1
|
Tadepalli S, Clements DR, Raquer-McKay HM, Lüdtke A, Saravanan S, Seong D, Vitek L, Richards CM, Carette JE, Mack M, Gottfried-Blackmore A, Graves EE, Idoyaga J. CD301b+ monocyte-derived dendritic cells mediate resistance to radiotherapy. J Exp Med 2025; 222:e20231717. [PMID: 40146036 PMCID: PMC11949126 DOI: 10.1084/jem.20231717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Monocytes infiltrating tumors acquire various states that distinctly impact cancer treatment. Here, we show that resistance of tumors to radiotherapy (RT) is controlled by the accumulation of monocyte-derived dendritic cells (moDCs). These moDCs are characterized by the expression of CD301b and have a superior capacity to generate regulatory T cells (Tregs). Accordingly, moDC depletion limits Treg generation and improves the therapeutic outcome of RT. Mechanistically, we demonstrate that granulocyte-macrophage colony-stimulating factor (GM-CSF) derived from radioresistant tumor cells following RT is necessary for the accumulation of moDCs. Our results unravel the immunosuppressive function of moDCs and identify GM-CSF as an immunotherapeutic target during RT.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Derek R. Clements
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayley M. Raquer-McKay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Anja Lüdtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - David Seong
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lorraine Vitek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher M. Richards
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Andres Gottfried-Blackmore
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Medicine, Division of Gastroenterology, University of California San Diego School of Medicine, San Diego, CA, USA
- Gastroenterology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Edward E. Graves
- Department of Radiation Oncology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, CA, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pharmacology, University of California San Diego School of Medicine, San Diego, CA, USA
- Department of Molecular Biology, University of California San Diego School of Biological Sciences, San Diego, CA, USA
| |
Collapse
|
2
|
Hushmandi K, Imani Fooladi AA, Reiter RJ, Farahani N, Liang L, Aref AR, Nabavi N, Alimohammadi M, Liu L, Sethi G. Next-generation immunotherapeutic approaches for blood cancers: Exploring the efficacy of CAR-T and cancer vaccines. Exp Hematol Oncol 2025; 14:75. [PMID: 40382583 DOI: 10.1186/s40164-025-00662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/25/2025] [Indexed: 05/20/2025] Open
Abstract
Recent advancements in immunotherapy, particularly Chimeric antigen receptor (CAR)-T cell therapy and cancer vaccines, have significantly transformed the treatment landscape for leukemia. CAR-T cell therapy, initially promising in hematologic cancers, faces notable obstacles in solid tumors due to the complex and immunosuppressive tumor microenvironment. Challenges include the heterogeneous immune profiles of tumors, variability in antigen expression, difficulties in therapeutic delivery, T cell exhaustion, and reduced cytotoxic activity at the tumor site. Additionally, the physical barriers within tumors and the immunological camouflage used by cancer cells further complicate treatment efficacy. To overcome these hurdles, ongoing research explores the synergistic potential of combining CAR-T cell therapy with cancer vaccines and other therapeutic strategies such as checkpoint inhibitors and cytokine therapy. This review describes the various immunotherapeutic approaches targeting leukemia, emphasizing the roles and interplay of cancer vaccines and CAR-T cell therapy. In addition, by discussing how these therapies individually and collectively contribute to tumor regression, this article aims to highlight innovative treatment paradigms that could enhance clinical outcomes for leukemia patients. This integrative approach promises to pave the way for more effective and durable treatment strategies in the oncology field. These combined immunotherapeutic strategies hold great promise for achieving more complete and lasting remissions in leukemia patients. Future research should prioritize optimizing treatment sequencing, personalizing therapeutic combinations based on individual patient and tumor characteristics, and developing novel strategies to enhance T cell persistence and function within the tumor microenvironment. Ultimately, these efforts will advance the development of more effective and less toxic immunotherapeutic interventions, offering new hope for patients battling this challenging disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, 78229, USA
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Liping Liang
- Guangzhou Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Amir Reza Aref
- Department of Vitro Vision, DeepkinetiX, Inc, Boston, MA, USA
| | | | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Le Liu
- Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China.
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
3
|
Dranoff G. Plasticity of tumor cell immunogenicity: is it druggable? J Immunother Cancer 2025; 13:e011859. [PMID: 40274282 PMCID: PMC12020747 DOI: 10.1136/jitc-2025-011859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
This short perspective presents, at a high level, some observations and speculations about cancer immunotherapy that derive from experiences at the Dana-Farber Cancer Institute and the Novartis Institutes of Biomedical Research.
Collapse
Affiliation(s)
- Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Rinaldi V, Bongiovanni L, Crisi PE, Vignoli M, Peli RE, Masci S, Boari A, Finotello R. APAVAC Immunotherapy for the Adjuvant Treatment of a Canine Mucosal Melanoma. Vet Sci 2024; 11:628. [PMID: 39728968 DOI: 10.3390/vetsci11120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
An 11-year-old spayed female Beagle presented with tenesmus and was identified with a rectal wall mass. Diagnostic imaging (abdominal ultrasound and computed tomography) localised the mass in the right rectal wall and documented no evidence of metastatic disease. Subsequently, the dog underwent surgery for tumour excision. A histopathological diagnosis of melanoma was performed. To confirm the tumour histotype, immunohistochemistry was performed using anti-Melan A and anti-Ki67. Neoplastic cells exhibited focal Melan A immunoreactivity and widespread nuclear immunoreactivity for Ki67 with a Ki67 index of 27%. Adjuvant immunotherapy with APAVAC® was initiated. After APAVAC administration, no local or systemic acute adverse events were observed. Four pre- and post-contrast computed tomography (CT) studies were performed in an 18-month follow-up period every 4-5 months. Follow-up rectal palpation and conscious visualisation of the surgical site have also resulted in no macroscopic signs of tumour recurrence. The dog remains alive and with no clinical evidence of tumour recurrence and/or distant progression at the time of writing, therefore, surviving over 540 days from the diagnosis.
Collapse
Affiliation(s)
- Valentina Rinaldi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Laura Bongiovanni
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
- Department of Biomolecular Sciences, Faculty of Veterinary Medicine, Utrecth University, 3584 CS Utrecht, The Netherlands
| | - Paolo Emidio Crisi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Massimo Vignoli
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Renato Ennio Peli
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Stefano Masci
- Clinica Veterinaria Colli Innamorati, via Colli Innamorati 21, 65125 Pescara, Italy
| | - Andrea Boari
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Riccardo Finotello
- Ospedale Veterinario I Portoni Rossi, Anicura Italy Holding, via Roma 51, 40069 Zola Predosa, Italy
| |
Collapse
|
5
|
Chen KS, Manoury-Battais S, Kanaya N, Vogiatzi I, Borges P, Kruize SJ, Chen YC, Lin LY, Rossignoli F, Mendonca NC, Shah K. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety. J Clin Invest 2024; 135:e181143. [PMID: 39560995 PMCID: PMC11735097 DOI: 10.1172/jci181143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
Recent progress in cancer cell-based therapies has led to effective targeting and robust immune responses against cancer. However, the inherent safety risks of using live cancer cells necessitate the creation of an optimized safety switch without hindering the efficacy of immunotherapy. The existing safety switches typically induce tolerogenic cell death, potentially leading to an immunosuppressive tumor immune microenvironment (TIME), which is counterproductive to the goals of immunotherapy. Here, we developed and characterized an inducible receptor-interacting protein kinase 3-driven (RIPK3-driven) necroptotic system that serves a dual function of safety switch as well as inducer of immunogenic cell death, which in turn stimulates antitumor immune responses. We show that activation of the RIPK3 safety switch triggered immunogenic responses marked by an increased release of ATP and damage-associated molecular patterns (DAMPs). Compared with other existing safety switches, incorporating the RIPK3 system inhibited tumor growth, improved survival outcomes in tumor-bearing mice, and fostered long-term antitumor immunity. Moreover, the RIPK3 system reinvigorated the TIME by promoting DC maturation, polarizing the macrophages toward a M1 phenotype, and reducing the exhaustion of CD4+ and CD8+ T lymphocytes. Our study highlights the dual role of the RIPK3-driven necroptotic system in improving the safety and efficacy of cancer cell-based therapy, with broader implications for cellular therapies.
