1
|
Tuinte WE, Török E, Mahlknecht I, Tuluc P, Flucher BE, Campiglio M. STAC3 determines the slow activation kinetics of Ca V 1.1 currents and inhibits its voltage-dependent inactivation. J Cell Physiol 2022; 237:4197-4214. [PMID: 36161458 DOI: 10.1002/jcp.30870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
The skeletal muscle CaV 1.1 channel functions as the voltage-sensor of excitation-contraction (EC) coupling. Recently, the adaptor protein STAC3 was found to be essential for both CaV 1.1 functional expression and EC coupling. Interestingly, STAC proteins were also reported to inhibit calcium-dependent inactivation (CDI) of L-type calcium channels (LTCC), an important negative feedback mechanism in calcium signaling. The same could not be demonstrated for CaV 1.1, as STAC3 is required for its functional expression. However, upon strong membrane depolarization, CaV 1.1 conducts calcium currents characterized by very slow kinetics of activation and inactivation. Therefore, we hypothesized that the negligible inactivation observed in CaV 1.1 currents reflects the inhibitory effect of STAC3. Here, we inserted a triple mutation in the linker region of STAC3 (ETLAAA), as the analogous mutation abolished the inhibitory effect of STAC2 on CDI of CaV 1.3 currents. When coexpressed in CaV 1.1/STAC3 double knockout myotubes, the mutant STAC3-ETLAAA failed to colocalize with CaV 1.1 in the sarcoplasmic reticulum/membrane junctions. However, combined patch-clamp and calcium recording experiments revealed that STAC3-ETLAAA supports CaV 1.1 functional expression and EC coupling, although at a reduced extent compared to wild-type STAC3. Importantly, STAC3-ETLAAA coexpression dramatically accelerated the kinetics of activation and inactivation of CaV 1.1 currents, suggesting that STAC3 determines the slow CaV 1.1 currents kinetics. To examine if STAC3 specifically inhibits the CDI of CaV 1.1 currents, we performed patch-clamp recordings using calcium and barium as charge carriers in HEK cells. While CaV 1.1 displayed negligible CDI with STAC3, this did not increase in the presence of STAC3-ETLAAA. On the contrary, our data demonstrate that STAC3 specifically inhibits the voltage-dependent inactivation (VDI) of CaV 1.1 currents. Altogether, these results designate STAC3 as a crucial determinant for the slow activation kinetics of CaV 1.1 currents and implicate STAC proteins as modulators of both components of inactivation of LTCC.
Collapse
Affiliation(s)
- Wietske E Tuinte
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Enikő Török
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Irene Mahlknecht
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Marta Campiglio
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Coste de Bagneaux P, von Elsner L, Bierhals T, Campiglio M, Johannsen J, Obermair GJ, Hempel M, Flucher BE, Kutsche K. A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genet 2020; 16:e1008625. [PMID: 32176688 PMCID: PMC7176149 DOI: 10.1371/journal.pgen.1008625] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 04/22/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022] Open
Abstract
P/Q-type channels are the principal presynaptic calcium channels in brain functioning in neurotransmitter release. They are composed of the pore-forming CaV2.1 α1 subunit and the auxiliary α2δ-2 and β4 subunits. β4 is encoded by CACNB4, and its multiple splice variants serve isoform-specific functions as channel subunits and transcriptional regulators in the nucleus. In two siblings with intellectual disability, psychomotor retardation, blindness, epilepsy, movement disorder and cerebellar atrophy we identified rare homozygous variants in the genes LTBP1, EMILIN1, CACNB4, MINAR1, DHX38 and MYO15 by whole-exome sequencing. In silico tools, animal model, clinical, and genetic data suggest the p.(Leu126Pro) CACNB4 variant to be likely pathogenic. To investigate the functional consequences of the CACNB4 variant, we introduced the corresponding mutation L125P into rat β4b cDNA. Heterologously expressed wild-type β4b associated with GFP-CaV1.2 and accumulated in presynaptic boutons of cultured hippocampal neurons. In contrast, the β4b-L125P mutant failed to incorporate into calcium channel complexes and to cluster presynaptically. When co-expressed with CaV2.1 in tsA201 cells, β4b and β4b-L125P augmented the calcium current amplitudes, however, β4b-L125P failed to stably complex with α1 subunits. These results indicate that p.Leu125Pro disrupts the stable association of β4b with native calcium channel complexes, whereas membrane incorporation, modulation of current density and activation properties of heterologously expressed channels remained intact. Wildtype β4b was specifically targeted to the nuclei of quiescent excitatory cells. Importantly, the p.Leu125Pro mutation abolished nuclear targeting of β4b in cultured myotubes and hippocampal neurons. While binding of β4b to the known interaction partner PPP2R5D (B56δ) was not affected by the mutation, complex formation between β4b-L125P and the neuronal TRAF2 and NCK interacting kinase (TNIK) seemed to be disturbed. In summary, our data suggest that the homozygous CACNB4 p.(Leu126Pro) variant underlies the severe neurological phenotype in the two siblings, most likely by impairing both channel and non-channel functions of β4b.
