighted prior to closing the review with comments on some future directions that this research field might follow. The latter section ultimately emphasizes the importance of understanding the fate of metal complexes in cells to garner key mechanistic insights.
Collapse
Affiliation(s)
- Danielle van der Westhuizen
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| | - Daniela I Bezuidenhout
- Laboratory of Inorganic Chemistry, Environmental and Chemical Engineering, University of Oulu, P. O. Box 3000, 90014 Oulu, Finland.
| | - Orde Q Munro
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
6
|
Medan J, Sleebs BE, Lackovic K, Watson KG, Evison BJ, Phillips DR, Cutts SM. Development of an automated assay for accelerated in vitro detection of DNA adduct-inducing and crosslinking agents. Bioorg Med Chem Lett 2021; 35:127813. [PMID: 33486050 DOI: 10.1016/j.bmcl.2021.127813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 01/17/2021] [Indexed: 10/22/2022]
Abstract
Current techniques for the identification of DNA adduct-inducing and DNA interstrand crosslinking agents include electrophoretic crosslinking assays, electrophoretic gel shift assays, DNA and RNA stop assays, mass spectrometry-based methods and 32P-post-labelling. While these assays provide considerable insight into the site and stability of the interaction, they are relatively expensive, time-consuming and sometimes rely on the use of radioactively-labelled components, and thus are ill-suited to screening large numbers of compounds. A novel medium throughput assay was developed to overcome these limitations and was based on the attachment of a biotin-tagged double stranded (ds) oligonucleotide to Corning DNA-Bind plates. We aimed to detect anthracycline and anthracenedione DNA adducts which form by initial non-covalent intercalation with duplex DNA, and subsequent covalent adduct formation which is mediated by formaldehyde. Following drug treatment, DNA samples were subjected to a denaturation step, washing and then measurement by fluorescence to detect remaining drug-DNA species using streptavidin-europium. This dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) is a time-resolved fluorescence intensity assay where the fluorescence signal arises only from stabilised drug-DNA complexes. We applied this new methodology to the identification of anthracycline-like compounds with the ability to functionally crosslink double-strand oligonucleotides. The entire procedure can be performed by robotics, requiring low volumes of compounds and reagents, thereby reducing costs and enabling multiple compounds to be assessed on a single microtitre plate.
Collapse
Affiliation(s)
- Jelena Medan
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia; Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Brad E Sleebs
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kurt Lackovic
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia; Cancer Trials Australia, Melbourne, Victoria 3000, Australia
| | - Keith G Watson
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Benny J Evison
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia; Nyrada Inc, 828 Pacific Highway, Gordon, NSW 2072, Australia
| | - Don R Phillips
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia
| | - Suzanne M Cutts
- La Trobe Institute for Molecular Science, La Trobe University, Victoria 3086, Australia.
| |
Collapse
|
7
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
8
|
Nakamura J. Potential Doxorubicin-Mediated Dual-Targeting Chemotherapy in FANC/BRCA-Deficient Tumors via Modulation of Cellular Formaldehyde Concentration. Chem Res Toxicol 2020; 33:2659-2667. [PMID: 32876438 DOI: 10.1021/acs.chemrestox.0c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Doxorubicin (DOX) is a widely used classical broad-spectrum anticancer drug. The major mechanism of DOX-mediated anticancer activity at clinically relevant concentrations is believed to be via DNA double-strand breaks due to topoisomerase IIα. However, other mechanisms by which DOX causes cytotoxicity have been proposed, including formaldehyde-dependent virtual interstrand cross-linking (ICL) formation. In this study, a method was established whereby cytotoxicity caused by virtual ICL derived from DOX is turned on and off using a cell culture system. Using this strategy, DOX-mediated cytotoxicity in Fanconi anemia group gene (FANC)/breast cancer susceptibility gene (BRCA)-deficient cells increased up to 70-fold compared to that in cells proficient in DNA repair pathways by increasing intracellular formaldehyde (FA) concentration. This approach also demonstrated that cytotoxicity introduced by DOX-mediated FA-dependent virtual ICL is completely independent of the toxicity induced by topoisomerase II inhibition at the cellular level. The potential of dual-targeting by DOX treatment was verified using an acid-specific FA donor. Overall, anticancer therapy targeting tumors deficient in the FANC/BRCA pathway may be possible by minimizing DOX-induced toxicity in normal cells.
Collapse
Affiliation(s)
- Jun Nakamura
- Laboratory of Laboratory Animal Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.,Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27516, United States
| |
Collapse
|
9
|
Wander DPA, van der Zanden SY, van der Marel GA, Overkleeft HS, Neefjes J, Codée JDC. Doxorubicin and Aclarubicin: Shuffling Anthracycline Glycans for Improved Anticancer Agents. J Med Chem 2020; 63:12814-12829. [PMID: 33064004 PMCID: PMC7667640 DOI: 10.1021/acs.jmedchem.0c01191] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Anthracycline anticancer drugs doxorubicin and aclarubicin have been used in the clinic for several decades to treat various cancers. Although closely related structures, their molecular mode of action diverges, which is reflected in their biological activity profile. For a better understanding of the structure-function relationship of these drugs, we synthesized ten doxorubicin/aclarubicin hybrids varying in three distinct features: aglycon, glycan, and amine substitution pattern. We continued to evaluate their capacity to induce DNA breaks, histone eviction, and relocated topoisomerase IIα in living cells. Furthermore, we assessed their cytotoxicity in various human tumor cell lines. Our findings underscore that histone eviction alone, rather than DNA breaks, contributes strongly to the overall cytotoxicity of anthracyclines, and structures containing N,N-dimethylamine at the reducing sugar prove that are more cytotoxic than their nonmethylated counterparts. This structural information will support further development of novel anthracycline variants with improved anticancer activity.
Collapse
Affiliation(s)
- Dennis P A Wander
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Einthovenweg 20, 2333 CZ Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Einthovenweg 20, 2333 CZ Leiden, The Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
10
|
Brown KV, Wandi BN, Metsä-Ketelä M, Nybo SE. Pathway Engineering of Anthracyclines: Blazing Trails in Natural Product Glycodiversification. J Org Chem 2020; 85:12012-12023. [PMID: 32938175 DOI: 10.1021/acs.joc.0c01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The anthracyclines are structurally diverse anticancer natural products that bind to DNA and poison the topoisomerase II-DNA complex in cancer cells. Rational modifications in the deoxysugar functionality are especially advantageous for synthesizing drugs with improved potency. Combinatorial biosynthesis of glycosyltransferases and deoxysugar synthesis enzymes is indispensable for the generation of glycodiversified anthracyclines. This Synopsis considers recent advances in glycosyltransferase structural biology and site-directed mutagenesis, pathway engineering, and deoxysugar combinatorial biosynthesis with a focus on the generation of "new-to-nature" anthracycline analogues.