Collapse
Affiliation(s)
- Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Manoury-Battais
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Education and Research in Biology, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nobuhiko Kanaya
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ioulia Vogiatzi
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sterre J. Kruize
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yi-Ching Chen
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Y. Lin
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natalia Claire Mendonca
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy and
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Gu Y, Xu P, Wu Y, Li C, Shen J, Cheng X, Wang Y, Zhang LW, Wang Y, Gao M. Mechanotransduction-Piloted Whole-Cell Vaccines for Spatiotemporal Modulation of Postoperative Antitumor Immunity. ACS NANO 2024; 18:28675-28690. [PMID: 39395150 DOI: 10.1021/acsnano.4c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Whole tumor cell vaccines hold promise by presenting a broader spectrum of autologous-origin tumor antigens to combat postoperative recurrence and metastasis. However, challenges such as intractable adjuvant modification and obscure interactions with antigen-presenting cells in the postoperative microenvironment impede their translation into effective personalized immunotherapies. In this study, we propose cancer vaccines derived from manganese oxide-immobilized resected tumor cells, featuring whole tumor antigens and adjustable stiffness to modulate interactions with antigen-presenting cells in the postoperative microenvironment. These vaccines effectively stimulate dendritic cell phagocytosis and function through sequential stiffness-mediated mechanotransduction and interferon signaling. We evaluated their efficacy using an orthotopic triple-negative breast cancer mouse model and found that combining the vaccines with radiotherapy effectively inhibits postoperative tumor recurrence and metastasis. Our study underscores the potential of utilizing mechanotransduced adjuvants alongside directly inactivated whole-cell vaccines as a universal solution for preventing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Yuan Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Pei Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yanxian Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Chenze Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jiahao Shen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xiaju Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yangyun Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Leshuai W Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou 215004, China
| |
Collapse
|
7
|
Sussman TA, Severgnini M, Giobbie-Hurder A, Friedlander P, Swanson SJ, Jaklitsch M, Clancy T, Goguen LA, Lautz D, Swanson R, Daley H, Ritz J, Dranoff G, Hodi FS. Phase II trial of vaccination with autologous, irradiated melanoma cells engineered by adenoviral mediated gene transfer to secrete granulocyte-macrophage colony stimulating factor in patients with stage III and IV melanoma. Front Oncol 2024; 14:1395978. [PMID: 38812776 PMCID: PMC11133610 DOI: 10.3389/fonc.2024.1395978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Background In the era of immune checkpoint blockade, the role of cancer vaccines in immune priming has provided additional potential for therapeutic improvements. Prior studies have demonstrated delayed type hypersensitivity and anti-tumor immunity with vaccines engineered to secrete granulocyte-macrophage colony-stimulating factor (GM-CSF). The safety, efficacy and anti-tumor immunity of GM-CSF secreting vaccine in patients with previously treated stage III or IV melanoma needs further investigation. Methods In this phase II trial, excised lymph node metastases were processed to single cells, transduced with an adenoviral vector encoding GM-CSF, irradiated, and cryopreserved. Individual vaccines were composed of 1x106, 4x106, or 1x107 tumor cells, and were injected intradermally and subcutaneously at weekly and biweekly intervals. The primary endpoints were feasibility of producing vaccine in stage III patients and determining the proportion of patients alive at two years in stage IV patients. Results GM-CSF vaccine was successfully developed and administered in all 61 patients. Toxicities were restricted to grade 1-2 local skin reactions. The median OS for stage III patients (n = 20) was 71.1 (95% CI, 43.7 to NR) months and 14.9 (95%CI, 12.1 to 39.7) months for stage IV patients. The median PFS in stage III patients was 50.7 (95%CI, 36.3 to NR) months and 4.1 (95% CI, 3.0-6.3) months in stage IV patients. In the overall population, the disease control rate was 39.3% (95%CI, 27.1 to 52.7%). In stage III patients, higher pre-treatment plasma cytokine levels of MMP-1, TRAIL, CXCL-11, CXCL-13 were associated with improved PFS (p<0.05 for all). An increase in post-vaccination levels of IL-15 and TRAIL for stage III patients was associated with improved PFS (p=0.03 for both). Similarly, an increase in post-vaccination IL-16 level for stage IV patients was associated with improved PFS (p=0.02) and clinical benefit. Conclusions Vaccination with autologous melanoma cells secreting GM-CSF augments antitumor immunity in stage III and IV patients with melanoma, is safe, and demonstrates disease control. Luminex data suggests that changes in inflammatory cytokines and immune cell infiltration promote tumor antigen presentation and subsequent tumor cell destruction. Additional investigation to administer this vaccine in combination with immune checkpoint inhibitors is needed.
Collapse
Affiliation(s)
- Tamara A. Sussman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Mariano Severgnini
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Clinical Sciences, Curis, Inc., Lexington, MA, United States
| | - Anita Giobbie-Hurder
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Division of Biostatistics, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Philip Friedlander
- Department of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Scott J. Swanson
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Michael Jaklitsch
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Thomas Clancy
- Department of Surgery, Brigham and Women’s Hospital, Boston, MA, United States
| | - Laura A. Goguen
- Division of Otolaryngology, Brigham and Women’s Hospital, Boston, MA, United States
| | - David Lautz
- Department of Surgery, Emerson Hospital, Concord, MA, United States
| | - Richard Swanson
- Department of Surgery, UMass Chan Medical School, Worcester, MA, United States
| | - Heather Daley
- Connell and O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jerome Ritz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Connell and O’Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- Department of Medical Oncology, Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
8
|
Saffarzadeh N, Foord E, O'Leary E, Mahmoun R, Birkballe Hansen T, Levitsky V, Poiret T, Uhlin M. Inducing expression of ICOS-L by oncolytic adenovirus to enhance tumor-specific bi-specific antibody efficacy. J Transl Med 2024; 22:250. [PMID: 38454393 PMCID: PMC10921603 DOI: 10.1186/s12967-024-05049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Intratumoral injection of oncolytic viruses (OVs) shows promise in immunotherapy: ONCOS-102, a genetically engineered OV that encodes Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) demonstrated efficacy in early clinical trials, enhancing T cell infiltration in tumors. This suggests OVs may boost various forms of immunotherapy, including tumor-specific bi-specific antibodies (BsAbs). METHODS Our study investigated in vitro, how ONCOS-204, a variant of ONCOS-virus expressing the ligand of inducible T-cell co-stimulator (ICOSL), modulates the process of T cell activation induced by a BsAb. ONCOS-102 was used for comparison. Phenotypic and functional changes induced by combination of different OVs, and BsAb in T cell subsets were assessed by flow cytometry, viability, and proliferation assays. RESULTS Degranulation and IFNγ and TNF production of T cells, especially CD4 + T cells was the most increased upon target cell exposure to ONCOS-204. Unexpectedly, ONCOS-204 profoundly affected CD8 + T cell proliferation and function through ICOS-L/ICOS interaction. The effect solely depended on cell surface expression of ICOS-L as soluble ICOSL did not induce notable T cell activity. CONCLUSIONS Together, our data suggests that oncolytic adenoviruses encoding ICOSL may enhance functional activity of tumor-specific BsAbs thereby opening a novel avenue for clinical development in immunotherapeutics.
Collapse
Affiliation(s)
- Neshat Saffarzadeh
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
| | | | - Eoghan O'Leary
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
- Circio AB, Stockholm, Sweden
| | - Rand Mahmoun
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
| | | | | | - Thomas Poiret
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden.
| | - Michael Uhlin
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, ANA Futura, Alfred Nobels Allé 8, 141 52, Huddinge, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Mihalik NE, Steinberger KJ, Stevens AM, Bobko AA, Hoblitzell EH, Tseytlin O, Akhter H, Dziadowicz SA, Wang L, O’Connell RC, Monaghan KL, Hu G, Mo X, Khramtsov VV, Tseytlin M, Driesschaert B, Wan EC, Eubank TD. Dose-Specific Intratumoral GM-CSF Modulates Breast Tumor Oxygenation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1589-1604. [PMID: 37756529 PMCID: PMC10656117 DOI: 10.4049/jimmunol.2300326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.
Collapse
Affiliation(s)
- Nicole E. Mihalik
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Kayla J. Steinberger
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Alyson M. Stevens
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
| | - Andrey A. Bobko
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Oxana Tseytlin
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Halima Akhter
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
- Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506
| | - Sebastian A. Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Ryan C. O’Connell
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Kelly L. Monaghan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Bioinformatics Core, West Virginia University, Morgantown, WV 26506
| | - Xiaokui Mo
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210, USA
| | - Valery V. Khramtsov
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Mark Tseytlin
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| | - Benoit Driesschaert
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, WV, 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
- C. Eugene Bennet Department of Chemistry, West Virginia University, Morgantown, WV, 26505, United States
| | - Edwin C.K. Wan
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26505
| | - Timothy D. Eubank
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV 26506
- West Virginia Clinical and Translational Science Institute, West Virginia University, Morgantown WV 26506
- WVU Cancer Institute, West Virginia University, Morgantown, WV, 26505
- In vivo Multifunctional Magnetic Resonance (IMMR) center, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
10
|
Tabasum S, Thapa D, Giobbie-Hurder A, Weirather JL, Campisi M, Schol PJ, Li X, Li J, Yoon CH, Manos MP, Barbie DA, Hodi FS. EDIL3 as an Angiogenic Target of Immune Exclusion Following Checkpoint Blockade. Cancer Immunol Res 2023; 11:1493-1507. [PMID: 37728484 PMCID: PMC10618652 DOI: 10.1158/2326-6066.cir-23-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint blockade (ICB) has become the standard of care for several solid tumors. Multiple combinatorial approaches have been studied to improve therapeutic efficacy. The combination of antiangiogenic agents and ICB has demonstrated efficacy in several cancers. To improve the mechanistic understanding of synergies with these treatment modalities, we performed screens of sera from long-term responding patients treated with ipilimumab and bevacizumab. We discovered a high-titer antibody response against EGF-like repeats and discoidin I-like domains protein 3 (EDIL3) that correlated with favorable clinical outcomes. EDIL3 is an extracellular protein, previously identified as a marker of poor prognosis in various malignancies. Our Tumor Immune Dysfunction and Exclusion analysis predicted that EDIL3 was associated with immune exclusion signatures for cytotoxic immune cell infiltration and nonresponse to ICB. Cancer-associated fibroblasts (CAF) were predicted as the source of EDIL3 in immune exclusion-related cells. Furthermore, The Cancer Genome Atlas Skin Cutaneous Melanoma (TCGA-SKCM) and CheckMate 064 data analyses correlated high levels of EDIL3 with increased pan-fibroblast TGFβ response, enrichment of angiogenic signatures, and induction of epithelial-to-mesenchymal transition. Our in vitro studies validated EDIL3 overexpression and TGFβ regulation in patient-derived CAFs. In pretreatment serum samples from patients, circulating levels of EDIL3 were associated with circulating levels of VEGF, and like VEGF, EDIL3 increased the angiogenic abilities of patient-derived tumor endothelial cells (TEC). Mechanistically, three-dimensional microfluidic cultures and two-dimensional transmigration assays with TEC endorsed EDIL3-mediated disruption of the lymphocyte function-associated antigen-1 (LFA-1)-ICAM-1 interaction as a possible means of T-cell exclusion. We propose EDIL3 as a potential target for improving the transendothelial migration of immune cells and efficacy of ICB therapy.