Collapse
Affiliation(s)
| | - Leonie von Elsner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Jessika Johannsen
- Childrens Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Shishmarev D. Excitation-contraction coupling in skeletal muscle: recent progress and unanswered questions. Biophys Rev 2020; 12:143-153. [PMID: 31950344 DOI: 10.1007/s12551-020-00610-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Excitation-contraction coupling (ECC) is a physiological process that links excitation of muscles by the nervous system to their mechanical contraction. In skeletal muscle, ECC is initiated with an action potential, generated by the somatic nervous system, which causes a depolarisation of the muscle fibre membrane (sarcolemma). This leads to a rapid change in the transmembrane potential, which is detected by the voltage-gated Ca2+ channel dihydropyridine receptor (DHPR) embedded in the sarcolemma. DHPR transmits the contractile signal to another Ca2+ channel, ryanodine receptor (RyR1), embedded in the membrane of the sarcoplasmic reticulum (SR), which releases a large amount of Ca2+ ions from the SR that initiate muscle contraction. Despite the fundamental role of ECC in skeletal muscle function of all vertebrate species, the molecular mechanism underpinning the communication between the two key proteins involved in the process (DHPR and RyR1) is still largely unknown. The goal of this work is to review the recent progress in our understanding of ECC in skeletal muscle from the point of view of the structure and interactions of proteins involved in the process, and to highlight the unanswered questions in the field.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
4
|
Costé de Bagneaux P, Campiglio M, Benedetti B, Tuluc P, Flucher BE. Role of putative voltage-sensor countercharge D4 in regulating gating properties of Ca V1.2 and Ca V1.3 calcium channels. Channels (Austin) 2019; 12:249-261. [PMID: 30001160 PMCID: PMC6161609 DOI: 10.1080/19336950.2018.1482183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Voltage-dependent calcium channels (CaV) activate over a wide range of membrane potentials, and the voltage-dependence of activation of specific channel isoforms is exquisitely tuned to their diverse functions in excitable cells. Alternative splicing further adds to the stunning diversity of gating properties. For example, developmentally regulated insertion of an alternatively spliced exon 29 in the fourth voltage-sensing domain (VSD IV) of CaV1.1 right-shifts voltage-dependence of activation by 30 mV and decreases the current amplitude several-fold. Previously we demonstrated that this regulation of gating properties depends on interactions between positive gating charges (R1, R2) and a negative countercharge (D4) in VSD IV of CaV1.1. Here we investigated whether this molecular mechanism plays a similar role in the VSD IV of CaV1.3 and in VSDs II and IV of CaV1.2 by introducing charge-neutralizing mutations (D4N or E4Q) in the corresponding positions of CaV1.3 and in two splice variants of CaV1.2. In both channels the D4N (VSD IV) mutation resulted in a ̴5 mV right-shift of the voltage-dependence of activation and in a reduction of current density to about half of that in controls. However in CaV1.2 the effects were independent of alternative splicing, indicating that the two modulatory processes operate by distinct mechanisms. Together with our previous findings these results suggest that molecular interactions engaging D4 in VSD IV contribute to voltage-sensing in all examined CaV1 channels, however its striking role in regulating the gating properties by alternative splicing appears to be a unique property of the skeletal muscle CaV1.1 channel.
Collapse
Affiliation(s)
- Pierre Costé de Bagneaux
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Marta Campiglio
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| | - Bruno Benedetti
- b Institute of Experimental Neuroregeneration Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS) , Paracelsus Medical University , Salzburg , Austria
| | - Petronel Tuluc
- c Department of Pharmacology and Toxicology , University of Innsbruck , Innsbruck , Austria
| | - Bernhard E Flucher
- a Department of Physiology and Medical Physics , Medical University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
5
|
Campiglio M, Kaplan MM, Flucher BE. STAC3 incorporation into skeletal muscle triads occurs independent of the dihydropyridine receptor. J Cell Physiol 2018; 233:9045-9051. [PMID: 30071129 PMCID: PMC6334165 DOI: 10.1002/jcp.26767] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/27/2018] [Indexed: 01/02/2023]
Abstract
Excitation‐contraction (EC) coupling in skeletal muscles operates through a physical interaction between the dihydropyridine receptor (DHPR), acting as a voltage sensor, and the ryanodine receptor (RyR1), acting as a calcium release channel. Recently, the adaptor protein SH3 and cysteine‐rich containing protein 3 (STAC3) has been identified as a myopathy disease gene and as an additional essential EC coupling component. STAC3 interacts with DHPR sequences including the critical EC coupling domain and has been proposed to function in linking the DHPR and RyR1. However, we and others demonstrated that incorporation of recombinant STAC3 into skeletal muscle triads critically depends only on the DHPR but not the RyR1. On the contrary, here, we provide evidence that endogenous STAC3 incorporates into triads in the absence of the DHPR in myotubes and muscle fibers of dysgenic mice. This finding demonstrates that STAC3 interacts with additional triad proteins and is consistent with its proposed role in directly or indirectly linking the DHPR with the RyR1.
