1
|
Tang X, Liu R, Mei Y, Wang D, He K, Wang NN. Identification of Key Ubiquitination Sites Involved in the Proteasomal Degradation of AtACS7 in Arabidopsis. Int J Mol Sci 2024; 25:2931. [PMID: 38474174 PMCID: PMC10931761 DOI: 10.3390/ijms25052931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly regulated, especially at a post-translational level. AtACS7, the only type III ACS in Arabidopsis, is degraded in a 26S proteasome-dependent pathway. Here, by using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis, two lysine residues of AtACS7, lys285 (K285) and lys366 (K366), were revealed to be ubiquitin-modified in young, light-grown Arabidopsis seedlings but not in etiolated seedlings. Deubiquitylation-mimicking mutations of these residues significantly increased the stability of the AtACS7K285RK366R mutant protein in cell-free degradation assays. All results suggest that K285 and K366 are the major ubiquitination sites on AtACS7, providing deeper insights into the post-translational regulation of AtACS7 in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | - Kaixuan He
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Ashajyothi M, Velmurugan S, Kundu A, Balamurugan A, Chouhan V, Kumar A. Hydroxamate siderophores secreted by plant endophytic Pseudomonas putida elicit defense against blast disease in rice incited by Magnaporthe oryzae. Lett Appl Microbiol 2023; 76:ovad139. [PMID: 38086617 DOI: 10.1093/lambio/ovad139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/17/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Our study focuses on hydroxamate-type siderophores from Pseudomonas putida BP25, known for chelating ferric iron and aiding microbial growth in iron-deficient environments. Confirmed through CAS-agar and tetrazolium tests, a purified siderophore extract was obtained via ion-exchange chromatography. Applying varying concentrations of this siderophore to rice seedlings demonstrated concentration-dependent effects on shoot and root phenotypes. Prophylactic application on rice leaves significantly reduced blast severity (68.7%-97.0%), surpassing curative application (47.5%-86.87%). Additionally, the siderophore treatment elevated peroxidase, polyphenol oxidase, and total phenols in rice plants. Defense-related genes linked to salicylic acid (OsPR1.1, OsNPR1, and OsPDF2.2), and other pathways (Oshox24, OsCLE, and OsGLP3-3, OsEIN2.4, and OsCSE) promoting blast suppression showed upregulation. However, the OsACS6 gene associated with ethylene-induced internodal elongation was significantly downregulated. Overall, our findings propose that the siderophore from P. putida BP25 induces defense gene transcription, offering potential for sustainable rice production via bio-formulation.
Collapse
Affiliation(s)
- Mushineni Ashajyothi
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shanmugam Velmurugan
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Alexander Balamurugan
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vinod Chouhan
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
3
|
Chakrabarti M, Bharti S. Role of EIN2-mediated ethylene signaling in regulating petal senescence, abscission, reproductive development, and hormonal crosstalk in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111699. [PMID: 37028457 DOI: 10.1016/j.plantsci.2023.111699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/14/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Ethylene plays a pivotal role in a wide range of developmental, physiological, and defense processes in plants. EIN2 (ETHYLENE INSENSITIVE2) is a key player in the ethylene signaling pathway. To characterize the role of EIN2 in processes, such as petal senescence, where it has been found to play important roles along with various other developmental and physiological processes, the tobacco (Nicotiana tabacum) ortholog of EIN2 (NtEIN2) was isolated and NtEIN2 silenced transgenic lines were generated using RNA interference (RNAi). Silencing of NtEIN2 compromised plant defense against pathogens. NtEIN2 silenced lines displayed significant delays in petal senescence, and pod maturation, and adversely affected pod and seed development. This study further dissected the petal senescence in ethylene insensitive lines, that displayed alteration in the pattern of petal senescence and floral organ abscission. Delay in petal senescence was possibly because of delayed aging processes within petal tissues. Possible crosstalk between EIN2 and AUXIN RESPONSE FACTOR 2 (ARF2) in regulating the petal senescence process was also investigated. Overall, these experiments indicated a crucial role for NtEIN2 in controlling diverse developmental and physiological processes, especially in petal senescence.
Collapse
Affiliation(s)
- Manohar Chakrabarti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA.
| | - Shikha Bharti
- Department of Biology, University of Texas Rio Grande Valley, 1201 W. University Dr, Edinburg, TX 78539, USA
| |
Collapse
|
4
|
Umer MJ, Zheng J, Yang M, Batool R, Abro AA, Hou Y, Xu Y, Gebremeskel H, Wang Y, Zhou Z, Cai X, Liu F, Zhang B. Insights to Gossypium defense response against Verticillium dahliae: the Cotton Cancer. Funct Integr Genomics 2023; 23:142. [PMID: 37121989 DOI: 10.1007/s10142-023-01065-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023]
Abstract
The soil-borne pathogen Verticillium dahliae, also referred as "The Cotton Cancer," is responsible for causing Verticillium wilt in cotton crops, a destructive disease with a global impact. To infect cotton plants, the pathogen employs multiple virulence mechanisms such as releasing enzymes that degrade cell walls, activating genes that contribute to virulence, and using protein effectors. Conversely, cotton plants have developed numerous defense mechanisms to combat the impact of V. dahliae. These include strengthening the cell wall by producing lignin and depositing callose, discharging reactive oxygen species, and amassing hormones related to defense. Despite the efforts to develop resistant cultivars, there is still no permanent solution to Verticillium wilt due to a limited understanding of the underlying molecular mechanisms that drive both resistance and pathogenesis is currently prevalent. To address this challenge, cutting-edge technologies such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), host-induced gene silencing (HIGS), and gene delivery via nano-carriers could be employed as effective alternatives to control the disease. This article intends to present an overview of V. dahliae virulence mechanisms and discuss the different cotton defense mechanisms against Verticillium wilt, including morphophysiological and biochemical responses and signaling pathways including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and strigolactones (SLs). Additionally, the article highlights the significance of microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) in gene expression regulation, as well as the different methods employed to identify and functionally validate genes to achieve resistance against this disease. Gaining a more profound understanding of these mechanisms could potentially result in the creation of more efficient strategies for combating Verticillium wilt in cotton crops.
Collapse
Affiliation(s)
- Muhammad Jawad Umer
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Jie Zheng
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
| | - Mengying Yang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Raufa Batool
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Aamir Ali Abro
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Haileslassie Gebremeskel
- Mehoni Agricultural Research Center, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Yuhong Wang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - ZhongLi Zhou
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Hainan Yazhou Bay Seed Laboratory, China/National Nanfan, Research Institute of Chinese Academy of Agricultural Sciences, Sanya, 572025, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China.
| | - Baohong Zhang
- State Key Laboratory of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| |
Collapse
|
5
|
Assessment of the RNA Silencing Suppressor Activity of Protein P0 of Pepper Vein Yellows Virus 5: Uncovering Natural Variability, Relevant Motifs and Underlying Mechanism. BIOLOGY 2022; 11:biology11121801. [PMID: 36552310 PMCID: PMC9775047 DOI: 10.3390/biology11121801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Pepper vein yellows virus 5 (PeVYV-5) belongs to a group of emerging poleroviruses (family Solemoviridae) which pose a risk to pepper cultivation worldwide. Since its first detection in Spain in 2013 and the determination of the complete genome sequence of an isolate in 2018, little is known on the presence, genomic variation and molecular properties of this pathogen. As other members of genus Polerovirus, PeVYV-5 encodes a P0 protein that was predicted to act as viral suppressor of RNA silencing (VSR), one of the major antiviral defense mechanisms in plants. The results of the present work have indicated that PeVYV-5 P0 is a potent VSR, which is able to induce the degradation of Argonaute (AGO) endonucleases, the main effectors of RNA silencing. New viral isolates have been identified in samples collected in 2020-2021 and sequencing of their P0 gene has revealed limited heterogeneity, suggesting that the protein is under negative selection. Analysis of natural and engineered P0 variants has pinpointed distinct protein motifs as critical for the VSR role. Moreover, a positive correlation between the VSR activity of the protein and its capability to promote AGO degradation could be established, supporting that such activity essentially relies on the clearance of core components of the RNA silencing machinery.
