1
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
2
|
Kashyap SN, Boyle NR, Roberson ED. Preclinical Interventions in Mouse Models of Frontotemporal Dementia Due to Progranulin Mutations. Neurotherapeutics 2023; 20:140-153. [PMID: 36781744 PMCID: PMC10119358 DOI: 10.1007/s13311-023-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Heterozygous loss-of-function mutations in progranulin (GRN) cause frontotemporal dementia (FTD), a leading cause of early-onset dementia characterized clinically by behavioral, social, and language deficits. There are currently no FDA-approved therapeutics for FTD-GRN, but this has been an active area of investigation, and several approaches are now in clinical trials. Here, we review preclinical development of therapies for FTD-GRN with a focus on testing in mouse models. Since most FTD-GRN-associated mutations cause progranulin haploinsufficiency, these approaches focus on raising progranulin levels. We begin by considering the disorders associated with altered progranulin levels, and then review the basics of progranulin biology including its lysosomal, neurotrophic, and immunomodulatory functions. We discuss mouse models of progranulin insufficiency and how they have been used in preclinical studies on a variety of therapeutic approaches. These include approaches to raise progranulin expression from the normal allele or facilitate progranulin production by the mutant allele, as well as approaches to directly increase progranulin levels by delivery across the blood-brain barrier or by gene therapy. Several of these approaches have entered clinical trials, providing hope that new therapies for FTD-GRN may be the next frontier in the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Shreya N Kashyap
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Huang L, Qiao Y, Xu W, Gong L, He R, Qi W, Gao Q, Cai H, Grossart HP, Yan Q. Full-Length Transcriptome: A Reliable Alternative for Single-Cell RNA-Seq Analysis in the Spleen of Teleost Without Reference Genome. Front Immunol 2021; 12:737332. [PMID: 34646272 PMCID: PMC8502891 DOI: 10.3389/fimmu.2021.737332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Wei Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qiancheng Gao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute of Biochemistry and Biology, Postdam University, Potsdam, Germany
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
4
|
Seale KN, Tkaczuk KHR. Circulating Biomarkers in Breast Cancer. Clin Breast Cancer 2021; 22:e319-e331. [PMID: 34756687 DOI: 10.1016/j.clbc.2021.09.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/22/2021] [Accepted: 09/19/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer management has progressed immensely over the decades, but the disease is still a major source of morbidity and mortality worldwide. Even with enhanced imaging detection and tissue biopsy capabilities, disease can progress on an ineffective treatment before additional information is obtained through standard methods of response evaluation, including the RECIST 1.1 criteria, widely used for assessment of treatment response and benefit from therapy.6 Circulating biomarkers have the potential to provide valuable insight into disease progression and response to therapy, and they can serve to identify actionable mutations and tumor characteristics that can direct therapy. These biomarkers can be collected at higher frequencies than imaging or tissue sampling, potentially allowing for more informed management. This review will evaluate the roles of circulating biomarkers in breast cancer, including the serum markers Carcinoembryonic antigen CA15-3, CA27-29, HER2 ECD, and investigatory markers such as GP88; and the components of the liquid biopsy, including circulating tumor cells, cell free DNA/DNA methylation, circulating tumor DNA, and circulating microRNA.
Collapse
Affiliation(s)
- Katelyn N Seale
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201
| | - Katherine H R Tkaczuk
- University of Maryland, School of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, 22 South Greene Street, S9D12, Baltimore, MD 21201.
| |
Collapse
|
5
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|
6
|
Serrero G. Progranulin/GP88, A Complex and Multifaceted Player of Tumor Growth by Direct Action and via the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:475-498. [PMID: 34664252 DOI: 10.1007/978-3-030-73119-9_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Investigation of the role of progranulin/GP88 on the proliferation and survival of a wide variety of cells has been steadily increasing. Several human diseases stem from progranulin dysregulation either through its overexpression in cancer or its absence as in the case of null mutations in some form of frontotemporal dementia. The present review focuses on the role of progranulin/GP88 in cancer development, progression, and drug resistance. Various aspects of progranulin identification, biology, and signaling pathways will be described. Information will be provided about its direct role as an autocrine growth and survival factor and its paracrine effect as a systemic factor as well as via interaction with extracellular matrix proteins and with components of the tumor microenvironment to influence drug resistance, migration, angiogenesis, inflammation, and immune modulation. This chapter will also describe studies examining progranulin/GP88 tumor tissue expression as well as circulating level as a prognostic factor for several cancers. Due to the wealth of publications in progranulin, this review does not attempt to be exhaustive but rather provide a thread to lead the readers toward more in-depth exploration of this fascinating and unique protein.
Collapse
|
7
|
Niu J, Huang Y, Liu X, Zhang Z, Tang J, Wang B, Lu Y, Cai J, Jian J. Single-cell RNA-seq reveals different subsets of non-specific cytotoxic cells in teleost. Genomics 2020; 112:5170-5179. [DOI: 10.1016/j.ygeno.2020.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
|
8
|
Choi J, Park SY, Moon K, Ha EH, Woo YD, Chung DH, Kwon H, Kim T, Park H, Moon H, Song W, Cho YS. Macrophage-derived progranulin promotes allergen-induced airway inflammation. Allergy 2020; 75:1133-1145. [PMID: 31758561 DOI: 10.1111/all.14129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/22/2019] [Accepted: 10/06/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Progranulin (PGRN), mainly produced by immune and epithelial cells, has been known to be involved in the development of various inflammatory diseases. However, the function of PGRN in allergic airway inflammation has not been clearly elucidated, and we investigated the role of PGRN in allergic airway inflammation. METHODS Production of PGRN and various type 2 cytokines was evaluated in mouse airways exposed to house dust mite allergen, and main cellular sources of these molecules were investigated using macrophage, airway epithelial cell, and NKT cell lines. We elucidated the role of PGRN in allergic airway inflammation in mouse models of asthma using macrophage-derived PGRN-deficient mice and NKT cell knockout mice by evaluating cytokine levels in bronchoalveolar lavage fluids and histopathology. We also supplemented recombinant PGRN in the mouse models to confirm the role of PGRN in allergic airway inflammation. RESULTS PGRN production preceded other cytokines, mainly from macrophages, in the airway exposed to allergen. PGRN induced IL-4 and IL-13 production in NKT cells and IL-33 and TSLP in airway epithelial cells. PGRN-induced Th2 cytokine production was abolished in NKT-deficient mice. Finally, allergic inflammation was significantly attenuated in allergen-exposed PGRN-deficient mice, but inflammation was restored when recombinant PGRN was supplemented during the allergen sensitization period. CONCLUSION The presence of macrophage-derived PGRN in airways in the early sensitization period may be critical for mounting a Th2 immune response and for following an allergic airway inflammation pathway via induction of type 2 cytokine production in NKT and airway epithelial cells.
Collapse
Affiliation(s)
- Jun‐Pyo Choi
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - So Young Park
- Department of Internal Medicine Eulji University School of Medicine Seoul Korea
| | - Keun‐Ai Moon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Eun Hee Ha
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Yeon Duk Woo
- Institute of Allergy and Clinical Immunology Seoul National University Medical Research Center Seoul Korea
| | - Doo Hyun Chung
- Institute of Allergy and Clinical Immunology Seoul National University Medical Research Center Seoul Korea
| | - Hyouk‐Soo Kwon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Tae‐Bum Kim
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon Korea
| | - Hee‐Bom Moon
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - Woo‐Jung Song
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| | - You Sook Cho
- Division of Allergy and Clinical Immunology Department of Internal Medicine Asan Medical Center University of Ulsan College of Medicine Seoul Korea
| |
Collapse
|
9
|
El-Ghammaz AMS, Azzazi MO, Mostafa N, Hegab HM, Mahmoud AA. Prognostic significance of serum progranulin level in de novo adult acute lymphoblastic leukemia patients. Clin Exp Med 2020; 20:269-276. [PMID: 32006270 DOI: 10.1007/s10238-020-00610-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/27/2020] [Indexed: 01/14/2023]
Abstract
Increased expression of progranulin (PGRN) has been reported in some hematological cancers, but limited information regarding its significance in acute lymphoblastic leukemia (ALL) is available. This study involved 60 subjects (40 de novo adult ALL patients and 20 controls). Serum PGRN level was measured by enzyme-linked immunosorbent assay and was correlated with patient outcome. Serum PGRN level was significantly higher in patients than controls. Serum PGRN level did not correlate with age, total leukocytic count, hemoglobin, platelets, absolute blast count in peripheral blood, lactate dehydrogenase, percent of blasts in bone marrow, gender, comorbidities, the presence of central nervous system infiltration, ALL phenotype, cytogenetics and risk of the disease. High serum PGRN level was not associated with inferior overall survival (OS) on univariate analysis. Regarding cumulative incidence of relapse (CIR) and disease-free survival (DFS), high PGRN level was associated with poor results on univariate analysis. Moreover, it tended to be independent risk factor on multivariate analysis for CIR but was not an independent predictor of inferior DFS. Serum PGRN level is significantly elevated in de novo adult ALL patients and may be used as a predictor of increased relapse risk.