Collapse
Affiliation(s)
- Katelyn V Brown
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| | - Benjamin Nji Wandi
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Metsä-Ketelä
- Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - S Eric Nybo
- Department of Pharmaceutical Sciences, College of Pharmacy, Ferris State University, Big Rapids, Michigan 49307, United States
| |
Collapse
|
11
|
Zhou N, Zhi Z, Liu D, Wang D, Shao Y, Yan K, Meng L, Yu D. Acid-Responsive and Biologically Degradable Polyphosphazene Nanodrugs for Efficient Drug Delivery. ACS Biomater Sci Eng 2020; 6:4285-4293. [PMID: 33463351 DOI: 10.1021/acsbiomaterials.0c00378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH ∼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH ∼ 6.8) and lysosome and endosome (∼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Na Zhou
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Zhe Zhi
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daomeng Liu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Daquan Wang
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Yan
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lingjie Meng
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.,Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Demei Yu
- School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
12
|
Del Valle AC, Su CK, Sun YC, Huang YF. NIR-cleavable drug adducts of gold nanostars for overcoming multidrug-resistant tumors. Biomater Sci 2020; 8:1934-1950. [PMID: 32039412 DOI: 10.1039/c9bm01813a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An aptamer-conjugated gold nanostar (dsDDA-AuNS) has been developed for targeting nucleolin present in both tumor cells and tumor vasculature for conducting a drug-resistant cancer therapy. AuNS with its strong absorption in the near-infrared (NIR) region was assembled with a layer of the anti-nucleolin aptamer AS1411. An anticancer drug, namely doxorubicin (DOX), was specifically conjugated on deoxyguanosine residues employing heat and acid labile methylene linkages. In response to NIR irradiation, dsDDA-AuNS allowed on-demand therapeutics. AS1411 played an active role in drug cargo-nucleus interactions, enhancing drug accumulation in the nuclei of drug-resistant breast cancer cells. The intravenous injection of dsDDA-AuNS allowed higher drug accumulation in drug-resistant tumors over naked drugs, leading to greater therapeutic efficacy even at a 54-fold less equivalent drug dose. The in vivo triggered release of DOX from dsDDA-AuNS was achieved by NIR irradiation, resulting in simultaneous photothermal and chemotherapeutic actions, yielding superior tumor growth inhibition than those obtained from either type of monotherapy for overcoming drug resistance in cancers.
Collapse
Affiliation(s)
- Andrea C Del Valle
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China.
| | - Cheng-Kuan Su
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan, Republic of China
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China. and Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China. and Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, 30013 Taiwan, Republic of China
| |
Collapse
|
13
|
Pei Y, Liu Y, Xie C, Zhang X, You H. Detecting the Formation Kinetics of Doxorubicin-DNA Interstrand Cross-link at the Single-Molecule Level and Clinically Relevant Concentrations of Doxorubicin. Anal Chem 2020; 92:4504-4511. [DOI: 10.1021/acs.analchem.9b05657] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yufeng Pei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yajun Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Chunyu Xie
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xinghua Zhang
- College of Life Sciences, the Institute for Advanced Studies, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, Wuhan University, Wuhan, Hubei 430072, China
| | - Huijuan You
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
14
|
Piorecka K, Smith D, Kurjata J, Stanczyk M, Stanczyk WA. Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem 2020; 96:103617. [PMID: 32014639 DOI: 10.1016/j.bioorg.2020.103617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
Anthracyclines (Anth) are widely used in the treatment of various types of cancer. Unfortunately, they exhibit serious adverse effects, such as hematopoietic depression and cardiotoxicity, leading to heart failure. In this review, we focus on recently developed conjugates of anthracyclines with a range of nanocarriers, such as polymers, peptides, DNA or inorganic systems. Manipulation of the composition, size and shape of chemical entities at the nanometer scale makes possible the design and development of a range of prodrugs. In this review we concentrate on synthetic chemistry in the long process leading to the introduction of novel therapeutic products.
Collapse
Affiliation(s)
- Kinga Piorecka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - David Smith
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | - Jan Kurjata
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | | | - Wlodzimierz A Stanczyk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
15
|
Capelôa T, Benyahia Z, Zampieri LX, Blackman MCNM, Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin Cell Dev Biol 2019; 98:181-191. [PMID: 31112797 DOI: 10.1016/j.semcdb.2019.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
Anthracyclines Doxorubicin, Epirubicin, Daunorubicin and Idarubicin are used to treat a variety of tumor types in the clinics, either alone or, most often, in combination therapies. While their cardiotoxicity is well known, the emergence of chemoresistance is also a major issue accounting for treatment discontinuation. Resistance to anthracyclines is associated to the acquisition of multidrug resistance conferred by overexpression of permeability glycoprotein-1 or other efflux pumps, by altered DNA repair, changes in topoisomerase II activity, cancer stemness and metabolic adaptations. This review further details the metabolic aspects of resistance to anthracyclines, emphasizing the contributions of glycolysis, the pentose phosphate pathway and nucleotide biosynthesis, glutathione, lipid metabolism and autophagy to the chemoresistant phenotype.
Collapse
Affiliation(s)
- Tânia Capelôa
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Zohra Benyahia
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Marine C N M Blackman
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Pierre Sonveaux
- Pole of Pharmacology & Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Brussels, Belgium.
| |
Collapse
|
16
|
Konda SK, Kelso C, Medan J, Sleebs BE, Phillips DR, Cutts SM, Collins JG. Isolation and structural analysis of the covalent adduct formed between a bis-amino mitoxantrone analogue and DNA: a pathway to major-minor groove cross-linked adducts. Org Biomol Chem 2018; 14:10217-10221. [PMID: 27735959 DOI: 10.1039/c6ob02100j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The major covalent adduct formed between a 13C-labelled formaldehyde activated bis-amino mitoxantrone analogue (WEHI-150) and the hexanucleotide d(CG5MeCGCG)2 has been isolated by HPLC chromatography and the structure determined by NMR spectroscopy. The results indicate that WEHI-150 forms one covalent bond through a primary amine to the N-2 of the G2 residue, with the polycyclic ring structure intercalated at the 5MeC3pG4/G10p5MeC9 site. Furthermore, the WEHI-150 aromatic ring system is oriented approximately parallel to the long axis of the base pairs, with one aliphatic side-chain in the major groove and the other side-chain in the minor groove. This study indicates that mitoxantrone derivatives like WEHI-150 should be capable of forming major-minor groove cross-linked adducts that will likely produce considerably different intracellular biological properties compared to known anthracycline and anthracenedione anticancer drugs.
Collapse
Affiliation(s)
- Shyam K Konda
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, ACT, 2600 Australia.
| | - Celine Kelso
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jelena Medan
- Chemical Biology Division The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052 Australia and Department of Biochemistry and Genetics La Trobe University, VIC 3083, Australia.
| | - Brad E Sleebs
- Chemical Biology Division The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052 Australia and Department of Medical Biology The University of Melbourne, VIC 3010, Australia
| | - Don R Phillips
- Department of Biochemistry and Genetics La Trobe University, VIC 3083, Australia.
| | - Suzanne M Cutts
- Department of Biochemistry and Genetics La Trobe University, VIC 3083, Australia.
| | - J Grant Collins
- School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, ACT, 2600 Australia.
