1
|
Wang S, Shi G, Duan K, Yin Y, Li T. Extraembryonic mesoderm cells derived from human embryonic stem cells rely on Wnt pathway activation. Cell Prolif 2025; 58:e13761. [PMID: 39385268 PMCID: PMC11839190 DOI: 10.1111/cpr.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Extraembryonic mesoderm cells (EXMCs) are involved in the development of multiple embryonic lineages and umbilical cord formation, where they subsequently develop into mesenchymal stem cells (MSCs). Although EXMCs can be generated from human naïve embryonic stem cells (ESCs), it is unclear whether human primed ESCs (hpESCs) can differentiate into EXMCs that subsequently produce MSCs. The present report described a three-dimensional differentiation protocol to induce hpESCs into EXMCs by activating the Wnt pathway using CHIR99021. Single-cell transcriptome and immunostaining analyses revealed that the EXMC characteristics were similar to those of post-implantation embryonic EXMCs. Cell sorting was used to purify and expand the EXMCs. Importantly, these EXMCs secreted extracellular matrix proteins, including COL3A1 and differentiated into MSCs. Inconsistent with other MSC types, these MSCs exhibited a strong differentiation potential for chondrogenic and osteogenic cells and lacked adipocyte differentiation. Together, these findings provided a protocol to generate EXMCs and subsequent MSCs from hpESCs.
Collapse
Affiliation(s)
- Si‐Le Wang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnanChina
| | - Gao‐Hui Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnanChina
| | - Kui Duan
- Department of Anatomy, College of Preclinical MedicineDali UniversityDaliYunnanChina
| | - Yu Yin
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnanChina
| | - Tianqing Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingYunnanChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingYunnanChina
| |
Collapse
|
2
|
Bubna-Litic M, Charras G, Mayor R. Tissue mechanics modulate morphogen signalling to induce the head organiser. Cells Dev 2024:203984. [PMID: 39631565 DOI: 10.1016/j.cdev.2024.203984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Morphogenetic movements and specification of germ layers during gastrulation are key processes that establish the vertebrate body plan. Despite substantial research into the role of tissue mechanics during gastrulation and detailed characterisation of the molecular signalling networks controlling fate determination, the interplay of mechanical cues and biochemical signals during fate specification is poorly understood. Morphogens that activate Activin/Nodal/Smad2 signalling play a key role in mesoderm induction and axial patterning. We investigate the interplay between a single molecular input and a mechanical input using the well-established ex vivo system of Activin-induced explants of the mid-blastula X. laevis animal cap ectoderm. Activin alone induces mesoderm to form a complex elongating tissue with axial patterning, making this system similar to gastruloids generated in other model organisms. We observed an increase in the expression of dorsal mesoderm markers, such as chordin and goosecoid, and loss of elongation, in Activin-induced explants that were mechanically stimulated through uniaxial compression during the induction period. In addition, head mesoderm specific markers, including cerberus 1, were also increased. We show that mechanical stimulation leads to an increase in nuclear β-catenin activity. Activation of β-catenin signalling is sufficient to induce head Organiser gene expression. Furthermore, inhibition of β-catenin is sufficient to rescue the effect of compression on an early Wnt-signalling response gene siamois. Taken together these observations support the role of mechanical stimulation in modulating Activin-dependent mesoderm induction in favour of head Organiser formation. Given the conserved role of β-catenin in the dorsal specification and the dynamic morphogenetic movements of dorsal gastrula regions, mechanics-dependent Organiser induction may be found in other vertebrate species. Finally, the finding that mechanical cues affect β-catenin-dependent axial specification can be applied in the future development of more biologically relevant and robust synthetic organoid systems.
Collapse
Affiliation(s)
- Matyas Bubna-Litic
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Guillaume Charras
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gordon St, London WC1H 0AH, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.
| |
Collapse
|
3
|
Chi C, Roland TJ, Song K. Differentiation of Pluripotent Stem Cells for Disease Modeling: Learning from Heart Development. Pharmaceuticals (Basel) 2024; 17:337. [PMID: 38543122 PMCID: PMC10975450 DOI: 10.3390/ph17030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/01/2024] Open
Abstract
Heart disease is a pressing public health problem and the leading cause of death worldwide. The heart is the first organ to gain function during embryogenesis in mammals. Heart development involves cell determination, expansion, migration, and crosstalk, which are orchestrated by numerous signaling pathways, such as the Wnt, TGF-β, IGF, and Retinoic acid signaling pathways. Human-induced pluripotent stem cell-based platforms are emerging as promising approaches for modeling heart disease in vitro. Understanding the signaling pathways that are essential for cardiac development has shed light on the molecular mechanisms of congenital heart defects and postnatal heart diseases, significantly advancing stem cell-based platforms to model heart diseases. This review summarizes signaling pathways that are crucial for heart development and discusses how these findings improve the strategies for modeling human heart disease in vitro.
Collapse
Affiliation(s)
- Congwu Chi
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Truman J. Roland
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| | - Kunhua Song
- Heart Institute, University of South Florida, Tampa, FL 33602, USA; (C.C.); (T.J.R.)
- Department of Internal Medicine, University of South Florida, Tampa, FL 33602, USA
- Center for Regenerative Medicine, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
4
|
Eroshkin FM, Fefelova EA, Bredov DV, Orlov EE, Kolyupanova NM, Mazur AM, Sokolov AS, Zhigalova NA, Prokhortchouk EB, Nesterenko AM, Zaraisky AG. Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues. Int J Mol Sci 2024; 25:870. [PMID: 38255964 PMCID: PMC10815341 DOI: 10.3390/ijms25020870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
During gastrulation and neurulation, the chordamesoderm and overlying neuroectoderm of vertebrate embryos converge under the control of a specific genetic programme to the dorsal midline, simultaneously extending along it. However, whether mechanical tensions resulting from these morphogenetic movements play a role in long-range feedback signaling that in turn regulates gene expression in the chordamesoderm and neuroectoderm is unclear. In the present work, by using a model of artificially stretched explants of Xenopus midgastrula embryos and full-transcriptome sequencing, we identified genes with altered expression in response to external mechanical stretching. Importantly, mechanically activated genes appeared to be expressed during normal development in the trunk, i.e., in the stretched region only. By contrast, genes inhibited by mechanical stretching were normally expressed in the anterior neuroectoderm, where mechanical stress is low. These results indicate that mechanical tensions may play the role of a long-range signaling factor that regulates patterning of the embryo, serving as a link coupling morphogenesis and cell differentiation.
Collapse
Affiliation(s)
- Fedor M. Eroshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Elena A. Fefelova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Denis V. Bredov
- Laboratory of Development Biophysics, Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Eugeny E. Orlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Nataliya M. Kolyupanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander M. Mazur
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey S. Sokolov
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Nadezhda A. Zhigalova
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Egor B. Prokhortchouk
- Federal State Institution “Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences”, Leninsky Prospect, 33 Build. 2, 119071 Moscow, Russia
| | - Alexey M. Nesterenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Federal Center of Brain Research and Biotechnologies of Federal Medical-Biological Agency, 1 Build 10 Ostrovityanova Str., 117513 Moscow, Russia
| | - Andrey G. Zaraisky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (IBCH RAS), 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia
- Department of Regenerative Medicine, Pirogov Russian National Research Medical University, 1 Build 70 Ostrovityanova Str., 117513 Moscow, Russia
| |
Collapse
|
5
|
Keum BR, Yeo I, Koo Y, Han W, Choi SC, Kim GH, Han JK. Transmembrane protein 150b attenuates BMP signaling in the Xenopus organizer. J Cell Physiol 2023; 238:1850-1866. [PMID: 37435758 DOI: 10.1002/jcp.31059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/13/2023]
Abstract
The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Byeong-Rak Keum
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Research Center for drug development, CYPHARMA, Daejeon, Korea
| | - Inchul Yeo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wonhee Han
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Gun-Hwa Kim
- Research Center for drug development, CYPHARMA, Daejeon, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
6
|
Legier T, Rattier D, Llewellyn J, Vannier T, Sorre B, Maina F, Dono R. Epithelial disruption drives mesendoderm differentiation in human pluripotent stem cells by enabling TGF-β protein sensing. Nat Commun 2023; 14:349. [PMID: 36681697 PMCID: PMC9867713 DOI: 10.1038/s41467-023-35965-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
The processes of primitive streak formation and fate specification in the mammalian epiblast rely on complex interactions between morphogens and tissue organization. Little is known about how these instructive cues functionally interact to regulate gastrulation. We interrogated the interplay between tissue organization and morphogens by using human induced pluripotent stem cells (hiPSCs) downregulated for the morphogen regulator GLYPICAN-4, in which defects in tight junctions result in areas of disrupted epithelial integrity. Remarkably, this phenotype does not affect hiPSC stemness, but impacts on cell fate acquisition. Strikingly, cells within disrupted areas become competent to perceive the gastrulation signals BMP4 and ACTIVIN A, an in vitro surrogate for NODAL, and thus differentiate into mesendoderm. Yet, disruption of epithelial integrity sustains activation of BMP4 and ACTIVIN A downstream effectors and correlates with enhanced hiPSC endoderm/mesoderm differentiation. Altogether, our results disclose epithelial integrity as a key determinant of TGF-β activity and highlight an additional mechanism guiding morphogen sensing and spatial cell fate change within an epithelium.