Collapse
Affiliation(s)
- Saba Tabasum
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Dinesh Thapa
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jason L. Weirather
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Pieter J. Schol
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Xiaoyu Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jingjing Li
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Charles H. Yoon
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Michael P. Manos
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - F. Stephen Hodi
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Melanoma Disease Center, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Center for Immuno-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Marek K, Armando F, Asawapattanakul T, Nippold VM, Plattet P, Gerold G, Baumgärtner W, Puff C. Functional Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Delivered by Canine Histiocytic Sarcoma Cells Persistently Infected with Engineered Attenuated Canine Distemper Virus. Pathogens 2023; 12:877. [PMID: 37513724 PMCID: PMC10385001 DOI: 10.3390/pathogens12070877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
The immune response plays a key role in the treatment of malignant tumors. One important molecule promoting humoral and cellular immunity is granulocyte-macrophage colony-stimulating factor (GM-CSF). Numerous successful trials have led to the approval of this immune-stimulating molecule for cancer therapy. However, besides immune stimulation, GM-CSF may also accelerate tumor cell proliferation, rendering this molecule a double-edged sword in cancer treatment. Therefore, detailed knowledge about the in vitro function of GM-CSF produced by infected tumor cells is urgently needed prior to investigations in an in vivo model. The aim of the present study was to functionally characterize a persistent infection of canine histiocytic sarcoma cells (DH82 cells) with the canine distemper virus strain Onderstepoort genetically engineered to express canine GM-CSF (CDV-Ondneon-GM-CSF). The investigations aimed (1) to prove the overall functionality of the virally induced production of GM-CSF and (2) to determine the effect of GM-CSF on the proliferation and motility of canine HS cells. Infected cells consistently produced high amounts of active, pH-stable GM-CSF, as demonstrated by increased proliferation of HeLa cells. By contrast, DH82 cells lacked increased proliferation and motility. The significantly increased secretion of GM-CSF by persistently CDV-Ondneon-GM-CSF-infected DH82 cells, the pH stability of this protein, and the lack of detrimental effects on DH82 cells renders this virus strain an interesting candidate for future studies aiming to enhance the oncolytic properties of CDV for the treatment of canine histiocytic sarcomas.
Collapse
Affiliation(s)
- Katarzyna Marek
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Thanaporn Asawapattanakul
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Vanessa Maria Nippold
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Philippe Plattet
- Division of Experimental Clinical Research, Vetsuisse University Bern, 3012 Bern, Switzerland
| | - Gisa Gerold
- Department of Biochemistry, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, 901 87 Umeå, Sweden
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
- Center for Systems Neuroscience, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany
| |
Collapse
|
12
|
Chang R, Gulley JL, Fong L. Vaccinating against cancer: getting to prime time. J Immunother Cancer 2023; 11:jitc-2022-006628. [PMID: 37286302 DOI: 10.1136/jitc-2022-006628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2023] [Indexed: 06/09/2023] Open
Abstract
Immunotherapies, such as immune checkpoint inhibitors, cellular therapies, and T-cell engagers, have fundamentally changed our approach to treating cancer. However, successes with cancer vaccines have been more difficult to realize. While vaccines against specific viruses have been widely adopted to prevent the development of cancer, only two vaccines can improve survival in advanced disease: sipuleucel-T and talimogene laherparepvec. These represent the two approaches that have the most traction: vaccinating against cognate antigen and priming responses using tumors in situ. Here, we review the challenges and opportunities researchers face in developing therapeutic vaccines for cancer.
Collapse
Affiliation(s)
- Ryan Chang
- Hematology/Oncology, University of California, San Francisco, California, USA
| | - James L Gulley
- NCI, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence Fong
- Hematology/Oncology, University of California, San Francisco, California, USA
| |
Collapse
|
13
|
Chen KS, Reinshagen C, Van Schaik TA, Rossignoli F, Borges P, Mendonca NC, Abdi R, Simon B, Reardon DA, Wakimoto H, Shah K. Bifunctional cancer cell-based vaccine concomitantly drives direct tumor killing and antitumor immunity. Sci Transl Med 2023; 15:eabo4778. [PMID: 36599004 PMCID: PMC10068810 DOI: 10.1126/scitranslmed.abo4778] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023]
Abstract
The administration of inactivated tumor cells is known to induce a potent antitumor immune response; however, the efficacy of such an approach is limited by its inability to kill tumor cells before inducing the immune responses. Unlike inactivated tumor cells, living tumor cells have the ability to track and target tumors. Here, we developed a bifunctional whole cancer cell-based therapeutic with direct tumor killing and immunostimulatory roles. We repurposed the tumor cells from interferon-β (IFN-β) sensitive to resistant using CRISPR-Cas9 by knocking out the IFN-β-specific receptor and subsequently engineered them to release immunomodulatory agents IFN-β and granulocyte-macrophage colony-stimulating factor. These engineered therapeutic tumor cells (ThTCs) eliminated established glioblastoma tumors in mice by inducing caspase-mediated cancer cell apoptosis, down-regulating cancer-associated fibroblast-expressed platelet-derived growth factor receptor β, and activating antitumor immune cell trafficking and antigen-specific T cell activation signaling. This mechanism-based efficacy of ThTCs translated into a survival benefit and long-term immunity in primary, recurrent, and metastatic cancer models in immunocompetent and humanized mice. The incorporation of a double kill-switch comprising herpes simplex virus-1 thymidine kinase and rapamycin-activated caspase 9 in ThTCs ensured the safety of our approach. Arming naturally neoantigen-rich tumor cells with bifunctional therapeutics represents a promising cell-based immunotherapy for solid tumors and establishes a road map toward clinical translation.
Collapse
Affiliation(s)
- Kok-Siong Chen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Clemens Reinshagen
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thijs A. Van Schaik
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Filippo Rossignoli
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paulo Borges
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Natalia Claire Mendonca
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Brennan Simon
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A. Reardon
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroaki Wakimoto
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02138, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Plackoska V, Shaban D, Nijnik A. Hematologic dysfunction in cancer: Mechanisms, effects on antitumor immunity, and roles in disease progression. Front Immunol 2022; 13:1041010. [PMID: 36561751 PMCID: PMC9763314 DOI: 10.3389/fimmu.2022.1041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
With the major advances in cancer immunology and immunotherapy, it is critical to consider that most immune cells are short-lived and need to be continuously replenished from hematopoietic stem and progenitor cells. Hematologic abnormalities are prevalent in cancer patients, and many ground-breaking studies over the past decade provide insights into their underlying cellular and molecular mechanisms. Such studies demonstrate that the dysfunction of hematopoiesis is more than a side-effect of cancer pathology, but an important systemic feature of cancer disease. Here we review these many advances, covering the cancer-associated phenotypes of hematopoietic stem and progenitor cells, the dysfunction of myelopoiesis and erythropoiesis, the importance of extramedullary hematopoiesis in cancer disease, and the developmental origins of tumor associated macrophages. We address the roles of many secreted mediators, signaling pathways, and transcriptional and epigenetic mechanisms that mediate such hematopoietic dysfunction. Furthermore, we discuss the important contribution of the hematopoietic dysfunction to cancer immunosuppression, the possible avenues for therapeutic intervention, and highlight the unanswered questions and directions for future work. Overall, hematopoietic dysfunction is established as an active component of the cancer disease mechanisms and an important target for therapeutic intervention.
Collapse
Affiliation(s)
- Viktoria Plackoska
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Dania Shaban
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada,McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada,*Correspondence: Anastasia Nijnik,
| |
Collapse
|
15
|
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B, Woodcock SA. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:914-928. [PMID: 36922934 PMCID: PMC10010340 DOI: 10.1158/2767-9764.crc-21-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.