Collapse
Affiliation(s)
- Amro M S El-Ghammaz
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Mohamed O Azzazi
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nevine Mostafa
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hany M Hegab
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amir A Mahmoud
- Clinical Hematology and Bone Marrow Transplantation Unit, Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Daya M, Loilome W, Techasen A, Thanee M, Sa-Ngiamwibool P, Titapun A, Yongvanit P, Namwat N. Progranulin modulates cholangiocarcinoma cell proliferation, apoptosis, and motility via the PI3K/pAkt pathway. Onco Targets Ther 2018; 11:395-408. [PMID: 29403285 PMCID: PMC5783154 DOI: 10.2147/ott.s155511] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Progranulin (PGRN) is a growth factor normally expressed in rapidly cycling epithelial cells for growth, differentiation, and motility. Several studies have shown the association of PGRN overexpression with the progression of numerous malignancies, including cholangiocarcinoma (CCA). However, the underlying mechanisms on how PGRN modulates CCA cell proliferation and motility is not clear. In this study, we investigated the prognostic significance of PGRN expression in human CCA tissue and the mechanisms of PGRN modulation of CCA cell proliferation and motility. We found that CCA tissues with high PGRN expression were correlated with poor prognosis and likelihood of metastasis. PGRN knockdown KKU-100 and KKU-213 cells demonstrated a reduced rate of proliferation and colony formation and decreased levels of phosphatidyl inositol-3-kinase (PI3K) and phosphorylated Akt (pAkt) proteins. Accumulation of cells at the G1 phase was observed and was accompanied by a reduction of cyclin D1 and CDK4 protein levels. Knockdown cells also induced apoptosis by increasing the Bax-to-Bcl-2 ratio. Increased cell apoptosis was confirmed by annexin V-FITC/PI staining. Moreover, suppression of PGRN reduced CCA cell migration and invasion in vitro. Investigating the biomarkers in epithelial–mesenchymal transition (EMT) revealed a decrease in the expression of vimentin, snail, and metalloproteinase-9. In conclusion, our findings imply that PGRN modulates cell proliferation by dysregulating the G1 phase, inhibiting apoptosis, and that it plays a role in the EMT affecting CCA cell motility, possibly via the PI3K/pAkt pathway.
Collapse
Affiliation(s)
- Minerva Daya
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Sampaloc, Manila, Philippines.,Cholangiocarcinoma Research Institute
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| | - Anchalee Techasen
- Cholangiocarcinoma Research Institute.,Faculty of Associated Medical Science
| | | | | | - Attapol Titapun
- Department of Pathology.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | | | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute
| |
Collapse
|
11
|
Abstract
Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.
Collapse
|
12
|
Walsh CE, Hitchcock PF. Progranulin regulates neurogenesis in the developing vertebrate retina. Dev Neurobiol 2017; 77:1114-1129. [PMID: 28380680 PMCID: PMC5568971 DOI: 10.1002/dneu.22499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022]
Abstract
We evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017
Collapse
Affiliation(s)
- Caroline E Walsh
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| | - Peter F Hitchcock
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, 48105.,Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, 48105
| |
Collapse
|
13
|
Progranulin Inhibits Human T Lymphocyte Proliferation by Inducing the Formation of Regulatory T Lymphocytes. Mediators Inflamm 2017; 2017:7682083. [PMID: 28194047 PMCID: PMC5282443 DOI: 10.1155/2017/7682083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/05/2016] [Accepted: 12/27/2016] [Indexed: 12/25/2022] Open
Abstract
We have examined the effect of progranulin (PGRN) on human T cell proliferation and its underlying mechanism. We show that PGRN inhibits the PHA-induced multiplication of T lymphocytes. It increases the number of iTregs when T lymphocytes are activated by PHA but does not do so in the absence of PHA. PGRN-mediated inhibition of T lymphocyte proliferation, as well as the induction of iTregs, was completely reversed by a TGF-β inhibitor or a Treg inhibitor. PGRN induced TGF-β secretion in the presence of PHA whereas it did not in the absence of PHA. Our findings indicate that PGRN suppresses T lymphocyte proliferation by enhancing the formation of iTregs from activated T lymphocytes in response to TGF-β.
Collapse
|
14
|
Palfree RGE, Bennett HPJ, Bateman A. The Evolution of the Secreted Regulatory Protein Progranulin. PLoS One 2015; 10:e0133749. [PMID: 26248158 PMCID: PMC4527844 DOI: 10.1371/journal.pone.0133749] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022] Open
Abstract
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics.
Collapse
Affiliation(s)
- Roger G. E. Palfree
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Hugh P. J. Bennett
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrew Bateman
- Endocrine Research Laboratory, Experimental Therapeutics and Metabolism, Research Institute of the McGill University Health Centre and Department of Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
15
|
Etemadi N, Webb A, Bankovacki A, Silke J, Nachbur U. Progranulin does not inhibit TNF and lymphotoxin-α signalling through TNF receptor 1. Immunol Cell Biol 2013; 91:661-4. [PMID: 24100384 DOI: 10.1038/icb.2013.53] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023]
Abstract
Progranulin (proepithelin, granulin precursor) has been recently suggested to exhibit anti-inflammatory properties by directly binding to tumour necrosis factor (TNF) receptors and thereby inhibiting TNF signalling by Tang et al. This finding was challenged by Chen et al. and no interaction between progranulin and TNF receptor (TNFR) 1 or 2 was observed. We tested the ability of recombinant progranulin from different commercial sources to inhibit TNF- or lymphotoxin-α-induced signalling through TNFR1. We observed that progranulin does not affect signalling and cell death induction downstream of TNF or lymphotoxin-α. Our results suggest that the anti-inflammatory role of progranulin is not mediated through direct inhibition of TNFR1.
Collapse
Affiliation(s)
- Nima Etemadi
- 1] CSCD Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia [2] Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
16
|
Zhao J, Wei J, Liu M, Xiao L, Wu N, Liu G, Huang H, Zhang Y, Zheng L, Lin X. Cloning, characterization and expression of a cDNA encoding a granulin-like polypeptide in Ciona savignyi. Biochimie 2013; 95:1611-9. [DOI: 10.1016/j.biochi.2013.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022]
|
17
|
Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G. Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem 2012; 287:32298-306. [PMID: 22859297 DOI: 10.1074/jbc.r112.399170] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
GRN mutations cause frontotemporal lobar degeneration with TDP-43-positive inclusions. The mechanism of pathogenesis is haploinsufficiency. Recently, homozygous GRN mutations were detected in two patients with neuronal ceroid lipofuscinosis, a lysosomal storage disease. It is unknown whether the pathogenesis of these two conditions is related. Progranulin is cleaved into smaller peptides called granulins. Progranulin and granulins are attributed with roles in cancer, inflammation, and neuronal physiology. Cell surface receptors for progranulin, but not granulin peptides, have been reported. Revealing the cell surface receptors and the intracellular functions of granulins and progranulin is crucial for understanding their contributions to neurodegeneration.