Collapse
Affiliation(s)
- Thomas Legier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Diane Rattier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Jack Llewellyn
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Thomas Vannier
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Benoit Sorre
- Institut Curie, Universite ́PSL, Sorbonne Universite ́, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Flavio Maina
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, Marseille, France.
| |
Collapse
|
7
|
Kumar V, Umair Z, Kumar S, Lee U, Kim J. Smad2 and Smad3 differentially modulate chordin transcription via direct binding on the distal elements in gastrula Xenopus embryos. Biochem Biophys Res Commun 2021; 559:168-175. [PMID: 33945994 DOI: 10.1016/j.bbrc.2021.04.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022]
Abstract
Transforming growth factor (TGF)β/activin superfamily regulates diverse biological processes including germ layer specification and axis patterning in vertebrates. TGFβ/activin leads to phosphorylation of Smad2 and Smad3, followed by regulation of their target genes. Activin treatment also induces the essential organizer gene chordin (chrd). The involvement of Smad2/3 in chrd expression has been unclear as to whether Smad2/3 involvement is direct or indirect and whether any cis-acting response elements for Smad2/3 are present in the proximal or distal regions of its promoter. In the present study, we isolated the -2250 bps portion of the chrd promoter, showing that it contained Smad2/3 direct binding sites at its distal portion, separate from the proximal locations of other organizer genes, goosecoid and cerberus. The pattern of transcription activation for the promoter (-2250 bps) was indistinguishable from that of the endogenous chrd in gastrula Xenopus embryos. Reporter gene assays and site-directed mutagenesis analysis of the chrd promoter mapped two active activin/Smad response elements (ARE1 and ARE2) for Smad2 and Smad3. For a differential chrd induction, Smad2 acted on both ARE1 and ARE2, but Smad3 was only active for ARE2. Collectively, the results demonstrate that the distal region of chrd promoter contains the direct binding cis-acting elements for Smad2 and Smad3, which differentially modulate chrd transcription in gastrula Xenopus embryos.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea; Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Gangwon-Do, 24252, Republic of Korea.
| |
Collapse
|
8
|
Abstract
The endoderm is the innermost germ layer that forms the linings of the respiratory and gastrointestinal tracts, and their associated organs, during embryonic development. Xenopus embryology experiments have provided fundamental insights into how the endoderm develops in vertebrates, including the critical role of TGFβ-signaling in endoderm induction,elucidating the gene regulatory networks controlling germ layer development and the key molecular mechanisms regulating endoderm patterning and morphogenesis. With new genetic, genomic, and imaging approaches, Xenopus is now routinely used to model human disease, discover mechanisms underlying endoderm organogenesis, and inform differentiation protocols for pluripotent stem cell differentiation and regenerative medicine applications. In this chapter, we review historical and current discoveries of endoderm development in Xenopus, then provide examples of modeling human disease and congenital defects of endoderm-derived organs using Xenopus.
Collapse
Affiliation(s)
- Nicole A Edwards
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Aaron M Zorn
- Division of Developmental Biology, Center for Stem Cell and Organoid Medicine, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| |
Collapse
|
9
|
Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development. iScience 2020; 23:101314. [PMID: 32650116 PMCID: PMC7347983 DOI: 10.1016/j.isci.2020.101314] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 06/20/2020] [Indexed: 12/19/2022] Open
Abstract
Although Wnt/β-catenin signaling is generally conserved and well understood, the regulatory mechanisms controlling context-specific direct Wnt target gene expression in development and disease are still unclear. The onset of zygotic gene transcription in early embryogenesis represents an ideal, accessible experimental system to investigate context-specific direct Wnt target gene regulation. We combine transcriptomics using RNA-seq with genome-wide β-catenin association using ChIP-seq to identify stage-specific direct Wnt target genes. We propose coherent feedforward regulation involving two distinct classes of direct maternal Wnt target genes, which differ both in expression and persistence of β-catenin association. We discover that genomic β-catenin association overlaps with Foxh1-associated regulatory sequences and demonstrate that direct maternal Wnt target gene expression requires Foxh1 function and Nodal/Tgfβ signaling. Our results support a new paradigm for direct Wnt target gene co-regulation with context-specific mechanisms that will inform future studies of embryonic development and more widely stem cell-mediated homeostasis and human disease. Combining RNA-seq and β-catenin ChIP-seq identifies direct Wnt target genes Two distinct classes of direct maternal Wnt/β-catenin target genes can be discerned We propose coherent feedforward regulation of gene expression of the second class Maternal Wnt target gene expression of both classes requires Nodal/Foxh1 signaling
Collapse
|
10
|
Taniguchi K, Heemskerk I, Gumucio DL. Opening the black box: Stem cell-based modeling of human post-implantation development. J Cell Biol 2019; 218:410-421. [PMID: 30552099 PMCID: PMC6363460 DOI: 10.1083/jcb.201810084] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/06/2023] Open
Abstract
Proper development of the human embryo following its implantation into the uterine wall is critical for the successful continuation of pregnancy. However, the complex cellular and molecular changes that occur during this post-implantation period of human development are not amenable to study in vivo. Recently, several new embryo-like human pluripotent stem cell (hPSC)-based platforms have emerged, which are beginning to illuminate the current black box state of early human post-implantation biology. In this review, we will discuss how these experimental models are carving a way for understanding novel molecular and cellular mechanisms during early human development.
Collapse
Affiliation(s)
- Kenichiro Taniguchi
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Idse Heemskerk
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Deborah L Gumucio
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
11
|
|
12
|
Martyn I, Kanno TY, Ruzo A, Siggia ED, Brivanlou AH. Self-organization of a human organizer by combined Wnt and Nodal signalling. Nature 2018; 558:132-135. [PMID: 29795348 PMCID: PMC6077985 DOI: 10.1038/s41586-018-0150-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/16/2018] [Indexed: 11/09/2022]
Abstract
In amniotes, the development of the primitive streak (PS) and its accompanying “organizer” define the first stages of gastrulation. Despite detailed characterization in model organisms, the analogous human structures remain a mystery. We have previously shown that when stimulated with BMP4, micropatterned colonies of human embryonic stem cells (hESCs) self-organize to generate early embryonic germ layers1. Here we show that in the same type of colonies WNT signalling is sufficient to induce a PS, and WNT with ACTIVIN is sufficient to induce an organizer, as characterized by embryo-like sharp boundary formation, epithelial-to-mesenchymal transition (EMT) markers, and expression of the organizer specific transcription factor GSC. Moreover, when grafted into chick embryos, WNT and ACTIVIN treated human cells induce and contribute autonomously to a secondary axis while inducing neural fate in the host. This fulfills the most stringent functional criteria for an organizer, and its discovery represents a major milestone in human embryology.
Collapse
Affiliation(s)
- I Martyn
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA.,Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA
| | - T Y Kanno
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - A Ruzo
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA
| | - E D Siggia
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, USA.
| | - A H Brivanlou
- Laboratory of Molecular Vertebrate Embryology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Turner DA, Girgin M, Alonso-Crisostomo L, Trivedi V, Baillie-Johnson P, Glodowski CR, Hayward PC, Collignon J, Gustavsen C, Serup P, Steventon B, P Lutolf M, Arias AM. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 2017; 144:3894-3906. [PMID: 28951435 PMCID: PMC5702072 DOI: 10.1242/dev.150391] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022]
Abstract
The establishment of the anteroposterior (AP) axis is a crucial step during animal embryo development. In mammals, genetic studies have shown that this process relies on signals spatiotemporally deployed in the extra-embryonic tissues that locate the position of the head and the onset of gastrulation, marked by T/Brachyury (T/Bra) at the posterior of the embryo. Here, we use gastruloids, mESC-based organoids, as a model system with which to study this process. We find that gastruloids localise T/Bra expression to one end and undergo elongation similar to the posterior region of the embryo, suggesting that they develop an AP axis. This process relies on precisely timed interactions between Wnt/β-catenin and Nodal signalling, whereas BMP signalling is dispensable. Additionally, polarised T/Bra expression occurs in the absence of extra-embryonic tissues or localised sources of signals. We suggest that the role of extra-embryonic tissues in the mammalian embryo might not be to induce the axes but to bias an intrinsic ability of the embryo to initially break symmetry. Furthermore, we suggest that Wnt signalling has a separable activity involved in the elongation of the axis.