| |
Collapse
|
17
|
Misiak M, Heldt M, Szeligowska M, Mazzini S, Scaglioni L, Grabe GJ, Serocki M, Lica J, Switalska M, Wietrzyk J, Beretta GL, Perego P, Zietkowski D, Baginski M, Borowski E, Skladanowski A. Molecular basis for the DNA damage induction and anticancer activity of asymmetrically substituted anthrapyridazone PDZ-7. Oncotarget 2017; 8:105137-105154. [PMID: 29285240 PMCID: PMC5739627 DOI: 10.18632/oncotarget.21806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/23/2017] [Indexed: 12/11/2022] Open
Abstract
Anthrapyridazones, imino analogues of anthraquinone, constitute a family of compounds with remarkable anti-cancer activity. To date, over 20 derivatives were studied, of which most displayed nanomolar cytotoxicity towards broad spectrum of cancer cells, including breast, prostate and leukemic ones. BS-154, the most potent derivative, had IC50 values close to 1 nM, however, it was toxic in animal studies. Here, we characterize another anthrapyridazone, PDZ-7, which retains high cytotoxicity while being well tolerated in mice. PDZ-7 is also active in vivo against anthracycline-resistant tumor in a mouse xenograft model and induces DNA damage in proliferating cells, preferentially targeting cells in S and G2 phases of the cell cycle. Activation of Mre11-Rad50-Nbs1 (MRN) complex and phosphorylation of H2AX suggest double-stranded DNA breaks as a major consequence of PDZ-7 treatment. Consistent with this, PDZ-7 treatment blocked DNA synthesis and resulted in cell cycle arrest in late S and G2 phases. Analysis of topoisomerase IIα activity and isolation of the stabilized covalent topoisomerase IIα - DNA complex in the presence of PDZ-7 suggests that this compound is a topoisomerase IIα poison. Moreover, PDZ-7 interfered with actin polymerization, thereby implying its action as a dual inhibitor of processes critical for dividing cells. Using nuclear magnetic resonance (NMR) spectroscopy we show that PDZ-7 interacts with DNA double helix and quadruplex DNA structure. Taken together, our results suggest that PDZ-7 is a unique compound targeting actin cytoskeleton and DNA.
Collapse
Affiliation(s)
- Majus Misiak
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marlena Szeligowska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Stefania Mazzini
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Milan, Italy
| | - Leonardo Scaglioni
- Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, University of Milan, Milan, Italy
| | - Grzegorz J Grabe
- Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Marcin Serocki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Jan Lica
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Marta Switalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Giovanni L Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| | - Edward Borowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.,BS-154 sp. z o.o., Gdansk, Poland
| | - Andrzej Skladanowski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
18
|
Scalabrin M, Quintieri L, Palumbo M, Riccardi Sirtori F, Gatto B. Virtual Cross-Linking of the Active Nemorubicin Metabolite PNU-159682 to Double-Stranded DNA. Chem Res Toxicol 2017; 30:614-624. [PMID: 28068470 DOI: 10.1021/acs.chemrestox.6b00362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The DNA alkylating mechanism of PNU-159682 (PNU), a highly potent metabolite of the anthracycline nemorubicin, was investigated by gel-electrophoretic, HPLC-UV, and micro-HPLC/mass spectrometry (MS) measurements. PNU quickly reacted with double-stranded oligonucleotides, but not with single-stranded sequences, to form covalent adducts which were detectable by denaturing polyacrylamide gel electrophoresis (DPAGE). Ion-pair reverse-phase HPLC-UV analysis on CG rich duplex sequences having a 5'-CCCGGG-3' central core showed the formation of two types of adducts with PNU, which were stable and could be characterized by micro-HPLC/MS. The first type contained one alkylated species (and possibly one reversibly bound species), and the second contained two alkylated species per duplex DNA. The covalent adducts were found to produce effective bridging of DNA complementary strands through the formation of virtual cross-links reminiscent of those produced by classical anthracyclines in the presence of formaldehyde. Furthermore, the absence of reactivity of PNU with CG-rich sequence containing a TA core (CGTACG), and the minor reactivity between PNU and CGC sequences (TACGCG·CGCGTA) pointed out the importance of guanine sequence context in modulating DNA alkylation.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Luigi Quintieri
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| | - Federico Riccardi Sirtori
- Oncology-Chemical Core Technologies Department, Nerviano Medical Sciences , viale Pasteur 10, Nerviano, 20014 Milano, Italy
| | - Barbara Gatto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova , Via Marzolo, 5, 35131 Padova, Italy
| |
Collapse
|
19
|
Stornetta A, Zimmermann M, Cimino GD, Henderson PT, Sturla SJ. DNA Adducts from Anticancer Drugs as Candidate Predictive Markers for Precision Medicine. Chem Res Toxicol 2017; 30:388-409. [PMID: 27936622 PMCID: PMC5379252 DOI: 10.1021/acs.chemrestox.6b00380] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 01/23/2023]
Abstract
Biomarker-driven drug selection plays a central role in cancer drug discovery and development, and in diagnostic strategies to improve the use of traditional chemotherapeutic drugs. DNA-modifying anticancer drugs are still used as first line medication, but drawbacks such as resistance and side effects remain an issue. Monitoring the formation and level of DNA modifications induced by anticancer drugs is a potential strategy for stratifying patients and predicting drug efficacy. In this perspective, preclinical and clinical data concerning the relationship between drug-induced DNA adducts and biological response for platinum drugs and combination therapies, nitrogen mustards and half-mustards, hypoxia-activated drugs, reductase-activated drugs, and minor groove binding agents are presented and discussed. Aspects including measurement strategies, identification of adducts, and biological factors that influence the predictive relationship between DNA modification and biological response are addressed. A positive correlation between DNA adduct levels and response was observed for the majority of the studies, demonstrating the high potential of using DNA adducts from anticancer drugs as mechanism-based biomarkers of susceptibility, especially as bioanalysis approaches with higher sensitivity and throughput emerge.
Collapse
Affiliation(s)
- Alessia Stornetta
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Maike Zimmermann
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - George D. Cimino
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Paul T. Henderson
- Department
of Internal Medicine, Division of Hematology and Oncology and the
UC Davis Comprehensive Cancer Center, University
of California Davis, 4501 X Street, Sacramento, California 95655, United States
- Accelerated
Medical Diagnostics, Inc., 2121 Second Street, B101, Davis, California 95618, United States
| | - Shana J. Sturla
- Department
of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
20
|
Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy. Sci Rep 2016; 6:35376. [PMID: 27752092 PMCID: PMC5067517 DOI: 10.1038/srep35376] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022] Open
Abstract
Photodynamic therapy is an emerging cancer treatment that is particularly adapted for localized malignant tumor. The phototherapeutic agent is generally injected in the bloodstream and circulates in the whole organism as a chemotherapeutic agent, but needs light triggering to induce localized therapeutic effects. We found that one of the responses of in vitro and in vivo cancer cells to photodynamic therapy was a massive production and emission of extracellular vesicles (EVs): only 1 hour after the photo-activation, thousands of vesicles per cell were emitted in the extracellular medium. A similar effect has been found after treatment with Doxorubicin (chemotherapy), but far less EVs were produced, even 24 hours after the treatment. Furthermore, we found that the released EVs could transfer extracellular membrane components, drugs and even large intracellular objects to naive target cells. In vivo, photodynamic treatment and chemotherapy increased the levels of circulating EVs several fold, confirming the vast induction of cancer cell vesiculation triggered by anti-cancer therapies.