Collapse
Affiliation(s)
- Basar Cenik
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | | | |
Collapse
|
18
|
Wang D, Bai X, Tian Q, Lai Y, Lin EA, Shi Y, Mu X, Feng JQ, Carlson CS, Liu CJ. GEP constitutes a negative feedback loop with MyoD and acts as a novel mediator in controlling skeletal muscle differentiation. Cell Mol Life Sci 2012; 69:1855-73. [PMID: 22179841 PMCID: PMC3319484 DOI: 10.1007/s00018-011-0901-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 11/22/2011] [Accepted: 11/28/2011] [Indexed: 01/16/2023]
Abstract
Granulin-epithelin precursor (GEP) is an autocrine growth factor that has been implicated in embryonic development, tissue repair, tumorigenesis, and inflammation. Here we report that GEP was expressed in skeletal muscle tissue and its level was differentially altered in the course of C2C12 myoblast fusion. The GEP expression during myoblast fusion was a consequence of MyoD transcription factor binding to several E-box (CANNTG) sequences in the 5'-flanking regulatory region of GEP gene, followed by transcription. Recombinant GEP potently inhibited myotube formation from C2C12 myoblasts whereas the knockdown of endogenous of GEP via a siRNA approach accelerated the fusion of myoblasts to myotubes. Interestingly, the muscle fibers of GEP knockdown mice were larger in number but noticeably smaller in size when compared to the wild-type. Mechanistic studies revealed that during myoblast fusion, the addition of GEP led to remarkable reductions in the expressions of muscle-specific transcription factors, including MyoD. In addition, the regulation of myotube formation by GEP is mediated by the anti-myogenic factor JunB, which is upregulated following GEP stimulation. Thus, GEP growth factor, JunB, and MyoD transcription factor form a regulatory loop and act in concert in the course of myogenesis.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Orthopedics, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Xiaohui Bai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Otorhinolaryngology Head and Neck Surgery, Provincial Hospital affiliated to Shandong University, Jinan 250021, China
| | - Qingyun Tian
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongjie Lai
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Edward A. Lin
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Yongxiang Shi
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
| | - Xiaodong Mu
- Stem Cell Research Center, Children’s Hospital of Pittsburgh and Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15219
| | - Jian Q. Feng
- Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246
| | - Cathy S. Carlson
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
19
|
Swamydas M, Nguyen D, Allen LD, Eddy J, Dréau D. Progranulin stimulated by LPA promotes the migration of aggressive breast cancer cells. ACTA ACUST UNITED AC 2011; 18:119-30. [PMID: 22176685 DOI: 10.3109/15419061.2011.641042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Activator and inhibitor roles for the 88-kDa-secreted glycoprotein progranulin (PGRN) have been demonstrated in ovarian cancer cells. Here, we investigated the effects of PGRN in breast cancer migration. Testing MCF7, MDA-MB-453, and MDA-MB-231 human breast cancer cells and the MCF10A breast epithelial cell line, we demonstrate that LPA-induced PGRN stimulation led to a significant increase in cell invasion of MDA-MB-453 and MDA-MB-231 cells only (p<0.05). Moreover, incubation with an anti-PGRN antibody, an inhibitor of the ERK pathway (PD98059) or both in combination inhibited the ability of MDA-MB-231 cells to invade. Furthermore, the expression of focal adhesion kinases promoted by LPA-induced PGRN was also inhibited by PD98059 alone or in combination with an anti-PGRN antibody (p<0.05). Taken together, these results suggest that the LPA activation of PGRN involving the ERK pathway is critical to promote MDA-MB-231 breast cancer cell invasion.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Cellular and Molecular Division, Department of Biology, University of North Carolina-Charlotte, University City Blvd, Charlotte, NC 28223, USA
| | | | | | | | | |
Collapse
|
20
|
Liu CJ, Bosch X. Progranulin: a growth factor, a novel TNFR ligand and a drug target. Pharmacol Ther 2011; 133:124-32. [PMID: 22008260 DOI: 10.1016/j.pharmthera.2011.10.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 01/05/2023]
Abstract
Progranulin (PGRN) is abundantly expressed in epithelial cells, immune cells, neurons, and chondrocytes, and reportedly contributes to tumorigenesis. PGRN is a crucial mediator of wound healing and tissue repair. PGRN also functions as a neurotrophic factor and mutations in the PGRN gene resulting in partial loss of the PGRN protein cause frontotemporal dementia. PGRN has been found to be a novel chondrogenic growth factor and to play an important role in cartilage development and inflammatory arthritis. Although research has shown that PGRN exhibits anti-inflammatory properties, the details about the exact molecular pathway of such effects, and, in particular, the PGRN binding receptor, have not been identified so far. Recently, researchers have shown that PGRN binds to tumor necrosis factor (TNF)-receptors (TNFR), interfering with the interaction between TNFα and TNFR. They further demonstrated that mice deficient in PGRN are susceptible to collagen-induced arthritis, an experimental model of rheumatoid arthritis, and that administration of PGRN reversed the arthritic process. An engineered protein made of three PGRN fragments (Atsttrin), displayed selective TNFR binding and was more active than natural PGRN. Both PGRN and Atsttrin prevented inflammation in various arthritis mouse models and inhibited TNFα-induced intracellular signaling pathways. Thus, PGRN is a key regulator of inflammation and it may mediate its anti-inflammatory effects, at least in part, by blocking TNF binding to its receptors. As we discuss here, TNFR-based interventions may both stimulate and suppress the growth of cancer cells, and the same may be true in analogy for Atsttrin as a new player.
Collapse
Affiliation(s)
- Chuan-ju Liu
- Department of Orthopaedic Surgery, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, NY 10003, United States
| | | |
Collapse
|
21
|
Wang H, Sun Y, Liu S, Yu H, Li W, Zeng J, Chen C, Jia J. Upregulation of progranulin by Helicobacter pylori in human gastric epithelial cells via p38MAPK and MEK1/2 signaling pathway: role in epithelial cell proliferation and migration. ACTA ACUST UNITED AC 2011; 63:82-92. [PMID: 21707777 DOI: 10.1111/j.1574-695x.2011.00833.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helicobacter pylori is a major human pathogen associated with gastric diseases such as chronic active gastritis, peptic ulcer, and gastric carcinoma. The growth factor progranulin (PGRN) is a secreted glycoprotein that functions as an important regulator of cell growth, migration, and transformation. We aimed to determine the molecular mechanisms by which H. pylori upregulates the expression of PGRN and the relationship between H. pylori infection and production of PGRN in controlling cell proliferation and migration. Levels of PGRN were examined in gastric tissues from patients and in vitro in gastric epithelial cells. Cell proliferation was measured by colony formation assay. Cell migration was monitored by wound healing migration assay. PGRN protein levels were increased in patients with gastritis and gastric cancer tissue. Infection of gastric epithelial cells with H. pylori significantly increased PGRN expression in a time-dependent manner. Blockade of the p38 and MEK1/2 pathway by inhibitor inhibited H. pylori-mediated PGRN upregulation. Activation of p38 and MEK1/2 pathway by H. pylori was also identified. Knockdown of PGRN attenuated the H. pylori-induced proliferative activity and migration of cancer cells. These findings suggest that the upregulation of PGRN in H. pylori-infected gastric epithelial cells may contribute to the carcinogenic process.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Tkaczuk KR, Yue B, Zhan M, Tait N, Yarlagadda L, Dai H, Serrero G. Increased Circulating Level of the Survival Factor GP88 (Progranulin) in the Serum of Breast Cancer Patients When Compared to Healthy Subjects. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2011; 5:155-62. [PMID: 21792312 PMCID: PMC3140268 DOI: 10.4137/bcbcr.s7224] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Introduction: GP88 (PC-Cell Derived Growth Factor, progranulin) is a glycoprotein overexpressed in breast tumors and involved in their proliferation and survival. Since GP88 is secreted, an exploratory study was established to compare serum GP88 level between breast cancer patients (BC) and healthy volunteers (HV). Methods: An IRB approved prospective study enrolled 189 stage 1–4 BC patients and 18 HV. GP88 serum concentration was determined by immunoassay. Results: Serum GP88 level was 28.7 + 5.8 ng/ml in HV and increased to 40.7 + 16.0 ng/ml (P = 0.007) for stage 1–3 and 45.3 + 23.3 ng/ml (P = 0.0007) for stage 4 BC patients. There was no correlation between the GP88 level and BC characteristics such as age, race, tumor grade, ER, PR and HER-2 expression. Conclusion: These data suggest that serial testing of serum GP88 levels may have value as a circulating biomarker for detection, monitoring and follow up of BC.
Collapse
Affiliation(s)
- Katherine Rak Tkaczuk
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Structure, function, and mechanism of progranulin; the brain and beyond. J Mol Neurosci 2011; 45:538-48. [PMID: 21691802 DOI: 10.1007/s12031-011-9569-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/31/2011] [Indexed: 12/13/2022]
Abstract
Mutation of human GRN, the gene encoding the secreted glycoprotein progranulin, results in a form of frontotemporal lobar degeneration that is characterized by the presence of ubiquitinated inclusions containing phosphorylated and cleaved fragments of the transactivation response element DNA-binding protein-43. This has stimulated interest in understanding the role of progranulin in the central nervous system, and in particular, how this relates to neurodegeneration. Progranulin has many roles outside the brain, including regulation of cellular proliferation, survival, and migration, in cancer, including cancers of the brain, in wound repair, and inflammation. It often acts through the extracellular signal-regulated kinase and phopshatidylinositol-3-kinases pathways. The neurobiology of progranulin has followed a similar pattern with proposed roles for progranulin (PGRN) in the central nervous system as a neuroprotective agent and in neuroinflammation. Here we review the structure, biology, and mechanism of progranulin action. By understanding PGRN in a wider context, we may be better able to delineate its roles in the normal brain and in neurodegenerative disease.
Collapse
|
24
|
Cellular effects of progranulin in health and disease. J Mol Neurosci 2011; 45:549-60. [PMID: 21611805 DOI: 10.1007/s12031-011-9553-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/10/2011] [Indexed: 12/12/2022]
Abstract
Progranulin is a fascinating multifunctional protein, which has been implicated in cell growth, wound repair, tumorigenesis, inflammation, neurodevelopment, and more recently in neurodegeneration. The mechanism of action of this protein is still largely unknown, but the knowledge about the cellular effects on various cell types is expanding. In the current review, we will summarize what is known about the cell biology of progranulin. A better understanding of the biology of progranulin will impact diverse areas of research.