Collapse
Affiliation(s)
- David A Turner
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Mehmet Girgin
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Luz Alonso-Crisostomo
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Vikas Trivedi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Peter Baillie-Johnson
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Cherise R Glodowski
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Penelope C Hayward
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jérôme Collignon
- Université Paris-Diderot, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Carsten Gustavsen
- Danish Stem Cell Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Palle Serup
- Danish Stem Cell Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
14
|
Nakamura Y, Hoppler S. Genome-wide analysis of canonical Wnt target gene regulation in Xenopus tropicalis challenges β-catenin paradigm. Genesis 2017; 55. [PMID: 28095618 PMCID: PMC5299483 DOI: 10.1002/dvg.22991] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022]
Abstract
Wnt/β‐catenin signaling is an important cell‐to‐cell signaling mechanism that controls gene expression during embryonic development and is critically implicated in human diseases. Developmental, cellular, and transcriptional responses to Wnt signaling are remarkably context‐specific in different biological processes. While nuclear localization of β‐catenin is the key to activation of the Wnt/β‐catenin pathway and target gene expression, the molecular mechanisms of how the same Wnt/β‐catenin signaling pathway induces specific responses remain undetermined. Recent advances in high‐throughput sequencing technologies and the availability of genome information for Xenopus tropicalis have enabled us to uncover a genome‐wide view of Wnt/β‐catenin signaling in early vertebrate embryos, which challenges previous concepts about molecular mechanisms of Wnt target gene regulation. In this review, we summarize our experimental approaches, introduce the technologies we employed and focus on recent findings about Wnt target gene regulation from Xenopus research. We will also discuss potential functions of widespread β‐catenin binding in the genome that we discovered in this species.
Collapse
Affiliation(s)
- Yukio Nakamura
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen, AB25 2ZD, United Kingdom
| |
Collapse
|
15
|
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
16
|
Luo K. Signaling Cross Talk between TGF-β/Smad and Other Signaling Pathways. Cold Spring Harb Perspect Biol 2017. [PMID: 27836834 DOI: 10.1101/cshperspect] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines of the transforming growth factor β (TGF-β) family, including TGF-βs, bone morphogenic proteins (BMPs), activins, and Nodal, play crucial roles in embryonic development and adult tissue homeostasis by regulating cell proliferation, survival, and differentiation, as well as stem-cell self-renewal and lineage-specific differentiation. Smad proteins are critical downstream mediators of these signaling activities. In addition to regulating the transcription of direct target genes of TGF-β, BMP, activin, or Nodal, Smad proteins also participate in extensive cross talk with other signaling pathways, often in a cell-type- or developmental stage-specific manner. These combinatorial signals often produce context-, time-, and location-dependent biological outcomes that are critical for development. This review discusses recent progress in our understanding of the cross talk between Smad proteins and signaling pathways of Wnt, Notch, Hippo, Hedgehog (Hh), mitogen-activated protein (MAP), kinase, phosphoinositide 3-kinase (PI3K)-Akt, nuclear factor κB (NF-κB), and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, and Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
17
|
Nakamura Y, de Paiva Alves E, Veenstra GJC, Hoppler S. Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules. Development 2016; 143:1914-25. [PMID: 27068107 PMCID: PMC4920159 DOI: 10.1242/dev.131664] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of β-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of β-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates β-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence β-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/β-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of β-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/β-catenin target genes subsequent to β-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated β-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts. Highlighted article: Dual ChIP-seq and RNA-seq in vivo experiments show that the context-specific events that occur subsequent to β-catenin binding enable gene-specific regulation, rather than β-catenin recruitment per se.
Collapse
Affiliation(s)
- Yukio Nakamura
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Eduardo de Paiva Alves
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen AB24 3RY, UK
| | - Gert Jan C Veenstra
- Radboud University, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, 6500 HB Nijmegen, The Netherlands
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill Health Campus, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
18
|
Agapova OA, Fang Y, Sugatani T, Seifert ME, Hruska KA. Ligand trap for the activin type IIA receptor protects against vascular disease and renal fibrosis in mice with chronic kidney disease. Kidney Int 2016; 89:1231-43. [PMID: 27165838 DOI: 10.1016/j.kint.2016.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023]
Abstract
The causes of cardiovascular mortality associated with chronic kidney disease (CKD) are partly attributed to the CKD-mineral bone disorder (CKD-MBD). The causes of the early CKD-MBD are not well known. Our discovery of Wnt (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair as participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical. In the search for such factors, we studied the effects of activin receptor type IIA (ActRIIA) signaling by using a ligand trap for the receptor, RAP-011 (a soluble extracellular domain of ActRIIA fused to a murine IgG-Fc fragment). In a mouse model of CKD that stimulated atherosclerotic calcification, RAP-011 significantly increased aortic ActRIIA signaling assessed by the levels of phosphorylated Smad2/3. Furthermore, RAP-011 treatment significantly reversed CKD-induced vascular smooth muscle dedifferentiation as assessed by smooth muscle 22α levels, osteoblastic transition, and neointimal plaque calcification. In the diseased kidneys, RAP-011 significantly stimulated αklotho levels and it inhibited ActRIIA signaling and decreased renal fibrosis and proteinuria. RAP-011 treatment significantly decreased both renal and circulating Dickkopf 1 levels, showing that Wnt activation was downstream of ActRIIA. Thus, ActRIIA signaling in CKD contributes to the CKD-MBD and renal fibrosis. ActRIIA signaling may be a potential therapeutic target in CKD.
Collapse
Affiliation(s)
- Olga A Agapova
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Yifu Fang
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Toshifumi Sugatani
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA
| | - Michael E Seifert
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA; Renal Division, Southern Illinois University, Springfield, Illinois, USA
| | - Keith A Hruska
- Department of Pediatrics, Renal Division, Washington University, St. Louis, Missouri, USA; Department of Cell Biology, Washington University, St. Louis, Missouri, USA; Department of Medicine, Washington University, St. Louis, Missouri, USA.
| |
Collapse
|
19
|
Miyagi A, Negishi T, Yamamoto TS, Ueno N. G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus. Dev Biol 2015; 407:131-44. [PMID: 26244992 DOI: 10.1016/j.ydbio.2015.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 08/01/2015] [Indexed: 12/11/2022]
Abstract
Patterning of the vertebrate anterior-posterior axis is regulated by the coordinated action of growth factors whose effects can be further modulated by upstream and downstream mediators and the cross-talk of different intracellular pathways. In particular, the inhibition of the Wnt/β-catenin signaling pathway by various factors is critically required for anterior specification. Here, we report that Flop1 and Flop2 (Flop1/2), G protein-coupled receptors related to Gpr4, contribute to the regulation of head formation by inhibiting Wnt/β-catenin signaling in Xenopus embryos. Using whole-mount in situ hybridization, we showed that flop1 and flop2 mRNAs were expressed in the neural ectoderm during early gastrulation. Both the overexpression and knockdown of Flop1/2 resulted in altered embryonic head phenotypes, while the overexpression of either Flop1/2 or the small GTPase RhoA in the absence of bone morphogenetic protein (BMP) signaling resulted in ectopic head induction. Examination of the Flops' function in Xenopus embryo animal cap cells showed that they inhibited Wnt/β-catenin signaling by promoting β-catenin degradation through both RhoA-dependent and -independent pathways in a cell-autonomous manner. These results suggest that Flop1 and Flop2 are essential regulators of Xenopus head formation that act as novel inhibitory components of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Asuka Miyagi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takefumi Negishi
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Takamasa S Yamamoto
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Naoto Ueno
- Division of Morphogenesis, Department of Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan.
| |
Collapse
|
20
|
Klein SL, Moody SA. Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. Genesis 2015; 53:308-20. [PMID: 25892704 PMCID: PMC8943805 DOI: 10.1002/dvg.22854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
BMP signaling distinguishes between neural and non-neural fates by activating epidermis-specific transcription and repressing neural-specific transcription. The neural ectoderm forms after the Organizer secrets antagonists that prevent these BMP-mediated activities. However, it is not known whether neural genes also are transcriptionally activated. Therefore, we tested the ability of nine Organizer transcription factors to ectopically induce the expression of four neural ectodermal genes in epidermal precursors. We found evidence for two pathways: Foxd4 and Sox11 were only induced by Sia and Twn, whereas Gmnn and Zic2 were induced by Sia, Twn, as well as seven other Organizer transcription factors. The induction of Foxd4, Gmnn and Zic2 by Sia/Twn was both non-cell autonomous (requiring an intermediate protein) and cell autonomous (direct), whereas the induction of Sox11 required Foxd4 activity. Because direct induction by Sia/Twn could occur endogenously in the dorsal-equatorial blastula cells that give rise to both the Organizer mesoderm and the neural ectoderm, we knocked down Sia/Twn in those cells. This prevented the blastula expression of Foxd4 and Sox11, demonstrating that Sia/Twn directly activate some neural genes before the separation of the Organizer mesoderm and neural ectoderm lineages.