Collapse
|
6
|
Sáiz-Bonilla M, Martín Merchán A, Pallás V, Navarro JA. Molecular characterization, targeting and expression analysis of chloroplast and mitochondrion protein import components in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1040688. [PMID: 36388587 PMCID: PMC9643744 DOI: 10.3389/fpls.2022.1040688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Improved bioinformatics tools for annotating gene function are becoming increasingly available, but such information must be considered theoretical until further experimental evidence proves it. In the work reported here, the genes for the main components of the translocons of the outer membrane of chloroplasts (Toc) and mitochondria (Tom), including preprotein receptors and protein-conducting channels of N. benthamiana, were identified. Sequence identity searches and phylogenetic relationships with functionally annotated sequences such as those of A. thaliana revealed that N. benthamiana orthologs mainly exist as recently duplicated loci. Only a Toc34 ortholog was found (NbToc34), while Toc159 receptor family was composed of four orthologs but somewhat different from those of A. thaliana. Except for NbToc90, the rest (NbToc120, NbToc159A and NbToc159B) had a molecular weight of about 150 kDa and an acidic domain similar in length. Only two orthologs of the Tom20 receptors, NbTom20-1 and NbTom20-2, were found. The number of the Toc and Tom receptor isoforms in N. benthamiana was comparable to that previously reported in tomato and what we found in BLAST searches in other species in the genera Nicotiana and Solanum. After cloning, the subcellular localization of N. benthamiana orthologs was studied, resulting to be identical to that of A. thaliana receptors. Phenotype analysis after silencing together with relative expression analysis in roots, stems and leaves revealed that, except for the Toc and Tom channel-forming components (NbToc75 and NbTom40) and NbToc34, functional redundancy could be observed either among Toc159 or mitochondrial receptors. Finally, heterodimer formation between NbToc34 and the NbToc159 family receptors was confirmed by two alternative techniques indicating that different Toc complexes could be assembled. Additional work needs to be addressed to know if this results in a functional specialization of each Toc complex.
Collapse
Affiliation(s)
| | | | - Vicente Pallás
- *Correspondence: Vicente Pallas, ; Jose Antonio Navarro,
| | | |
Collapse
|
7
|
Navarro JA, Saiz-Bonilla M, Sanchez-Navarro JA, Pallas V. The mitochondrial and chloroplast dual targeting of a multifunctional plant viral protein modulates chloroplast-to-nucleus communication, RNA silencing suppressor activity, encapsidation, pathogenesis and tissue tropism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:197-218. [PMID: 34309112 DOI: 10.1111/tpj.15435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/19/2021] [Indexed: 05/22/2023]
Abstract
Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS). We also show that CP organelle import inhibition enhanced RSS activity, CP accumulation and VRC biogenesis but resulted in inhibition of systemic spreading, indicating that MNSV whole-plant infection requires CP organelle import. We hypothesize that to alleviate the p29 impact on host physiology, MNSV could moderate its replication and p29 accumulation by regulating CP RSS activity through organelle targeting and, consequently, eluding early-triggered antiviral response. Cellular and molecular events also suggested that S/P domains, which correspond to processed CP in chloroplast stroma or mitochondrion matrix, could mitigate host response inhibiting p29-induced necrosis. S/P deletion mainly resulted in a precarious balance between defense and counter-defense responses, generating either cytopathic alterations and MNSV cell-to-cell movement restriction or some degree of local movement. In addition, local necrosis and defense responses were dampened when RSS activity but not S/P organelle targeting was affected. Based on a robust biochemical and cellular analysis, we established that the mitochondrial and chloroplast dual targeting of MNSV CP profoundly impacts the viral infection cycle.
Collapse
Affiliation(s)
- Jose A Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Maria Saiz-Bonilla
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Jesus A Sanchez-Navarro
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| | - Vicente Pallas
- Department of Molecular and Evolutionary Plant Virology, Institute for Plant Molecular and Cell Biology, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Av. Ingeniero Fausto Elio, Valencia, 46022, Spain
| |
Collapse
|
8
|
Dominguez PG, Conti G, Duffy T, Insani M, Alseekh S, Asurmendi S, Fernie AR, Carrari F. Multiomics analyses reveal the roles of the ASR1 transcription factor in tomato fruits. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6490-6509. [PMID: 34100923 DOI: 10.1093/jxb/erab269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The transcription factor ASR1 (ABA, STRESS, RIPENING 1) plays multiple roles in plant responses to abiotic stresses as well as being involved in the regulation of central metabolism in several plant species. However, despite the high expression of ASR1 in tomato fruits, large scale analyses to uncover its function in fruits are still lacking. In order to study its function in the context of fruit ripening, we performed a multiomics analysis of ASR1-antisense transgenic tomato fruits at the transcriptome and metabolome levels. Our results indicate that ASR1 is involved in several pathways implicated in the fruit ripening process, including cell wall, amino acid, and carotenoid metabolism, as well as abiotic stress pathways. Moreover, we found that ASR1-antisense fruits are more susceptible to the infection by the necrotrophic fungus Botrytis cinerea. Given that ASR1 could be regulated by fruit ripening regulators such as FRUITFULL1/FRUITFULL2 (FUL1/FUL2), NON-RIPENING (NOR), and COLORLESS NON-RIPENING (CNR), we positioned it in the regulatory cascade of red ripe tomato fruits. These data extend the known range of functions of ASR1 as an important auxiliary regulator of tomato fruit ripening.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás Duffy
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Marina Insani
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Sebastián Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Fernando Carrari
- Facultad de Agronomía. Cátedra de Genética. Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
9
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
10
|
López‐González S, Navarro JA, Pacios LF, Sardaru P, Pallás V, Sánchez F, Ponz F. Association between flower stalk elongation, an Arabidopsis developmental trait, and the subcellular location and movement dynamics of the nonstructural protein P3 of Turnip mosaic virus. MOLECULAR PLANT PATHOLOGY 2020; 21:1271-1286. [PMID: 32737952 PMCID: PMC7488469 DOI: 10.1111/mpp.12976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/05/2023]
Abstract
Virus infections affect plant developmental traits but this aspect of the interaction has not been extensively studied so far. Two strains of Turnip mosaic virus differentially affect Arabidopsis development, especially flower stalk elongation, which allowed phenotypical, cellular, and molecular characterization of the viral determinant, the P3 protein. Transiently expressed wild-type green fluorescent protein-tagged P3 proteins of both strains and selected mutants of them revealed important differences in their behaviour as endoplasmic reticulum (ER)-associated peripheral proteins flowing along the reticulum, forming punctate accumulations. Three-dimensional (3D) model structures of all expressed P3 proteins were computationally constructed through I-TASSER protein structure predictions, which were used to compute protein surfaces and map electrostatic potentials to characterize the effect of amino acid changes on features related to protein interactions and to phenotypical and subcellular results. The amino acid at position 279 was the main determinant affecting stalk development. It also determined the speed of ER-flow of the expressed proteins and their final location. A marked change in the protein surface electrostatic potential correlated with changes in subcellular location. One single amino acid in the P3 viral protein determines all the analysed differential characteristics between strains differentially affecting flower stalk development. A model proposing a role of the protein in the intracellular movement of the viral replication complex, in association with the viral 6K2 protein, is proposed. The type of association between both viral proteins could differ between the strains.
Collapse
Affiliation(s)
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Luis F. Pacios
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Papaiah Sardaru
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Vicente Pallás
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), IBMCPValenciaSpain
| | - Flora Sánchez
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (UPM‐INIA)Pozuelo de AlarcónSpain
| |
Collapse
|
11
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
12
|
A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement. Sci Rep 2020; 10:4758. [PMID: 32179855 PMCID: PMC7075923 DOI: 10.1038/s41598-020-61741-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/02/2020] [Indexed: 12/22/2022] Open
Abstract
Due to their minimal genomes, plant viruses are forced to hijack specific cellular pathways to ensure host colonization, a condition that most frequently involves physical interaction between viral and host proteins. Among putative viral interactors are the movement proteins, responsible for plasmodesma gating and genome binding during viral transport. Two of them, DGBp1 and DGBp2, are required for alpha-, beta- and gammacarmovirus cell-to-cell movement, but the number of DGBp-host interactors identified at present is limited. By using two different approaches, yeast two-hybrid and bimolecular fluorescence complementation assays, we found three Arabidopsis factors, eIF3g1, RPP3A and WRKY36, interacting with DGBp1s from each genus mentioned above. eIF3g1 and RPP3A are mainly involved in protein translation initiation and elongation phases, respectively, while WRKY36 belongs to WRKY transcription factor family, important regulators of many defence responses. These host proteins are not expected to be associated with viral movement, but knocking out WRKY36 or silencing either RPP3A or eIF3g1 negatively affected Arabidopsis infection by Turnip crinkle virus. A highly conserved FNF motif at DGBp1 C-terminus was required for protein-protein interaction and cell-to-cell movement, suggesting an important biological role.
Collapse
|
13
|
Lv J, Zhang M, Bai L, Han X, Ge Y, Wang W, Li J. Effects of 1-methylcyclopropene (1-MCP) on the expression of genes involved in the chlorophyll degradation pathway of apple fruit during storage. Food Chem 2020; 308:125707. [DOI: 10.1016/j.foodchem.2019.125707] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023]
|
14
|
Gil-Muñoz F, Sánchez-Navarro JA, Besada C, Salvador A, Badenes ML, Naval MDM, Ríos G. MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit. Sci Rep 2020; 10:3543. [PMID: 32103143 PMCID: PMC7044221 DOI: 10.1038/s41598-020-60635-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/13/2020] [Indexed: 11/29/2022] Open
Abstract
MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such as trichome formation in many plant species. DkMYB2 and DkMYB4 (MYB-type), DkMYC1 (bHLH-type) and DkWDR1 (WD40-type) factors have been proposed by different authors to take part of persimmon MBW complexes for proanthocyanidin accumulation in immature fruit, leading to its characteristic astringent flavour with important agronomical and ecological effects. We have confirmed the nuclear localization of these proteins and their mutual physical interaction by bimolecular fluorescence complementation analysis. In addition, transient expression of DkMYB2, DkMYB4 and DkMYC1 cooperatively increase the expression of a persimmon anthocyanidin reductase gene (ANR), involved in the biosynthesis of cis-flavan-3-ols, the structural units of proanthocyanidin compounds. Collectively, these data support the presence of MBW complexes in persimmon fruit and suggest their coordinated participation in ANR regulation for proanthocyanidin production.