Collapse
|
25
|
Olsson B, Zetterberg H, Hampel H, Blennow K. Biomarker-based dissection of neurodegenerative diseases. Prog Neurobiol 2011; 95:520-34. [PMID: 21524681 DOI: 10.1016/j.pneurobio.2011.04.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 12/12/2022]
Abstract
The diagnosis of neurodegenerative diseases within neurology and psychiatry are hampered by the difficulty in getting biopsies and thereby validating the diagnosis by pathological findings. Biomarkers for other types of disease have been readily adopted into the clinical practice where for instance troponins are standard tests when myocardial infarction is suspected. However, the use of biomarkers for neurodegeneration has not been fully incorporated into the clinical routine. With the development of cerebrospinal fluid (CSF) biomarkers that reflect pathological events within the central nervous system (CNS), important clinical diagnostic tools are becoming available. This review summarizes the most promising biomarker candidates that may be used to monitor different types of neurodegeneration and protein inclusions, as well as different types of metabolic changes, in living patients in relation to the clinical phenotype and disease progression over time. Our aim is to provide the reader with an updated lexicon on currently available biomarker candidates, how far they have come in development and how well they reflect pathogenic processes in different neurodegenerative diseases. Biomarkers for specific pathogenetic processes would also be valuable tools both to study disease pathogenesis directly in patients and to identify and monitor the effect of novel treatment strategies.
Collapse
Affiliation(s)
- Bob Olsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, S-431 80 Mölndal, Sweden.
| | | | | | | |
Collapse
|
26
|
Zhou S, Cui Z, Urban J. Dead cell counts during serum cultivation are underestimated by the fluorescent live/dead assay. Biotechnol J 2011; 6:513-8. [PMID: 21305696 DOI: 10.1002/biot.201000254] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 12/15/2010] [Indexed: 11/12/2022]
Abstract
The live/dead fluorescent assay provides a quick method for assessing the proportion of live and dead cells in cell culture systems or tissues and is widely used. Dead cells are detected by the fluorescence produced when propidium iodide (PI) binds to DNA; PI and similar molecules are excluded from live cells but can penetrate dead cells because of their loss of membrane integrity. Here we investigated the effect of serum in the culture medium on the reliability of the method. We assessed viability of chondrocytes with/without serum using both a live/dead assay kit and also trypan blue staining. We found that after 2 days of culture, the DNA-binding dye PI could no longer detect dead cells if serum was present but they were readily detected in serum-free medium or if an inhibitor to DNase I was added to the serum-containing medium. Dead cells could be detected by trypan blue staining in all cultures. Hence dead cells are no longer detected as the DNase I present in serum degrades their DNA. DNA-binding dyes may thus not give a reliable estimate of the number of dead cells in systems that have been cultured in the presence of serum for several days.
Collapse
Affiliation(s)
- Shengda Zhou
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
27
|
Hoque M, Mathews MB, Pe'ery T. Progranulin (granulin/epithelin precursor) and its constituent granulin repeats repress transcription from cellular promoters. J Cell Physiol 2010; 223:224-33. [PMID: 20054825 DOI: 10.1002/jcp.22031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Progranulin (also known as granulin/epithelin precursor, GEP) is composed of seven granulin/epithelin repeats (granulins) and functions both as a full-length protein and as individual granulins. It is a secretory protein but a substantial amount of GEP is found inside cells, some in complexes with positive transcription elongation factor b (P-TEFb). GEP and certain granulins interact with the cyclin T1 subunit of P-TEFb, and with its HIV-1 Tat co-factor, leading to repression of transcription from the HIV promoter. We show that GEP lacking the signal peptide (GEPspm) remains inside cells and, like wild-type GEP, interacts with cyclin T1 and Tat. GEPspm represses transcription from the HIV-1 promoter at the RNA level. Granulins that bind cyclin T1 are phosphorylated by P-TEFb in vivo and in vitro on serine residues. GEPspm and those granulins that interact with cyclin T1 also inhibit transcription from cellular cad and c-myc promoters, which are highly dependent on P-TEFb, but not from the PCNA promoter. In addition, GEPspm and granulins repress transcriptional activation by VP16 or c-Myc, proteins that bind and recruit P-TEFb to responsive promoters. These data suggest that intracellular GEP is a promoter-specific transcriptional repressor that modulates the function of cellular and viral transcription factors.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, New Jersey, USA
| | | | | |
Collapse
|
28
|
Lampl N, Budai-Hadrian O, Davydov O, Joss TV, Harrop SJ, Curmi PMG, Roberts TH, Fluhr R. Arabidopsis AtSerpin1, crystal structure and in vivo interaction with its target protease RESPONSIVE TO DESICCATION-21 (RD21). J Biol Chem 2010; 285:13550-60. [PMID: 20181955 DOI: 10.1074/jbc.m109.095075] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In animals, protease inhibitors of the serpin family are associated with many physiological processes, including blood coagulation and innate immunity. Serpins feature a reactive center loop (RCL), which displays a protease target sequence as a bait. RCL cleavage results in an irreversible, covalent serpin-protease complex. AtSerpin1 is an Arabidopsis protease inhibitor that is expressed ubiquitously throughout the plant. The x-ray crystal structure of recombinant AtSerpin1 in its native stressed conformation was determined at 2.2 A. The electrostatic surface potential below the RCL was found to be highly positive, whereas the breach region critical for RCL insertion is an unusually open structure. AtSerpin1 accumulates in plants as a full-length and a cleaved form. Fractionation of seedling extracts by nonreducing SDS-PAGE revealed the presence of an additional slower migrating complex that was absent when leaves were treated with the specific cysteine protease inhibitor L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane. Significantly, RESPONSIVE TO DESICCATION-21 (RD21) was the major protease labeled with the L-trans-epoxysuccinyl-L-leucylamido (4-guanidino)butane derivative DCG-04 in wild type extracts but not in extracts of mutant plants constitutively overexpressing AtSerpin1, indicating competition. Fractionation by nonreducing SDS-PAGE followed by immunoblotting with RD21-specific antibody revealed that the protease accumulated both as a free enzyme and in a complex with AtSerpin1. Importantly, both RD21 and AtSerpin1 knock-out mutants lacked the serpin-protease complex. The results establish that the major Arabidopsis plant serpin interacts with RD21. This is the first report of the structure and in vivo interaction of a plant serpin with its target protease.
Collapse
Affiliation(s)
- Nardy Lampl
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Feng JQ, Guo FJ, Jiang BC, Zhang Y, Frenkel S, Wang DW, Tang W, Xie Y, Liu CJ. Granulin epithelin precursor: a bone morphogenic protein 2-inducible growth factor that activates Erk1/2 signaling and JunB transcription factor in chondrogenesis. FASEB J 2010; 24:1879-92. [PMID: 20124436 DOI: 10.1096/fj.09-144659] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Granulin epithelin precursor (GEP) has been implicated in development, tissue regeneration, tumorigenesis, and inflammation. Herein we report that GEP stimulates chondrocyte differentiation from mesenchymal stem cells in vitro and endochondral ossification ex vivo, and GEP-knockdown mice display skeleton defects. Similar to bone morphogenic protein (BMP) 2, application of the recombinant GEP accelerates rabbit cartilage repair in vivo. GEP is a key downstream molecule of BMP2, and it is required for BMP2-mediated chondrocyte differentiation. We also show that GEP activates chondrocyte differentiation through Erk1/2 signaling and that JunB transcription factor is one of key downstream molecules of GEP in chondrocyte differentiation. Collectively, these findings reveal a novel critical role of GEP growth factor in chondrocyte differentiation and the molecular events both in vivo and in vitro.
Collapse
Affiliation(s)
- Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M University System Health Science Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The growth factor progranulin (PGRN) regulates cell division, survival, and migration. PGRN is an extracellular glycoprotein bearing multiple copies of the cysteine-rich granulin motif. With PGRN family members in plants and slime mold, it represents one of the most ancient of the extracellular regulatory proteins still extant in modern animals. PRGN has multiple biological roles. It contributes to the regulation of early embryogenesis, to adult tissue repair and inflammation. Elevated PGRN levels often occur in cancers, and PGRN immunotherapy inhibits the growth of hepatic cancer xenografts in mice. Recent studies have demonstrated roles for PGRN in neurobiology. An autosomal dominant mutation in GRN, the gene for PGRN, leads to neuronal atrophy in the frontal and temporal lobes, resulting in the disease frontotemporal lobar dementia. In this review we will discuss current knowledge of the multifaceted biology of PGRN.