Collapse
Affiliation(s)
- Marta Campiglio
- Department of Physiology, Medical University, Innsbruck, Innsbruck, Austria
| | - Mehmet M Kaplan
- Department of Physiology, Medical University, Innsbruck, Innsbruck, Austria
| | - Bernhard E Flucher
- Department of Physiology, Medical University, Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Physical interaction of junctophilin and the Ca V1.1 C terminus is crucial for skeletal muscle contraction. Proc Natl Acad Sci U S A 2018; 115:4507-4512. [PMID: 29632175 DOI: 10.1073/pnas.1716649115] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Close physical association of CaV1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation-contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca2+ transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the CaV1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC-RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca2+ transients without affecting SR Ca2+ content. Moreover, the contractile force of the JP1ΔCT-expressed muscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.
Collapse
|
7
|
Dulhunty AF, Wei-LaPierre L, Casarotto MG, Beard NA. Core skeletal muscle ryanodine receptor calcium release complex. Clin Exp Pharmacol Physiol 2017; 44:3-12. [PMID: 27696487 DOI: 10.1111/1440-1681.12676] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins. The proteins essential for EC-coupling include the DHPR α1S subunit in the transverse tubule membrane, the DHPR β1a subunit in the cytosol and the RyR1 ion channel in the SR membrane. The other core proteins are triadin and junctin and calsequestrin, associated mainly with SR. These SR proteins are not essential for survival but exert structural and functional influences that modify the gain of EC-coupling and maintain normal muscle function. This review summarises our current knowledge of the individual protein/protein interactions within the core complex and their overall contribution to EC-coupling. We highlight significant areas that provide a continuing challenge for the field. Additional important components of the Ca2+ release complex, such as FKBP12, calmodulin, S100A1 and Stac3 are identified and reviewed elsewhere.
Collapse
Affiliation(s)
- Angela F Dulhunty
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Lan Wei-LaPierre
- Department of Physiology and Pharmacology, University of Rochester Medical Center, Rochester, NY, USA
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Nicole A Beard
- Health Research Institute, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
8
|
Campiglio M, Flucher BE. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 2015; 230:2019-31. [PMID: 25820299 PMCID: PMC4672716 DOI: 10.1002/jcp.24998] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein-protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein-protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity.
Collapse
Affiliation(s)
- Marta Campiglio
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| |
Collapse
|
9
|
Etemad S, Campiglio M, Obermair GJ, Flucher BE. The juvenile myoclonic epilepsy mutant of the calcium channel β(4) subunit displays normal nuclear targeting in nerve and muscle cells. Channels (Austin) 2015; 8:334-43. [PMID: 24875574 PMCID: PMC4203735 DOI: 10.4161/chan.29322] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Voltage-gated calcium channels regulate gene expression by controlling calcium entry through the plasma membrane and by direct interactions of channel fragments and auxiliary β subunits with promoters and the epigenetic machinery in the nucleus. Mutations of the calcium channel β4 subunit gene (CACNB4) cause juvenile myoclonic epilepsy in humans and ataxia and epileptic seizures in mice. Recently a model has been proposed according to which failed nuclear translocation of the truncated β4 subunit R482X mutation resulted in altered transcriptional regulation and consequently in neurological disease. Here we examined the nuclear targeting properties of the truncated β4b(1–481) subunit in tsA-201 cells, skeletal myotubes, and in hippocampal neurons. Contrary to expectation, nuclear targeting of β4b(1–481) was not reduced compared with full-length β4b in any one of the three cell systems. These findings oppose an essential role of the β4 distal C-terminus in nuclear targeting and challenge the idea that the nuclear function of calcium channel β4 subunits is critically involved in the etiology of epilepsy and ataxia in patients and mouse models with mutations in the CACNB4 gene.