Collapse
Affiliation(s)
- Steven L. Klein
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| | - Sally A. Moody
- Department of Anatomy and Regenerative Biology, George Washington University, School of Medicine and Health Sciences, 2300 I Street, Northwest, Washington, DC
| |
Collapse
|
21
|
Le Bras GF, Loomans HA, Taylor C, Revetta F, Andl CD. Activin A balance regulates epithelial invasiveness and tumorigenesis. J Transl Med 2014; 94:1134-46. [PMID: 25068654 PMCID: PMC4309391 DOI: 10.1038/labinvest.2014.97] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022] Open
Abstract
Activin A (Act A) is a member of the TGFβ superfamily. Act A and TGFβ have multiple common downstream targets and have been described to merge in their intracellular signaling cascades and function. We have previously demonstrated that coordinated loss of E-cadherin and TGFβ receptor II (TβRII) results in epithelial cell invasion. When grown in three-dimensional organotypic reconstruct cultures, esophageal keratinocytes expressing dominant-negative mutants of E-cadherin and TβRII showed activated Smad2 in the absence of functional TβRII. However, we could show that increased levels of Act A secretion was able to induce Smad2 phosphorylation. Growth factor secretion can activate autocrine and paracrine signaling, which affects crosstalk between the epithelial compartment and the surrounding microenvironment. We show that treatment with the Act A antagonist Follistatin or with a neutralizing Act A antibody can increase cell invasion in organotypic cultures in a fibroblast- and MMP-dependent manner. Similarly, suppression of Act A with shRNA increases cell invasion and tumorigenesis in vivo. Therefore, we conclude that maintaining a delicate balance of Act A expression is critical for homeostasis in the esophageal microenvironment.
Collapse
Affiliation(s)
- Grégoire F. Le Bras
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Holli A. Loomans
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Chase Taylor
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Frank Revetta
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| | - Claudia D. Andl
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
- Department of Vanderbilt Digestive Disease Center, Vanderbilt University Medical Center, Nashville, TN 37232-6840, USA
| |
Collapse
|
22
|
Attisano L, Wrana JL. Signal integration in TGF-β, WNT, and Hippo pathways. F1000PRIME REPORTS 2013. [PMID: 23755364 DOI: 10.12703/p5‐17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto 160 College Street, Toronto, ON Canada, M5S 3E1
| | | |
Collapse
|
23
|
Abstract
Complete sequences of animal genomes have revealed a remarkably small and conserved toolbox of signalling pathways, such as TGF-β and WNT that account for all biological diversity. This raises the question as to how such a limited set of cues elaborates so many diverse cell fates and behaviours. It is now clear that components of signalling pathways are physically assembled into higher order networks that ultimately dictate the biological output of pathway activity. Intertwining of pathways is thus emerging as a key feature of a large, integrated and coordinated signalling network that allows cells to read a limited set of extrinsic cues, but mount the diverse responses that underpin successful development and homeostasis. Moreover, this design principle confounds the development of effective therapeutic interventions in complex diseases, such as cancer.
Collapse
Affiliation(s)
- Liliana Attisano
- Department of Biochemistry and Donnelly CCBR, University of Toronto160 College Street, Toronto, ONCanada, M5S 3E1
| | - Jeffrey L. Wrana
- Center for Systems Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Molecular Genetics, University of Toronto600 University Avenue, Toronto, ONCanada, M5G 1X5
| |
Collapse
|
24
|
Sudou N, Yamamoto S, Ogino H, Taira M. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 2012; 139:1651-61. [PMID: 22492356 DOI: 10.1242/dev.068395] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
How multiple developmental cues are integrated on cis-regulatory modules (CRMs) for cell fate decisions remains uncertain. The Spemann-Mangold organizer in Xenopus embryos expresses the transcription factors Lim1/Lhx1, Otx2, Mix1, Siamois (Sia) and VegT. Reporter analyses using sperm nuclear transplantation and DNA injection showed that cerberus (cer) and goosecoid (gsc) are activated by the aforementioned transcription factors through CRMs conserved between X. laevis and X. tropicalis. ChIP-qPCR analysis for the five transcription factors revealed that cer and gsc CRMs are initially bound by both Sia and VegT at the late blastula stage, and subsequently bound by all five factors at the gastrula stage. At the neurula stage, only binding of Lim1 and Otx2 to the gsc CRM, among others, persists, which corresponds to their co-expression in the prechordal plate. Based on these data, together with detailed expression pattern analysis, we propose a new model of stepwise formation of the organizer, in which (1) maternal VegT and Wnt-induced Sia first bind to CRMs at the blastula stage; then (2) Nodal-inducible Lim1, Otx2, Mix1 and zygotic VegT are bound to CRMs in the dorsal endodermal and mesodermal regions where all these genes are co-expressed; and (3) these two regions are combined at the gastrula stage to form the organizer. Thus, the in vivo dynamics of multiple transcription factors highlight their roles in the initiation and maintenance of gene expression, and also reveal the stepwise integration of maternal, Nodal and Wnt signaling on CRMs of organizer genes to generate the organizer.
Collapse
Affiliation(s)
- Norihiro Sudou
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
25
|
Reid CD, Zhang Y, Sheets MD, Kessler DS. Transcriptional integration of Wnt and Nodal pathways in establishment of the Spemann organizer. Dev Biol 2012; 368:231-41. [PMID: 22627292 DOI: 10.1016/j.ydbio.2012.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/22/2012] [Accepted: 05/08/2012] [Indexed: 11/25/2022]
Abstract
Signaling inputs from multiple pathways are essential for the establishment of distinct cell and tissue types in the embryo. Therefore, multiple signals must be integrated to activate gene expression and confer cell fate, but little is known about how this occurs at the level of target gene promoters. During early embryogenesis, Wnt and Nodal signals are required for formation of the Spemann organizer, which is essential for germ layer patterning and axis formation. Signaling by both Wnt and Nodal pathways is required for the expression of multiple organizer genes, suggesting that integration of these signals is required for organizer formation. Here, we demonstrate transcriptional cooperation between the Wnt and Nodal pathways in the activation of the organizer genes Goosecoid (Gsc), Cerberus (Cer), and Chordin (Chd). Combined Wnt and Nodal signaling synergistically activates transcription of these organizer genes. Effectors of both pathways occupy the Gsc, Cer and Chd promoters and effector occupancy is enhanced with active Wnt and Nodal signaling. This suggests that, at organizer gene promoters, a stable transcriptional complex containing effectors of both pathways forms in response to combined Wnt and Nodal signaling. Consistent with this idea, the histone acetyltransferase p300 is recruited to organizer promoters in a Wnt and Nodal effector-dependent manner. Taken together, these results offer a mechanism for spatial and temporal restriction of organizer gene transcription by the integration of two major signaling pathways, thus establishing the Spemann organizer domain.