Collapse
Affiliation(s)
- Andrew Bateman
- Endocrine Research Laboratory, McGill University Health Centre, Royal Victoria Hospital, Montreal, Canada.
| | | |
Collapse
|
31
|
Swindell WR. Genes and gene expression modules associated with caloric restriction and aging in the laboratory mouse. BMC Genomics 2009; 10:585. [PMID: 19968875 PMCID: PMC2795771 DOI: 10.1186/1471-2164-10-585] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 12/07/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Caloric restriction (CR) counters deleterious effects of aging and, for most mouse genotypes, increases mean and maximum lifespan. Previous analyses of microarray data have identified gene expression responses to CR that are shared among multiple mouse tissues, including the activation of anti-oxidant, tumor suppressor and anti-inflammatory pathways. These analyses have provided useful research directions, but have been restricted to a limited number of tissues, and have focused on individual genes, rather than whole-genome transcriptional networks. Furthermore, CR is thought to oppose age-associated gene expression patterns, but detailed statistical investigations of this hypothesis have not been carried out. RESULTS Systemic effects of CR and aging were identified by examining transcriptional responses to CR in 17 mouse tissue types, as well as responses to aging in 22 tissues. CR broadly induced the expression of genes known to inhibit oxidative stress (e.g., Mt1, Mt2), inflammation (e.g., Nfkbia, Timp3) and tumorigenesis (e.g., Txnip, Zbtb16). Additionally, a network-based investigation revealed that CR regulates a large co-expression module containing genes associated with the metabolism and splicing of mRNA (e.g., Cpsf6, Sfpq, Sfrs18). The effects of aging were, to a considerable degree, similar among groups of co-expressed genes. Age-related gene expression patterns characteristic of most mouse tissues were identified, including up regulation of granulin (Grn) and secreted phosphoprotein 1 (Spp1). The transcriptional association between CR and aging varied at different levels of analysis. With respect to gene subsets associated with certain biological processes (e.g., immunity and inflammation), CR opposed age-associated expression patterns. However, among all genes, global transcriptional effects of CR were only weakly related to those of aging. CONCLUSION The study of aging, and of interventions thought to combat aging, has much to gain from data-driven and unbiased genomic investigations. Expression patterns identified in this analysis characterize a generalized response of mammalian cells to CR and/or aging. These patterns may be of importance in determining effects of CR on overall lifespan, or as factors that underlie age-related disease. The association between CR and aging warrants further study, but most evidence indicates that CR does not induce a genome-wide "reversal" of age-associated gene expression patterns.
Collapse
Affiliation(s)
- William R Swindell
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
32
|
ADAMTS-7, a direct target of PTHrP, adversely regulates endochondral bone growth by associating with and inactivating GEP growth factor. Mol Cell Biol 2009; 29:4201-19. [PMID: 19487464 DOI: 10.1128/mcb.00056-09] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ADAMTS-7, a metalloproteinase that belongs to ADAMTS family, is important for the degradation of cartilage extracellular matrix proteins in arthritis. Herein we report that ADAMTS-7 is upregulated during chondrocyte differentiation and demonstrates the temporal and spatial expression pattern during skeletal development. ADAMTS-7 potently inhibits chondrocyte differentiation and endochondral bone formation, and this inhibition depends on its proteolytic activity. The cysteine-rich domain of ADAMTS-7 is required for its interaction with the extracellular matrix, and the C-terminal four-thrombospondin motifs are necessary for its full proteolytic activity and inhibition of chondrocyte differentiation. ADAMTS-7 is an important target of canonical PTHrP signaling, since (i) PTHrP induces ADAMTS-7, (ii) ADAMTS-7 is downregulated in PTHrP null mutant (PTHrP-/-) growth plate chondrocytes, and (iii) blockage of ADAMTS-7 almost abolishes PTHrP-mediated inhibition of chondrocyte hypertrophy and endochondral bone growth. ADAMTS-7 associates with granulin-epithelin precursor (GEP), an autocrine growth factor that has been implicated in tissue regeneration, tumorigenesis, and inflammation. In addition, ADAMTS-7 acts as a new GEP convertase and neutralizes GEP-stimulated endochondral bone formation. Collectively, these findings demonstrate that ADAMTS-7, a direct target of PTHrP signaling, negatively regulates endochondral bone formation by associating with and inactivating GEP chondrogenic growth factor.
Collapse
|
33
|
Lovat F, Bitto A, Xu SQ, Fassan M, Goldoni S, Metalli D, Wubah V, McCue P, Serrero G, Gomella LG, Baffa R, Iozzo RV, Morrione A. Proepithelin is an autocrine growth factor for bladder cancer. Carcinogenesis 2009; 30:861-868. [PMID: 19237611 PMCID: PMC2675649 DOI: 10.1093/carcin/bgp050] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 01/28/2009] [Accepted: 02/14/2009] [Indexed: 12/23/2022] Open
Abstract
The growth factor proepithelin functions as an important regulator of proliferation and motility. Proepithelin is overexpressed in a great variety of cancer cell lines and clinical specimens of breast, ovarian and renal cancer, as well as glioblastomas. Using recombinant proepithelin on 5637 transitional cell carcinoma-derived cells, we have shown previously that proepithelin plays a critical role in bladder cancer by promoting motility of bladder cancer cells. In this study, we used the ONCOMINE database and gene microarray analysis tool to analyze proepithelin expression in several bladder cancer microarray studies. We found a statistically significant increase in proepithelin messenger RNA expression in bladder cancers vis-à-vis non-neoplastic tissues, and this was associated with pathologic and prognostic parameters. Targeted downregulation of proepithelin in T24 transitional carcinoma cells with small hairpin RNA inhibited both Akt and mitogen-activated protein kinase pathways, severely reduced the ability of T24 cells to proliferate in the absence of serum and inhibited migration, invasion and wound healing. In support of these in vitro results, we discovered that proepithelin expression was significantly upregulated in invasive bladder cancer tissues compared with normal urothelium. In addition, proepithelin was secreted in the urine, where it was detectable by immunoblotting and enzyme-linked immunosorbent assay. Collectively, these results support the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and progression of bladder cancer and suggest that proepithelin may prove a novel biomarker for the diagnosis and prognosis of bladder neoplasms.
Collapse
Affiliation(s)
| | | | | | | | - Silvia Goldoni
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | - Peter McCue
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ginette Serrero
- A&G Pharmaceutical Inc., Columbia, MD 21045, USA
- Program in Oncology, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | | | - Raffaele Baffa
- Department of Urology
- Present address: Medimmune, One Medimmune Way, Gaithersburg, MD 20878, USA
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrea Morrione
- Department of Urology
- Endocrine Mechanisms and Hormone Action Program
| |
Collapse
|
34
|
Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:411-429. [PMID: 19063916 DOI: 10.1016/j.dci.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The innate immune responses of early vertebrates, such as bony fishes, play a central role in host defence against infectious diseases and one of the most important effector cells of innate immunity are macrophages. In order for macrophages to be effective in host defence they must be present at all times in the tissues of their host and importantly, the host must be capable of rapidly increasing macrophage numbers during times of need. Hematopoiesis is a process of formation and development of mature blood cells, including macrophages. Hematopoiesis is controlled by soluble factors known as cytokines, that influence changes in transcription factors within the target cells, resulting in cell fate changes and the final development of specific effector cells. The processes involved in macrophage development have been largely derived from mammalian model organisms. However, recent advancements have been made in the understanding of macrophage development in bony fish, a group of organisms that rely heavily on their innate immune defences. Our understanding of the growth factors involved in teleost macrophage development, as well as the receptors and regulatory mechanisms in place to control them has increased substantially. Furthermore, model organisms such as the zebrafish have emerged as important instruments in furthering our understanding of the transcriptional control of cell development in fish as well as in mammals. This review highlights the recent advancements in our understanding of teleost macrophage development. We focused on the growth factors identified to be important in the regulation of macrophage development from a progenitor cell into a functional macrophage and discuss the important transcription factors that have been identified to function in teleost hematopoiesis. We also describe the findings of in vivo studies that have reinforced observations made in vitro and have greatly improved the relevance and importance of using teleost fish as model organisms for studying developmental processes.
Collapse
|
35
|
Monami G, Emiliozzi V, Bitto A, Lovat F, Xu SQ, Goldoni S, Fassan M, Serrero G, Gomella LG, Baffa R, Iozzo RV, Morrione A. Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1037-1047. [PMID: 19179604 PMCID: PMC2665763 DOI: 10.2353/ajpath.2009.080735] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2008] [Indexed: 11/20/2022]
Abstract
The growth factor proepithelin has recently emerged as an important regulator of transformation in several physiological and pathological systems. In this study, we determined the biological roles of proepithelin in prostate cancer cells using purified human recombinant proepithelin as well as proepithelin-depletion strategies. Proepithelin promoted the migration of androgen-dependent and -independent human prostate cancer cells; androgen-independent DU145 cells were the more responsive. In these cells, proepithelin additionally stimulated wound closure, invasion, and promotion of cell growth in vitro. These effects required the activation of both the Akt and mitogen-activated protein kinase pathways. We have analyzed proepithelin expression levels in different available prostate cancer microarray studies using the Oncomine database and found a statistically significant increase in proepithelin mRNA expression levels in prostate cancers compared with nonneoplastic controls. Notably, depletion of endogenous proepithelin by siRNA and antisense strategies impaired the ability of DU145 cells to grow and migrate after serum withdrawal and inhibited anchorage-independent growth. Our results provide the first evidence for a role of proepithelin in stimulating the migration, invasion, proliferation, and anchorage-independent growth of prostate cancer cells. This study supports the hypothesis that proepithelin may play a critical role as an autocrine growth factor in the establishment and initial progression of prostate cancer. Furthermore, proepithelin may prove to be a useful clinical marker for the diagnosis of prostate tumors.