Collapse
|
10
|
Zhang T, Taylor J, Jiang Y, Pereyra AS, Messi ML, Wang ZM, Hereñú C, Delbono O. Troponin T3 regulates nuclear localization of the calcium channel Cavβ1a subunit in skeletal muscle. Exp Cell Res 2015; 336:276-86. [PMID: 25981458 DOI: 10.1016/j.yexcr.2015.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/06/2015] [Indexed: 11/24/2022]
Abstract
The voltage-gated calcium channel (Cav) β1a subunit (Cavβ1a) plays an important role in excitation-contraction coupling (ECC), a process in the myoplasm that leads to muscle-force generation. Recently, we discovered that the Cavβ1a subunit travels to the nucleus of skeletal muscle cells where it helps to regulate gene transcription. To determine how it travels to the nucleus, we performed a yeast two-hybrid screening of the mouse fast skeletal muscle cDNA library and identified an interaction with troponin T3 (TnT3), which we subsequently confirmed by co-immunoprecipitation and co-localization assays in mouse skeletal muscle in vivo and in cultured C2C12 muscle cells. Interacting domains were mapped to the leucine zipper domain in TnT3 COOH-terminus (160-244 aa) and Cavβ1a NH2-terminus (1-99 aa), respectively. The double fluorescence assay in C2C12 cells co-expressing TnT3/DsRed and Cavβ1a/YFP shows that TnT3 facilitates Cavβ1a nuclear recruitment, suggesting that the two proteins play a heretofore unknown role during early muscle differentiation in addition to their classical role in ECC regulation.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jackson Taylor
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Yang Jiang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Andrea S Pereyra
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Maria Laura Messi
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Claudia Hereñú
- Department of Histology, National University of La Plata, 1900 La Plata, Argentina
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; Neuroscience Program, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Rebbeck RT, Karunasekara Y, Board PG, Beard NA, Casarotto MG, Dulhunty AF. Skeletal muscle excitation–contraction coupling: Who are the dancing partners? Int J Biochem Cell Biol 2014; 48:28-38. [DOI: 10.1016/j.biocel.2013.12.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/29/2013] [Accepted: 12/04/2013] [Indexed: 01/15/2023]
|
12
|
Amador FJ, Stathopulos PB, Enomoto M, Ikura M. Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280:5456-70. [PMID: 23413940 DOI: 10.1111/febs.12194] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/24/2013] [Accepted: 02/04/2013] [Indexed: 11/28/2022]
Abstract
Ryanodine receptors (RyRs) are the largest known ion channels. They are Ca(2+) release channels found primarily on the sarcoplasmic reticulum of myocytes. Several hundred mutations in RyRs are associated with skeletal or cardiomyocyte disease in humans. Many of these mutations can now be mapped onto the high resolution structures of individual RyR domains and on full-length tetrameric cryo-electron microscopy structures. A closely related Ca(2+) release channel, the inositol 1,4,5-trisphospate receptor (IP3 R), shows a conserved structural architecture at the N-terminus, suggesting that both channels evolved from an ancestral unicellular RyR/IP3 R. The functional insights provided by recent structural studies for both channels will aid in the development of rationale treatments for a myriad of Ca(2+)-signaled malignancies.
Collapse
Affiliation(s)
- Fernando J Amador
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
13
|
Campiglio M, Di Biase V, Tuluc P, Flucher BE. Stable incorporation versus dynamic exchange of β subunits in a native Ca2+ channel complex. J Cell Sci 2013; 126:2092-101. [PMID: 23447673 DOI: 10.1242/jcs.jcs124537] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated Ca(2+) channels are multi-subunit membrane proteins that transduce depolarization into cellular functions such as excitation-contraction coupling in muscle or neurotransmitter release in neurons. The auxiliary β subunits function in membrane targeting of the channel and modulation of its gating properties. However, whether β subunits can reversibly interact with, and thus differentially modulate, channels in the membrane is still unresolved. In the present study we applied fluorescence recovery after photobleaching (FRAP) of GFP-tagged α1 and β subunits expressed in dysgenic myotubes to study the relative dynamics of these Ca(2+) channel subunits for the first time in a native functional signaling complex. Identical fluorescence recovery rates of both subunits indicate stable interactions, distinct recovery rates indicate dynamic interactions. Whereas the skeletal muscle β1a isoform formed stable complexes with CaV1.1 and CaV1.2, the non-skeletal muscle β2a and β4b isoforms dynamically interacted with both α1 subunits. Neither replacing the I-II loop of CaV1.1 with that of CaV2.1, nor deletions in the proximal I-II loop, known to change the orientation of β relative to the α1 subunit, altered the specific dynamic properties of the β subunits. In contrast, a single residue substitution in the α interaction pocket of β1aM293A increased the FRAP rate threefold. Taken together, these findings indicate that in skeletal muscle triads the homologous β1a subunit forms a stable complex, whereas the heterologous β2a and β4b subunits form dynamic complexes with the Ca(2+) channel. The distinct binding properties are not determined by differences in the I-II loop sequences of the α1 subunits, but are intrinsic properties of the β subunit isoforms.
Collapse
Affiliation(s)
- Marta Campiglio
- Department of Physiology and Medical Physics, Medical University Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
14
|
Polster A, Ohrtman JD, Beam KG, Papadopoulos S. Fluorescence resonance energy transfer (FRET) indicates that association with the type I ryanodine receptor (RyR1) causes reorientation of multiple cytoplasmic domains of the dihydropyridine receptor (DHPR) α(1S) subunit. J Biol Chem 2012; 287:41560-8. [PMID: 23071115 DOI: 10.1074/jbc.m112.404194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The skeletal muscle dihydropyridine receptor (DHPR) in the t-tubular membrane serves as the Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling, triggering Ca(2+) release via the type 1 ryanodine receptor (RyR1) in the sarcoplasmic reticulum (SR). The two proteins appear to be physically linked, and both the α(1S) and β(1a) subunits of the DHPR are essential for EC coupling. Within α(1S), cytoplasmic domains of importance include the I-II loop (to which β(1a) binds), the II-III and III-IV loops, and the C terminus. However, the spatial relationship of these domains to one another has not been established. Here, we have taken the approach of measuring FRET between fluorescent proteins inserted into pairs of α(1S) cytoplasmic domains. Expression of these constructs in dyspedic (RyR1 null) and dysgenic (α(1S) null) myotubes was used to test for function and targeting to plasma membrane/SR junctions and to test whether the presence of RyR1 caused altered FRET. We found that in the absence of RyR1, measureable FRET occurred between the N terminus and C terminus (residue 1636), and between the II-III loop (residue 626) and both the N and C termini; the I-II loop (residue 406) showed weak FRET with the II-III loop but not with the N terminus. Association with RyR1 caused II-III loop FRET to decrease with the C terminus and increase with the N terminus and caused I-II loop FRET to increase with both the II-III loop and N terminus. Overall, RyR1 appears to cause a substantial reorientation of the cytoplasmic α(1S) domains consistent with their becoming more closely packed.