Collapse
Affiliation(s)
| | - Inder Bhamra
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Catherine Eagle
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Eimear Flanagan
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Richard Armer
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | | | - Matilda Bingham
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Concept Life Sciences Ltd, Manchester, United Kingdom
| | - Peter Calcraft
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Analytical Development, Flu-BPD, AstraZeneca PLC, Manchester, United Kingdom
| | - Alicia Edmenson Cook
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Oncology Cell Therapy, GlaxoSmithKline PLC, London, United Kingdom
| | - Ben Thompson
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,In Vitro, RxCelerate Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Kumar A, Taghi Khani A, Sanchez Ortiz A, Swaminathan S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front Immunol 2022; 13:901277. [PMID: 35865534 PMCID: PMC9294178 DOI: 10.3389/fimmu.2022.901277] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that drives the generation of myeloid cell subsets including neutrophils, monocytes, macrophages, and dendritic cells in response to stress, infections, and cancers. By modulating the functions of innate immune cells that serve as a bridge to activate adaptive immune responses, GM-CSF globally impacts host immune surveillance under pathologic conditions. As with other soluble mediators of immunity, too much or too little GM-CSF has been found to promote cancer aggressiveness. While too little GM-CSF prevents the appropriate production of innate immune cells and subsequent activation of adaptive anti-cancer immune responses, too much of GM-CSF can exhaust immune cells and promote cancer growth. The consequences of GM-CSF signaling in cancer progression are a function of the levels of GM-CSF, the cancer type, and the tumor microenvironment. In this review, we first discuss the secretion of GM-CSF, signaling downstream of the GM-CSF receptor, and GM-CSF’s role in modulating myeloid cell homeostasis. We then outline GM-CSF’s anti-tumorigenic and pro-tumorigenic effects both on the malignant cells and on the non-malignant immune and other cells in the tumor microenvironment. We provide examples of current clinical and preclinical strategies that harness GM-CSF’s anti-cancer potential while minimizing its deleterious effects. We describe the challenges in achieving the Goldilocks effect during administration of GM-CSF-based therapies to patients with cancer. Finally, we provide insights into how technologies that map the immune microenvironment spatially and temporally may be leveraged to intelligently harness GM-CSF for treatment of malignancies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Adeleh Taghi Khani
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Ashly Sanchez Ortiz
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- Department of Hematological Malignancies, Beckman Research Institute of City of Hope, Monrovia, CA, United States
- *Correspondence: Srividya Swaminathan,
| |
Collapse
|
17
|
Anderson KS, Erick TK, Chen M, Daley H, Campbell M, Colson Y, Mihm M, Zakka LR, Hopper M, Barry W, Winer EP, Dranoff G, Overmoyer B. The feasibility of using an autologous GM-CSF-secreting breast cancer vaccine to induce immunity in patients with stage II-III and metastatic breast cancers. Breast Cancer Res Treat 2022; 194:65-78. [PMID: 35482127 PMCID: PMC9046531 DOI: 10.1007/s10549-022-06562-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE The antigenic targets of immunity and the role of vaccination in breast cancer are unknown. We performed a phase I study of an autologous GM-CSF-secreting breast cancer vaccine in patients with metastatic and stage II-III breast cancer. METHODS Tumor cells from patients with metastatic (n = 15) and stage II-III (n = 7) disease were transduced with a replication-defective adenoviral vector encoding GM-CSF, and then irradiated. Twelve and seven patients with metastatic and stage II-III disease, respectively, received weekly vaccination for three weeks, followed by every other week until disease progression or vaccine supply was exhausted (metastatic) or until six total vaccine doses were administered (stage II-III). RESULTS Among those patients with metastatic disease who received vaccinations, eight had progressive disease at two months, three had stable disease for 4-13 months, and one has had no evidence of disease for 13 years. Of the patients with stage II-III disease, five died of metastatic disease between 1.16 and 8.49 years after the start of vaccinations (median 6.24 years) and two are alive as of September 2021. Toxicities included injection site reactions, fatigue, fever, upper respiratory symptoms, joint pain, nausea, and edema. Four of five evaluable patients with metastatic disease developed a skin reaction with immune cell infiltration after the fifth injection of unmodified, irradiated tumor cells. CONCLUSION We conclude that tumor cells can be harvested from patients with metastatic or stage II-III breast cancer to prepare autologous GM-CSF-secreting vaccines that induce coordinated immune responses with limited toxicity. TRIAL REGISTRATION AND DATE OF REGISTRATION: clinicaltrials.gov, NCT00317603 (April 25, 2006) and NCT00880464 (April 13, 2009).
Collapse
Affiliation(s)
- Karen S Anderson
- Center for Personalized Diagnostics, School of Life Sciences, Biodesign Institute, Arizona State University, PO Box 876401, Tempe, AZ, 85287-6401, USA.
- Department of Medical Oncology, Mayo Clinic, Scottsdale, AZ, USA.
| | - Timothy K Erick
- Department of Medical Oncology, Dana-Farber Cancer Institute, MB, Boston, USA
| | - Meixuan Chen
- Center for Personalized Diagnostics, School of Life Sciences, Biodesign Institute, Arizona State University, PO Box 876401, Tempe, AZ, 85287-6401, USA
| | - Heather Daley
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Margaret Campbell
- Department of Medical Oncology, Dana-Farber Cancer Institute, MB, Boston, USA
| | - Yolonda Colson
- Department of Thoracic Surgery, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Mihm
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Labib R Zakka
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marika Hopper
- Center for Personalized Diagnostics, School of Life Sciences, Biodesign Institute, Arizona State University, PO Box 876401, Tempe, AZ, 85287-6401, USA
| | - William Barry
- Department of Medical Oncology, Dana-Farber Cancer Institute, MB, Boston, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, MB, Boston, USA
| | - Glenn Dranoff
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Beth Overmoyer
- Department of Medical Oncology, Dana-Farber Cancer Institute, MB, Boston, USA
| |
Collapse
|
18
|
GM-CSF secreting leukemia cell vaccination for MDS/AML after allogeneic HSCT: a randomized, double-blinded, phase 2 trial. Blood Adv 2022; 6:2183-2194. [PMID: 34807983 PMCID: PMC9006263 DOI: 10.1182/bloodadvances.2021006255] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Vaccination using irradiated, adenovirus transduced autologous myeloblasts to secrete granulocyte-macrophage colony-stimulating factor (GVAX) early after allogeneic hematopoietic stem cell transplantation (HSCT) can induce potent immune responses. We conducted a randomized phase 2 trial of GVAX after HSCT for myelodysplastic syndrome with excess blasts or relapsed/refractory acute myeloid leukemia. Myeloblasts were harvested before HSCT to generate the vaccine. Randomization to GVAX vs placebo (1:1) was stratified according to disease, transplant center, and conditioning. Graft-versus-host disease (GVHD) prophylaxis included tacrolimus and methotrexate. GVAX or placebo vaccination was started between day 30 and 45 if there was engraftment and no GVHD. Vaccines were administered subcutaneously/intradermally weekly × 3, then every 2 weeks × 3. Tacrolimus taper began after vaccine completion. A total of 123 patients were enrolled, 92 proceeded to HSCT, and 57 (GVAX, n = 30; placebo, n = 27) received at least 1 vaccination. No Common Toxicity Criteria grade 3 or worse vaccine-related adverse events were reported, but injection site reactions were more common after GVAX (10 vs 1; P = .006). With a median follow-up of 39 months (range, 9-89 months), 18-month progression-free survival, overall survival, and relapse incidence were 53% vs 55% (P = .79), 63% vs 59% (P = .86), and 30% vs 37% (P = .51) for GVAX and placebo, respectively. Nonrelapse mortality at 18 months was 17% vs 7.7% (P = .18), grade II to IV acute GVHD at 12 months was 34% vs 12% (P = .13), and chronic GVHD at 3 years was 49% vs 57% for GVAX and placebo (P = .26). Reconstitution of T, B, and natural killer cells was not decreased or enhanced by GVAX. There were no differences in serum major histocompatibility chain-related protein A/B or other immune biomarkers between GVAX and placebo. GVAX does not improve survival after HSCT for myelodysplastic syndrome/acute myeloid leukemia. This trial was registered at www.clinicaltrials.gov as #NCT01773395.
Collapse
|
19
|
Cancer Vaccines: Promising Therapeutics or an Unattainable Dream. Vaccines (Basel) 2021; 9:vaccines9060668. [PMID: 34207062 PMCID: PMC8233841 DOI: 10.3390/vaccines9060668] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023] Open
Abstract
The advent of cancer immunotherapy has revolutionized the field of cancer treatment and offers cancer patients new hope. Although this therapy has proved highly successful for some patients, its efficacy is not all encompassing and several cancer types do not respond. Cancer vaccines offer an alternate approach to promote anti-tumor immunity that differ in their mode of action from antibody-based therapies. Cancer vaccines serve to balance the equilibrium of the crosstalk between the tumor cells and the host immune system. Recent advances in understanding the nature of tumor-mediated tolerogenicity and antigen presentation has aided in the identification of tumor antigens that have the potential to enhance anti-tumor immunity. Cancer vaccines can either be prophylactic (preventative) or therapeutic (curative). An exciting option for therapeutic vaccines is the emergence of personalized vaccines, which are tailor-made and specific for tumor type and individual patient. This review summarizes the current standing of the most promising vaccine strategies with respect to their development and clinical efficacy. We also discuss prospects for future development of stem cell-based prophylactic vaccines.