Collapse
Affiliation(s)
- Christine D Reid
- Department of Cell and Developmental Biology, University of Pennsylvania, School of Medicine, Room 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA
| | | | | | | |
Collapse
|
26
|
Liu W, Foley AC. Signaling pathways in early cardiac development. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:191-205. [PMID: 20830688 DOI: 10.1002/wsbm.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiomyocyte differentiation is a complex multistep process requiring the proper temporal and spatial integration of multiple signaling pathways. Previous embryological and genetic studies have identified a number of signaling pathways that are critical to mediate the initial formation of the mesoderm and its allocation to the cardiomyocyte lineage. It has become clear that some of these signaling networks work autonomously, in differentiating myocardial cells whereas others work non-autonomously, in neighboring tissues, to regulate cardiac differentiation indirectly. Here, we provide an overview of three signaling networks that mediate cardiomyocyte specification and review recent insights into their specific roles in heart development. In addition, we demonstrate how systems level, 'omic approaches' and other high-throughput techniques such as small molecules screens are beginning to impact our understanding of cardiomyocyte specification and, to identify novel signaling pathways involved in this process. In particular, it now seems clear that at least one chemokine receptor CXCR4 is an important marker for cardiomyocyte progenitors and may play a functional role in their differentiation. Finally, we discuss some gaps in our current understanding of early lineage selection that could be addressed by various types of omic analysis.
Collapse
Affiliation(s)
- Wenrui Liu
- Greenberg Division of Cardiology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | | |
Collapse
|
27
|
Sharon N, Mor I, Golan-lev T, Fainsod A, Benvenisty N. Molecular and Functional Characterizations of Gastrula Organizer Cells Derived from Human Embryonic Stem Cells. Stem Cells 2011; 29:600-8. [DOI: 10.1002/stem.621] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Siamois and Twin are redundant and essential in formation of the Spemann organizer. Dev Biol 2011; 352:367-81. [PMID: 21295564 DOI: 10.1016/j.ydbio.2011.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 01/11/2011] [Accepted: 01/25/2011] [Indexed: 02/03/2023]
Abstract
The Spemann organizer is an essential signaling center in Xenopus germ layer patterning and axis formation. Organizer formation occurs in dorsal blastomeres receiving both maternal Wnt and zygotic Nodal signals. In response to stabilized βcatenin, dorsal blastomeres express the closely related transcriptional activators, Siamois (Sia) and Twin (Twn), members of the paired homeobox family. Sia and Twn induce organizer formation and expression of organizer-specific genes, including Goosecoid (Gsc). In spite of the similarity of Sia and Twn sequence and expression pattern, it is unclear whether these factors function equivalently in promoter binding and subsequent transcriptional activation, or if Sia and Twn are required for all aspects of organizer function. Here we report that Sia and Twn activate Gsc transcription by directly binding to a conserved P3 site within the Wnt-responsive proximal element of the Gsc promoter. Sia and Twn form homodimers and heterodimers by direct homeodomain interaction and dimer forms are indistinguishable in both DNA-binding and activation functions. Sequential chromatin immunoprecipitation reveals that the endogenous Gsc promoter can be occupied by either Sia or Twn homodimers or Sia-Twn heterodimers. Knockdown of Sia and Twn together, but not individually, results in a failure of organizer gene expression and a disruption of axis formation, consistent with a redundant role for Sia and Twn in organizer formation. Furthermore, simultaneous knockdown of Sia and Twn blocks axis induction in response to ectopic Wnt signaling, demonstrating an essential role for Sia and Twn in mediating the transcriptional response to the maternal Wnt pathway. The results demonstrate the functional redundancy of Sia and Twn and their essential role in direct transcriptional responses necessary for Spemann organizer formation.
Collapse
|
29
|
Warner DR, Mukhopadhyay P, Brock GN, Pihur V, Pisano MM, Greene RM. TGFβ-1 and Wnt-3a interact to induce unique gene expression profiles in murine embryonic palate mesenchymal cells. Reprod Toxicol 2010; 31:128-33. [PMID: 20955781 DOI: 10.1016/j.reprotox.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/14/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022]
Abstract
Development of the secondary palate in mammals is a complex process under the control of numerous growth and differentiation factors that regulate key processes such as cell proliferation, synthesis of extracellular matrix molecules, and epithelial-mesenchymal transdifferentiation. Alterations in any one of these processes either through genetic mutation or environmental insult have the potential to lead to clefts of the secondary palate. Members of the TGFβ family of cytokines are crucial mediators of these processes and emerging evidence supports a pivotal role for members of the Wnt family of secreted growth and differentiation factors. Previous work in this laboratory demonstrated cross-talk between the Wnt and TGFβ signaling pathways in cultured mouse embryonic palate mesenchymal cells. In the current study we tested the hypothesis that unique gene expression profiles are induced in murine embryonic palate mesenchymal cells as a result of this cross-talk between the TGFβ and Wnt signal transduction pathways.
Collapse
Affiliation(s)
- Dennis R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, ULSD, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
30
|
Itasaki N, Hoppler S. Crosstalk between Wnt and bone morphogenic protein signaling: a turbulent relationship. Dev Dyn 2010; 239:16-33. [PMID: 19544585 DOI: 10.1002/dvdy.22009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Wnt and the bone morphogenic protein (BMP) pathways are evolutionarily conserved and essentially independent signaling mechanisms, which, however, often regulate similar biological processes. Wnt and BMP signaling are functionally integrated in many biological processes, such as embryonic patterning in Drosophila and vertebrates, formation of kidney, limb, teeth and bones, maintenance of stem cells, and cancer progression. Detailed inspection of regulation in these and other tissues reveals that Wnt and BMP signaling are functionally integrated in four fundamentally different ways. The molecular mechanism evolved to mediate this integration can also be summarized in four different ways. However, a fundamental aspect of functional and mechanistic interaction between these pathways relies on tissue-specific mechanisms, which are often not conserved and cannot be extrapolated to other tissues. Integration of the two pathways contributes toward the sophisticated means necessary for creating the complexity of our bodies and the reliable and healthy function of its tissues and organs.
Collapse
Affiliation(s)
- Nobue Itasaki
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom.
| | | |
Collapse
|
31
|
Blin G, Nury D, Stefanovic S, Neri T, Guillevic O, Brinon B, Bellamy V, Rücker-Martin C, Barbry P, Bel A, Bruneval P, Cowan C, Pouly J, Mitalipov S, Gouadon E, Binder P, Hagège A, Desnos M, Renaud JF, Menasché P, Pucéat M. A purified population of multipotent cardiovascular progenitors derived from primate pluripotent stem cells engrafts in postmyocardial infarcted nonhuman primates. J Clin Invest 2010; 120:1125-39. [PMID: 20335662 DOI: 10.1172/jci40120] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 01/13/2010] [Indexed: 12/21/2022] Open
Abstract
Cell therapy holds promise for tissue regeneration, including in individuals with advanced heart failure. However, treatment of heart disease with bone marrow cells and skeletal muscle progenitors has had only marginal positive benefits in clinical trials, perhaps because adult stem cells have limited plasticity. The identification, among human pluripotent stem cells, of early cardiovascular cell progenitors required for the development of the first cardiac lineage would shed light on human cardiogenesis and might pave the way for cell therapy for cardiac degenerative diseases. Here, we report the isolation of an early population of cardiovascular progenitors, characterized by expression of OCT4, stage-specific embryonic antigen 1 (SSEA-1), and mesoderm posterior 1 (MESP1), derived from human pluripotent stem cells treated with the cardiogenic morphogen BMP2. This progenitor population was multipotential and able to generate cardiomyocytes as well as smooth muscle and endothelial cells. When transplanted into the infarcted myocardium of immunosuppressed nonhuman primates, an SSEA-1+ progenitor population derived from Rhesus embryonic stem cells differentiated into ventricular myocytes and reconstituted 20% of the scar tissue. Notably, primates transplanted with an unpurified population of cardiac-committed cells, which included SSEA-1- cells, developed teratomas in the scar tissue, whereas those transplanted with purified SSEA-1+ cells did not. We therefore believe that the SSEA-1+ progenitors that we have described here have the potential to be used in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Guillaume Blin
- INSERM U633, Avenir Program, Embryonic Stem Cells and Cardiogenesis, Evry, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M. Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate. ACTA ACUST UNITED AC 2009; 186:665-73. [PMID: 19736317 PMCID: PMC2742180 DOI: 10.1083/jcb.200901040] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryonic stem cell pluripotency, once achieved, triggers a switch in promoter affinity for Oct4, which leads to cardiogenesis. Oct4 exerts a dose-dependent dual action, as both a gatekeeper for stem cell pluripotency and in driving cells toward specific lineages. Here, we identify the molecular mechanism underlying this dual function. BMP2- or transgene-induced Oct4 up-regulation drives human embryonic and induced pluripotent stem cells to become cardiac progenitors. When embryonic stem cell pluripotency is achieved, Oct4 switches from the Sox2 to the Sox17 promoter. This switch allows the cells to turn off the pluripotency Oct4-Sox2 loop and to turn on the Sox17 promoter. This powerful process generates a subset of endoderm-expressing Sox17 and Hex, both regulators of paracrine signals for cardiogenesis (i.e., Wnt, BMP2) released into the medium surrounding colonies of embryonic stem cells. Our data thus reveal a novel molecular Oct4- and Sox17-mediated mechanism that disrupts the stem cell microenvironment favoring pluripotency to provide a novel paracrine endodermal environment in which cell lineage is determined and commits the cells to a cardiogenic fate.