Collapse
Affiliation(s)
- Francisco Gil-Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Jesús A Sánchez-Navarro
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, E-46022, Valencia, Spain
| | - Cristina Besada
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Alejandra Salvador
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - María Luisa Badenes
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - María Del Mar Naval
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain
| | - Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), E-46113 Moncada, Valencia, Spain.
| |
Collapse
|
15
|
Cervera-Seco L, Marques MAC, Sanz-Carbonell A, Marquez-Molins J, Carbonell A, Darï S JA, Gomez G. Identification and Characterization of Stress-Responsive TAS3-Derived TasiRNAs in Melon. PLANT & CELL PHYSIOLOGY 2019; 60:2382-2393. [PMID: 31290971 DOI: 10.1093/pcp/pcz131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 06/27/2019] [Indexed: 05/27/2023]
Abstract
Small interfering RNAs (siRNA) are key regulators of gene expression that play essential roles in diverse biological processes. Trans-acting siRNAs (tasiRNAs) are a class of plant-endogenous siRNAs that lead the cleavage of nonidentical transcripts. TasiRNAs are usually involved in fine-tuning development. However, increasing evidence supports that tasiRNAs may be involved in stress response. Melon is a crop of great economic importance extensively cultivated in semiarid regions frequently exposed to changing environmental conditions that limit its productivity. However, knowledge of the precise role of siRNAs in general, and of tasiRNAs in particular, in regulating the response to adverse environmental conditions is limited. Here, we provide the first comprehensive analysis of computationally inferred melon-tasiRNAs responsive to two biotic (viroid-infection) and abiotic (cold treatment) stress conditions. We identify two TAS3-loci encoding to length (TAS3-L) and short (TAS3-S) transcripts. The TAS candidates predicted from small RNA-sequencing data were characterized according to their chromosome localization and expression pattern in response to stress. The functional activity of cmTAS genes was validated by transcript quantification and degradome assays of the tasiRNA precursors and their predicted targets. Finally, the functionality of a representative cmTAS3-derived tasiRNA (TAS3-S) was confirmed by transient assays showing the cleavage of ARF target transcripts.
Collapse
Affiliation(s)
- Luis Cervera-Seco
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Marï A Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| | - Alberto Carbonell
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Josï-Antonio Darï S
- Instituto de Biolog�a Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cient�ficas (CSIC) Universitat Polit�cnica de Val�ncia, CPI 8E, Av. de los Naranjos s/n, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cient�ficas (CSIC)-Universitat de Val�ncia (UV), Parc Cient�fic, Cat. Agust�n Escardino 9, Paterna, Spain
| |
Collapse
|
16
|
Svoboda T, Parich A, Güldener U, Schöfbeck D, Twaruschek K, Václavíková M, Hellinger R, Wiesenberger G, Schuhmacher R, Adam G. Biochemical Characterization of the Fusarium graminearum Candidate ACC-Deaminases and Virulence Testing of Knockout Mutant Strains. FRONTIERS IN PLANT SCIENCE 2019; 10:1072. [PMID: 31552072 PMCID: PMC6746940 DOI: 10.3389/fpls.2019.01072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Fusarium graminearum is a plant pathogenic fungus which is able to infect wheat and other economically important cereal crop species. The role of ethylene in the interaction with host plants is unclear and controversial. We have analyzed the inventory of genes with a putative function in ethylene production or degradation of the ethylene precursor 1-aminocyclopropane carboxylic acid (ACC). F. graminearum, in contrast to other species, does not contain a candidate gene encoding ethylene-forming enzyme. Three genes with similarity to ACC synthases exist; heterologous expression of these did not reveal enzymatic activity. The F. graminearum genome contains in addition two ACC deaminase candidate genes. We have expressed both genes in E. coli and characterized the enzymatic properties of the affinity-purified products. One of the proteins had indeed ACC deaminase activity, with kinetic properties similar to ethylene-stress reducing enzymes of plant growth promoting bacteria. The other candidate was inactive with ACC but turned out to be a d-cysteine desulfhydrase. Since it had been reported that ethylene insensitivity in transgenic wheat increased Fusarium resistance and reduced the content of the mycotoxin deoxynivalenol (DON) in infected wheat, we generated single and double knockout mutants of both genes in the F. graminearum strain PH-1. No statistically significant effect of the gene disruptions on fungal spread or mycotoxin content was detected, indicating that the ability of the fungus to manipulate the production of the gaseous plant hormones ethylene and H2S is dispensable for full virulence.
Collapse
Affiliation(s)
- Thomas Svoboda
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Alexandra Parich
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Ulrich Güldener
- Department of Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Denise Schöfbeck
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Krisztian Twaruschek
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Marta Václavíková
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Roland Hellinger
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerlinde Wiesenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| | - Rainer Schuhmacher
- BOKU, Department for Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, Tulln, Austria
| | - Gerhard Adam
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln, Austria
| |
Collapse
|
17
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
18
|
Giraldo JP, Wu H, Newkirk GM, Kruss S. Nanobiotechnology approaches for engineering smart plant sensors. NATURE NANOTECHNOLOGY 2019; 14:541-553. [PMID: 31168083 DOI: 10.1038/s41565-019-0470-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/08/2019] [Indexed: 05/18/2023]
Abstract
Nanobiotechnology has the potential to enable smart plant sensors that communicate with and actuate electronic devices for improving plant productivity, optimize and automate water and agrochemical allocation, and enable high-throughput plant chemical phenotyping. Reducing crop loss due to environmental and pathogen-related stresses, improving resource use efficiency and selecting optimal plant traits are major challenges in plant agriculture industries worldwide. New technologies are required to accurately monitor, in real time and with high spatial and temporal resolution, plant physiological and developmental responses to their microenvironment. Nanomaterials are allowing the translation of plant chemical signals into digital information that can be monitored by standoff electronic devices. Herein, we discuss the design and interfacing of smart nanobiotechnology-based sensors that report plant signalling molecules associated with health status to agricultural and phenotyping devices via optical, wireless or electrical signals. We describe how nanomaterial-mediated delivery of genetically encoded sensors can act as tools for research and development of smart plant sensors. We assess performance parameters of smart nanobiotechnology-based sensors in plants (for example, resolution, sensitivity, accuracy and durability) including in vivo optical nanosensors and wearable nanoelectronic sensors. To conclude, we present an integrated and prospective vision on how nanotechnology could enable smart plant sensors that communicate with and actuate electronic devices for monitoring and optimizing individual plant productivity and resource use.
Collapse
Affiliation(s)
- Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA.
- Center for Plant Cell Biology, University of California, Riverside, CA, USA.
- Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| | - Honghong Wu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | | | - Sebastian Kruss
- Institute of Physical Chemistry, Georg August University Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Abdelsamad NA, MacIntosh GC, Leandro LFS. Induction of ethylene inhibits development of soybean sudden death syndrome by inducing defense-related genes and reducing Fusarium virguliforme growth. PLoS One 2019; 14:e0215653. [PMID: 31116746 PMCID: PMC6530837 DOI: 10.1371/journal.pone.0215653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/07/2019] [Indexed: 12/31/2022] Open
Abstract
Ethylene is a gaseous hormone that regulates plant responses to biotic and abiotic stresses. To investigate the importance of ethylene in soybean resistance to Fusarium virguliforme (Fv), the causal agent of sudden death syndrome (SDS), soybean cultivars Williams 82 (SDS-susceptible) and MN1606 (SDS-resistant) were treated 24 h before and 24h after Fv inoculation with either ethephon (ethylene inducer), cobalt chloride (ethylene biosynthesis inhibitor), or 1-MCP (ethylene perception inhibitor). Inoculated plants were grown for 21 days at 24°C in the greenhouse and then evaluated for SDS severity and expression of soybean defense genes. In both cultivars, plants treated with ethephon showed lower SDS foliar severity compared to the other treatments, whereas those treated with cobalt chloride or 1-MCP showed the same or higher SDS foliar severity compared to the water-treated control. Ethephon application resulted in activation of genes involved in ethylene biosynthesis, such as ethylene synthase (ACS) and ethylene oxidase (ACO), and genes involved in soybean defense response, such as pathogenesis-related protein (PR), basic peroxidase (IPER), chalcone synthase (CHS), and defense-associated transcription factors. Cobalt chloride and 1-MCP treatments had little or no effect on the expression of these genes. In addition, ethephon had a direct inhibitory effect on in-vitro growth of Fv on PDA media. Our results suggest that ethephon application inhibits SDS development directly by slowing Fv growth and/or by inducing soybean ethylene signaling and the expression of defense related genes.