Collapse
Affiliation(s)
- Alexander Polster
- Department of Vegetative Physiology, University of Cologne, D-50931 Cologne, Germany
| | | | | | | |
Collapse
|
15
|
Bannister RA, Beam KG. Ca(V)1.1: The atypical prototypical voltage-gated Ca²⁺ channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:1587-97. [PMID: 22982493 DOI: 10.1016/j.bbamem.2012.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 11/28/2022]
Abstract
Ca(V)1.1 is the prototype for the other nine known Ca(V) channel isoforms, yet it has functional properties that make it truly atypical of this group. Specifically, Ca(V)1.1 is expressed solely in skeletal muscle where it serves multiple purposes; it is the voltage sensor for excitation-contraction coupling and it is an L-type Ca²⁺ channel which contributes to a form of activity-dependent Ca²⁺ entry that has been termed Excitation-coupled Ca²⁺ entry. The ability of Ca(V)1.1 to serve as voltage-sensor for excitation-contraction coupling appears to be unique among Ca(V) channels, whereas the physiological role of its more conventional function as a Ca²⁺ channel has been a matter of uncertainty for nearly 50 years. In this chapter, we discuss how Ca(V)1.1 supports excitation-contraction coupling, the possible relevance of Ca²⁺ entry through Ca(V)1.1 and how alterations of Ca(V)1.1 function can have pathophysiological consequences. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Medicine, Cardiology Division, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
16
|
Evolving concepts on the age-related changes in "muscle quality". J Cachexia Sarcopenia Muscle 2012; 3:95-109. [PMID: 22476917 PMCID: PMC3374023 DOI: 10.1007/s13539-011-0054-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/26/2011] [Indexed: 01/06/2023] Open
Abstract
The deterioration of skeletal muscle with advancing age has long been anecdotally recognized and has been of scientific interest for more than 150 years. Over the past several decades, the scientific and medical communities have recognized that skeletal muscle dysfunction (e.g., muscle weakness, poor muscle coordination, etc.) is a debilitating and life-threatening condition in the elderly. For example, the age-associated loss of muscle strength is highly associated with both mortality and physical disability. It is well-accepted that voluntary muscle force production is not solely dependent upon muscle size, but rather results from a combination of neurologic and skeletal muscle factors, and that biologic properties of both of these systems are altered with aging. Accordingly, numerous scientists and clinicians have used the term "muscle quality" to describe the relationship between voluntary muscle strength and muscle size. In this review article, we discuss the age-associated changes in the neuromuscular system-starting at the level of the brain and proceeding down to the subcellular level of individual muscle fibers-that are potentially influential in the etiology of dynapenia (age-related loss of muscle strength and power).
Collapse
|
17
|
Delbono O. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 2011; 4:248-59. [PMID: 21529320 PMCID: PMC9634721 DOI: 10.2174/1874609811104030248] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Functional and structural decline of the neuromuscular system is a recognized cause of decreased strength, impaired performance of daily living activities, and loss of independence in the elderly. However, in mammals, including humans, age-related loss of strength is greater than loss of muscle mass, so the underlying mechanisms remain only partially understood. This review focuses on the mechanisms underlying impaired skeletal muscle function with aging, including external calcium-dependent skeletal muscle contraction; increased voltage-sensitive calcium channel Cav1.1 β1asubunit and junctional face protein JP-45 and decreased Cav1.1 (α1) expression, and the potential role of these and other recently discovered molecules of the muscle T-tubule/sarcoplasmic reticulum junction in excitation-contraction uncoupling. We also examined neural influences and trophic factors, particularly insulin-like growth factor-I (IGF-1). Better insight into the triad proteins' involvement in muscle ECC and nerve/muscle interactions and regulation will lead to more rational interventions to delay or prevent muscle weakness with aging. The focus of this review is on the proteins mediating excitation-contraction coupling (ECC) and their expression and regulation in humans and rodent models of skeletal muscle functional decline with aging. Age-dependent changes in proteins other than those related to ECC, muscle composition, clinical assessment and interventions, have been extensively reviewed recently [1-3].