Collapse
Affiliation(s)
- Sonia Stefanovic
- Institut National de la Santé et de la Recherche Médicale (INSERM), Avenir Team, Stem Cells and Cardiogenesis, Evry 91058, France
| | | | | | | | | | | |
Collapse
|
33
|
Foley A. Cardiac lineage selection: integrating biological complexity into computational models. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2009; 1:334-347. [DOI: 10.1002/wsbm.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ann Foley
- Greenberg Division of Cardiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| |
Collapse
|
34
|
Abstract
Transforming growth factor-beta (TGF-beta)/bone morphogenic protein (BMP) signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of all metazoans. Deregulation of TGF-beta/BMP activity almost invariably leads to developmental defects and/or diseases, including cancer. The proper functioning of the TGF-beta/BMP pathway depends on its constitutive and extensive communication with other signaling pathways, leading to synergistic or antagonistic effects and eventually desirable biological outcomes. The nature of such signaling cross-talk is overwhelmingly complex and highly context-dependent. Here we review the different modes of cross-talk between TGF-beta/BMP and the signaling pathways of Mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, Wnt, Hedgehog, Notch, and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines, with an emphasis on the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Xing Guo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
35
|
Yeh CH, Chang JK, Wang YH, Ho ML, Wang GJ. Ethanol may suppress Wnt/beta-catenin signaling on human bone marrow stroma cells: a preliminary study. Clin Orthop Relat Res 2008; 466:1047-53. [PMID: 18288545 PMCID: PMC2311472 DOI: 10.1007/s11999-008-0171-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 01/31/2008] [Indexed: 01/31/2023]
Abstract
Ethanol and glucocorticoids are risk factors associated with osteonecrosis. Previous reports suggest ethanol and glucocorticoids induce adipogenesis, decrease osteogenesis in bone marrow stroma cells, and produce intracellular lipid deposits resulting in death of osteocytes. The Wnt/beta-catenin signal pathway is involved in the regulation of homeostasis of bone and we presume glucocorticoids and ethanol may induce osteonecrosis in humans through a similar mechanism as in rodents. We hypothesized (1) ethanol, like glucocorticoids, decreases osteogenesis and increases adipogenesis through the Wnt/beta-catenin signaling pathway in human bone marrow stromal cells; and (2) ethanol decreases intranuclear translocation of beta-catenin. We found both dexamethasone and ethanol decrease the gene and protein expression of osteogenesis and increase that of adipogenesis through Wnt signaling-related genes by semiquantitative and quantitative polymerase chain reaction and Western blot. Ethanol hampered intranuclear translocation of beta-catenin by immunofluorescence analysis. The data suggest the Wnt/beta-catenin signaling pathway may be associated with ethanol-induced osteonecrosis.
Collapse
Affiliation(s)
- Ching-Hua Yeh
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Je-Ken Chang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, No 100 Shi-Chuan 1st Road, San Ming District, Kaohsiung City, Taiwan ,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan ,Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Gwo-Jaw Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan ,Department of Orthopaedics, College of Medicine, Kaohsiung Medical University, No 100 Shi-Chuan 1st Road, San Ming District, Kaohsiung City, Taiwan ,Department of Orthopaedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
36
|
Sodir NM, Chen X, Park R, Nickel AE, Conti PS, Moats R, Bading JR, Shibata D, Laird PW. Smad3 deficiency promotes tumorigenesis in the distal colon of ApcMin/+ mice. Cancer Res 2007; 66:8430-8. [PMID: 16951153 DOI: 10.1158/0008-5472.can-06-1437] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Colorectal cancer, one of the most common human malignancies in the Western world, is often subdivided based on tumor location in either the distal or proximal colon. Several mouse models have been developed to study human colorectal cancer, but few display this clear distinction between the two colonic locations. By crossing Apc(Min/+) and Smad3 mutant mice, we showed that combined activation of the Wnt pathway and attenuation of the transforming growth factor-beta (TGF-beta) pathway causes high multiplicity and rapid onset of invasive tumorigenesis almost exclusively in the distal colon, closely mimicking the familial adenomatous polyposis (FAP) disease and consisting with distinct colorectal cancer etiologies based on tumor location. Transcriptional profiling revealed higher expression of several TGF-beta activators in the normal distal mucosa than in proximal mucosa, suggesting a stronger reliance on TGF-beta-mediated growth control in the distal than in the proximal colon. Apc(Min/+)Smad3(-/-) mice provide an alternative model to Apc(Min/+) mice to study FAP and distal sporadic colorectal cancer. This model will be useful in dissecting mechanistic and etiologic differences between proximal and distal colonic cancer, whereas the confinement of tumorigenesis to the distal colon offers unique advantages in monitoring tumor progression by in vivo imaging.
Collapse
Affiliation(s)
- Nicole M Sodir
- Department of Surgery and Biochemistry, Norris Comprehensive Cancer Center, Los Angeles, CA 90089-9176, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thomas JT, Moos M. Vg1 has specific processing requirements that restrict its action to body axis patterning centers. Dev Biol 2007; 310:129-39. [PMID: 17707366 DOI: 10.1016/j.ydbio.2007.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 06/08/2007] [Accepted: 07/25/2007] [Indexed: 11/28/2022]
Abstract
Unlike most transforming growth factor-beta (TGF-beta) superfamily members, Vg1 has been shown not to produce gross phenotypic alterations in Xenopus embryos when overexpressed by mRNA injection. Experiments with artificial chimeric constructs and a recently identified second allele of Vg1 suggest that this may be due to unusually stringent requirements for proteolytic processing. We provide biological and biochemical evidence that cleavage by two distinct proteolytic enzymes is required for effective activation of Vg1. We demonstrate a tightly restricted overlap in expression patterns of Vg1 with the proteases required to release the mature peptide. The data presented may account for the long-standing observation that the vast majority of Vg1 protein, in vivo, is present in its unprocessed form. Taken together, these observations provide a plausible mechanism for local action of Vg1 consistent with requirements imposed by current models of pattern formation in the developing body axis.
Collapse
Affiliation(s)
- John Terrig Thomas
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20892, USA.
| | | |
Collapse
|
38
|
Guzzo RM, Foley AC, Ibarra YM, Mercola M. Signaling Pathways in Embryonic Heart Induction. CARDIOVASCULAR DEVELOPMENT 2007. [DOI: 10.1016/s1574-3349(07)18005-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Abstract
Mesoderm and endoderm formation in Xenopus involves the coordinated efforts of maternally and zygotically expressed transcription factors together with growth factor signalling, including members of the TGFbeta and wnt families. In this review we discuss our current state of knowledge of these pathways, and describe in more detail some of the transcription factor-DNA interactions that are involved in mesendoderm formation.
Collapse
Affiliation(s)
- Fiona C Wardle
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| | | |
Collapse
|
40
|
Cui Q, Lim SK, Zhao B, Hoffmann FM. Selective inhibition of TGF-beta responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene 2005; 24:3864-74. [PMID: 15750622 DOI: 10.1038/sj.onc.1208556] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Transforming growth factor beta (TGF-beta) stimulation results in the assembly of Smad-containing protein complexes that mediate activation or repression of TGF-beta responsive genes. To determine if disruption of specific Smad protein-protein interactions would selectively inhibit responses to TGF-beta or generally interfere with Smad-dependent signaling, we developed three Smad-binding peptide aptamers by introducing Smad interaction motifs from Smad-binding proteins CBP, FoxH1 and Lef1 into the scaffold protein E. coli thioredoxin A (Trx). All three classes of aptamers bound to Smads by GST pulldown assays and co-immunoprecipitation from mammalian cells. Expression of the aptamers in HepG2 cells did not generally inhibit Smad-dependent signaling as evaluated using seven TGF-beta responsive luciferase reporter genes. The Trx-xFoxH1b aptamer inhibited TGF-beta-induced expression from a reporter dependent on the Smad-FoxH1 interaction, A3-lux, by 50%. Trx-xFoxH1b also partially inhibited two reporters not dependent on a Smad-FoxH1 interaction, 3TP-lux and Twntop, and endogenous PAI-1 expression. Trx-Lef1 aptamer only inhibited expression of the Smad-Lef1 responsive reporter gene TwnTop. The Trx-CBP aptamer had no significant effect on reporter gene expression. The results suggest that Smad-binding peptide aptamers can be developed to selectively inhibit TGF-beta-induced gene expression.