Collapse
|
21
|
Oommen OP, Duehrkop C, Nilsson B, Hilborn J, Varghese OP. Multifunctional Hyaluronic Acid and Chondroitin Sulfate Nanoparticles: Impact of Glycosaminoglycan Presentation on Receptor Mediated Cellular Uptake and Immune Activation. ACS APPLIED MATERIALS & INTERFACES 2016; 8:20614-24. [PMID: 27468113 DOI: 10.1021/acsami.6b06823] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hyaluronic acid (HA) and chondroitin sulfate (CS) polymers are extensively used for various biomedical applications, such as for tissue engineering, drug delivery, and gene delivery. Although both these biopolymers are known to target cell surface CD44 receptors, their relative cellular targeting properties and immune activation potential have never been evaluated. In this article, we present the synthesis and characterization of novel self-assembled supramolecular HA and CS nanoparticles (NPs). These NPs were developed using fluorescein as a hydrophobic component that induced amphiphilicity in biopolymers and also efficiently stabilized anticancer drug doxorubicin (DOX) promoting a near zero-order drug release. The cellular uptake and cytotoxicity studies of these NPs in different human cancer lines, namely, human colorectal carcinoma cell line HCT116 and human breast cancer cell line MCF-7 demonstrated dose dependent cytotoxicity. Interestingly, both NPs showed CD44 dependent cellular uptake with the CS-DOX NP displaying higher dose-dependent cytotoxicity than the HA-DOX NP in different mammalian cells tested. Immunological evaluation of these nanocarriers in an ex vivo human whole blood model revealed that unlike unmodified polymers, the HA NP and CS NP surprisingly showed platelet aggregation and thrombin-antithrombin complex formation at high concentrations (0.8 mg/mL). We also observed a clear difference in early- and late-stage complement activation (C3a and sC5b-9) with CS and CS NP triggering significant complement activation at high concentrations (0.08-0.8 mg/mL), unlike HA and HA NP. These results offer new insight into designing glycosaminoglycan-based NPs and understanding their hematological responses and targeting ability.
Collapse
Affiliation(s)
- Oommen P Oommen
- Department of Chemistry, Ångström Laboratory, Science for Life Laboratory, Uppsala University , S-75121 Uppsala, Sweden
- BioMediTech - Institute of Biosciences and Medical Technology, Bioengineering and Nanomedicine Group, Tampere University of Technology , 33520 Tampere, Finland
| | - Claudia Duehrkop
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University , S-75121 Uppsala, Sweden
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University , S-75121 Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry, Ångström Laboratory, Science for Life Laboratory, Uppsala University , S-75121 Uppsala, Sweden
| | - Oommen P Varghese
- Department of Chemistry, Ångström Laboratory, Science for Life Laboratory, Uppsala University , S-75121 Uppsala, Sweden
| |
Collapse
|
22
|
Menna P, Salvatorelli E, Minotti G. Rethinking Drugs from Chemistry to Therapeutic Opportunities: Pixantrone beyond Anthracyclines. Chem Res Toxicol 2016; 29:1270-8. [PMID: 27420111 DOI: 10.1021/acs.chemrestox.6b00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Pixantrone (6,9-bis[(2-aminoethyl)amino]benzo[g]isoquinoline-5,10-dione) has been approved by the European Medicines Agency for the treatment of refractory or relapsed non-Hodgkin's lymphoma (NHL). It is popularly referred to as a novel aza-anthracenedione, and as such it is grouped with anthracycline-like drugs. Preclinical development of pixantrone was in fact tailored to retain the same antitumor activity as that of anthracyclines or other anthracenediones while also avoiding cardiotoxicity that dose-limits clinical use of anthracycline-like drugs. Preliminary data in laboratory animals showed that pixantrone was active, primarily in hematologic malignancies, but caused significantly less cardiotoxicity than doxorubicin or mitoxantrone. Pixantrone was cardiac tolerable also in animals pretreated with doxorubicin, which anticipated a therapeutic niche for pixantrone to treat patients with a history of prior exposure to anthracyclines. This is the case for patients with refractory/relapsed NHL. Pixantrone clinical development, regulatory approval, and penetration in clinical practice were nonetheless laborious if not similar to a rocky road. Structural and nominal similarities with mitoxantrone and anthracyclines may have caused a negative influence, possibly leading to a general perception that pixantrone is a "me-too" anthracycline. Recent insights suggest this is not the case. Pixantrone shows pharmacological and toxicological mechanisms of action that are difficult to reconcile with anthracycline-like drugs. Pixantrone is a new drug with its own characteristics. For example, pixantrone causes mis-segregation of genomic material in cancer cells and inhibits formation of toxic anthracycline metabolites in cardiac cells. Understanding the differences between pixantrone and anthracyclines or mitoxantrone may help one to appreciate how it worked in the phase 3 study that led to its approval in Europe and how it might work in many more patients in everyday clinical practice, were it properly perceived as a drug with its own characteristics and therapeutic potential. The road is rocky but not a dead-end.
Collapse
Affiliation(s)
- Pierantonio Menna
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Emanuela Salvatorelli
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| | - Giorgio Minotti
- Unit of Drug Sciences, Department of Medicine, University Campus Bio-Medico , Via Alvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
23
|
Wang JZ, Zhu YX, Ma HC, Chen SN, Chao JY, Ruan WD, Wang D, Du FG, Meng YZ. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:215-25. [DOI: 10.1016/j.msec.2016.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 12/23/2015] [Accepted: 01/19/2016] [Indexed: 01/17/2023]
|
24
|
Barthel BL, Mooz EL, Wiener LE, Koch GG, Koch TH. Correlation of in Situ Oxazolidine Formation with Highly Synergistic Cytotoxicity and DNA Cross-Linking in Cancer Cells from Combinations of Doxorubicin and Formaldehyde. J Med Chem 2016; 59:2205-21. [DOI: 10.1021/acs.jmedchem.5b01956] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Benjamin L. Barthel
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Erin L. Mooz
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Laura Elizabeth Wiener
- Department
of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gary G. Koch
- Department
of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tad H. Koch
- Department
of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
25
|
Akkus Sut P, Tunc CU, Culha M. Lactose-modified DNA tile nanostructures as drug carriers. J Drug Target 2016; 24:709-19. [PMID: 26805650 DOI: 10.3109/1061186x.2016.1144059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND DNA hybridization allows the preparation of nanoscale DNA structures with desired shape and size. DNA structures using simple base pairing can be used for the delivery of drug molecules into the cells. Since DNA carries multiple negative charges, their cellular uptake efficiency is low. Thus, the modification of the DNA structures with molecules that may enhance the cellular internalization may be an option. OBJECTIVE The objective of this study is to construct DNA-based nanocarrier system and to investigate the cellular uptake of DNA tile with/without lactose modification. METHODS Doxorubicin was intercalated to DNA tile and cellular uptake of drug-loaded DNA-based carrier with/without lactose modification was investigated in vitro. HeLa, BT-474, and MDA-MB-231 cancer cells were used for cellular uptake studies and cytotoxicity assays. Using fluorescence spectroscopy, flow cytometry, and confocal microscopy, cellular uptake behavior of DNA tile was investigated. The cytotoxicity of DNA tile structures was determined with WST-1 assay. RESULTS The results show that modification with lactose effectively increases the intracellular uptake of doxorubicin loaded DNA tile structure by cancer cells compared with the unmodified DNA tile. CONCLUSION The findings of this study suggest that DNA-based nanostructures modified with carbohydrates can be used as suitable multifunctional nanocarriers with simple chemical modifications.