Collapse
Affiliation(s)
- Noor A. Abdelsamad
- San Joaquin Valley Agricultural Sciences Center, USDA-ARS, Parlier, CA, United States of America
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States of America
| | - Leonor F. S. Leandro
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
20
|
Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di Marzo M, Chávez Montes RA, Gómez-Felipe A, Pablo-Villa J, Diaz-Ramirez D, Ballester P, Ferrándiz C, Sagasser M, Colombo L, Marsch-Martínez N, de Folter S. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development 2019; 146:dev.172395. [PMID: 30538100 DOI: 10.1242/dev.172395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023]
Abstract
The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Ricardo Aarón Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Martin Sagasser
- Bielefeld University, Faculty of Biology, Chair of Genetics and Genomics of Plants, Bielefeld 33615, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| |
Collapse
|
21
|
Villena J, Kitazawa H, Van Wees SCM, Pieterse CMJ, Takahashi H. Receptors and Signaling Pathways for Recognition of Bacteria in Livestock and Crops: Prospects for Beneficial Microbes in Healthy Growth Strategies. Front Immunol 2018; 9:2223. [PMID: 30319660 PMCID: PMC6170637 DOI: 10.3389/fimmu.2018.02223] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/07/2018] [Indexed: 01/24/2023] Open
Abstract
Modern animal and crop production practices are associated with the regular use of antimicrobials, potentially increasing selection pressure on bacteria to become resistant. Alternative approaches are needed in order to satisfy the demands of the growing human population without the indiscriminate use of antimicrobials. Researchers have brought a different perspective to solve this problem and have emphasized the exploitation of animal- and plant-associated microorganisms that are beneficial to their hosts through the modulation of the innate immune system. There is increasing evidence that plants and animals employ microbial perception and defense pathways that closely resemble each other. Formation of pattern recognition receptor (PRR) complexes involving leucine-rich repeat (LRR)-containing proteins, mitogen-activated protein kinase (MAPK)-mediated activation of immune response genes, and subsequent production of antimicrobial products and reactive oxygen species (ROS) and nitric oxide (NO) to improve defenses against pathogens, add to the list of similarities between both systems. Recent pioneering work has identified that animal and plant cells use similar receptors for sensing beneficial commensal microbes that are important for the maintenance of the host's health. Here, we reviewed the current knowledge about the molecular mechanisms involved in the recognition of pathogenic and commensal microbes by the innate immune systems of animal and plants highlighting their differences and similarities. In addition, we discuss the idea of using beneficial microbes to modulate animal and plant immune systems in order to improve the resistance to infections and reduce the use of antimicrobial compounds.
Collapse
Affiliation(s)
- Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Saskia C M Van Wees
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4life, Utrecht University, Utrecht, Netherlands
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
22
|
Schuman MC, Baldwin IT. Field studies reveal functions of chemical mediators in plant interactions. Chem Soc Rev 2018; 47:5338-5353. [PMID: 29770376 DOI: 10.1039/c7cs00749c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plants are at the trophic base of most ecosystems, embedded in a rich network of ecological interactions in which they evolved. While their limited range and speed of motion precludes animal-typical behavior, plants are accomplished chemists, producing thousands of specialized metabolites which may function to convey information, or even to manipulate the physiology of other organisms. Plants' complex interactions and their underlying mechanisms are typically dissected within the controlled environments of growth chambers and glasshouses, but doing so introduces conditions alien to plants evolved in natural environments, such as being pot-bound, and receiving artificial light with a spectrum very different from sunlight. The mechanistic understanding gained from a reductionist approach provides the tools required to query and manipulate plant interactions in real-world settings. The few tests conducted in natural ecosystems and agricultural fields have highlighted the limitations of studying plant interactions only in artificial environments. Here, we focus on three examples of known or hypothesized chemical mediators of plants' interactions: the volatile phytohormone ethylene (ET), more complex plant volatile blends, and as-yet-unknown mediators transferred by common mycorrhizal networks (CMNs). We highlight how mechanistic knowledge has advanced research in all three areas, and the critical importance of field work if we are to put our understanding of chemical ecology on rigorous experimental and theoretical footing, and demonstrate function.
Collapse
Affiliation(s)
- Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| | | |
Collapse
|
23
|
Jiang HY, Zhang JL, Yang JW, Ma HL. Transcript Profiling and Gene Identification Involved in the Ethylene Signal Transduction Pathways of Creeping Bentgrass (Agrostis stolonifera) during ISR Response Induced by Butanediol. Molecules 2018; 23:molecules23030706. [PMID: 29558428 PMCID: PMC6017539 DOI: 10.3390/molecules23030706] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/16/2022] Open
Abstract
Creeping bentgrass (Agrostis stolonifera) is the preferred green lawn grass, with excellent turf characteristics but poor disease resistance. At present, the mechanisms of disease resistance in creeping bentgrass are poorly understood, especially the ethylene signal transduction pathway under the induced systemic resistance (ISR) response. In this study, butanediol (BDO), as a new type of disease-resistance compound, was applied to creeping bentgrass seedlings to induce the ISR response. Then, we measured ethylene production and related enzyme activities. Additionally, transcript profiling and gene identification were performed in association to ethylene signal transduction pathways. The changes of ethylene production and related enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) and 1-aminocyclopropane-1-carboxylic acid synthases (ACS) activities showed significant difference at 24 h after Rhizoctonia solani inoculation among five treatments of various BDO concentrations. After 100 µmol L-1 BDO treatment, ethylene production and related enzyme activities reached their peak levels. Additionally, 208,672 unigenes of creeping bentgrass were obtained by de novo assembly. In total, 15,903 annotated unigenes were grouped into 33 canonical pathways in the KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis. Among those, 1803 unigenes were classified as 'signal transduction'. There were 6766 differentially expressed genes (DEGs) among B24 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h), NB24, B72 and NB24 (no rhizobacteria in MS medium with 100 µmol L-1 BDO for 24 h) libraries, and 4,639 DEGs between B24 and B72 (inoculated-rhizobacteria in MS medium with 100 µmol L-1 BDO for 72 h) libraries, with 4489 DEGs in all three libraries. As suggested by the RT-PCR assay, the expression levels of ethylene-responsive and defense-related genes were variable among treated samples during the BDO-induced ISR responses. The expression levels of EIN, ERF, NPR1, PR3 and PR4 genes increased and reached their peaks in the first 24 h after R. solani infection in the BDO-induced ISR reaction compared with NB24 treatments. This results is consistent with the changes of important ethylene biosynthetic enzymes and ethylene concentrations during the BDO-induced ISR responses. We further found the intermediate substances for the signaling pathway, and the relationships between the expression levels of BDO-induced ISR disease-resistance genes and those of the response genes for ethylene signal pathway. Our findings present a genetic basis for systemic resistance of creeping bentgrass through transcriptomic analysis and our study provides a theoretical and practical basis for the improvement of turfgrass disease resistance and quality.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jin-Lin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jiang-Wei Yang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Hui-Ling Ma
- Pratacultural College, Gansu Agricultural University, Lanzhou 730070, China.
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou 730070, China.
- Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou 730070, China.
| |
Collapse
|
24
|
Scholz SS, Schmidt-Heck W, Guthke R, Furch ACU, Reichelt M, Gershenzon J, Oelmüller R. Verticillium dahliae-Arabidopsis Interaction Causes Changes in Gene Expression Profiles and Jasmonate Levels on Different Time Scales. Front Microbiol 2018; 9:217. [PMID: 29497409 PMCID: PMC5819561 DOI: 10.3389/fmicb.2018.00217] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/30/2018] [Indexed: 01/27/2023] Open
Abstract
Verticillium dahliae is a soil-borne vascular pathogen that causes severe wilt symptoms in a wide range of plants. Co-culture of the fungus with Arabidopsis roots for 24 h induces many changes in the gene expression profiles of both partners, even before defense-related phytohormone levels are induced in the plant. Both partners reprogram sugar and amino acid metabolism, activate genes for signal perception and transduction, and induce defense- and stress-responsive genes. Furthermore, analysis of Arabidopsis expression profiles suggests a redirection from growth to defense. After 3 weeks, severe disease symptoms can be detected for wild-type plants while mutants impaired in jasmonate synthesis and perception perform much better. Thus, plant jasmonates have an important influence on the interaction, which is already visible at the mRNA level before hormone changes occur. The plant and fungal genes that rapidly respond to the presence of the partner might be crucial for early recognition steps and the future development of the interaction. Thus they are potential targets for the control of V. dahliae-induced wilt diseases.