Collapse
Affiliation(s)
- Qiqi Cui
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
41
|
Warner DR, Greene RM, Pisano MM. Cross-talk between the TGFβ and Wnt signaling pathways in murine embryonic maxillary mesenchymal cells. FEBS Lett 2005; 579:3539-46. [PMID: 15955531 DOI: 10.1016/j.febslet.2005.05.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 05/11/2005] [Accepted: 05/17/2005] [Indexed: 10/25/2022]
Abstract
The transforming growth factor beta (TGFbeta) and Wnt signaling pathways play central roles regulating embryogenesis and maintaining adult tissue homeostasis. TGFbeta mediates its cellular effects through types I and II cell surface receptors coupled to the nucleocytoplasmic Smad proteins. Wnt signals via binding to a cell surface receptor, Frizzled, which in turn activates intracellular Dishevelled, ultimately leading to stabilization and nuclear translocation of beta-catenin. Previous studies have demonstrated several points of cross-talk between the TGFbeta and Wnt signaling pathways. In yeast two-hybrid and GST-pull down assays, Dishevelled-1 and Smad 3 have been shown to physically interact through the C-terminal one-half of Dishevelled-1 and the MH2 domain of Smad 3. The current study demonstrates that co-treatment of murine embryonic maxillary mesenchyme (MEMM) cells with Wnt-3a and TGFbeta leads to enhanced reporter activity from TOPflash, a Wnt-responsive reporter plasmid. Transcriptional cooperation between TGFbeta and Wnt did not require the presence of a Smad binding element, nor did it occur when a TGFbeta-responsive reporter plasmid (p3TP-lux) was transfected. Overexpression of Smad 3 further enhanced the cooperation between Wnt and TGFbeta while overexpression of dominant-negative Smads 2 and 3 inhibited this effect. Co-stimulation with TGFbeta led to greater nuclear translocation of beta-catenin, providing explanation for the effect of TGFbeta on Wnt-3a reporter activity. Wnt-3a exerted antiproliferative activity in MEMM cells, similar to that exerted by TGFbeta. In addition, Wnt-3a and TGFbeta in combination led to synergistic decreases in MEMM cell proliferation. These data demonstrate a functional interaction between the TGFbeta and Wnt signaling pathways and suggest that Wnt activation of the canonical pathway is an important mediator of MEMM cell growth.
Collapse
Affiliation(s)
- Dennis R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, 501 South Preston Street, Suite 301, Louisville, KY 40292, United States.
| | | | | |
Collapse
|
42
|
Warner DR, Greene RM, Pisano MM. Interaction between Smad 3 and Dishevelled in murine embryonic craniofacial mesenchymal cells. Orthod Craniofac Res 2005; 8:123-30. [PMID: 15888125 DOI: 10.1111/j.1601-6343.2005.00319.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To determine the in vivo interaction between Smad 3 and Dishevelled-1. DESIGN Cell culture transfection followed by immunoprecipitation with specific antibodies. SETTING AND SAMPLE POPULATION The Department of Molecular, Cellular, and Craniofacial Biology, Birth Defects Center, University of Louisville. EXPERIMENTAL VARIABLE Overexpression of myc-Smad 3. OUTCOME MEASURE Western blotting of anti-Dishevelled immunoprecipitates for Smad 3. RESULTS Smad 3 and Dishevelled isoforms-1, -2, and -3 all bind Smad 3 in glutathione-S-transferase (GST) pull-down assays and Smad 3 binds to Dishevelled-1 in vivo. Stimulation of the transforming growth factor beta (TGFbeta) pathway leads to increased binding of Smad 3 and Dishevelled-1 in vivo. CONCLUSION Smad 3 binds all three known isoforms of Dishevelled and binds Dishevelled 1 in vivo. TGFbeta signaling modulates the interaction between Smad 3 and Dishevelled-1.
Collapse
Affiliation(s)
- D R Warner
- Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, KY 40292, USA
| | | | | |
Collapse
|
43
|
Korkola JE, Houldsworth J, Dobrzynski D, Olshen AB, Reuter VE, Bosl GJ, Chaganti RSK. Gene expression-based classification of nonseminomatous male germ cell tumors. Oncogene 2005; 24:5101-7. [PMID: 15870693 DOI: 10.1038/sj.onc.1208694] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Male adult germ cell tumors (GCTs) comprise two major histologic groups: seminomas and nonseminomas. Nonseminomatous GCTs (NSGCTs) can be further divided into embryonal carcinoma (EC), teratoma (T), yolk sac tumor (YS), and choriocarcinoma (CC) on the basis of the lineage differentiation that they exhibit. NSGCTs frequently present as mixed tumors consisting of two or more histological subtypes, often limiting correlative studies of clinical and molecular features to histology. We sought to develop a molecular classifier that could predict the predominant histologic subtype within mixed NSGCT tumor samples. The expression profiles of 84 NSGCTs (42 pure and 42 mixed) and normal age-matched testes were obtained using Affymetrix microarrays. Using prediction analysis for microarrays, we identified 146 transcripts that classified the histology of pure NSGCTs samples with 93% accuracy. When applied to mixed NSGCTs, the classifier predicted a histology that was consistent with one of the reported components in 93% of cases. Among the predictive transcripts were CGB (high in CC), LCN2 (high in T), BMP2 (high in YS), and POU5F1 (high in EC). Thus, the expression-based classifier accurately assigned a single predominant histology to mixed NSGCTs, and identified transcripts differentially expressed between histologic components with relevance to NSGCT differentiation.
Collapse
Affiliation(s)
- James E Korkola
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Callery EM, Smith JC, Thomsen GH. The ARID domain protein dril1 is necessary for TGF(beta) signaling in Xenopus embryos. Dev Biol 2005; 278:542-59. [PMID: 15680369 DOI: 10.1016/j.ydbio.2004.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 10/30/2004] [Accepted: 11/11/2004] [Indexed: 11/18/2022]
Abstract
ARID domain proteins are members of a highly conserved family involved in chromatin remodeling and cell-fate determination. Dril1 is the founding member of the ARID family and is involved in developmental processes in both Drosophila and Caenorhabditis elegans. We describe the first embryological characterization of this gene in chordates. Dril1 mRNA expression is spatiotemporally regulated and is detected in the involuting mesoderm during gastrulation. Inhibition of dril1 by either a morpholino or an engrailed repressor-dril1 DNA binding domain fusion construct inhibits gastrulation and perturbs induction of the zygotic mesodermal marker Xbra and the organizer markers chordin, noggin, and Xlim1. Xenopus tropicalis dril1 morphants also exhibit impaired gastrulation and axial deficiencies, which can be rescued by coinjection of Xenopus laevis dril1 mRNA. Loss of dril1 inhibits the response of animal caps to activin and secondary axis induction by smad2. Dril1 depletion in animal caps prevents both the smad2-mediated induction of dorsal mesodermal and endodermal markers and the induction of ventral mesoderm by smad1. Mesoderm induction by eFGF is uninhibited in dril1 morphant caps, reflecting pathway specificity for dril1. These experiments identify dril1 as a novel regulator of TGF(beta) signaling and a vital component of mesodermal patterning and embryonic morphogenesis.
Collapse
Affiliation(s)
- Elizabeth M Callery
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY 11794-5215, USA.
| | | | | |
Collapse
|
45
|
Daniels M, Shimizu K, Zorn AM, Ohnuma SI. Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. Development 2004; 131:5613-26. [PMID: 15496439 DOI: 10.1242/dev.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mesoderm induction and patterning are primarily regulated by the concentration of locally expressed morphogens such as members of the TGFβsuperfamily. Smad2 functions as a transcription factor to regulate expression of mesodermal genes downstream of such morphogens. We have identified Xenopus PIASy (XPIASy), a member of the PIAS family, by yeast two-hybrid screening using Xenopus Smad2 (XSmad2) as a bait. During mesoderm induction, XPIASy is expressed in the animal half of embryos with a ventral high-dorsal low gradient at the marginal zone. XPIASyexpression is positively and negatively regulated by activities of the XSmad2 and Wnt pathways, respectively. Interestingly, inhibition of XPIASy by morpholinos induces elongation of animal caps with induction of mesoderm genes even in the absence of their morphogen-mediated activation. In addition, their introduction into the ventral marginal zone results in a secondary axis formation. Gain-of-function analysis revealed that XPIASy inhibits mesoderm induction by specific and direct downregulation of XSmad2 transcriptional activity. These observations indicate that XPIASy functions as an essential negative regulator of the XSmad2 pathway to ensure proper mesoderm induction at the appropriate time and in the appropriate region, and suggest that both the initial step of morphogen-mediated activation of the XSmad2 pathway and regulation of the final downstream transcription step have crucial roles in mesoderm induction and patterning.