Collapse
Affiliation(s)
- Pinar Akkus Sut
- a Department of Genetics and Bioengineering, Faculty of Engineering and Architecture , Yeditepe University , Istanbul , Turkey
| | - Cansu Umran Tunc
- a Department of Genetics and Bioengineering, Faculty of Engineering and Architecture , Yeditepe University , Istanbul , Turkey
| | - Mustafa Culha
- a Department of Genetics and Bioengineering, Faculty of Engineering and Architecture , Yeditepe University , Istanbul , Turkey
| |
Collapse
|
26
|
Maggini L, Travaglini L, Cabrera I, Castro-Hartmann P, De Cola L. Biodegradable Peptide-Silica Nanodonuts. Chemistry 2016; 22:3697-703. [DOI: 10.1002/chem.201504605] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Laura Maggini
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Leana Travaglini
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Ingrid Cabrera
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | | | - Luisa De Cola
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS); Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
- Institut für Nanotechnologie (INT); Karlsruhe Institute of Technology, Campus Nord; Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
27
|
Lucas AT, O'Neal SK, Santos CM, White TF, Zamboni WC. A sensitive high performance liquid chromatography assay for the quantification of doxorubicin associated with DNA in tumor and tissues. J Pharm Biomed Anal 2015; 119:122-9. [PMID: 26678179 DOI: 10.1016/j.jpba.2015.11.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Doxorubicin, a widely used anticancer agent, exhibits antitumor activity against a wide variety of malignancies. The drug exerts its cytotoxic effects by binding to and intercalating within the DNA of tumor and tissue cells. However, current assays are unable to accurately determine the concentration of the intracellular active form of doxorubicin. Thus, the development of a sample processing method and a high-performance liquid chromatography (HPLC) methodology was performed in order to quantify doxorubicin that is associated with DNA in tumors and tissues, which provided an intracellular cytotoxic measure of doxorubicin exposure after administration of small molecule and nanoparticle formulations of doxorubicin. The assay uses daunorubicin as an internal standard; liquid-liquid phase extraction to isolate drug associated with DNA; a Shimadzu HPLC with fluorescence detection equipped with a Phenomenex Luna C18 (2μm, 2.0×100mm) analytical column and a gradient mobile phase of 0.1% formic acid in water or acetonitrile for separation and quantification. The assay has a lower limit of detection (LLOQ) of 10ng/mL and is shown to be linear up to 3000ng/mL. The intra- and inter-day precision of the assay expressed as a coefficient of variation (CV%) ranged from 4.01 to 8.81%. Furthermore, the suitability of this assay for measuring doxorubicin associated with DNA in vivo was demonstrated by using it to quantify the doxorubicin concentration within tumor samples from SKOV3 and HEC1A mice obtained 72h after administration of PEGylated liposomal doxorubicin (Doxil(®); PLD) at 6mg/kg IV x 1. This HPLC assay allows for sensitive intracellular quantification of doxorubicin and will be an important tool for future studies evaluating intracellular pharmacokinetics of doxorubicin and various nanoparticle formulations of doxorubicin.
Collapse
Affiliation(s)
- Andrew T Lucas
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, CB# 7569, Chapel Hill, NC 27599-7569, United States.
| | - Sara K O'Neal
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, CB# 7569, Chapel Hill, NC 27599-7569, United States.
| | - Charlene M Santos
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC 27599-7295, United States; LCCC Animal Studies Core Facility, University of North Carolina at Chapel Hill, 1002 Mary Ellen Jones Building, Chapel Hill, NC 27599-7295, United States.
| | - Taylor F White
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, CB#7355, Chapel Hill, NC 27599-7355, United States.
| | - William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill (UNC) Eshelman School of Pharmacy, CB# 7569, Chapel Hill, NC 27599-7569, United States; UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, CB# 7295, Chapel Hill, NC 27599-7295, United States; UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, CB#7355, Chapel Hill, NC 27599-7355, United States; UNC Center for Pharmacogenomics and Individualized Therapy, 120 Mason Farm Road, CB# 7361, Chapel Hill, NC 27599, United States; Carolina Institute For NanoMedicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 1079 Genetic Medicine Building, Chapel Hill, NC 27599-7264, United States.
| |
Collapse
|
28
|
A Synthetic Aptamer-Drug Adduct for Targeted Liver Cancer Therapy. PLoS One 2015; 10:e0136673. [PMID: 26523833 PMCID: PMC4629891 DOI: 10.1371/journal.pone.0136673] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
AS1411 (previously known as AGRO100) is a 26 nucleotide guanine-rich DNA aptamer which forms a guanine quadruplex structure. AS1411 has shown promising utility as a treatment for cancers in Phase I and Phase II clinical trials without causing major side-effects. AS1411 inhibits tumor cell growth by binding to nucleolin which is aberrantly expressed on the cell membrane of many tumors. In this study, we utilized a simple technique to conjugate a widely-used chemotherapeutic agent, doxorubicin (Dox), to AS1411 to form a synthetic Drug-DNA Adduct (DDA), termed as AS1411-Dox. We demonstrate the utility of AS1411-Dox in the treatment of hepatocellular carcinoma (HCC) by evaluating the targeted delivery of Dox to Huh7 cells in vitro and in a murine xenograft model of HCC.
Collapse
|
29
|
Ho LK, Nodwell JR. David and Goliath: chemical perturbation of eukaryotes by bacteria. J Ind Microbiol Biotechnol 2015; 43:233-48. [PMID: 26433385 PMCID: PMC4752587 DOI: 10.1007/s10295-015-1686-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 09/09/2015] [Indexed: 12/20/2022]
Abstract
Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.
Collapse
Affiliation(s)
- Louis K Ho
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Justin R Nodwell
- Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
30
|
On-demand drug delivery from local depots. J Control Release 2015; 219:8-17. [PMID: 26374941 DOI: 10.1016/j.jconrel.2015.09.011] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 11/22/2022]
Abstract
Stimuli-responsive polymeric depots capable of on-demand release of therapeutics promise a substantial improvement in the treatment of many local diseases. These systems have the advantage of controlling local dosing so that payload is released at a time and with a dose chosen by a physician or patient, and the dose can be varied as disease progresses or healing occurs. Macroscale drug depot can be induced to release therapeutics through the action of physical stimuli such as ultrasound, electric and magnetic fields and light as well as through the addition of pharmacological stimuli such as nucleic acids and small molecules. In this review, we highlight recent advances in the development of polymeric systems engineered for releasing therapeutic molecules through physical and pharmacological stimulation.
Collapse
|
31
|
Sinha BK, Mason RP. IS METABOLIC ACTIVATION OF TOPOISOMERASE II POISONS IMPORTANT IN THE MECHANISM OF CYTOTOXICITY? ACTA ACUST UNITED AC 2015; 6. [PMID: 31171989 DOI: 10.4172/2157-7609.1000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The antitumor drugs doxorubicin and etoposide, a phodophyllotoxin derivative, are clinically active for the treatment of human malignancies. Because of their extreme effectiveness in the clinic, their modes of actions have been the subject of intense research for over several decades both in the laboratory and in the clinic. It has been found that both doxorubicin and etoposide (VP-16) act on topoisomerase II, induce DNA cleavage, and form double-strand breaks, causing tumor cell death. However, both of these drugs also undergo extensive metabolism in tumor cells and in vivo to various reactive intermediates that bind covalently to cellular DNA and proteins. Moreover, both drugs are metabolized to reactive free radicals that induce lipid peroxidation and DNA damage. However, the role of drug activation in the mechanism of cytotoxicity remains poorly defined. In this review, we critically evaluate the significance of metabolic activation of doxorubicin and etoposide in the mechanism of tumor cytotoxicity.