Collapse
Affiliation(s)
- Giada Monami
- Department of Urology, Thomas Jefferson University, 233 South 10th St., BLSB Room 620, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tolkatchev D, Malik S, Vinogradova A, Wang P, Chen Z, Xu P, Bennett HPJ, Bateman A, Ni F. Structure dissection of human progranulin identifies well-folded granulin/epithelin modules with unique functional activities. Protein Sci 2008; 17:711-24. [PMID: 18359860 DOI: 10.1110/ps.073295308] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Progranulin is a secreted protein with important functions in several physiological and pathological processes, such as embryonic development, host defense, and wound repair. Autosomal dominant mutations in the progranulin gene cause frontotemporal dementia, while overexpression of progranulin promotes the invasive progression of a range of tumors, including those of the breast and the brain. Structurally, progranulin consists of seven-and-a-half tandem repeats of the granulin/epithelin module (GEM), several of which have been isolated as discrete 6-kDa GEM peptides. We have expressed all seven human GEMs using recombinant DNA in Escherichia coli. High-resolution NMR showed that only the three GEMs, hGrnA, hGrnC, and hGrnF, contain relatively well-defined three-dimensional structures in solution, while others are mainly mixtures of poorly structured disulfide isomers. The three-dimensional structures of hGrnA, hGrnC, and hGrnF contain a stable stack of two beta-hairpins in their N-terminal subdomains, but showed a more flexible C-terminal subdomain. Interestingly, of the well-structured GEMs, hGrnA demonstrated potent growth inhibition of a breast cancer cell line, while hGrnF was stimulatory. Poorly folded peptides were either weakly inhibitory or without activity. The functionally active and structurally well-characterized human hGrnA offers a unique opportunity for detailed structure-function studies of these important GEM proteins as novel members of mammalian growth factors.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Bio-NMR and Protein Research Laboratory, Biotechnology Research Institute, National Research Council of Canada, Montreal, Quebec H4P 2R2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, Haass C. Missense Mutations in the Progranulin Gene Linked to Frontotemporal Lobar Degeneration with Ubiquitin-immunoreactive Inclusions Reduce Progranulin Production and Secretion. J Biol Chem 2008; 283:1744-1753. [DOI: 10.1074/jbc.m705115200] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Xu K, Zhang Y, Ilalov K, Carlson CS, Feng JQ, Di Cesare PE, Liu CJ. Cartilage oligomeric matrix protein associates with granulin-epithelin precursor (GEP) and potentiates GEP-stimulated chondrocyte proliferation. J Biol Chem 2007; 282:11347-11355. [PMID: 17307734 DOI: 10.1074/jbc.m608744200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations in human cartilage oligomeric matrix protein (COMP) have been linked to the development of pseudoachondroplasia and multiple epiphyseal dysplasia; however, the functions of both wild-type and mutant COMP in the skeletogenesis remain unknown. In an effort to define the biological functions of COMP, a functional genetic screen based on the yeast two-hybrid system was performed. This led to the identification of granulin-epithelin precursor (GEP), an autocrine growth factor, as a COMP-associated partner. COMP directly binds to GEP both in vitro and in vivo, as revealed by in vitro pull down and co-immunoprecipitation assays. GEP selectively interacts with the epidermal growth factor repeat domain of COMP but not with the other three functional domains of COMP. The granulin A repeat unit of GEP is required and sufficient for association with COMP. COMP co-localizes with GEP predominantly in the pericellular matrix of transfected rat chondrosarcoma cell and primary human chondrocytes. Staining of musculoskeletal tissues of day 19 mouse embryo with antibodies to GEP is restricted to chondrocytes in the lower proliferative and upper hypertrophic zones. Overexpression of GEP stimulates the proliferation of chondrocytes, and this stimulation is enhanced by COMP. In addition, COMP appears to be required for GEP-mediated chondrocyte proliferation, since chondrocyte proliferation induced by GEP is dramatically inhibited by an anti-COMP antibody. These findings provide the first evidence linking the association of COMP and GEP and identifying a previously unrecognized growth factor (i.e. GEP) in cartilage.
Collapse
Affiliation(s)
- Ke Xu
- Department of Orthopaedic Surgery, New York University Hospital for Joint Diseases, New York, New York 10003, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Kong WJ, Zhang SL, Chen X, Zhang S, Wang YJ, Zhang D, Sun Y. PC cell-derived growth factor overexpression promotes proliferation and survival of laryngeal carcinoma. Anticancer Drugs 2007; 18:29-40. [PMID: 17159500 DOI: 10.1097/01.cad.0000236315.96574.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PC cell-derived growth factor is a novel growth factor for tumor formation and progression. No comprehensive literature concerning PC cell-derived growth factor expression status and its biological function in squamous cell carcinoma, especially in the larynx, is, however, available. The target of this study is to evaluate the clinical significance of PC cell-derived growth factor and the potential of small interfering RNA-induced genetic silencing of PC cell-derived growth factor as a supplementary therapeutic way for laryngeal squamous cell carcinoma. A total of 146 primary laryngeal cancer, 108 adult laryngeal papilloma and 41 laryngeal leukoplakia samples, as well as 10 normal larynx tissues were investigated. The PC cell-derived growth factor mRNA level was examined by real-time polymerase chain reaction and protein localization by immunohistochemistry. The biological function of PC cell-derived growth factor was assessed by transfection of small interfering RNA PC cell-derived growth factor construction. The PC cell-derived growth factor protein levels and mRNA levels of the laryngeal squamous cell carcinomas were significantly higher than those of normal laryngeal tissues (P<0.001). Simultaneously, the difference in the levels of mRNA and protein between those of laryngeal precancerous lesions (papilloma/leukoplakia) and those of normal tissues was significant (P<0.05, P<0.05), whereas those of laryngeal precancerous lesions (papilloma/leukoplakia) were significantly lower than those of laryngeal squamous cell carcinomas (P<0.05, P<0.05). Strong PC cell-derived growth factor expression was associated with lymph node metastases in laryngeal squamous cell carcinoma (P<0.05). Functional studies on Hep-2 cell lines demonstrated that the attenuation of PC cell-derived growth factor expression levels led to diminished cell proliferation rates (P<0.001), anchorage-independent growth in vitro (P<0.001), tumor forming in vivo (P<0.01) and resistance to apoptosis (P<0.001). PC cell-derived growth factor is a pivotal autocrine growth factor in the tumorigenesis of laryngeal squamous cell carcinoma. Our findings also indicate that PC cell-derived growth factor is a logical and potential target for early diagnosis, specific therapy and prognosis of laryngeal squamous cell carcinoma.
Collapse
Affiliation(s)
- Wei-Jia Kong
- Department of Otolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PRC.
| | | | | | | | | | | | | |
Collapse
|
40
|
Inhibition of PC cell-derived growth factor (PCDGF)/granulin-epithelin precursor (GEP) decreased cell proliferation and invasion through downregulation of cyclin D and CDK4 and inactivation of MMP-2. BMC Cancer 2007; 7:22. [PMID: 17261172 PMCID: PMC1794415 DOI: 10.1186/1471-2407-7-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Accepted: 01/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background PC cell-derived growth factor (PCDGF), also called epithelin/granulin precursor (GEP), is an 88-kDa secreted glycoprotein with the ability to stimulate cell proliferation in an autocrine fashion. In addition, some studies indicated that PCDGF participated in invasion, metastasis and survival of cancer cells by regulating cell migration, adhesion and proliferation. Yet the effects of PCDGF on proliferation and invasion of ovarian cancer cells in vitro and the mechanisms by which PCDGF mediates biological behaviors of ovarian cancer have rarely been reported. In the present study we investigated whether and how PCDGF/GEP mediated cell proliferation and invasion in ovarian cancer. Methods PCDGF/GEP expression level in three human ovarian cancer cell lines of different invasion potential were detected by RT-PCR and western blot. Effects of inhibition of PCDGF expression on cell proliferation and invasion capability were determined by MTT assay and Boyden chamber assay. Expression levels of cyclin D1 and CDK4 and MMP-2 activity were evaluated in a pilot study. Results PCDGF mRNA and protein were expressed at a high level in SW626 and A2780 and at a low level in SKOV3. PCDGF expression level correlated well with malignant phenotype including proliferation and invasion in ovarian cancer cell lines. In addition, the proliferation rate and invasion index decreased after inhibition of PCDGF expression by antisense PCDGF cDNA transfection in SW626 and A2780. Furthermore expression of CyclinD1 and CDK4 were downregulated and MMP-2 was inactivated after PCDGF inhibition in the pilot study. Conclusion PCDGF played an important role in stimulating proliferation and promoting invasion in ovarian cancer. Inhibition of PCDGF decreased proliferation and invasion capability through downregulation of cyclin D1 and CDK4 and inactivation of MMP-2. PCDGF could serve as a potential therapeutic target in ovarian cancer.