Collapse
Affiliation(s)
- Maki Daniels
- Department of Oncology, The Hutchison/MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 2XZ, UK
| | | | | | | |
Collapse
|
46
|
Sinner D, Rankin S, Lee M, Zorn AM. Sox17 and beta-catenin cooperate to regulate the transcription of endodermal genes. Development 2004; 131:3069-80. [PMID: 15163629 DOI: 10.1242/dev.01176] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent studies have led to a model of the molecular pathway that specifies the endoderm during vertebrate gastrulation. The HMG box transcription factor Sox17 is a key component of this pathway and is essential for endoderm formation; however, the molecular events controlled by Sox17 are largely unknown. We have identified several direct transcriptional targets of Sox17, including Foxa1 and Foxa2. We show that beta-catenin, a component of Wnt signaling pathway, physically interacts with Sox17 and potentiates its transcriptional activation of target genes. We identify a motif in the C terminus of Sox17, which is conserved in all the SoxF subfamily of Sox proteins, and this motif is required for the ability of Sox17 to both transactivate target genes and bind beta-catenin. Nuclear beta-catenin is present in endoderm cells of the gastrula, and depletion of beta-catenin from embryos results in a repression of Sox17 target genes. These data suggest that in a mechanism analogous to Tcf/Lef interacting with beta-catenin, Sox17 and beta-catenin interact to transcribe endodermal target genes.
Collapse
Affiliation(s)
- Débora Sinner
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology and The Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
47
|
Dougan ST, Warga RM, Kane DA, Schier AF, Talbot WS. The role of the zebrafish nodal-related genes squint and cyclops in patterning of mesendoderm. Development 2003; 130:1837-51. [PMID: 12642489 DOI: 10.1242/dev.00400] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nodal signals, a subclass of the TGFbeta superfamily of secreted factors, induce formation of mesoderm and endoderm in vertebrate embryos. We have examined the possible dorsoventral and animal-vegetal patterning roles for Nodal signals by using mutations in two zebrafish nodal-related genes, squint and cyclops, to manipulate genetically the levels and timing of Nodal activity. squint mutants lack dorsal mesendodermal gene expression at the late blastula stage, and fate mapping and gene expression studies in sqt(-/-); cyc(+/+) and sqt(-/-); cyc(+/-) mutants show that some dorsal marginal cells inappropriately form hindbrain and spinal cord instead of dorsal mesendodermal derivatives. The effects on ventrolateral mesendoderm are less severe, although the endoderm is reduced and muscle precursors are located nearer to the margin than in wild type. Our results support a role for Nodal signals in patterning the mesendoderm along the animal-vegetal axis and indicate that dorsal and ventrolateral mesoderm require different levels of squint and cyclops function. Dorsal marginal cells were not transformed toward more lateral fates in either sqt(-/-); cyc(+/-) or sqt(-/-); cyc(+/+) embryos, arguing against a role for the graded action of Nodal signals in dorsoventral patterning of the mesendoderm. Differential regulation of the cyclops gene in these cells contributes to the different requirements for nodal-related gene function in these cells. Dorsal expression of cyclops requires Nodal-dependent autoregulation, whereas other factors induce cyclops expression in ventrolateral cells. In addition, the differential timing of dorsal mesendoderm induction in squint and cyclops mutants suggests that dorsal marginal cells can respond to Nodal signals at stages ranging from the mid-blastula through the mid-gastrula.
Collapse
Affiliation(s)
- Scott T Dougan
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
Transforming growth factor beta (TGF-beta) superfamily members are important regulators of many diverse developmental and homeostatic processes and disruption of their activity has been implicated in a variety of human diseases ranging from cancer to chondrodysplasias and pulmonary hypertension. TGF-beta family members signal through transmembrane Ser-Thr kinase receptors that directly regulate the intracellular Smad pathway. Smads are a unique family of signal transduction molecules that can transmit signals directly from the cell surface receptors to the nucleus, where they regulate transcription by interacting with DNA binding partners as well as transcriptional coactivators and corepressors. In addition, more recent evidence indicates that Smads can also function both as substrates and adaptors for ubiquitin protein ligases, which mediate the targeted destruction of intracellular proteins. Smads have thus emerged as multifunctional transmitters of TGF-beta family signals that play critical roles in the development and homeostasis of metazoans.
Collapse
Affiliation(s)
- Arun Mehra
- Dept. of Anatomy and Cell Biology, University of Toronto, Mount Sinai Hospital, ON, Canada
| | | |
Collapse
|
49
|
Hashimoto-Partyka MK, Yuge M, Cho KWY. Nodal signaling in Xenopus gastrulae is cell-autonomous and patterned by beta-catenin. Dev Biol 2003; 253:125-38. [PMID: 12490202 DOI: 10.1006/dbio.2002.0867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The classical three-signal model of amphibian mesoderm induction and more recent modifications together propose that an activin-like signaling activity is uniformly distributed across the vegetal half of the Xenopus blastula and that this activity contributes to mesoderm induction. In support of this, we have previously shown that the activin-response element (DE) of the goosecoid promoter is uniformly activated across the vegetal half of midgastrula-stage embryos. Here, we further examine the nature of this activity by measuring DE activation by endogenous signals over time. We find that the spatiotemporal pattern of DE activation is much more dynamic than was previously appreciated and also conclude that DE(6X)Luc activity reflects endogenous nodal signaling in the embryo. Using both the DE(6X)Luc construct and endogenous Xbra and Xgsc expression as read-outs for nodal activity, and the cleavage-mutant version of Xnr2 (CmXnr2) to regionally suppress endogenous nodal activity, we demonstrate that nodal signals act cell-autonomously in Xenopus gastrulae. Nodal-expressing cells are unable to rescue either reporter gene activation or target gene expression in distant nodal-deficient cells, suggesting that nodals function at short range in this context. Finally, we show that DE activation by endogenous signals occurs in the absence of dorsal beta-catenin-mediated signaling, but that the timing of dorsal initiation is altered. We conclude that nodal signals in Xenopus gastrulae function cell autonomously at short ranges and that the spatiotemporal pattern of this signaling along the dorsoventral axis is regulated by maternal Wnt-like signaling.
Collapse
Affiliation(s)
- Minako K Hashimoto-Partyka
- Department of Developmental and Cell Biology, University of California, Irvine, California 92697-2300, USA
| | | | | |
Collapse
|
50
|
Green J. Morphogen gradients, positional information, and Xenopus: interplay of theory and experiment. Dev Dyn 2002; 225:392-408. [PMID: 12454918 DOI: 10.1002/dvdy.10170] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The idea of morphogen gradients has long been an important one in developmental biology. Studies with amphibians and with Xenopus in particular have made significant contributions to demonstrating the existence, identity, and mechanisms of action of morphogens. Mesoderm induction and patterning by activin, nodals, bone morphogenetic proteins, and fibroblast growth factors have been analyzed thoroughly and reveal recurrent and combinatorial roles for these protein growth factor morphogens and their antagonists. The dynamics of nodal-type signaling and the intersection of VegT and beta-catenin intracellular gradients reveal detailed steps in early long-range patterning. Interpretation of gradients requires sophisticated mechanisms for sharpening thresholds, and the activin-Xbra-Gsc system provides an example of this. The understanding of growth factor signal transduction has elucidated growth factor morphogen action and provided tools for dissecting their direct long-range action and distribution. The physical mechanisms of morphogen gradient establishment are the focus of new interest at both the experimental and theoretical level. General themes and emerging trends in morphogen gradient studies are discussed.
Collapse
Affiliation(s)
- Jeremy Green
- Dana Farber Cancer Institute, Harvard Medical School Department of Genetics, Boston, Massachusetts 02115, USA.
| |
Collapse
|