Collapse
Affiliation(s)
- Birandra K Sinha
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institutes of Environmental Health Sciences, NIH, Research Triangle, Park, North Carolina, USA
| |
Collapse
|
32
|
Akhter MZ, Luthra K, Rajeswari MR. Molecular aspects on adriamycin interaction with hmga1 regulatory region and its inhibitory effect on HMGA1 expression in human cervical cancer. J Biomol Struct Dyn 2015; 34:877-91. [PMID: 26084422 DOI: 10.1080/07391102.2015.1057617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
High mobility group A1 (HMGA1), a non-histone chromosomal protein, is highly expressed in a wide range of human cancers including cervical, breast, and prostate cancers. Therefore, hmga1 gene is considered as an attractive potential target for anticancer drugs. We have chosen 27 bp DNA sequence from a regulatory region of hmga1 promoter and studied its interaction with adriamycin (ADM) and in vitro expression of HMGA1 in the presence of ADM in HeLa cell line. A variety of biophysical techniques were employed to understand the characteristics of [DNA-ADM] complex. Spectrophotometric titration data, DNA denaturation profiles, and quenching of fluorescence of ADM in the presence of DNA demonstrated a strong complexation between DNA and ADM with a high binding affinity (Ka) of 1.3 × 10(6) M(-1) and a stoichiometry of 1:3 (drug:nucleotide). The energetics of binding obtained from isothermal titration calorimetry and differential scanning calorimetry suggest the binding to be exothermic and enthalpy (∆H, -6.7 ± 2.4 kcal M(-1)) and entropy (TΔS, 18.5 ± 6.4 kcal M(-1)) driven (20°C), which is typical of intercalative mode of binding. Further, results on decreased expression (by ~70%) of HMGA1 both at mRNA and protein levels in association with the observed cell death (by ~75%) in HeLa cell line, clearly confirm that ADM does target hmga1; however, the effect of ADM on genes other than hmga1 either directly or via hmga1-mediated pathways cannot be ruled out in the observed cytotoxicity. Therefore, hmga1 in general and particularly the regulatory region is a promising target for therapeutic strategy in combating cancer.
Collapse
Affiliation(s)
- Md Zahid Akhter
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| | - Kalpana Luthra
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| | - Moganty R Rajeswari
- a Department of Biochemistry , All India Institute of Medical Sciences , New Delhi 110029 , India
| |
Collapse
|
33
|
Marcelo G, Kaplan E, Tarazona MP, Mendicuti F. Interaction of gold nanoparticles with Doxorubicin mediated by supramolecular chemistry. Colloids Surf B Biointerfaces 2015; 128:237-244. [DOI: 10.1016/j.colsurfb.2015.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 12/13/2022]
|
34
|
Mokdad A, Dimos K, Zoppellaro G, Tucek J, Perman JA, Malina O, Andersson KK, Ramanatha Datta KK, Froning JP, Zboril R. The non-innocent nature of graphene oxide as a theranostic platform for biomedical applications and its reactivity towards metal-based anticancer drugs. RSC Adv 2015. [DOI: 10.1039/c5ra13831k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The self-assembly process of a mononuclear iron(ii) complex as anticancer agent with graphene oxide (GO) unveils the ability of GO to oxidize the metal drug.
Collapse
Affiliation(s)
- Audrey Mokdad
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | - Konstantinos Dimos
- Department of Materials Science & Engineering
- University of Ioannina
- GR-45110 Ioannina
- Greece
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | - Jiri Tucek
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | - Jason A. Perman
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | - Ondrej Malina
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | | | | | - Jens Peter Froning
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials
- 78371 Olomouc
- Czech Republic
| |
Collapse
|
35
|
Ankers EA, Evison BJ, Phillips DR, Brownlee RTC, Cutts SM. Design, synthesis, and DNA sequence selectivity of formaldehyde-mediated DNA-adducts of the novel N-(4-aminobutyl) acridine-4-carboxamide. Bioorg Med Chem Lett 2014; 24:5710-5715. [PMID: 25453806 DOI: 10.1016/j.bmcl.2014.10.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 11/30/2022]
Abstract
A novel derivative of the anti-tumor agent N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) was prepared by reduction of 9-oxoacridan-4-carboxylic acid to acridine-4-carboxylic acid with subsequent conversion to N-(4-aminobutyl)acridine-4-carboxamide (C4-DACA). Molecular modeling studies suggested that a DACA analogue comprising a side chain length of four carbons was optimal to form formaldehyde-mediated drug-DNA adducts via the minor groove. An in vitro transcription assay revealed that formaldehyde-mediated C4-DACA-DNA adducts selectively formed at CpG and CpA dinucleotide sequences, which is strikingly similar to that of formaldehyde-activated anthracenediones such as pixantrone.
Collapse
Affiliation(s)
- Elizabeth A Ankers
- Department of Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora 3086, Australia
| | - Benny J Evison
- Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora 3086, Australia; Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Don R Phillips
- Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora 3086, Australia
| | - Robert T C Brownlee
- Department of Chemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora 3086, Australia
| | - Suzanne M Cutts
- Department of Biochemistry, La Trobe Institute for Molecular Sciences, La Trobe University, Bundoora 3086, Australia.
| |
Collapse
|
36
|
Heger Z, Kominkova M, Cernei N, Krejcova L, Kopel P, Zitka O, Adam V, Kizek R. Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis 2014; 35:3290-301. [DOI: 10.1002/elps.201400166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 05/23/2014] [Accepted: 08/11/2014] [Indexed: 01/15/2023]
Affiliation(s)
- Zbynek Heger
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Marketa Kominkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Natalia Cernei
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ludmila Krejcova
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
37
|
Buehler DC, Marsden MD, Shen S, Toso DB, Wu X, Loo JA, Zhou ZH, Kickhoefer VA, Wender PA, Zack JA, Rome LH. Bioengineered vaults: self-assembling protein shell-lipophilic core nanoparticles for drug delivery. ACS NANO 2014; 8:7723-32. [PMID: 25061969 PMCID: PMC4148163 DOI: 10.1021/nn5002694] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 07/25/2014] [Indexed: 05/22/2023]
Abstract
We report a novel approach to a new class of bioengineered, monodispersed, self-assembling vault nanoparticles consisting of a protein shell exterior with a lipophilic core interior designed for drug and probe delivery. Recombinant vaults were engineered to contain a small amphipathic α-helix derived from the nonstructural protein 5A of hepatitis C virus, thereby creating within the vault lumen a lipophilic microenvironment into which lipophilic compounds could be reversibly encapsulated. Multiple types of electron microscopy showed that attachment of this peptide resulted in larger than expected additional mass internalized within the vault lumen attributable to incorporation of host lipid membrane constituents spanning the vault waist (>35 nm). These bioengineered lipophilic vaults reversibly associate with a sample set of therapeutic compounds, including all-trans retinoic acid, amphotericin B, and bryostatin 1, incorporating hundreds to thousands of drug molecules per vault nanoparticle. Bryostatin 1 is of particular therapeutic interest because of its ability to potently induce expression of latent HIV, thus representing a preclinical lead in efforts to eradicate HIV/AIDS. Vaults loaded with bryostatin 1 released free drug, resulting in activation of HIV from provirus latency in vitro and induction of CD69 biomarker expression following intravenous injection into mice. The ability to preferentially and reversibly encapsulate lipophilic compounds into these novel bioengineered vault nanoparticles greatly advances their potential use as drug delivery systems.