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
18
|
Pirone A, Schredelseker J, Tuluc P, Gravino E, Fortunato G, Flucher BE, Carsana A, Salvatore F, Grabner M. Identification and functional characterization of malignant hyperthermia mutation T1354S in the outer pore of the Cavalpha1S-subunit. Am J Physiol Cell Physiol 2010; 299:C1345-54. [PMID: 20861472 PMCID: PMC3006335 DOI: 10.1152/ajpcell.00008.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 09/16/2010] [Indexed: 11/22/2022]
Abstract
To identify the genetic locus responsible for malignant hyperthermia susceptibility (MHS) in an Italian family, we performed linkage analysis to recognized MHS loci. All MHS individuals showed cosegregation of informative markers close to the voltage-dependent Ca(2+) channel (Ca(V)) α(1S)-subunit gene (CACNA1S) with logarithm of odds (LOD)-score values that matched or approached the maximal possible value for this family. This is particularly interesting, because so far MHS was mapped to >178 different positions on the ryanodine receptor (RYR1) gene but only to two on CACNA1S. Sequence analysis of CACNA1S revealed a c.4060A>T transversion resulting in amino acid exchange T1354S in the IVS5-S6 extracellular pore-loop region of Ca(V)α(1S) in all MHS subjects of the family but not in 268 control subjects. To investigate the impact of mutation T1354S on the assembly and function of the excitation-contraction coupling apparatus, we expressed GFP-tagged α(1S)T1354S in dysgenic (α(1S)-null) myotubes. Whole cell patch-clamp analysis revealed that α(1S)T1354S produced significantly faster activation of L-type Ca(2+) currents upon 200-ms depolarizing test pulses compared with wild-type GFP-α(1S) (α(1S)WT). In addition, α(1S)T1354S-expressing myotubes showed a tendency to increased sensitivity for caffeine-induced Ca(2+) release and to larger action-potential-induced intracellular Ca(2+) transients under low (≤ 2 mM) caffeine concentrations compared with α(1S)WT. Thus our data suggest that an additional influx of Ca(2+) due to faster activation of the α(1S)T1354S L-type Ca(2+) current, in concert with higher caffeine sensitivity of Ca(2+) release, leads to elevated muscle contraction under pharmacological trigger, which might be sufficient to explain the MHS phenotype.
Collapse
Affiliation(s)
- Antonella Pirone
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
20
|
Schredelseker J, Shrivastav M, Dayal A, Grabner M. Non-Ca2+-conducting Ca2+ channels in fish skeletal muscle excitation-contraction coupling. Proc Natl Acad Sci U S A 2010; 107:5658-63. [PMID: 20212109 PMCID: PMC2851825 DOI: 10.1073/pnas.0912153107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During skeletal muscle excitation-contraction (EC) coupling, membrane depolarizations activate the sarcolemmal voltage-gated L-type Ca(2+) channel (Ca(V)1.1). Ca(V)1.1 in turn triggers opening of the sarcoplasmic Ca(2+) release channel (RyR1) via interchannel protein-protein interaction to release Ca(2+) for myofibril contraction. Simultaneously to this EC coupling process, a small and slowly activating Ca(2+) inward current through Ca(V)1.1 is found in mammalian skeletal myotubes. The role of this Ca(2+) influx, which is not immediately required for EC coupling, is still enigmatic. Interestingly, whole-cell patch clamp experiments on freshly dissociated skeletal muscle myotubes from zebrafish larvae revealed the lack of such Ca(2+) currents. We identified two distinct isoforms of the pore-forming Ca(V)1.1alpha(1S) subunit in zebrafish that are differentially expressed in superficial slow and deep fast musculature. Both do not conduct Ca(2+) but merely act as voltage sensors to trigger opening of two likewise tissue-specific isoforms of RyR1. We further show that non-Ca(2+) conductivity of both Ca(V)1.1alpha(1S) isoforms is a common trait of all higher teleosts. This non-Ca(2+) conductivity of Ca(V)1.1 positions teleosts at the most-derived position of an evolutionary trajectory. Though EC coupling in early chordate muscles is activated by the influx of extracellular Ca(2+), it evolved toward Ca(V)1.1-RyR1 protein-protein interaction with a relatively small and slow influx of external Ca(2+) in tetrapods. Finally, the Ca(V)1.1 Ca(2+) influx was completely eliminated in higher teleost fishes.