Collapse
|
41
|
Chiba S, Suzuki M, Yamanouchi K, Nishihara M. Involvement of Granulin in Estrogen-Induced Neurogenesis in the Adult Rat Hippocampus. J Reprod Dev 2007; 53:297-307. [PMID: 17179653 DOI: 10.1262/jrd.18108] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have demonstrated the presence of neurogenesis in the adult mammalian hippocampus, and it has been suggested that estrogen and various growth factors influence the processes of adult neurogenesis. The present study assessed cell proliferation in the dentate gyrus and the mRNA expression levels of granulin, insulin-like growth factor-I (IGF-I), and brain-derived neurotrophic factor (BDNF) in the hippocampus 4 h after treatment with estradiol benzoate (EB) in 3- and 12-month old ovariectomized rats. At 3 months of age, mRNA expression of granulin precursor and cell proliferation were increased by EB treatment, although the mRNA expressions of IGF-I and BDNF remained unchanged. At 12 months of age, however, neither mRNA expression of the three genes nor cell proliferation in the dentate gyrus were affected by EB treatment. In addition, 17beta-estradiol enhanced the proliferation of neural progenitor cells derived from hippocampal tissue of 3-month-old female rats in vitro; this was inhibited by neutralization of granulin with specific antibody. These results suggest that estrogen induces granulin gene expression in the hippocampus and that the product of this gene is involved in the mitogenic effects of estrogen in the dentate gyrus, although the responses to estrogen decline with age.
Collapse
Affiliation(s)
- Shuichi Chiba
- Department of Veterinary Physiology, Veterinary Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
Shen S, Kai B, Ruan J, Torin Huzil J, Carpenter E, Tuszynski JA. Probabilistic analysis of the frequencies of amino acid pairs within characterized protein sequences. PHYSICA A 2006; 370:651-662. [PMID: 32288076 PMCID: PMC7127678 DOI: 10.1016/j.physa.2006.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 02/22/2006] [Indexed: 06/07/2023]
Abstract
Here, we describe a unique probabilistic evaluation of the 20, naturally occurring, amino acids and their distributions within the Swiss-Prot and Complete Human Genebank databases. We have developed a computational technique that imparts both directionality and length constraints into searches for unique combinations of amino acids within protein sequences. Using statistical approaches, we have carried out searches of all possible two- and three-residue motifs contained within these databases. This technique is based on the unusually high occurrence of a small number of these motifs when compared to the expected probability of finding a specific residue grouping within a given database. Subsequent filtering of this search to identify such unique combinations has provided several examples that can be used as markers to identify particular proteins within or across databases. We focus on three of these motifs, which were found to be of greatest interest to us. The CC, CM and a combination of the two, CCM motifs all occur either more or less frequently than would be predicted based on standard amino acid distributions within the entire human proteome.
Collapse
Affiliation(s)
- Shiyi Shen
- College of Mathematical Science and LPMC, Nankai University, Tianjin 300071, PR China
| | - Bo Kai
- College of Mathematical Science and LPMC, Nankai University, Tianjin 300071, PR China
| | - Jishou Ruan
- College of Mathematical Science and LPMC, Nankai University, Tianjin 300071, PR China
| | - J. Torin Huzil
- Department of Oncology, Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Canada AB T6G 1Z2
| | - Eric Carpenter
- Department of Oncology, Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Canada AB T6G 1Z2
| | - Jack A. Tuszynski
- Department of Oncology, Division of Experimental Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Canada AB T6G 1Z2
| |
Collapse
|
43
|
Monami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 2006; 66:7103-10. [PMID: 16849556 DOI: 10.1158/0008-5472.can-06-0633] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growth factor proepithelin (also known as progranulin, acrogranin, PC-derived growth factor, or granulin-epithelin precursor) is a secreted glycoprotein that functions as an important regulator of cell growth, migration, and transformation. Proepithelin is overexpressed in a great variety of cancer cell lines and clinical specimens of breast, ovarian, and renal cancer as well as glioblastomas. In this study, we have investigated the effects of proepithelin on bladder cancer cells using human recombinant proepithelin purified to homogeneity from 293-EBNA cells. Although proepithelin did not appreciably affect cell growth, it did promote migration of 5637 bladder cancer cells and stimulate in vitro wound closure and invasion. These effects required the activation of the mitogen-activated protein kinase pathway and paxillin, which upon proepithelin stimulation formed a complex with focal adhesion kinase and active extracellular signal-regulated kinase. Our results provide the first evidence for a role of proepithelin in stimulating migration and invasion of bladder cancer cells, and support the hypothesis that this growth factor may play a critical role in the establishment of the invasive phenotype.
Collapse
Affiliation(s)
- Giada Monami
- Department of Urology, Anatomy and Cell Biology and Cellular Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chen HJ, Huang DJ, Hou WC, Liu JS, Lin YH. Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:863-76. [PMID: 16777534 DOI: 10.1016/j.jplph.2005.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Accepted: 08/29/2005] [Indexed: 05/10/2023]
Abstract
Granulins are a family of evolutionarily ancient proteins that are involved in regulating cell growth and division in animals. In this report a full-length cDNA, SPCP3, was isolated from senescent leaves of sweet potato (Ipomoea batatas). SPCP3 contains 1389 nucleotides (462 amino acids) in its open reading frame, and exhibits high amino acid sequence homologies (ca. 64-73.6%) with several plant granulin-containing cysteine proteases, including potato, tomato, soybean, kidney bean, pea, maize, rice, cabbage, and Arabidopsis. Gene structural analysis shows that SPCP3 encodes a putative precursor protein. Via cleavage of the N-terminal propeptide, it generates a protein with 324 amino acids (from the 139th to the 462nd amino acid residues), which contains two main domains: the conserved catalytic domain with the putative catalytic residues (the 163rd Cys, 299th His and 319th Asn) and the C-terminal granulin domain (from the 375th to the 462nd amino acid residues). Semi-quantitative RT-PCR and protein gel blot hybridization showed that SPCP3 gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was almost undetectable in mature green leaves, veins, and roots. Phylogenic analysis showed that SPCP3 displayed close association with a group of plant granulin-containing cysteine proteases which have been implied to be involved in programmed cell death. In conclusion, sweet potato SPCP3 is a functional, senescence-associated gene. Its mRNA and protein levels were significantly enhanced in natural and induced senescing leaves. The physiological role and/or function of SPCP3 associated with programmed cell death during leaf senescence were also discussed.
Collapse
Affiliation(s)
- Hsien-Jung Chen
- Department of Horticulture, Chinese Culture University, 111 Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
45
|
Jones MB, Houwink AP, Freeman BK, Greenwood TM, Lafky JM, Lingle WL, Berchuck A, Maxwell GL, Podratz KC, Maihle NJ. The granulin-epithelin precursor is a steroid-regulated growth factor in endometrial cancer. ACTA ACUST UNITED AC 2006; 13:304-11. [PMID: 16697948 DOI: 10.1016/j.jsgi.2006.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The majority of endometrial cancers arise as a result of estrogen stimulation, the molecular targets of which remain incompletely defined. We hypothesize that the granulin-epithelin precursor (GEP) may be one such target. In this study, we examined the frequency of GEP and estrogen receptor (ER) co-expression in human endometrial cancers. Once we established the co-expression of GEP with the estrogen receptor we examined the potential estrogen regulation of GEP expression, as well as the functional significance of GEP expression in vitro. METHODS Double immunofluorescence and confocal microscopy were used to compare GEP and ER expression among 41 endometrial cancers. The effects of estradiol and tamoxifen treatment on GEP expression in two endometrial cancer cell lines, KLE and HEC-1-A, were assessed through reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis. The antiproliferative effect of GEP silencing by short hairpin (sh)RNA, was evaluated in HEC-1-A cells using an MTT assay. RESULTS GEP co-expression with ER was observed in 63% of the cancers examined. A two- to fivefold increase in GEP expression with estradiol and/or tamoxifen treatment was observed in KLE cells. Silencing of GEP in HEC-1-A cells using shRNA resulted in a decrease in proliferation among transfected cells. CONCLUSIONS Co-expression of GEP and ER in endometrial cancer cells, and the regulation of GEP by estrogen, suggests a role for GEP in steroid-mediated endometrial cancer cell growth. Further characterization of GEP as a steroid-mediated growth factor in these cells may broaden our understanding of endometrial cancer biology and also provide guidance in the development of novel therapeutic targets.