Collapse
|
20
|
Inhibition of melanoma by survivin-specific lymphocytes combined with CCL17 and granulocyte-macrophage colony-stimulating factor in a mouse syngeneic model. Anticancer Drugs 2020; 32:138-147. [PMID: 32932278 DOI: 10.1097/cad.0000000000000978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
As a new generation of treatment, tumor immunotherapy targeting tumor-associated antigens (TAA) has attracted widespread attention. The survivin antigen belongs to TAA. It is a key inhibitor of apoptosis and a key regulator of cell cycle progression; furthermore, it may be a candidate target for tumor therapy. In addition, studies have confirmed that granulocyte-macrophage colony-stimulating factor (GM-CSF) and CCL17 significantly affect local anti-tumor immunity in the tumor microenvironment. The mouse survivin gene was screened by BIMAS and SYFPEITHI to obtain the highest scored mouse survivin epitope peptide, which was synthesized into a peptide vaccine to immunize normal mice. Subsequently, spleen lymphocytes were isolated to induce survivin-specific cytotoxic T lymphocytes (CTL). Next, genetic engineering was used to construct the B16F10 cell line that stably expressed CCL17 and GM-CSF genes. A mouse melanoma model was used to observe the effects of the combination of the three on tumor volume and tumor weight. In-vitro survivin-specific CTL combined with CCL17 gene had a stronger inhibitory effect on B16F10 cells, while combined GM-CSF gene did not enhance the inhibitory effect of CTL on B16F10 cells. In-vivo experiments demonstrated that survivin-specific CTL combined with GM-CSF and CCL17 genes can inhibit the growth of mouse melanoma. HE staining and immunohistochemistry showed that the tumor had more necrotic cells and more infiltrating lymphocytes. The results showed that survivin-specific CTL combined with CCL17 and GM-CSF genes could inhibit tumor growth better.
Collapse
|
21
|
Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol 2020; 17:807-821. [PMID: 32612154 PMCID: PMC7395159 DOI: 10.1038/s41423-020-0488-6] [Citation(s) in RCA: 1694] [Impact Index Per Article: 338.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment and rejuvenated the field of tumor immunology. Several types of immunotherapy, including adoptive cell transfer (ACT) and immune checkpoint inhibitors (ICIs), have obtained durable clinical responses, but their efficacies vary, and only subsets of cancer patients can benefit from them. Immune infiltrates in the tumor microenvironment (TME) have been shown to play a key role in tumor development and will affect the clinical outcomes of cancer patients. Comprehensive profiling of tumor-infiltrating immune cells would shed light on the mechanisms of cancer-immune evasion, thus providing opportunities for the development of novel therapeutic strategies. However, the highly heterogeneous and dynamic nature of the TME impedes the precise dissection of intratumoral immune cells. With recent advances in single-cell technologies such as single-cell RNA sequencing (scRNA-seq) and mass cytometry, systematic interrogation of the TME is feasible and will provide insights into the functional diversities of tumor-infiltrating immune cells. In this review, we outline the recent progress in cancer immunotherapy, particularly by focusing on landmark studies and the recent single-cell characterization of tumor-associated immune cells, and we summarize the phenotypic diversities of intratumoral immune cells and their connections with cancer immunotherapy. We believe such a review could strengthen our understanding of the progress in cancer immunotherapy, facilitate the elucidation of immune cell modulation in tumor progression, and thus guide the development of novel immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| | - Zemin Zhang
- Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
- BIOPIC and School of Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
22
|
Abstract
GM-CSF drives the differentiation of granulocytes and monocyte/macrophages from hematopoietic stem cell progenitors. It is required for differentiating monocytes into dendritic cells (DC). Although approved for recovery of granulocytes/monocytes in patients receiving chemotherapy, G-CSF is preferred. Enthusiasm for GM-CSF monotherapy as a melanoma treatment was dampened by two large randomized trials. Although GM-CSF has been injected into tumors for many years, the efficacy of this has not been tested. There is a strong rationale for GM-CSF as a vaccine adjuvant, but it appears of benefit only for strategies that directly involve DCs, such as intratumor talimogene laherparepvec and vaccines in which DCs are loaded with antigen ex vivo and injected admixed with GM-CSF.
Collapse
Affiliation(s)
- Robert O Dillman
- Chief Medical Officer, AIVITA Biomedical, Inc. Irvine, CA 92612, USA.,Clinical Professor Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
23
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
24
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
25
|
Carlson RD, Flickinger JC, Snook AE. Talkin' Toxins: From Coley's to Modern Cancer Immunotherapy. Toxins (Basel) 2020; 12:E241. [PMID: 32283684 PMCID: PMC7232517 DOI: 10.3390/toxins12040241] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of the immune system to precisely target and eliminate aberrant or infected cells has long been studied in the field of infectious diseases. Attempts to define and exploit these potent immunological processes in the fight against cancer has been a longstanding effort dating back over 100 years to when Dr. William Coley purposefully infected cancer patients with a cocktail of heat-killed bacteria to stimulate anti-cancer immune processes. Although the field of cancer immunotherapy has been dotted with skepticism at times, the success of immune checkpoint inhibitors and recent FDA approvals of autologous cell therapies have pivoted immunotherapy to center stage as one of the most promising strategies to treat cancer. This review aims to summarize historic milestones throughout the field of cancer immunotherapy as well as highlight current and promising immunotherapies in development.
Collapse
Affiliation(s)
| | | | - Adam E. Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA; (R.D.C.); (J.C.F.J.)
| |
Collapse
|
26
|
Remic T, Sersa G, Ursic K, Cemazar M, Kamensek U. Development of Tumor Cell-Based Vaccine with IL-12 Gene Electrotransfer as Adjuvant. Vaccines (Basel) 2020; 8:vaccines8010111. [PMID: 32121641 PMCID: PMC7157224 DOI: 10.3390/vaccines8010111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Tumor cell-based vaccines use tumor cells as a source of tumor-associated antigens. In our study, we aimed to develop and test a tumor vaccine composed of tumor cells killed by irradiation combined with in vivo interleukin-12 gene electrotransfer as an adjuvant. Vaccination was performed in the skin of B16-F10 malignant melanoma or CT26 colorectal carcinoma tumor-bearing mice, distant from the tumor site and combined with concurrent tumor irradiation. Vaccination was also performed before tumor inoculation in both tumor models and tumor outgrowth was followed. The antitumor efficacy of vaccination in combination with tumor irradiation or preventative vaccination varied between the tumor models. A synergistic effect between vaccination and irradiation was observed in the B16-F10, but not in the CT26 tumor model. In contrast, up to 56% of mice were protected from tumor outgrowth in the CT26 tumor model and none were protected in the B16-F10 tumor model. The results suggest a greater contribution of the therapeutic vaccination to tumor irradiation in a less immunogenic B16-F10 tumor model, in contrast to preventative vaccination, which has shown greater efficacy in a more immunogenic CT26 tumor model. Upon further optimization of the vaccination and irradiation regimen, our vaccine could present an alternative tumor cell-based vaccine.
Collapse
Affiliation(s)
- Tinkara Remic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
| | - Katja Ursic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, SI-1000 Ljubljana, Slovenia; (T.R.); (G.S.); (K.U.); (M.C.)
- Correspondence:
| |
Collapse
|
27
|
Wan C, Sun Y, Tian Y, Lu L, Dai X, Meng J, Huang J, He Q, Wu B, Zhang Z, Jiang K, Hu D, Wu G, Lovell JF, Jin H, Yang K. Irradiated tumor cell-derived microparticles mediate tumor eradication via cell killing and immune reprogramming. SCIENCE ADVANCES 2020; 6:eaay9789. [PMID: 32232155 PMCID: PMC7096163 DOI: 10.1126/sciadv.aay9789] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 05/12/2023]
Abstract
Radiotherapy (RT) is routinely used in cancer treatment, but expansion of its clinical indications remains challenging. The mechanism underlying the radiation-induced bystander effect (RIBE) is not understood and not therapeutically exploited. We suggest that the RIBE is predominantly mediated by irradiated tumor cell-released microparticles (RT-MPs), which induce broad antitumor effects and cause immunogenic death mainly through ferroptosis. Using a mouse model of malignant pleural effusion (MPE), we demonstrated that RT-MPs polarized microenvironmental M2 tumor-associated macrophages (M2-TAMs) to M1-TAMs and modulated antitumor interactions between TAMs and tumor cells. Following internalization of RT-MPs, TAMs displayed increased programmed cell death ligand 1 (PD-L1) expression, enhancing follow-up combined anti-PD-1 therapy that confers an ablative effect against MPE and cisplatin-resistant MPE mouse models. Immunological memory effects were induced.
Collapse
Affiliation(s)
- Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lisen Lu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaomeng Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianyuan He
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhanjie Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jonathan F. Lovell
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York. Buffalo, NY 14260, USA
| | - Honglin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author. (K.Y.); (H.J.)