Collapse
Affiliation(s)
- Sandra S Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wolfgang Schmidt-Heck
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Reinhard Guthke
- Systems Biology and Bioinformatics Group, Leibniz Institute for Natural Product Research and Infection Biology-Hans-Knöll-Institute, Jena, Germany
| | - Alexandra C U Furch
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
25
|
Navarro B, Loconsole G, Giampetruzzi A, Aboughanem‐Sabanadzovic N, Ragozzino A, Ragozzino E, Di Serio F. Identification and characterization of privet leaf blotch-associated virus, a novel idaeovirus. MOLECULAR PLANT PATHOLOGY 2017; 18:925-936. [PMID: 27349357 PMCID: PMC6638295 DOI: 10.1111/mpp.12450] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/22/2016] [Indexed: 05/23/2023]
Abstract
A novel virus has been identified by next-generation sequencing (NGS) in privet (Ligustrum japonicum L.) affected by a graft-transmissible disease characterized by leaf blotch symptoms resembling infectious variegation, a virus-like privet disease with an unclear aetiology. This virus, which has been tentatively named 'privet leaf blotch-associated virus' (PrLBaV), was absent in non-symptomatic privet plants, as revealed by NGS and reverse transcription-polymerase chain reaction (RT-PCR). Molecular characterization of PrLBaV showed that it has a segmented genome composed of two positive single-stranded RNAs, one of which (RNA1) is monocistronic and codes for the viral replicase, whereas the other (RNA2) contains two open reading frames (ORFs), ORF2a and ORF2b, coding for the putative movement (p38) and coat (p30) proteins, respectively. ORF2b is very probably expressed through a subgenomic RNA starting with six nucleotides (AUAUCU) that closely resemble those found in the 5'-terminal end of genomic RNA1 and RNA2 (AUAUUU and AUAUAU, respectively). The molecular signatures identified in the PrLBaV RNAs and proteins resemble those of Raspberry bushy dwarf virus (RBDV), currently the only member of the genus Idaeovirus. These data, together with phylogenetic analyses, are consistent with the proposal of considering PrLBaV as a representative of the second species in the genus Idaeovirus. Transient expression of a recombinant PrLBaV p38 fused to green fluorescent protein in leaves of Nicotiana benthamiana, coupled with confocal laser scanning microscopy assays, showed that it localizes at cell plasmodesmata, strongly supporting its involvement in viral movement/trafficking and providing the first functional characterization of an idaeovirus encoded protein.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante CNR, UO BariVia Amendola 122/D, 70126 BariItaly
| | - Giuliana Loconsole
- Dipartimento di Scienze del Suolo, della Pianta e degli AlimentiUniversità degli Studi di Bari ‘Aldo Moro’Via Amendola 165/A, 70126 BariItaly
| | - Annalisa Giampetruzzi
- Dipartimento di Scienze del Suolo, della Pianta e degli AlimentiUniversità degli Studi di Bari ‘Aldo Moro’Via Amendola 165/A, 70126 BariItaly
| | | | - Antonio Ragozzino
- Dipartimento di AgrariaUniversità degli Studi di Napoli ‘Federico II’, Via Università100, 80055 PorticiItaly
| | - Ester Ragozzino
- Dipartimento di AgrariaUniversità degli Studi di Napoli ‘Federico II’, Via Università100, 80055 PorticiItaly
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante CNR, UO BariVia Amendola 122/D, 70126 BariItaly
| |
Collapse
|
26
|
Serra‐Soriano M, Antonio Navarro J, Pallás V. Dissecting the multifunctional role of the N-terminal domain of the Melon necrotic spot virus coat protein in RNA packaging, viral movement and interference with antiviral plant defence. MOLECULAR PLANT PATHOLOGY 2017; 18:837-849. [PMID: 27301648 PMCID: PMC6638237 DOI: 10.1111/mpp.12448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/07/2023]
Abstract
The coat protein (CP) of Melon necrotic spot virus (MNSV) is structurally composed of three major domains. The middle S-domain builds a robust protein shell around the viral genome, whereas the C-terminal protruding domain, or P-domain, is involved in the attachment of virions to the transmission vector. Here, we have shown that the N-terminal domain, or R-domain, and the arm region, which connects the R-domain and S-domain, are involved in different key steps of the viral cycle, such as cell-to-cell movement and the suppression of RNA silencing and pathogenesis through their RNA-binding capabilities. Deletion mutants revealed that the CP RNA-binding ability was abolished only after complete, but not partial, deletion of the R-domain and the arm region. However, a comparison of the apparent dissociation constants for the CP RNA-binding reaction of several partial deletion mutants showed that the arm region played a more relevant role than the R-domain in in vitro RNA binding. Similar results were obtained in in vivo assays, although, in this case, full-length CPs were required to encapsidate full-length genomes. We also found that the R-domain carboxyl portion and the arm region were essential for efficient cell-to-cell movement, for enhancement of Potato virus X pathogenicity, for suppression of systemic RNA silencing and for binding of small RNAs. Therefore, unlike other carmovirus CPs, the R-domain and the arm region of MNSV CP have acquired, in addition to other essential functions such as genome binding and encapsidation functions, the ability to suppress RNA silencing by preventing systemic small RNA transport.
Collapse
Affiliation(s)
- Marta Serra‐Soriano
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - José Antonio Navarro
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| | - Vicente Pallás
- Laboratory of Plant Molecular VirologyInstituto de Biología Molecular y Celular de Plantas, IBMCP (Universitat Politècnica de València‐Consejo Superior de Investigaciones Científicas)Ingeniero Fausto Elio s/nValencia46022Spain
| |
Collapse
|
27
|
Skelton JJ, Simpson DM, Peterson MA, Riechers DE. Biokinetic Analysis and Metabolic Fate of 2,4-D in 2,4-D-Resistant Soybean (Glycine max). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5847-5859. [PMID: 28650629 DOI: 10.1021/acs.jafc.7b00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
The Enlist weed control system allows the use of 2,4-D in soybean but slight necrosis in treated leaves may be observed in the field. The objectives of this research were to measure and compare uptake, translocation, and metabolism of 2,4-D in Enlist (E, resistant) and non-AAD-12 transformed (NT, sensitive) soybeans. The adjuvant from the Enlist Duo herbicide formulation (ADJ) increased 2,4-D uptake (36%) and displayed the fastest rate of uptake (U50= 0.2 h) among treatments. E soybean demonstrated a faster rate of 2,4-D metabolism (M50= 0.2 h) compared to NT soybean, but glyphosate did not affect 2,4-D metabolism. Metabolites of 2,4-D in E soybean were qualitatively different than NT. Applying 2,4-D-ethylhexyl ester instead of 2,4-D choline (a quaternary ammonium salt) eliminated visual injury to E soybean, likely due to the time required for initial de-esterification and bioactivation. Excessive 2,4-D acid concentrations in E soybean resulting from ADJ-increased uptake may significantly contribute to foliar injury.
Collapse
Affiliation(s)
- Joshua J Skelton
- Department of Crop Sciences, University of Illinois , Urbana, Illinois 61801, United States
| | - David M Simpson
- Dow AgroSciences LLC , Indianapolis, Indiana 46268, United States
| | - Mark A Peterson
- Dow AgroSciences LLC , Indianapolis, Indiana 46268, United States
| | - Dean E Riechers
- Department of Crop Sciences, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|
28
|
Lee HA, Lee HY, Seo E, Lee J, Kim SB, Oh S, Choi E, Choi E, Lee SE, Choi D. Current Understandings of Plant Nonhost Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:5-15. [PMID: 27925500 DOI: 10.1094/mpmi-10-16-0213-cr] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nonhost resistance, a resistance of plant species against all nonadapted pathogens, is considered the most durable and efficient immune system of plants but yet remains elusive. The underlying mechanism of nonhost resistance has been investigated at multiple levels of plant defense for several decades. In this review, we have comprehensively surveyed the latest literature on nonhost resistance in terms of preinvasion, metabolic defense, pattern-triggered immunity, effector-triggered immunity, defense signaling, and possible application in crop protection. Overall, we summarize the current understanding of nonhost resistance mechanisms. Pre- and postinvasion is not much deviated from the knowledge on host resistance, except for a few specific cases. Further insights on the roles of the pattern recognition receptor gene family, multiple interactions between effectors from nonadapted pathogen and plant factors, and plant secondary metabolites in host range determination could expand our knowledge on nonhost resistance and provide efficient tools for future crop protection using combinational biotechnology approaches. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hye-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunyoung Seo
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Joohyun Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Saet-Byul Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Soohyun Oh
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunbi Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Eunhye Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - So Eui Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
29
|
Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep 2016; 6:36867. [PMID: 27845361 PMCID: PMC5109278 DOI: 10.1038/srep36867] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/13/2016] [Indexed: 01/12/2023] Open
Abstract
The involvement of ethylene and abscisic acid in providing stress tolerance and defence response to plants is widely recognized. However, little is known about the cross-talk between glutathione with ethylene and abscisic acid to combat stress in planta. Here, transcriptome analysis of combined cold and osmotic stress treated Arabidopsis mutants were carried out to elucidate the crosstalk between the abscisic acid, ethylene and glutathione. Microarray experiment revealed the differential regulation of about 2313 and 4131 transcripts in ein2 (ethylene insensitive mutant) and aba1.6 (abscisic acid mutant) respectively. Functional analysis exposed common down-regulated stress and defence, secondary metabolite biosynthesis viz. phenylpropanoid, lignin and flavonols, redox and transcription factors related genes in ein2, aba1.6 and pad2.1 (glutathione mutant) in response to combined stress treatment. The reduced glutathione content was less in stress treated mutants in comparison to Col-0. Again, selective down-regulated transcripts in stress treated mutants were noted up-regulated after glutathione feeding. Some of the important differentially expressed genes were also validated by comparative proteomics analysis of stress treated mutants. In summary, our results suggested the role of ethylene and abscisic acid in inducing stress-responsive genes and proteins by activating glutathione biosynthesis to combat abiotic stress conditions in plant system.