Collapse
|
46
|
Kamrava M, Simpkins F, Alejandro E, Michener C, Meltzer E, Kohn EC. Lysophosphatidic acid and endothelin-induced proliferation of ovarian cancer cell lines is mitigated by neutralization of granulin-epithelin precursor (GEP), a prosurvival factor for ovarian cancer. Oncogene 2005; 24:7084-93. [PMID: 16044162 DOI: 10.1038/sj.onc.1208857] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Granulin-epithelin precursor (GEP/progranulin) is an autocrine growth factor for ovarian cancer. We examined the production and function of GEP and report that: (1) GEP production is regulated by endothelin (ET-1), lysophosphatidic acid (LPA), and cAMP; (2) cAMP signals GEP production through exchange protein activated by cAMP (EPAC); (3) ET-1 and cAMP/EPAC induce GEP through ERK1/2; and (4) neutralization of GEP results in apoptosis. Exposure of HEY-A8 and OVCAR3 ovarian cancer cells to LPA and ET-1 yielded GEP production and secretion in a dose- and time-dependent fashion; neither stimulated significant concentrations of cAMP directly. Stimulation of cAMP production with pertussis and cholera toxin, or forskolin induced GEP in a PKA-independent fashion. EPAC, an intracellular cAMP receptor, is activated specifically by the cAMP analog, 8-CPT-2'-O-Me-cAMP (8-CPT); 8-CPT treatment stimulated GEP production and secretion. The MEK inhibitor, U0126, abrogated GEP production in response to ET-1 and 8-CPT, confirming involvement of MAPK. A partial inhibition of basal and stimulated GEP production was observed when cells were treated with a internal calcium chelator, BAPTA. Neutralizing anti-GEP antibody reversed basal as well as LPA, ET-1 and 8-CPT-induced ovarian cancer cell growth and induced apoptosis as demonstrated by caspase-3 and PARP cleavage, DNA fragmentation, and nuclear condensation. These results indicate that GEP is a growth and survival factor for ovarian cancer, induced by LPA and ET-1 and cAMP/EPAC through ERK1/2.
Collapse
Affiliation(s)
- Mitchell Kamrava
- Howard Hughes Medical Institute/National Institutes of Health Research Scholars Program, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
47
|
Cheung ST, Wong SY, Leung KL, Chen X, So S, Ng IO, Fan ST. Granulin-epithelin precursor overexpression promotes growth and invasion of hepatocellular carcinoma. Clin Cancer Res 2005; 10:7629-36. [PMID: 15569995 DOI: 10.1158/1078-0432.ccr-04-0960] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Granulin-epithelin precursor (GEP) is a novel growth factor. Our earlier cDNA microarray study indicated that GEP was overexpressed in hepatocellular carcinoma (HCC). The aim of this study was to investigate the clinical significance of GEP expression and its potential as a therapeutic target in HCC. EXPERIMENTAL DESIGN A total of 110 pairs of HCCs and adjacent nontumor liver tissues, and 22 normal liver tissues were examined. The GEP RNA level was examined by quantitative reverse transcription-PCR, and protein localization by immunohistochemistry. The GEP function was examined by transfection experiments. RESULTS The RNA levels of the HCCs were significantly higher than those of the nontumor liver tissues and normal livers (P <0.001). GEP protein staining was observed in tumor cytoplasm, and the GEP protein levels of the HCCs were also significantly higher than those of the nontumor liver tissues and normal livers (P <0.001). The majority of HCCs demonstrated up-regulation of GEP protein compared with their adjacent liver tissues [79 (71.8%) of 110]. Positive correlation of GEP RNA with protein levels was observed in HCCs (P <0.01). Strong GEP expression was associated with large HCCs, venous infiltration, and early intrahepatic recurrence (P <0.05). Functional studies on the HCC cell line Hep3B demonstrated that reduction of GEP protein levels resulted in decreased cell proliferation rates, tumor invasion ability, anchorage-independent growth in soft agar, and tumorigenicity in nude mice (P <0.05). CONCLUSION GEP is an important factor for HCC growth, invasion, and metastasis. GEP has the potential to serve as a tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Siu Tim Cheung
- Centre for the Study of Liver Disease and Departments of Surgery and Pathology, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tangkeangsirisin W, Hayashi J, Serrero G. PC cell-derived growth factor mediates tamoxifen resistance and promotes tumor growth of human breast cancer cells. Cancer Res 2004; 64:1737-43. [PMID: 14996734 DOI: 10.1158/0008-5472.can-03-2364] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PC cell-derived growth factor, also known as progranulin, is an M(r) 88,000 growth factor (referred as PCDGF/GP88) overexpressed in human breast cancer. Antisense inhibition of PCDGF/GP88 expression in MDA-MB-468 cells inhibited tumor formation in nude mice. In estrogen receptor-positive cells, PCDGF/GP88 was expressed in response to estradiol and shown to mediate its mitogenic effect. Pathologic studies indicated that PCDGF/GP88 was expressed in 80% of invasive ductal carcinomas in correlation with parameters of poor prognosis. In the present article, the relationship between PCDGF/GP88 expression and tamoxifen resistance was examined in MCF-7 cells. PCDGF/GP88 overexpression rendered MCF-7 cells able to proliferate in the absence of estrogen and in the presence of tamoxifen. The PCDGF/GP88-overexpressing cells formed tumors in ovariectomized nude mice in the absence of estradiol and in its presence, in contrast to MCF-7 cells. Tumor growth of the overexpressing cells was increased significantly when the mice were treated with tamoxifen. PCDGF/GP88 blocked tamoxifen-induced apoptosis by preventing down-regulation of bcl-2 expression and poly(ADP-ribose) polymerase cleavage. In addition, PCDGF/GP88-overexpressing cells presented higher level of the angiogenic factors vascular endothelial growth factor and angiopoietin-1 than MCF-7 control cells. Tamoxifen treatment additionally increased the level of vascular endothelial growth factor. These studies suggest that PCDGF/GP88 plays a critical role in breast cancer tumorigenesis and in the transition to estrogen independence and tamoxifen resistance, a hallmark of poor prognosis. On the basis of the in vivo studies, it is postulated that tamoxifen treatment of patients with estrogen receptor-positive breast tumors overexpressing PCDGF/GP88 could have adverse clinical consequences.
Collapse
|
49
|
Ghannam G, Takeda A, Camarata T, Moore MA, Viale A, Yaseen NR. The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells. J Biol Chem 2003; 279:866-75. [PMID: 14561764 DOI: 10.1074/jbc.m307280200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nucleoporin Nup98 gene is frequently rearranged in acute myelogenous leukemia (AML). In most cases this results in fusion of the N terminus of Nup98 to the DNA binding domain of a homeodomain transcription factor. The prototype of these fusions, Nup98-HOXA9, is associated with human AML and induces AML in mouse models. To understand the mechanisms by which Nup98-HOXA9 causes AML, we expressed it in myeloid cells and identified its target genes using high density oligonucleotide microarrays. The analysis was performed in triplicate and was confirmed by quantitative real time PCR. Of the 102 Nup98-HOXA9 target genes identified, 92 were up-regulated, and only 10 were down-regulated, suggesting a transcriptional activation function. A similar analysis of wild-type HOXA9 revealed 13 target genes, 12 of which were up-regulated, and 1 was down-regulated. In contrast, wild-type Nup98 had no effect on gene expression, demonstrating that the HOXA9 DNA binding domain is required for gene regulation. Co-transfection experiments using a luciferase reporter linked to the promoter of one of the Nup98-HOXA9 target genes confirmed up-regulation at the transcriptional level by Nup98-HOXA9 but not by either HOXA9 or Nup98. These data indicate that Nup98-HOXA9 is an aberrant transcription factor whose activity depends on the HOXA9 DNA binding domain but has a stronger and wider transcriptional effect than HOXA9. Several of the genes regulated by Nup98-HOXA9 are associated with increased cell proliferation and survival as well as drug metabolism, providing insights into the pathogenesis and epidemiology of Nup98-HOXA9-induced AML.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Survival
- Down-Regulation
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Green Fluorescent Proteins
- Homeodomain Proteins/physiology
- Humans
- Image Processing, Computer-Assisted
- K562 Cells
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Luciferases/metabolism
- Luminescent Proteins/metabolism
- Mice
- Models, Biological
- Myeloid Cells/metabolism
- Nuclear Pore Complex Proteins/physiology
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins, Fusion/physiology
- Plasmids/metabolism
- Protein Structure, Tertiary
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Ghada Ghannam
- Department of Pathology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
50
|
Gonzalez EM, Mongiat M, Slater SJ, Baffa R, Iozzo RV. A novel interaction between perlecan protein core and progranulin: potential effects on tumor growth. J Biol Chem 2003; 278:38113-6. [PMID: 12900424 DOI: 10.1074/jbc.c300310200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In an in vivo search of novel partners for perlecan, a major heparan sulfate proteoglycan of basement membranes and cell surfaces, we identified progranulin, a secreted growth factor, as a strong interacting protein. Unambiguous interaction, first observed with the yeast two-hybrid system, was corroborated by co-immunoprecipitation studies using cell-free transcription/translation and transient cell transfection assays. The interaction of progranulin with perlecan domain V involved the first two laminin- and epidermal growth factor-like repeats. Within progranulin, the subdomains interacting most with perlecan harbored granulins F and B. Kinetics analysis of the interaction using surface plasmon resonance showed a saturable binding of relative low affinity (KD approximately 1 microM). These results were supported by significant expression overlap of these two proteins in a series of ovarian tumor tissue microarrays. Progranulin was present within proliferating blood vessels of ovarian carcinomas and perivascular matrices, with a distribution similar to perlecan. Notably, both progranulin and domain V stimulated the growth of adrenal carcinoma cells. However, when used together in equimolar amounts, the two proteins counteracted each other's activity. Thus, progranulin/perlecan interaction could contribute to a fine regulation of tumor angiogenesis and could ultimately affect cancer growth.
Collapse
Affiliation(s)
- Eva M Gonzalez
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|