Collapse
Affiliation(s)
- Daniel C. Buehler
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Matthew D. Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Sean Shen
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Daniel B. Toso
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xiaomeng Wu
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Joseph A. Loo
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- UCLA−DOE Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Valerie A. Kickhoefer
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
| | - Paul A. Wender
- Department of Chemistry, Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Jerome A. Zack
- Department of Microbiology, Immunology, & Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute at University of California Los Angeles, Los Angeles, California 90095, United States
- Address correspondence to ;
| | - Leonard H. Rome
- Department of Biological Chemistry, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute at University of California Los Angeles, Los Angeles, California 90095, United States
- Address correspondence to ;
| |
Collapse
|
38
|
Shi N, Ugaz VM. An entropic force microscope enables nano-scale conformational probing of biomolecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2553-2557. [PMID: 24648409 DOI: 10.1002/smll.201303046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/21/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Nan Shi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, Texas, 77843, USA
| | | |
Collapse
|
39
|
Glucose kinases from Streptomyces peucetius var. caesius. Appl Microbiol Biotechnol 2014; 98:6061-71. [DOI: 10.1007/s00253-014-5662-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/26/2022]
|
40
|
Stuart CH, Horita DA, Thomas MJ, Salsbury FR, Lively MO, Gmeiner WH. Site-specific DNA-doxorubicin conjugates display enhanced cytotoxicity to breast cancer cells. Bioconjug Chem 2014; 25:406-13. [PMID: 24450459 PMCID: PMC3983131 DOI: 10.1021/bc4005427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
![]()
Doxorubicin (Dox) is widely used
for breast cancer treatment but
causes serious side effects including cardiotoxicity that may adversely
impact patient lifespan even if treatment is successful. Herein, we
describe selective conjugation of Dox to a single site in a DNA hairpin
resulting in a highly stable complex that enables Dox to be used more
effectively. Selective conjugation of Dox to G15 in the hairpin loop
was verified using site-specific labeling with [2-15N]-2′-deoxyguanosine
in conjunction with [1H–15N] 2D NMR,
while 1:1 stoichiometry for the conjugate was validated by ESI-QTOF
mass spectrometry and UV spectroscopy. Molecular modeling indicated
covalently bound Dox also intercalated into the stem of the hairpin
and stability studies demonstrated the resulting Dox-conjugated hairpin
(DCH) complex had a half-life >30 h, considerably longer than alternative
covalent and noncovalent complexes. Secondary conjugation of DCH with
folic acid (FA) resulted in increased internalization into breast
cancer cells. The dual conjugate, DCH-FA, can be used for safer and
more effective chemotherapy with Dox and this conjugation strategy
can be expanded to include additional anticancer drugs.
Collapse
Affiliation(s)
- Christopher H Stuart
- Department of Cancer Biology, ‡Department of Molecular Medicine and Translation Science, Wake Forest School of Medicine, and §Department of Biochemistry, Wake Forest School of Medicine , Winston-Salem, North Carolina 27157, United States
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Binding of small molecules with DNA plays an important role in many biological functions such as DNA replication, repair, and transcription. These interactions also offer enormous potential as targets for diagnostics and therapeutics, leading to intense interest in development of methods to probe the underlying binding events. In this chapter, we present a new approach to investigate the structural changes that accompany binding of DNA and small molecules. Instead of relying on conventional yet delicate single-molecule imaging methods, we show how a single microchip gel electrophoresis experiment incorporating both constant electric field and on-off actuation over a specific frequency range enables fundamental structural parameters (e.g., contour and persistence lengths) to be simultaneously determined. The microchip format offers an attractive combination of simplicity and scale-up potential that makes it amenable for high-throughput screening.
Collapse
Affiliation(s)
- Nan Shi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
42
|
Dimeric DNA Aptamer Complexes for High-capacity-targeted Drug Delivery Using pH-sensitive Covalent Linkages. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e107. [PMID: 23860551 PMCID: PMC3731884 DOI: 10.1038/mtna.2013.37] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 05/30/2013] [Indexed: 11/08/2022]
Abstract
Treatment with doxorubicin (Dox) results in serious systemic toxicities that limit effectiveness for cancer treatment and cause long-term health issues for cancer patients. We identified a new DNA aptamer to prostate-specific membrane antigen (PSMA) using fixed sequences to promote Dox binding and developed dimeric aptamer complexes (DACs) for specific delivery of Dox to PSMA(+) cancer cells. DACs are stable under physiological conditions and are internalized specifically into PSMA(+) C4-2 cells with minimal uptake into PSMA-null PC3 cells. Cellular internalization of DAC was demonstrated by confocal microscopy and flow cytometry. Covalent modification of DAC with Dox (DAC-D) resulted in a complex with stoichiometry ~4:1. Dox was covalently bound in DAC-D using a reversible linker that promotes covalent attachment of Dox to genomic DNA following cell internalization. Dox was released from the DAC-D under physiological conditions with a half-life of 8 hours, sufficient for in vivo targeting. DAC-D was used to selectively deliver Dox to C4-2 cells with endosomal release and nuclear localization of Dox. DAC-D was selectively cytotoxic to C4-2 cells with similar cytotoxicity as the molar equivalent of free-Dox. In contrast, DAC-D displayed minimal cytotoxicity to PC3 cells, demonstrating the complex displays a high degree of selectivity for PSMA(+) cells. DAC-D displays specificity and stability features that may be useful for improved delivery of Dox selectively to malignant tissue in vivo.Molecular Therapy-Nucleic Acids (2013) 2, e107; doi:10.1038/mtna.2013.37; published online 16 July 2013.
Collapse
|
43
|
The hydroxyl epimer of doxorubicin controls the rate of formation of cytotoxic anthracycline-DNA adducts. Cancer Chemother Pharmacol 2012; 71:809-16. [DOI: 10.1007/s00280-012-2049-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
44
|
Stiborova M, Poljakova J, Eckschlager T, Kizek R, Frei E. Analysis of covalent ellipticine- and doxorubicin-derived adducts in DNA of neuroblastoma cells by the ³²P-postlabeling technique. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:115-21. [PMID: 22837132 DOI: 10.5507/bp.2012.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Ellipticine and doxorubicin are antineoplastic agents, whose action is based mainly on DNA damage such as intercalation, inhibition of topoisomerase II and formation of covalent DNA adducts. The key target to resolve which of these mechanisms are responsible for ellipticine and doxorubicin anticancer effects is the development of suitable methods for identifying their individual DNA-damaging effects. Here, the (32)P-postlabeling method was tested to detect covalent DNA adducts formed by ellipticine and doxorubicin. METHODS The standard procedure of (32)P-postlabeling assay, this procedure under ATP-deficient conditions, the version using extraction of adducts with n-butanol and the nuclease P1 enrichment version were used to analyze ellipticineand/ or doxorubicin-derived DNA adducts. RESULTS Two covalent ellipticine-derived DNA adducts, which are associated with cytotoxicity of ellipticine to human UKF-NB-3 and UKF-NB-4 neuroblastoma cell lines, were detected by the (32)P-postlabeling method. These adducts are identical to those formed by the ellipticine metabolites, 13-hydroxy- and 12-hydroxyellipticine. In contrast, no covalent adducts formed by doxorubicin in DNA of these neuroblastoma cells and in DNA incubated with this drug and formaldehyde in vitro were detectable by the (32)P-postlabeling assay. CONCLUSIONS The results presented in this paper are the first to demonstrate that in contrast to covalent DNA adducts formed by ellipticine, the adducts generated by formaldehyde-mediated covalent binding of doxorubicin to DNA are not detectable by the (32)P-postlabeling assay. No DNA adducts were, detectable either in vitro, in incubations of DNA with doxorubicin or in DNA of neuroblastoma cells treated with this drug. The results also suggest that covalent binding of ellipticine to DNA of UKF-NB-3 and UKF-NB-4 neuroblastoma cell lines is the predominant mechanism responsible for the cytotoxicity of this drug. To understand the mechanisms of doxorubicin anticancer effects on neuroblastoma cells, development of novel methods for identifying covalent doxorubicin-derived DNA adducts is the major challenge for further research.