Collapse
|
30
|
Liu J, Zhang T, Jia J, Sun J. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew. PLANT PHYSIOLOGY 2016; 170:1799-816. [PMID: 26813794 PMCID: PMC4775135 DOI: 10.1104/pp.15.01784] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/26/2016] [Indexed: 05/08/2023]
Abstract
Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew.
Collapse
Affiliation(s)
- Jie Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tianren Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jizeng Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiaqiang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
31
|
Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. Glutathione Regulates 1-Aminocyclopropane-1-Carboxylate Synthase Transcription via WRKY33 and 1-Aminocyclopropane-1-Carboxylate Oxidase by Modulating Messenger RNA Stability to Induce Ethylene Synthesis during Stress. PLANT PHYSIOLOGY 2015; 169:2963-81. [PMID: 26463088 PMCID: PMC4677924 DOI: 10.1104/pp.15.01543] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 05/13/2023]
Abstract
Glutathione (GSH) plays a fundamental role in plant defense-signaling network. Recently, we have established the involvement of GSH with ethylene (ET) to combat environmental stress. However, the mechanism of GSH-ET interplay still remains unexplored. Here, we demonstrate that GSH induces ET biosynthesis by modulating the transcriptional and posttranscriptional regulations of its key enzymes, 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Transgenic Arabidopsis (Arabidopsis thaliana) plants with enhanced GSH content (AtECS) exhibited remarkable up-regulation of ACS2, ACS6, and ACO1 at transcript as well as protein levels, while they were down-regulated in the GSH-depleted phytoalexin deficient2-1 (pad2-1) mutant. We further observed that GSH induced ACS2 and ACS6 transcription in a WRKY33-dependent manner, while ACO1 transcription remained unaffected. On the other hand, the messenger RNA stability for ACO1 was found to be increased by GSH, which explains our above observations. In addition, we also identified the ACO1 protein to be a subject for S-glutathionylation, which is consistent with our in silico data. However, S-glutathionylation of ACS2 and ACS6 proteins was not detected. Further, the AtECS plants exhibited resistance to necrotrophic infection and salt stress, while the pad2-1 mutant was sensitive. Exogenously applied GSH could improve stress tolerance in wild-type plants but not in the ET-signaling mutant ethylene insensitive2-1, indicating that GSH-mediated resistance to these stresses occurs via an ET-mediated pathway. Together, our investigation reveals a dual-level regulation of ET biosynthesis by GSH during stress.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Deepak Kumar
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Asma Sultana
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Saptarshi Hazra
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Dipto Bhattacharyya
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Organic and Medicinal Chemistry Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
32
|
Rantong G, Evans R, Gunawardena AHLAN. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis. PLANT MOLECULAR BIOLOGY 2015; 89:215-27. [PMID: 26286451 PMCID: PMC4579252 DOI: 10.1007/s11103-015-0356-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/31/2015] [Indexed: 05/22/2023]
Abstract
The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.
Collapse
Affiliation(s)
- Gaolathe Rantong
- Biology Department, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Rodger Evans
- Biology Department, Acadia University, 33 Westwood Avenue, Wolfville, NS, B4P 2R6, Canada
| | - Arunika H L A N Gunawardena
- Biology Department, Life Sciences Centre, Dalhousie University, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
33
|
Ogata T, Okada H, Kawaide H, Takahashi H, Seo S, Mitsuhara I, Matsushita Y. Involvement of NtERF3 in the cell death signalling pathway mediated by SIPK/WIPK and WRKY1 in tobacco plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:962-72. [PMID: 25996234 DOI: 10.1111/plb.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/15/2015] [Indexed: 05/18/2023]
Abstract
We previously reported that one of the ethylene response factors (ERFs), NtERF3, and other members of the subgroup VIII-a ERFs of the AP2/ERF family exhibit cell death-inducing ability in tobacco leaves. In this study, we focused on the involvement of NtERF3 in a cell death signalling pathway in tobacco plants, particularly downstream of NtSIPK/NtWIPK and NtWRKY1, which are mitogen-activated protein kinases and a phosphorylation substrate of NtSIPK, respectively. An ERF-associated amphiphilic repression (EAR) motif-deficient NtERF3b mutant (NtERF3bΔEAR) that lacked cell death-inducing ability suppressed the induction of cell death caused by NtERF3a. The transient co-expression of NtERF3bΔEAR suppressed the hypersensitive reaction (HR)-like cell death induced by NtSIPK and NtWRKY1. The induction of cell death by NtSIPK and NtWRKY1 was also inhibited in transgenic plants expressing NtERF3bΔEAR. Analysis of gene expression, ethylene production and cell death symptoms in salicylic acid-deficient tobacco plants suggested the existence of some feedback regulation in the HR cell death signalling pathway mediated by SIPK/WIPK and WRKY1. Overall, these results suggest that NtERF3 functions downstream of NtSIPK/NtWIPK and NtWRKY1 in a cell death signalling pathway, with some feedback regulation.
Collapse
Affiliation(s)
- T Ogata
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - H Okada
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - H Kawaide
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| | - H Takahashi
- Department of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - S Seo
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - I Mitsuhara
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Y Matsushita
- Gene Research Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, Japan
| |
Collapse
|
34
|
Tao JJ, Cao YR, Chen HW, Wei W, Li QT, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco Translationally Controlled Tumor Protein Interacts with Ethylene Receptor Tobacco Histidine Kinase1 and Enhances Plant Growth through Promotion of Cell Proliferation. PLANT PHYSIOLOGY 2015; 169:96-114. [PMID: 25941315 PMCID: PMC4577386 DOI: 10.1104/pp.15.00355] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/30/2015] [Indexed: 05/04/2023]
Abstract
Ethylene is an important phytohormone in the regulation of plant growth, development, and stress response throughout the lifecycle. Previously, we discovered that a subfamily II ethylene receptor tobacco (Nicotiana tabacum) Histidine Kinase1 (NTHK1) promotes seedling growth. Here, we identified an NTHK1-interacting protein translationally controlled tumor protein (NtTCTP) by the yeast (Saccharomyces cerevisiae) two-hybrid assay and further characterized its roles in plant growth. The interaction was further confirmed by in vitro glutathione S-transferase pull down and in vivo coimmunoprecipitation and bimolecular fluorescence complementation assays, and the kinase domain of NTHK1 mediates the interaction with NtTCTP. The NtTCTP protein is induced by ethylene treatment and colocalizes with NTHK1 at the endoplasmic reticulum. Overexpression of NtTCTP or NTHK1 reduces plant response to ethylene and promotes seedling growth, mainly through acceleration of cell proliferation. Genetic analysis suggests that NtTCTP is required for the function of NTHK1. Furthermore, association of NtTCTP prevents NTHK1 from proteasome-mediated protein degradation. Our data suggest that plant growth inhibition triggered by ethylene is regulated by a unique feedback mechanism, in which ethylene-induced NtTCTP associates with and stabilizes ethylene receptor NTHK1 to reduce plant response to ethylene and promote plant growth through acceleration of cell proliferation.
Collapse
Affiliation(s)
- Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang-Rong Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Wei
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qing-Tian Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
35
|
Wu C, Avila CA, Goggin FL. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:559-70. [PMID: 25504643 PMCID: PMC4286409 DOI: 10.1093/jxb/eru472] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2-) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Carlos A Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA Department of Horticultural Sciences, Texas A&M AgriLife Research, Weslaco, TX 78596, USA
| | - Fiona L Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
36
|
Etesami H, Alikhani HA, Mirseyed Hosseini H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Pérez-Cañamás M, Hernández C. Key importance of small RNA binding for the activity of a glycine-tryptophan (GW) motif-containing viral suppressor of RNA silencing. J Biol Chem 2014; 290:3106-20. [PMID: 25505185 DOI: 10.1074/jbc.m114.593707] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses express viral suppressors of RNA silencing (VSRs) to counteract RNA silencing-based host defenses. Although virtually all stages of the antiviral silencing pathway can be inhibited by VSRs, small RNAs (sRNAs) and Argonaute (AGO) proteins seem to be the most frequent targets. Recently, GW/WG motifs of some VSRs have been proposed to dictate their suppressor function by mediating interaction with AGO(s). Here we have studied the VSR encoded by Pelargonium line pattern virus (family Tombusviridae). The results show that p37, the viral coat protein, blocks RNA silencing. Site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed generation of suppressor-competent and -incompetent molecules and uncoupling of the VSR and particle assembly capacities. The engineered mutants were used to assess the importance of p37 functions for viral infection and the relative contribution of diverse molecular interactions to suppressor activity. Two main conclusions can be drawn: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic Pelargonium line pattern virus infection, and (ii) the suppressor activity of p37 relies on the ability to bind sRNAs rather than on interaction with AGOs. The data also caution against potential misinterpretations of results due to overlap of sequence signals related to distinct protein properties. This is well illustrated by mutation of the GW motif in p37 that concurrently affects nucleolar localization, efficient interaction with AGO1, and sRNA binding capability. These concomitant effects could have been overlooked in other GW motif-containing suppressors, as we exemplify with the orthologous p38 of turnip crinkle virus.