Collapse
Affiliation(s)
- Johann Schredelseker
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Manisha Shrivastav
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Anamika Dayal
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Manfred Grabner
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| |
Collapse
|
21
|
Obermair GJ, Schlick B, Di Biase V, Subramanyam P, Gebhart M, Baumgartner S, Flucher BE. Reciprocal interactions regulate targeting of calcium channel beta subunits and membrane expression of alpha1 subunits in cultured hippocampal neurons. J Biol Chem 2009; 285:5776-91. [PMID: 19996312 DOI: 10.1074/jbc.m109.044271] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Auxiliary beta subunits modulate current properties and mediate the functional membrane expression of voltage-gated Ca(2+) channels in heterologous cells. In brain, all four beta isoforms are widely expressed, yet little is known about their specific roles in neuronal functions. Here, we investigated the expression and targeting properties of beta subunits and their role in membrane expression of Ca(V)1.2 alpha(1) subunits in cultured hippocampal neurons. Quantitative reverse transcription-PCR showed equal expression, and immunofluorescence showed a similar distribution of all endogenous beta subunits throughout dendrites and axons. High resolution microscopy of hippocampal neurons transfected with six different V5 epitope-tagged beta subunits demonstrated that all beta subunits were able to accumulate in synaptic terminals and to colocalize with postsynaptic Ca(V)1.2, thus indicating a great promiscuity in alpha(1)-beta interactions. In contrast, restricted axonal targeting of beta(1) and weak colocalization of beta(4b) with Ca(V)1.2 indicated isoform-specific differences in local channel complex formation. Membrane expression of external hemagglutinin epitope-tagged Ca(V)1.2 was strongly enhanced by all beta subunits in an isoform-specific manner. Conversely, mutating the alpha-interaction domain of Ca(V)1.2 (W440A) abolished membrane expression and targeting into dendritic spines. This demonstrates that in neurons the interaction of a beta subunit with the alpha-interaction domain is absolutely essential for membrane expression of alpha(1) subunits, as well as for the subcellular localization of beta subunits, which by themselves possess little or no targeting properties.
Collapse
Affiliation(s)
- Gerald J Obermair
- Department of Physiology and Medical Physics, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | |
Collapse
|
22
|
Subramanyam P, Obermair GJ, Baumgartner S, Gebhart M, Striessnig J, Kaufmann WA, Geley S, Flucher BE. Activity and calcium regulate nuclear targeting of the calcium channel beta4b subunit in nerve and muscle cells. Channels (Austin) 2009; 3:343-55. [PMID: 19755859 PMCID: PMC2853709 DOI: 10.4161/chan.3.5.9696] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Auxiliary beta subunits are critical determinants of membrane expression and gating properties of voltage-gated calcium channels. Mutations in the beta(4) subunit gene cause ataxia and epilepsy. However, the specific function of beta(4) in neurons and its causal relation to neurological diseases are unknown. Here we report the localization of the beta(4) subunit in the nuclei of cerebellar granule and Purkinje cells. beta(4b) was the only beta isoform showing nuclear targeting when expressed in neurons and skeletal myotubes. Its specific nuclear targeting property was mapped to an N-terminal double-arginine motif, which was necessary and sufficient for targeting beta subunits into the nucleus. Spontaneous electrical activity and calcium influx negatively regulated beta(4b) nuclear localization by a CRM-1-dependent nuclear export mechanism. The activity-dependent shuttling of beta(4b) into and out of the nucleus indicates a specific role of this beta subunit in neurons, in communicating the activity of calcium channels to the nucleus.
Collapse
Affiliation(s)
- Prakash Subramanyam
- Department of Physiology and Medical Physics; Division of Physiology; Medical University Innsbruck; Innsbruck, Austria
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics; Division of Physiology; Medical University Innsbruck; Innsbruck, Austria
| | - Sabine Baumgartner
- Department of Physiology and Medical Physics; Division of Physiology; Medical University Innsbruck; Innsbruck, Austria
| | - Mathias Gebhart
- Biocenter; Section of Molecular Pathophysiology; Medical University Innsbruck; Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology; Institute of Pharmacy; University of Innsbruck; Innsbruck, Austria
| | - Walter A. Kaufmann
- Department of Pharmacology; Medical University Innsbruck; Innsbruck, Austria
| | - Stephan Geley
- Biocenter; Section of Molecular Pathophysiology; Medical University Innsbruck; Innsbruck, Austria
| | - Bernhard E. Flucher
- Department of Physiology and Medical Physics; Division of Physiology; Medical University Innsbruck; Innsbruck, Austria
| |
Collapse
|
23
|
Taylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell 2009; 8:584-94. [PMID: 19663902 PMCID: PMC2765867 DOI: 10.1111/j.1474-9726.2009.00507.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation-contraction (E-C) coupling. Excitation-contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation-contraction uncoupling may be caused by alterations in expression of the voltage-dependent calcium channel alpha1s (CaV1.1) and beta1a (CaVbeta1a) subunits, both of which are necessary for E-C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaVbeta1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaVbeta1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaVbeta1a overexpression, a CaVbeta1a-YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaVbeta1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaVbeta1a-YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole-cell patch-clamp technique. Specific force was significantly reduced in young CaVbeta1a-YFP electroporated muscle fibers compared with sham-electroporated, age-matched controls. siRNA interference of CaVbeta1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaVbeta1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaVbeta1a during old age may play a role in the loss of specific force.