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Corresponding author. (K.Y.); (H.J.)
| |
Collapse
|
28
|
Zhan Y, Lew AM, Chopin M. The Pleiotropic Effects of the GM-CSF Rheostat on Myeloid Cell Differentiation and Function: More Than a Numbers Game. Front Immunol 2019; 10:2679. [PMID: 31803190 PMCID: PMC6873328 DOI: 10.3389/fimmu.2019.02679] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 10/30/2019] [Indexed: 12/27/2022] Open
Abstract
Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) is a myelopoietic growth factor that has pleiotropic effects not only in promoting the differentiation of immature precursors into polymorphonuclear neutrophils (PMNs), monocytes/macrophages (MØs) and dendritic cells (DCs), but also in controlling the function of fully mature myeloid cells. This broad spectrum of GM-CSF action may elicit paradoxical outcomes-both immunostimulation and immunosuppression-in infection, inflammation, and cancer. The complexity of GM-CSF action remains to be fully unraveled. Several aspects of GM-CSF action could contribute to its diverse biological consequences. Firstly, GM-CSF as a single cytokine affects development of most myeloid cells from progenitors to mature immune cells. Secondly, GM-CSF activates JAK2/STAT5 and also activate multiple signaling modules and transcriptional factors that direct different biological processes. Thirdly, GM-CSF can be produced by different cell types including tumor cells in response to different environmental cues; thus, GM-CSF quantity can vary greatly under different pathophysiological settings. Finally, GM-CSF signaling is also fine-tuned by other less defined feedback mechanisms. In this review, we will discuss the role of GM-CSF in orchestrating the differentiation, survival, and proliferation during the generation of multiple lineages of myeloid cells (PMNs, MØs, and DCs). We will also discuss the role of GM-CSF in regulating the function of DCs and the functional polarization of MØs. We highlight how the dose of GM-CSF and corresponding signal strength acts as a rheostat to fine-tune cell fate, and thus the way GM-CSF may best be targeted for immuno-intervention in infection, inflammation and cancer.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Immunology and Microbiology, University of Melbourne, Parkville, VIC, Australia
| | - Michael Chopin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
29
|
Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med 2019; 25:1488-1499. [PMID: 31591590 DOI: 10.1038/s41591-019-0596-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Stimulating an immune response against cancer through adoptive transfer of tumor-targeting lymphocytes has shown great promise in hematological malignancies, but clinical efficacy against many common solid epithelial cancers remains low. Targeting 'neoantigens'-the somatic mutations expressed only by tumor cells-might enable tumor destruction without causing undue damage to vital healthy tissues. Major challenges to targeting neoantigens with T cells include heterogeneity and variability in antigen processing and presentation of targets by tumors, and an incomplete understanding of which T cell qualities are essential for clinically effective therapies. Finally, the prospect of targeting somatic tumor mutations to promote T cell destruction of cancer must contend with the biology that not all tumor-expressed 'neoepitopes' actually generate neoantigens that can be functionally recognized and provoke an effective immune response. In this Review, we discuss the promise, progress and challenges for improving neoantigen-targeted T cell-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Tori N Yamamoto
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Rigel J Kishton
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA. .,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA. .,Lyell Immunopharma, South San Francisco, CA, USA.
| |
Collapse
|
30
|
Yoshida S, Ito Z, Suka M, Bito T, Kan S, Akasu T, Saruta M, Okamoto M, Kitamura H, Fujioka S, Misawa T, Akiba T, Yanagisawa H, Sugiyama H, Koido S. Clinical Significance of Tumor-Infiltrating T Cells and Programed Death Ligand-1 in Patients with Pancreatic Cancer. Cancer Invest 2019; 37:463-477. [PMID: 31490702 DOI: 10.1080/07357907.2019.1661427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The associations of the immunological status of the pancreatic ductal adenocarcinoma (PDA) microenvironment with prognosis were assessed. A high tumor-infiltrating lymphocyte (TIL) density was associated with a better prognosis. Importantly, even with a high density of TILs, the PDA cells with programed cell death-ligand 1 (PD-L1) expression showed a worse prognosis than the patients with negative PD-L1 expression. A significant association between a better prognosis and a tumor microenvironment with a high TIL density/negative PD-L1 expression was observed. Assessments of a combined immunological status in the tumor microenvironment may predict the prognosis of PDA patients following surgical resection.
Collapse
Affiliation(s)
- Sayumi Yoshida
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Machi Suka
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| | - Takafumi Akasu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Masato Okamoto
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine , Kanagawa , Japan
| | - Hiroaki Kitamura
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Shuichi Fujioka
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Takeyuki Misawa
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Tadashi Akiba
- Department of Surgery, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan
| | - Hiroyuki Yanagisawa
- Department of Public Health and Environmental Medicine, The Jikei University School of Medicine , Tokyo , Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine , Osaka , Japan
| | - Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital , Chiba , Japan.,Institute of Clinical Medicine and Research, The Jikei University School of Medicine , Chiba , Japan
| |
Collapse
|
31
|
Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of Inflammation. Immunity 2019; 50:796-811. [PMID: 30995500 DOI: 10.1016/j.immuni.2019.03.022] [Citation(s) in RCA: 304] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 01/27/2023]
Abstract
The β common chain cytokines GM-CSF, IL-3, and IL-5 regulate varied inflammatory responses that promote the rapid clearance of pathogens but also contribute to pathology in chronic inflammation. Therapeutic interventions manipulating these cytokines are approved for use in some cancers as well as allergic and autoimmune disease, and others show promising early clinical activity. These approaches are based on our understanding of the inflammatory roles of these cytokines; however, GM-CSF also participates in the resolution of inflammation, and IL-3 and IL-5 may also have such properties. Here, we review the functions of the β common cytokines in health and disease. We discuss preclinical and clinical data, highlighting the potential inherent in targeting these cytokine pathways, the limitations, and the important gaps in understanding of the basic biology of this cytokine family.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, MA, USA.
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Menezes ME, Talukdar S, Wechman SL, Das SK, Emdad L, Sarkar D, Fisher PB. Prospects of Gene Therapy to Treat Melanoma. Adv Cancer Res 2019; 138:213-237. [PMID: 29551128 DOI: 10.1016/bs.acr.2018.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The incidence of melanoma has continued to increase over the past 30 years. Hence, developing effective therapies to treat both primary and metastatic melanoma are essential. While advances in targeted therapy and immunotherapy have provided novel therapeutic options to treat melanoma, gene therapy may provide additional strategies for the treatment of metastatic melanoma clinically. This review focuses upon the challenges and opportunities that gene therapy provides for targeting melanoma. We begin with a discussion of the various gene therapy targets which are relevant to melanoma. Next, we explore the gene therapy clinical trials that have been conducted for treating melanoma. Finally, challenges faced in gene therapy as well as combination therapies for targeting melanoma, which may circumvent these obstacles, will be discussed. Targeted combination gene therapy strategies hold significant promise for developing the most effective therapeutic outcomes, while reducing the toxicity to noncancerous cells, and would integrate the patient's immune system to diminish melanoma progression. Next-generation vectors designed to embody required safety profiles and "theranostic" attributes, combined with immunotherapeutic strategies would be critical in achieving beneficial management and therapeutic outcomes in melanoma patients.
Collapse
Affiliation(s)
- Mitchell E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Sarmistha Talukdar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Stephen L Wechman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
33
|
Piretto E, Delitala M, Kim PS, Frascoli F. Effects of mutations and immunogenicity on outcomes of anti-cancer therapies for secondary lesions. Math Biosci 2019; 315:108238. [PMID: 31401294 DOI: 10.1016/j.mbs.2019.108238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
Cancer development is driven by mutations and selective forces, including the action of the immune system and interspecific competition. When administered to patients, anti-cancer therapies affect the development and dynamics of tumours, possibly with various degrees of resistance due to immunoediting and microenvironment. Tumours are able to express a variety of competing phenotypes with different attributes and thus respond differently to various anti-cancer therapies. In this paper, a mathematical framework incorporating a system of delay differential equations for the immune system activation cycle and an agent-based approach for tumour-immune interaction is presented. The focus is on those metastatic, secondary solid lesions that are still undetected and non-vascularised. By using available experimental data, we analyse the effects of combination therapies on these lesions and investigate the role of mutations on the rates of success of common treatments. Findings show that mutations, growth properties and immunoediting influence therapies' outcomes in nonlinear and complex ways, affecting cancer lesion morphologies, phenotypical compositions and overall proliferation patterns. Cascade effects on final outcomes for secondary lesions are also investigated, showing that actions on primary lesions could sometimes result in unexpected clearances of secondary tumours. This outcome is strongly dependent on the clonal composition of the primary and secondary masses and is shown to allow, in some cases, the control of the disease for years.
Collapse
Affiliation(s)
- Elena Piretto
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy; Department of Mathematics, Universitá di Torino, Turin, Italy; Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Marcello Delitala
- Department of Mathematical Sciences, Politecnico di Torino, Turin, Italy
| | - Peter S Kim
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales, Australia
| | - Federico Frascoli
- Department of Mathematics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria, Australia.
| |
Collapse
|
34
|
Abstract
It has been known for decades that the immune system can be spontaneously activated against melanoma. The presence of tumor infiltrating lymphocytes in tumor deposits is a positive prognostic factor. Cancer vaccination includes approaches to generate, amplify, or skew antitumor immunity. To accomplish this goal, tested approaches involve administration of tumor antigens, antigen presenting cells or other immune modulators, or direct modulation of the tumor. Because the success of checkpoint blockade can depend in part on an existing antitumor response, cancer vaccination may play an important role in future combination therapies. In this review, we discuss a variety of melanoma vaccine approaches and methods to determine the biological impact of vaccination.