Collapse
Affiliation(s)
- Marie Stiborova
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
45
|
Targeted delivery via avidin fusion protein: Intracellular fate of biotinylated doxorubicin derivative and cellular uptake kinetics and biodistribution of biotinylated liposomes. Eur J Pharm Sci 2012; 47:848-56. [DOI: 10.1016/j.ejps.2012.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/20/2012] [Accepted: 09/03/2012] [Indexed: 11/24/2022]
|
46
|
Casorelli I, Bossa C, Bignami M. DNA damage and repair in human cancer: molecular mechanisms and contribution to therapy-related leukemias. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2636-57. [PMID: 23066388 PMCID: PMC3447578 DOI: 10.3390/ijerph9082636] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/12/2012] [Accepted: 07/02/2012] [Indexed: 12/12/2022]
Abstract
Most antitumour therapies damage tumour cell DNA either directly or indirectly. Without repair, damage can result in genetic instability and eventually cancer. The strong association between the lack of DNA damage repair, mutations and cancer is dramatically demonstrated by a number of cancer-prone human syndromes, such as xeroderma pigmentosum, ataxia-telangiectasia and Fanconi anemia. Notably, DNA damage responses, and particularly DNA repair, influence the outcome of therapy. Because DNA repair normally excises lethal DNA lesions, it is intuitive that efficient repair will contribute to intrinsic drug resistance. Unexpectedly, a paradoxical relationship between DNA mismatch repair and drug sensitivity has been revealed by model studies in cell lines. This suggests that connections between DNA repair mechanism efficiency and tumour therapy might be more complex. Here, we review the evidence for the contribution of carcinogenic properties of several drugs as well as of alterations in specific mechanisms involved in drug-induced DNA damage response and repair in the pathogenesis of therapy-related cancers.
Collapse
Affiliation(s)
- Ida Casorelli
- Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035-1039, Roma 00189, Italy;
| | - Cecilia Bossa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
| | - Margherita Bignami
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, Roma 00161, Italy;
- Author to whom correspondence should be addressed; ; Tel.: +39-6-49901-2355; Fax: +39-6-49901-3650
| |
Collapse
|
47
|
Pawar SK, Badhwar AJ, Kharas F, Khandare JJ, Vavia PR. Design, synthesis and evaluation of N-acetyl glucosamine (NAG)-PEG-doxorubicin targeted conjugates for anticancer delivery. Int J Pharm 2012; 436:183-93. [PMID: 22721850 DOI: 10.1016/j.ijpharm.2012.05.078] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Accepted: 05/30/2012] [Indexed: 01/13/2023]
Abstract
Efficacy of anticancer drug is limited by the severe adverse effects induced by drug; therefore the crux is in designing delivery systems targeted only to cancer cells. Toward this objectives, we propose, synthesis of poly(ethylene glycol) (PEG)-doxorubicin (DOX) prodrug conjugates consisting N-acetyl glucosamine (NAG) as a targeting moiety. Multicomponent system proposed here is characterized by (1)H NMR, UV spectroscopy, and HPLC. The multicomponent system is evaluated for in vitro cellular kinetics and anticancer activity using MCF-7 and MDA-MB-231 cells. Molecular modeling study demonstrated sterically stabilized conformations of polymeric conjugates. Interestingly, PEG-DOX conjugate with NAG ligand showed significantly higher cytotoxicity compared to drug conjugate with DOX. In addition, the polymer drug conjugate with NAG and DOX showed enhanced internalization and retention effect in cancer cells, compared to free DOX. Thus, with enhanced internalization and targeting ability of PEG conjugate of NAG-DOX has implication in targeted anticancer therapy.
Collapse
Affiliation(s)
- Smita K Pawar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga (E), Mumbai 400019, India
| | | | | | | | | |
Collapse
|
48
|
D’Agostini F, Fiallo P, Ghio M, De Flora S. Chemoprevention of doxorubicin-induced alopecia in mice by dietary administration of l-cystine and vitamin B6. Arch Dermatol Res 2012; 305:25-34. [DOI: 10.1007/s00403-012-1253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/30/2022]
|
49
|
Eizaguirre A, Yáñez M, Eriksson LA. Stability and iron coordination in DNA adducts of Anthracycline based anti-cancer drugs. Phys Chem Chem Phys 2012; 14:12505-14. [PMID: 22699973 DOI: 10.1039/c2cp40931c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is evidence that the interaction of the α-ketol group of the Doxorubicin and Epirubicin anti-cancer drugs with Fe(III) generates hydroxyl radicals under aerobic conditions, causing cardiotoxicity in patients. Considering that the formation of DNA adducts is one of the main targets of Anthracycline drugs, we have in the present study characterized several [Anthracycline-DNA]Fe(III) complexes with respect to their stability and Fe(III) coordination, by means of MD simulations. Iron is found to coordinate well to the drugs containing an α-ketol group, this being the only group of the drug that binds to the metal. The complexes containing an α-ketol group, [Doxorubicin-DNA]Fe(III) and [Epirubicin-DNA]Fe(III), thus show greater stability than those not containing it, i.e., [Daunorubicin-DNA]Fe(III), [Idarubicin-DNA]Fe(III) and [5-Imino-Daunorubicin]Fe(III). Metal attachment to the α-ketol group is furthermore facilitated by the phosphate groups of DNA. The coordination to iron in the [Doxorubicin-DNA]Fe(III) system is smaller than that found for the [Epirubicin-DNA]Fe(III) system, and the corresponding number of coordinating waters in the former is larger than in the latter. This may in turn result in higher hydroxyl radical production, thus explaining the increased cardiotoxicity noted for Doxorubicin.
Collapse
Affiliation(s)
- Ane Eizaguirre
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Cantoblanco, Campus de Excelencia UAM-CSIC, 28049-Madrid, Spain
| | | | | |
Collapse
|
50
|
Mechanism of generation of therapy related leukemia in response to anti-topoisomerase II agents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:2075-91. [PMID: 22829791 PMCID: PMC3397365 DOI: 10.3390/ijerph9062075] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 01/18/2023]
Abstract
Type II DNA topoisomerases have the ability to generate a transient DNA double-strand break through which a second duplex can be passed; an activity essential for DNA decatenation and unknotting. Topoisomerase poisons stabilize the normally transient topoisomerase-induced DSBs and are potent and widely used anticancer drugs. However, their use is associated with therapy-related secondary leukemia, often bearing 11q23 translocations involving the MLL gene. We will explain recent discoveries in the fields of topoisomerase biology and transcription that have consequences for our understanding of the etiology of leukemia, especially therapy-related secondary leukemia and describe how these findings may help minimize the occurrence of these neoplasias.
Collapse
|