Collapse
Affiliation(s)
- Miryam Pérez-Cañamás
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| | - Carmen Hernández
- From the Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia), Ciudad Politécnica de la Innovación, Ed. 8E. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
38
|
Mouekouba LDO, Zhang L, Guan X, Chen X, Chen H, Zhang J, Zhang J, Li J, Yang Y, Wang A. Analysis of Clonostachys rosea-induced resistance to tomato gray mold disease in tomato leaves. PLoS One 2014; 9:e102690. [PMID: 25061981 PMCID: PMC4111289 DOI: 10.1371/journal.pone.0102690] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 06/22/2014] [Indexed: 11/17/2022] Open
Abstract
Tomato gray mold disease, caused by Botrytis cinerea, is a serious disease in tomato. Clonostachys rosea is an antagonistic microorganism to B. cinerea. To investigate the induced resistance mechanism of C. rosea, we examined the effects of these microorganisms on tomato leaves, along with changes in the activities of three defense enzymes (PAL, PPO, GST), second messengers (NO, H2O2, O2(-)) and phytohormones (IAA, ABA, GA3, ZT, MeJA, SA and C2H4). Compared to the control, all treatments induced higher levels of PAL, PPO and GST activity in tomato leaves and increased NO, SA and GA3 levels. The expression of WRKY and MAPK, two important transcription factors in plant disease resistance, was upregulated in C. rosea- and C. rosea plus B. cinerea-treated samples. Two-dimensional gel electrophoresis analysis showed that two abundant proteins were present in the C. rosea plus B. cinerea-treated samples but not in the other samples. These proteins were determined (by mass spectrum analysis) to be LEXYL2 (β-xylosidase) and ATP synthase CF1 alpha subunit. Therefore, C. rosea plus B. cinerea treatment induces gray mold resistance in tomato. This study provides a basis for elucidating the mechanism of C. rosea as a biocontrol agent.
Collapse
Affiliation(s)
- Liana Dalcantara Ongouya Mouekouba
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, PR China
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xin Guan
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Xiuling Chen
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Hongyu Chen
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jian Zhang
- Alberta Innovates-Technology Futures, Vegreville, Alberta, Canada
| | - Junfeng Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| | - Yijun Yang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, PR China
- College of Life Sciences, Northeast Agricultural University, Harbin, Heilongjiang, PR China
| |
Collapse
|
39
|
The Evolution of Ethylene Signaling in Plant Chemical Ecology. J Chem Ecol 2014; 40:700-16. [DOI: 10.1007/s10886-014-0474-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/10/2023]
|
40
|
Serra-Soriano M, Pallás V, Navarro JA. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:863-79. [PMID: 24438546 DOI: 10.1111/tpj.12435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/30/2013] [Accepted: 01/09/2014] [Indexed: 05/19/2023]
Abstract
Viral movement proteins exploit host endomembranes and the cytoskeleton to move within the cell via routes that, in some cases, are dependent on the secretory pathway. For example, melon necrotic spot virus p7B, a type II transmembrane protein, leaves the endoplasmic reticulum (ER) through the COPII-dependent Golgi pathway to reach the plasmodesmata. Here we investigated the sequence requirements and putative mechanisms governing p7B transport through the early secretory pathway. Deletion of either the cytoplasmic N-terminal region (CR) or the luminal C-terminal region (LR) led to ER retention, suggesting that they are both essential for ER export. Through alanine-scanning mutagenesis, we identified residues in the CR and LR that are critical for both ER export and for viral cell-to-cell movement. Within the CR, alanine substitution of aspartic and proline residues in the DSSP β-turn motif (D7 AP10 A) led to movement of discrete structures along the cortical ER in an actin-dependent manner. In contrast, alanine substitution of a lysine residue in the LR (K49 A) resulted in a homogenous ER distribution of the movement protein and inhibition of ER-Golgi traffic. Moreover, the ability of p7B to recruit Sar1 to the ER membrane is lost in the D7 AP10 A mutant, but enhanced in the K49 A mutant. In addition, fluorescence recovery after photobleaching revealed that K49 A but not D7 AP10 A dramatically diminished protein lateral mobility. From these data, we propose a model whereby the LR directs actin-dependent mobility toward the cortical ER, where the cytoplasmic DSSP β-turn favors assembly of COPII vesicles for export of p7B from the ER.
Collapse
Affiliation(s)
- Marta Serra-Soriano
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València/Consejo Superior de Investigaciones Científicas, Avenida Ingeniero Fausto Elio s/n, 46022, Valencia, Spain
| | | | | |
Collapse
|
41
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Ralstonia solanacearum requires PopS, an ancient AvrE-family effector, for virulence and To overcome salicylic acid-mediated defenses during tomato pathogenesis. mBio 2013; 4:e00875-13. [PMID: 24281716 PMCID: PMC3870264 DOI: 10.1128/mbio.00875-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During bacterial wilt of tomato, the plant pathogen Ralstonia solanacearum upregulates expression of popS, which encodes a type III-secreted effector in the AvrE family. PopS is a core effector present in all sequenced strains in the R. solanacearum species complex. The phylogeny of popS mirrors that of the species complex as a whole, suggesting that this is an ancient, vertically inherited effector needed for association with plants. A popS mutant of R. solanacearum UW551 had reduced virulence on agriculturally important Solanum spp., including potato and tomato plants. However, the popS mutant had wild-type virulence on a weed host, Solanum dulcamara, suggesting that some species can avoid the effects of PopS. The popS mutant was also significantly delayed in colonization of tomato stems compared to the wild type. Some AvrE-type effectors from gammaproteobacteria suppress salicylic acid (SA)-mediated plant defenses, suggesting that PopS, a betaproteobacterial ortholog, has a similar function. Indeed, the popS mutant induced significantly higher expression of tomato SA-triggered pathogenesis-related (PR) genes than the wild type. Further, pretreatment of roots with SA exacerbated the popS mutant virulence defect. Finally, the popS mutant had no colonization defect on SA-deficient NahG transgenic tomato plants. Together, these results indicate that this conserved effector suppresses SA-mediated defenses in tomato roots and stems, which are R. solanacearum’s natural infection sites. Interestingly, PopS did not trigger necrosis when heterologously expressed in Nicotiana leaf tissue, unlike the AvrE homolog DspEPcc from the necrotroph Pectobacterium carotovorum subsp. carotovorum. This is consistent with the differing pathogenesis modes of necrosis-causing gammaproteobacteria and biotrophic R. solanacearum. The type III-secreted AvrE effector family is widely distributed in high-impact plant-pathogenic bacteria and is known to suppress plant defenses for virulence. We characterized the biology of PopS, the only AvrE homolog made by the bacterial wilt pathogen Ralstonia solanacearum. To our knowledge, this is the first study of R. solanacearum effector function in roots and stems, the natural infection sites of this pathogen. Unlike the functionally redundant R. solanacearum effectors studied to date, PopS is required for full virulence and wild-type colonization of two natural crop hosts. R. solanacearum is a biotrophic pathogen that causes a nonnecrotic wilt. Consistent with this, PopS suppressed plant defenses but did not elicit cell death, unlike AvrE homologs from necrosis-causing plant pathogens. We propose that AvrE family effectors have functionally diverged to adapt to the necrotic or nonnecrotic lifestyle of their respective pathogens.
Collapse
|
43
|
Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V. Ethylene is involved in strawberry fruit ripening in an organ-specific manner. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4421-39. [PMID: 24098047 PMCID: PMC3808323 DOI: 10.1093/jxb/ert257] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The fruit of the strawberry Fragaria×ananassa has traditionally been classified as non-climacteric because its ripening process is not governed by ethylene. However, previous studies have reported the timely endogenous production of minor amounts of ethylene by the fruit as well as the differential expression of genes of the ethylene synthesis, reception, and signalling pathways during fruit development. Mining of the Fragaria vesca genome allowed for the identification of the two main ethylene biosynthetic genes, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. Their expression pattern during fruit ripening was found to be stage and organ (achene or receptacle) specific. Strawberry plants with altered sensitivity to ethylene could be employed to unravel the role of ethylene in the ripening process of the strawberry fruit. To this end, independent lines of transgenic strawberry plants were generated that overexpress the Arabidopsis etr1-1 mutant ethylene receptor, which is a dominant negative allele, causing diminished sensitivity to ethylene. Genes involved in ethylene perception as well as in its related downstream processes, such as flavonoid biosynthesis, pectin metabolism, and volatile biosynthesis, were differently expressed in two transgenic tissues, the achene and the receptacle. The different transcriptional responsiveness of the achene and the receptacle to ethylene was also revealed by the metabolic profiling of the primary metabolites in these two organs. The free amino acid content was higher in the transgenic lines compared with the control in the mature achene, while glucose and fructose, and citric and malic acids were at lower levels. In the receptacle, the most conspicuous change in the transgenic lines was the depletion of the tricarboxylic acid cycle intermediates at the white stage of development, most probably as a consequence of diminished respiration. The results are discussed in the context of the importance of ethylene during strawberry fruit ripening.