Collapse
|
35
|
Effect of Multiple Vaccinations with Tumor Cell-Based Vaccine with Codon-Modified GM-CSF on Tumor Growth in a Mouse Model. Cancers (Basel) 2019; 11:cancers11030368. [PMID: 30875953 PMCID: PMC6468346 DOI: 10.3390/cancers11030368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Ectopic expression of codon-modified granulocyte-macrophage colony-stimulating factor (cGM-CSF) in TC-1 cells (TC-1/cGM-CSF), a model cell line for human papillomavirus (HPV)-infected cervical cancer cells, increased the expression level of GM-CSF and improved the efficacy of tumor cell-based vaccines in a cervical cancer mouse model. The number of vaccine doses required to induce a long-term immune response in a cervical cancer mouse model is poorly understood. Here, we investigated one, three, and five doses of the irradiated TC-1/cGM-CSF vaccine to determine which dose was effective in inducing a greater immune response and the suppression of tumors. Our findings showed that three doses of irradiated TC-1/cGM-CSF vaccine elicited slower tumor growth rates and enhanced survival rates compared with one dose or five doses of irradiated TC-1/cGM-CSF vaccine. Consistently, mice vaccinated with three doses of irradiated TC-1/cGM-CSF vaccine exhibited stronger interferon gamma (IFN-γ) production in HPV E7-specific CD8⁺ T cells and CD4⁺ T cells. A higher percentage of natural killer cells and interferon-producing killer dendritic cells (IKDCs) appeared in the splenocytes of the mice vaccinated with three doses of irradiated TC-1/cGM-CSF vaccine compared with those of the mice vaccinated with one dose or five doses of irradiated TC-1/cGM-CSF vaccine. Our findings demonstrate that single or multiple vaccinations, such as five doses, with irradiated TC-1/cGM-CSF vaccine suppressed the immune response, whereas three doses of irradiated TC-1/cGM-CSF vaccine elicited a greater immune response and subsequent tumor suppression.
Collapse
|
36
|
Dougan M, Dranoff G, Dougan SK. Cancer Immunotherapy: Beyond Checkpoint Blockade. ANNUAL REVIEW OF CANCER BIOLOGY 2019; 3:55-75. [PMID: 37539076 PMCID: PMC10400018 DOI: 10.1146/annurev-cancerbio-030518-055552] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Blocking antibodies to the immune checkpoint receptors or their ligands have revolutionized the treatment of diverse malignancies. Many tumors are recognized by adaptive immunity, but these adaptive responses can be inhibited by immunosuppressive mechanisms within the tumor, often through pathways outside of the currently targeted checkpoints. For this reason, only a minority of cancer patients achieve durable responses to current immunotherapies. Multiple novel approaches strive to expand immunotherapy's reach. These may include targeting alternative immune checkpoints. However, many investigational strategies look beyond checkpoint blockade. These include cellular therapies to bypass endogenous immunity and efforts to stimulate new adaptive antitumor responses using vaccines, adjuvants, and combinations with cytotoxic therapy, as well as strategies to inhibit innate immune suppression and modulate metabolism within the tumor microenvironment. The challenge for immunotherapy going forward will be to select rational strategies for overcoming barriers to effective antitumor responses from the myriad possible targets.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology and Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
| | - Glenn Dranoff
- Novartis Institute for Biomedical Research, Cambridge, Massachusetts 02139, USA
| | - Stephanie K Dougan
- Harvard Medical School, Harvard University, Boston, Massachusetts 02115, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
37
|
Perkhofer L, Beutel AK, Ettrich TJ. Immunotherapy: Pancreatic Cancer and Extrahepatic Biliary Tract Cancer. Visc Med 2019; 35:28-37. [PMID: 31312647 DOI: 10.1159/000497291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) and extrahepatic biliary tract cancer (BTC) are among the malignancies with the highest morbidity and mortality. Despite increasing knowledge on biology and novel therapies, outcome remains poor in these patients. Recent progress in immunotherapies created new hopes in the treatment of PDAC and extrahepatic BTC. Several trials tested immunotherapies in various therapeutic situations as monotherapies or in combinations. Although responses were seen in some of the trials, the value of immunotherapy in PDAC and extrahepatic BTC remains unclear in the current situation, especially regarding the complex biological characteristics with a high stroma component, intrinsic resistance mechanisms and an immunosuppressive, hypoxic microenvironment. These major hurdles have to be taken into account and overcome if immunotherapies should be successful in these tumor entities. Thereby, combinational approaches that allow on the one hand targeted therapy and on the other restore or boost the function of immune cells are promising.
Collapse
Affiliation(s)
- Lukas Perkhofer
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Alica K Beutel
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| | - Thomas J Ettrich
- Klinik für Innere Medizin I, Universitätsklinikum Ulm, Ulm, Germany
| |
Collapse
|
38
|
Combinatory therapy adopting nanoparticle-based cancer vaccination with immune checkpoint blockade for treatment of post-surgical tumor recurrences. J Control Release 2018; 285:56-66. [DOI: 10.1016/j.jconrel.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/20/2022]
|
39
|
Thomas F, Kareva I, Raven N, Hamede R, Pujol P, Roche B, Ujvari B. Evolved Dependence in Response to Cancer. Trends Ecol Evol 2018; 33:269-276. [DOI: 10.1016/j.tree.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
|
40
|
Dellacherie MO, Li AW, Lu BY, Mooney DJ. Covalent Conjugation of Peptide Antigen to Mesoporous Silica Rods to Enhance Cellular Responses. Bioconjug Chem 2018; 29:733-741. [PMID: 29318872 DOI: 10.1021/acs.bioconjchem.7b00656] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Short peptides are the minimal modality of antigen recognized by cellular immunity and are therefore considered a safe and highly specific source of antigen for vaccination. Nevertheless, successful peptide immunotherapy is limited by the short half-life of peptide antigens in vivo as well as their weak immunogenicity. We recently reported a vaccine strategy based on dendritic cell-recruiting Mesoporous Silica Rod (MSR) scaffolds to enhance T-cell responses against subunit antigen. In this study, we investigated the effect of covalently conjugating peptide antigens to MSRs to increase their retention in the scaffolds. Using both stable thioether and reducible disulfide linkages, peptide conjugation greatly increased peptide loading compared to passive adsorption. In vitro, Bone Marrow derived Dendritic Cells (BMDCs) could present Ovalbumin (OVA)-derived peptides conjugated to MSRs and induce antigen-specific T-cell proliferation. Stable conjugation decreased presentation in vitro while reducible conjugation maintained levels of presentation as high as soluble peptide. Compared to soluble peptide, in vitro, expansion of OT-II T-cells was not affected by adsorption or stable conjugation to MSRs but was enhanced with reversible conjugation to MSRs. Both conjugation schemes increased peptide residence time in MSR scaffolds in vivo compared to standard bolus injections or a simple adsorption method. When MSR scaffolds loaded with GM-CSF and CpG-ODN were injected subcutaneously, recruited dendritic cells could present antigen in situ with the stable conjugation increasing presentation capacity. Overall, this simple conjugation approach could serve as a versatile platform to efficiently incorporate peptide antigens in MSR vaccines and potentiate cellular responses.
Collapse
Affiliation(s)
- Maxence O Dellacherie
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Aileen W Li
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - Beverly Y Lu
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| | - David J Mooney
- John A Paulson School of Engineering and Applied Sciences , Harvard University , Cambridge , Massachusetts 02138 , United States.,Wyss Institute for Biologically Inspired Engineering , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
41
|
Marron TU, Hammerich L, Brody J. Local Immunotherapies of Cancer. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
42
|
Vaccination with autologous myeloblasts admixed with GM-K562 cells in patients with advanced MDS or AML after allogeneic HSCT. Blood Adv 2017; 1:2269-2279. [PMID: 29296875 DOI: 10.1182/bloodadvances.2017009084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/08/2017] [Indexed: 01/05/2023] Open
Abstract
We report a clinical trial testing vaccination of autologous myeloblasts admixed with granulocyte-macrophage colony-stimulating factor secreting K562 cells after allogeneic hematopoietic stem cell transplantation (HSCT). Patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with ≥5% marrow blasts underwent myeloblast collection before HSCT. At approximately day +30, 6 vaccines composed of irradiated autologous myeloblasts mixed with GM-K562 were administered. Tacrolimus-based graft-versus-host disease (GVHD) prophylaxis was not tapered until vaccine completion (∼day 100). Thirty-three patients with AML (25) and MDS (8) enrolled, 16 (48%) had ≥5% marrow blasts at transplantation. The most common vaccine toxicity was injection site reactions. One patient developed severe eosinophilia and died of eosinophilic myocarditis. With a median follow-up of 67 months, cumulative incidence of grade 2-4 acute and chronic GVHD were 24% and 33%, respectively. Relapse and nonrelapse mortality were 48% and 9%, respectively. Progression-free survival (PFS) and overall survival (OS) at 5 years were 39% and 39%. Vaccinated patients who were transplanted with active disease (≥5% marrow blasts) had similar OS and PFS at 5 years compared with vaccinated patients transplanted with <5% marrow blasts (OS, 44% vs 35%, respectively, P = .81; PFS, 44% vs 35%, respectively, P = .34). Postvaccination antibody responses to angiopoietin-2 was associated with superior OS (hazard ratio [HR], 0.43; P = .031) and PFS (HR, 0.5; P = .036). Patients transplanted with active disease had more frequent angiopoeitin-2 antibody responses (62.5% vs 20%, P = .029) than those transplanted in remission. GM-K562/leukemia cell vaccination induces biologic activity, even in patients transplanted with active MDS/AML. This study is registered at www.clinicaltrials.gov as #NCT 00809250.
Collapse
|
43
|
Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity 2017; 45:963-973. [PMID: 27851925 DOI: 10.1016/j.immuni.2016.10.026] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
Abstract
The granulocyte-macrophage colony-stimulating factor (GM-CSF) was initially classified as a hematopoietic growth factor. However, unlike its close relatives macrophage CSF (M-CSF) and granulocyte CSF (G-CSF), the majority of myeloid cells do not require GM-CSF for steady-state myelopoiesis. Instead, in inflammation, GM-CSF serves as a communication conduit between tissue-invading lymphocytes and myeloid cells. Even though lymphocytes are in all likelihood the instigators of chronic inflammatory disease, GM-CSF-activated phagocytes are well equipped to cause tissue damage. The pivotal role of GM-CSF at the T cell:myeloid cell interface might shift our attention toward studying the function of the myeloid compartment in immunopathology. Targeting specifically the crosstalk between T cells and myeloid cells through GM-CSF holds promise for the development of therapeutics to combat chronic tissue inflammation. Here, we will review some of the major discoveries of the recent past, which indicate that GM-CSF is so much more than its name suggests.
Collapse
Affiliation(s)
- Burkhard Becher
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
44
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
45
|
[Immunotherapy: Activation of a system not a pathway]. Bull Cancer 2017; 104:462-475. [PMID: 28477871 DOI: 10.1016/j.bulcan.2017.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/02/2017] [Accepted: 03/04/2017] [Indexed: 11/22/2022]
Abstract
Immunotherapy is on the roll. After revolutionary effects in melanoma, immunotherapy is invading other locations. If current treatments, chemotherapies or targeted therapies block one pathway, immunotherapy should be understood as the activation of a whole system. Indeed, oncogenesis process is defined as an escape of the immune system and the stimulation of this system can block the carcinogenic process. The aim of the present review is to describe the place of immunotherapy in the treatment of solid cancers.
Collapse
|
46
|
Gross S, Erdmann M, Haendle I, Voland S, Berger T, Schultz E, Strasser E, Dankerl P, Janka R, Schliep S, Heinzerling L, Sotlar K, Coulie P, Schuler G, Schuler-Thurner B. Twelve-year survival and immune correlates in dendritic cell-vaccinated melanoma patients. JCI Insight 2017; 2:91438. [PMID: 28422751 DOI: 10.1172/jci.insight.91438] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Reports on long-term (≥10 years) effects of cancer vaccines are missing. Therefore, in 2002, we initiated a phase I/II trial in cutaneous melanoma patients to further explore the immunogenicity of our DC vaccine and to establish its long-term toxicity and clinical benefit after a planned 10-year followup. METHODS Monocyte-derived DCs matured by TNFα, IL-1β, IL-6, and PGE2 and then loaded with 4 HLA class I and 6 class II-restricted tumor peptides were injected intradermally in high doses over 2 years. We performed serial immunomonitoring in all 53 evaluable patients. RESULTS Vaccine-specific immune responses including high-affinity, IFNγ-producing CD4+ and lytic polyfunctional CD8+ T cells were de novo induced or boosted in most patients. Exposure of mature DCs to trimeric soluble CD40 ligand, unexpectedly, did not further enhance such immune responses, while keyhole limpet hemocyanin (KLH) pulsing to provide unspecific CD4+ help promoted CD8+ T cell responses - notably, their longevity. An unexpected 19% of nonresectable metastatic melanoma patients are still alive after 11 years, a survival rate similar to that observed in ipilimumab-treated patients and achieved without any major (>grade 2) toxicity. Survival correlated significantly with the development of intense vaccine injection site reactions, and with blood eosinophilia after the first series of vaccinations, suggesting that prolonged survival was a consequence of DC vaccination. CONCLUSIONS Long-term survival in advanced melanoma patients undergoing DC vaccination is similar to ipilimumab-treated patients and occurs upon induction of tumor-specific T cells, blood eosinophilia, and strong vaccine injection site reactions occurring after the initial vaccinations. TRIAL REGISTRATION ClinicalTrials.gov NCT00053391. FUNDING European Community, Sixth Framework Programme (Cancerimmunotherapy LSHC-CT-2006-518234; DC-THERA LSHB-CT-2004-512074), and German Research Foundation (CRC 643, C1, Z2).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peter Dankerl
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Rolf Janka
- Department of Radiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | | | | | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - Pierre Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
47
|
Wang H, Zhang L, Yang L, Liu C, Zhang Q, Zhang L. Targeting macrophage anti-tumor activity to suppress melanoma progression. Oncotarget 2017; 8:18486-18496. [PMID: 28060744 PMCID: PMC5392344 DOI: 10.18632/oncotarget.14474] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/27/2016] [Indexed: 01/09/2023] Open
Abstract
By phagocytosing cancer cells and their cellular debris, macrophages play a critical role in nonspecific defense (innate immunity) and, as antigen presenters, they help initiate specific defense mechanisms (adaptive immunity). Malignant melanoma is a lethal disease due to its aggressive capacity for metastasis and resistance to therapy. For decades, considerable effort has gone into development of an effective immunotherapy for treatment of metastatic melanoma. In this review, we focus on the anti-tumor activities of macrophages in melanoma and their potential as therapeutic targets in melanoma. Although macrophages can be re-educated through intercellular signaling to promote tumor survival owing to their plasticity, we expect that targeting the anti-tumor activity of macrophages remains a promising strategy for melanoma inhibition. The combination of tumoricidal macrophage activation and other treatments such as surgery, chemotherapy, and radiotherapy, may provide an effective and comprehensive anti-melanoma strategy.
Collapse
Affiliation(s)
- Huafeng Wang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| | - Lijuan Zhang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Luhong Yang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| | - Chengfang Liu
- Department of Human Anatomy, Shanxi Medical University, Shanxi Sheng, China
| | | | - Linjing Zhang
- Modern College of Arts and Science, or School of Life Science, Shanxi Normal University, Linfen, China
| |
Collapse
|
48
|
Kannan N, Sakthivel KM, Guruvayoorappan C. Anti-tumor and Chemoprotective Effect of Bauhinia tomentosa by Regulating Growth Factors and Inflammatory Mediators. Asian Pac J Cancer Prev 2016; 16:8119-26. [PMID: 26745048 DOI: 10.7314/apjcp.2015.16.18.8119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Due to the toxic side effects of the commonly used chemotherapeutic drug cyclophosphamide (CTX), the use of herbal medicines with fewer side effects but having potential use as inducing anti-cancer outcomes in situ has become increasingly popular. The present study sought to investigate the effects of a methanolic extract of Bauhinia tomentosa against Dalton's ascites lymphoma (DAL) induced ascites as well as solid tumors in BALB/c mice. Specifically, B. tomentosa extract was administered intraperitonealy (IP) at 10 mg/kg. BW body weight starting just after tumor cell implantation and thereafter for 10 consecutive days. In the ascites tumor model hosts, administration of extract resulted in a 52% increase in the life span. In solid tumor models, co-administration of extract and CTX significantly reduced tumor volume (relative to in untreated hosts) by 73% compared to just by 52% when the extract alone was provided. Co-administration of the extract also mitigated CTX-induced toxicity, including decreases in WBC count, and in bone marrow cellularity and α-esterase activity. Extract treatment also attenuated any increases in serum levels of TNFα, iNOS, IL-1β, IL-6, GM-CSF, and VEGF seen in tumor-bearing hosts. This study confirmed that, the potent antitumor activity of B.tomentosa extract may be associated with immune modulatory effects by regulating anti-oxidants and cytokine levels.
Collapse
Affiliation(s)
- Narayanan Kannan
- Department of Biotechnology, Karunya University, Coimbatore, India E-mail :
| | | | | |
Collapse
|
49
|
Hubbard-Lucey VM, Tontonoz MJ. Translating Science into Survival: Report on the Inaugural International Cancer Immunotherapy Conference. Cancer Immunol Res 2016; 4:3-11. [PMID: 27119139 DOI: 10.1158/2326-6066.cir-15-0279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The inaugural International Cancer Immunotherapy Conference, cohosted by the Cancer Research Institute (CRI), the American Association for Cancer Research (AACR), the Association for Cancer Immunotherapy (CIMT), and the European Academy of Tumor Immunology (EATI), was held in New York City on September 16–19, 2015. The conference brought together nearly 1,400 scientists, clinicians, regulators, patient advocates, and other stakeholders to discuss the latest scientific developments in cancer immunology and immunotherapy, as well as the regulatory hurdles facing new drug development. This conference report summarizes the main themes that emerged during the 4-day meeting.
Collapse
|
50
|
Hong IS. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016; 48:e242. [PMID: 27364892 PMCID: PMC4973317 DOI: 10.1038/emm.2016.64] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/11/2016] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF, also called CSF-2) is best known for its critical role in immune modulation and hematopoiesis. A large body of experimental evidence indicates that GM-CSF, which is frequently upregulated in multiple types of human cancers, effectively marks cancer cells with a ‘danger flag' for the immune system. In this context, most studies have focused on its function as an immunomodulator, namely its ability to stimulate dendritic cell (DC) maturation and monocyte/macrophage activity. However, recent studies have suggested that GM-CSF also promotes immune-independent tumor progression by supporting tumor microenvironments and stimulating tumor growth and metastasis. Although some studies have suggested that GM-CSF has inhibitory effects on tumor growth and metastasis, an even greater number of studies show that GM-CSF exerts stimulatory effects on tumor progression. In this review, we summarize a number of findings to provide the currently available information regarding the anticancer immune response of GM-CSG. We then discuss the potential roles of GM-CSF in the progression of multiple types of cancer to provide insights into some of the complexities of its clinical applications.
Collapse
Affiliation(s)
- In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|