Collapse
Affiliation(s)
- Catharina Merchante
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - José G. Vallarino
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Sonia Osorio
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Irene Aragüez
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Natalia Villarreal
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | - María T. Ariza
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Gustavo A. Martínez
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, Km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
| | - Nieves Medina-Escobar
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Marcos P. Civello
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, (1900) La Plata, Argentina
- INFIVE (CONICET-UNLP), Instituto de Fisiología Vegetal, Diag. 113 y Calle 61 no. 495 – C.c 327, (1900) La Plata, Argentina
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Miguel A. Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| | - Victoriano Valpuesta
- Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, E-29071 Málaga, Spain
| |
Collapse
|
44
|
Wang H, Stier G, Lin J, Liu G, Zhang Z, Chang Y, Reid MS, Jiang CZ. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor. PLoS One 2013; 8:e65800. [PMID: 23874385 PMCID: PMC3706537 DOI: 10.1371/journal.pone.0065800] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 04/26/2013] [Indexed: 11/18/2022] Open
Abstract
Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, 'the regulation of transcription' was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Genevieve Stier
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Jing Lin
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Youhong Chang
- Institute of Horticulture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail: (YHC); (MSR); (CZJ)
| | - Michael S. Reid
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail: (YHC); (MSR); (CZJ)
| | - Cai-Zhong Jiang
- Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
- * E-mail: (YHC); (MSR); (CZJ)
| |
Collapse
|
45
|
Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog 2013; 9:e1003435. [PMID: 23785291 PMCID: PMC3681747 DOI: 10.1371/journal.ppat.1003435] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of "extreme resistance" (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.
Collapse
Affiliation(s)
- Raphaël Sansregret
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vanessa Dufour
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Langlois
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
46
|
CRT1 is a nuclear-translocated MORC endonuclease that participates in multiple levels of plant immunity. Nat Commun 2013; 3:1297. [PMID: 23250427 DOI: 10.1038/ncomms2279] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/12/2012] [Indexed: 12/13/2022] Open
Abstract
Arabidopsis thaliana CRT1 (compromised for recognition of Turnip Crinkle Virus) was previously shown to be required for effector-triggered immunity. Sequence analyses previously revealed that CRT1 contains the ATPase and S5 domains characteristic of Microchidia (MORC) proteins; these proteins are associated with DNA modification and repair. Here we show that CRT1 and its closest homologue, CRH1, are also required for pathogen-associated molecular pattern (PAMP)-triggered immunity, basal resistance, non-host resistance and systemic acquired resistance. Consistent with its role in PAMP-triggered immunity, CRT1 interacted with the PAMP recognition receptor FLS2. Subcellular fractionation and transmission electron microscopy detected a subpopulation of CRT1 in the nucleus, whose levels increased following PAMP treatment or infection with an avirulent pathogen. These results, combined with the demonstration that CRT1 binds DNA, exhibits endonuclease activity, and affects tolerance to the DNA-damaging agent mitomycin C, argue that this prototypic eukaryotic member of the MORC superfamily has important nuclear functions during immune response activation.
Collapse
|
47
|
Wang H, Liu G, Li C, Powell ALT, Reid MS, Zhang Z, Jiang CZ. Defence responses regulated by jasmonate and delayed senescence caused by ethylene receptor mutation contribute to the tolerance of petunia to Botrytis cinerea. MOLECULAR PLANT PATHOLOGY 2013; 14:453-69. [PMID: 23437935 PMCID: PMC6638649 DOI: 10.1111/mpp.12017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ethylene and jasmonate (JA) have powerful effects when plants are challenged by pathogens. The inducible promoter-regulated expression of the Arabidopsis ethylene receptor mutant ethylene-insensitive1-1 (etr1-1) causes ethylene insensitivity in petunia. To investigate the molecular mechanisms involved in transgenic petunia responses to Botrytis cinerea related to the ethylene and JA pathways, etr1-1-expressing petunia plants were inoculated with Botrytis cinerea. The induced expression of etr1-1 by a chemical inducer dexamethasone resulted in retarded senescence and reduced disease symptoms on detached leaves and flowers or intact plants. The extent of decreased disease symptoms correlated positively with etr1-1 expression. The JA pathway, independent of the ethylene pathway, activated petunia ethylene response factor (PhERF) expression and consequent defence-related gene expression. These results demonstrate that ethylene induced by biotic stress influences senescence, and that JA in combination with delayed senescence by etr1-1 expression alters tolerance to pathogens.
Collapse
Affiliation(s)
- Hong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Ruiz-Ruiz S, Soler N, Sánchez-Navarro J, Fagoaga C, López C, Navarro L, Moreno P, Peña L, Flores R. Citrus tristeza virus p23: determinants for nucleolar localization and their influence on suppression of RNA silencing and pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:306-18. [PMID: 23387469 DOI: 10.1094/mpmi-08-12-0201-r] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) encodes a singular protein (p23, 209 amino acids) with multiple functions, including RNA silencing suppression (RSS). Confocal laser-scanning microscopy of green fluorescent protein (GFP)-p23 agroexpressed in Nicotiana benthamiana revealed its accumulation in the nucleolus, Cajal bodies, and plasmodesmata. To dissect the nucleolar localization signal (NoLS) typically associated with basic motifs, seven truncated and 10 point-mutated versions of p23 were assayed. Deletion mutants showed that regions 50 to 86 and 100 to 157 (excluding fragment 106 to 114), both with basic motifs and the first with a zinc-finger, contain the (bipartite) NoLS. Alanine substitutions delimited this signal to three cysteines of the Zn-finger and some basic amino acids. RSS activity of p23 in N. benthamiana was abolished by essentially all mutants, indicating that it involves most p23 regions. The necrotic-inducing ability of p23 when launched in N. benthamiana from Potato virus X was only retained by deletion mutant 158-209 and one substitution mutant, showing that the Zn-finger and flanking basic motifs form part of the pathogenic determinant. Ectopic expression of p23 and some deletion mutants in transgenic Mexican lime demarcated a similar determinant, suggesting that p23 affects related pathways in citrus and N. benthamiana. Both RSS activity and pathogenicity of p23 appear related to its nucleolar localization.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang Z, Fradin E, de Jonge R, van Esse HP, Smit P, Liu CM, Thomma BPHJ. Optimized agroinfiltration and virus-induced gene silencing to study Ve1-mediated Verticillium resistance in tobacco. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:182-90. [PMID: 22991998 DOI: 10.1094/mpmi-06-12-0161-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Recognition of pathogen effectors by plant immune receptors often leads to the activation of a hypersensitive response (HR), which is a rapid and localized cell death of plant tissue surrounding the site at which recognition occurs. Due to its particular amenability to transient assays for functional genetics, tobacco is a model for immune signaling in the Solanaceae plant family. Here, we show that coexpression of the tomato (Solanum lycopersicum) immune receptor Ve1 and the corresponding Verticillium effector protein Ave1 leads to HR only in particular tobacco species. Whereas HR is obtained in Nicotiana tabacum, no such response is obtained in N. benthamiana. Furthermore, our analysis revealed an endogenous Ve1 ortholog in Nicotiana glutinosa, as expression of Ave1 in absence of Ve1 induced a HR, and N. glutinosa was found to be resistant against race 1 Verticillium dahliae. We furthermore report the establishment of virus-induced gene silencing in N. tabacum for functional analysis of Ve1 signaling. Collectively, our data show that N. tabacum can be used as a model plant to study Ve1-mediated immune signaling.
Collapse
Affiliation(s)
- Zhao Zhang
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Ali F, Yan J. Disease resistance in maize and the role of molecular breeding in defending against global threat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:134-51. [PMID: 22333113 DOI: 10.1111/j.1744-7909.2012.01105.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Diseases are a potential threat to global food security but plants have evolved an extensive array of methodologies to cope with the invading pathogens. Non-host resistance and quantitative resistance are broad spectrum forms of resistance, and all kinds of resistances are controlled by extremely diverse genes called "R-genes". R-genes follow different mechanisms to defend plants and PAMP-induced defenses in susceptible host plants are referred to as basal resistance. Genetic and phenotypic diversity are vital in maize (Zea mays L.); as such, genome wide association study (GWAS) along with certain other methodologies can explore the maximum means of genetic diversity. Exploring the complete genetic architecture to manipulate maize genetically reduces the losses from hazardous diseases. Genomic studies can reveal the interaction between different genes and their pathways. By confirming the specific role of these genes and protein-protein interaction (proteomics) via advanced molecular and bioinformatics tools, we can shed a light on the most complicated and abstruse phenomena of resistance.
Collapse
Affiliation(s)
- Farhan Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|