Collapse
Affiliation(s)
- Jackson R. Taylor
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Zhenlin Zheng
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Zhong-Min Wang
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Anthony M. Payne
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - María L. Messi
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| | - Osvaldo Delbono
- Department of Internal Medicine-Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
- Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 1 Medical Center Blvd. Winston Salem, North Carolina 27157
| |
Collapse
|
24
|
Schredelseker J, Dayal A, Schwerte T, Franzini-Armstrong C, Grabner M. Proper restoration of excitation-contraction coupling in the dihydropyridine receptor beta1-null zebrafish relaxed is an exclusive function of the beta1a subunit. J Biol Chem 2009; 284:1242-51. [PMID: 19008220 PMCID: PMC2613631 DOI: 10.1074/jbc.m807767200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Indexed: 11/06/2022] Open
Abstract
The paralyzed zebrafish strain relaxed carries a null mutation for the skeletal muscle dihydropyridine receptor (DHPR) beta(1a) subunit. Lack of beta(1a) results in (i) reduced membrane expression of the pore forming DHPR alpha(1S) subunit, (ii) elimination of alpha(1S) charge movement, and (iii) impediment of arrangement of the DHPRs in groups of four (tetrads) opposing the ryanodine receptor (RyR1), a structural prerequisite for skeletal muscle-type excitation-contraction (EC) coupling. In this study we used relaxed larvae and isolated myotubes as expression systems to discriminate specific functions of beta(1a) from rather general functions of beta isoforms. Zebrafish and mammalian beta(1a) subunits quantitatively restored alpha(1S) triad targeting and charge movement as well as intracellular Ca(2+) release, allowed arrangement of DHPRs in tetrads, and most strikingly recovered a fully motile phenotype in relaxed larvae. Interestingly, the cardiac/neuronal beta(2a) as the phylogenetically closest, and the ancestral housefly beta(M) as the most distant isoform to beta(1a) also completely recovered alpha(1S) triad expression and charge movement. However, both revealed drastically impaired intracellular Ca(2+) transients and very limited tetrad formation compared with beta(1a). Consequently, larval motility was either only partially restored (beta(2a)-injected larvae) or not restored at all (beta(M)). Thus, our results indicate that triad expression and facilitation of 1,4-dihydropyridine receptor (DHPR) charge movement are common features of all tested beta subunits, whereas the efficient arrangement of DHPRs in tetrads and thus intact DHPR-RyR1 coupling is only promoted by the beta(1a) isoform. Consequently, we postulate a model that presents beta(1a) as an allosteric modifier of alpha(1S) conformation enabling skeletal muscle-type EC coupling.
Collapse
Affiliation(s)
- Johann Schredelseker
- Department of Medical Genetics, Clinical and Molecular Pharmacology, Division of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
25
|
Bannister RA. Bridging the myoplasmic gap: recent developments in skeletal muscle excitation–contraction coupling. J Muscle Res Cell Motil 2007; 28:275-83. [PMID: 17899404 DOI: 10.1007/s10974-007-9118-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Accepted: 08/28/2007] [Indexed: 01/17/2023]
Abstract
Conformational coupling between the L-type voltage-gated Ca(2+) channel (or 1,4-dihydropyridine receptor; DHPR) and the ryanodine-sensitive Ca(2+) release channel of the sarcoplasmic reticulum (RyR1) is the mechanistic basis for excitation-contraction (EC) coupling in skeletal muscle. In this article, recent findings regarding the roles of the individual cytoplasmic domains (the amino- and carboxyl-termini, cytoplasmic loops I-II, II-III, and III-IV) of the DHPR alpha(1S) subunit in bi-directional communication with RyR1 will be discussed.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, School of Medicine, University of Colorado at Denver and Health Sciences Center, RC-1, North Tower, P18-7130, Mail Stop F8307, 12800 E. 19th St, Aurora, CO 80045, USA.
| |
Collapse
|
26
|
Cheng W, Altafaj X, Ronjat M, Coronado R. Interaction between the dihydropyridine receptor Ca2+ channel beta-subunit and ryanodine receptor type 1 strengthens excitation-contraction coupling. Proc Natl Acad Sci U S A 2005; 102:19225-30. [PMID: 16357209 PMCID: PMC1323149 DOI: 10.1073/pnas.0504334102] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies have shown that the skeletal dihydropyridine receptor (DHPR) pore subunit Ca(V)1.1 (alpha1S) physically interacts with ryanodine receptor type 1 (RyR1), and a molecular signal is transmitted from alpha1S to RyR1 to trigger excitation-contraction (EC) coupling. We show that the beta-subunit of the skeletal DHPR also binds RyR1 and participates in this signaling process. A novel binding site for the DHPR beta1a-subunit was mapped to the M(3201) to W(3661) region of RyR1. In vitro binding experiments showed that the strength of the interaction is controlled by K(3495)KKRR_ _R(3502), a cluster of positively charged residues. Phenotypic expression of skeletal-type EC coupling by RyR1 with mutations in the K(3495)KKRR_ _R(3502) cluster was evaluated in dyspedic myotubes. The results indicated that charge neutralization or deletion severely depressed the magnitude of RyR1-mediated Ca(2+) transients coupled to voltage-dependent activation of the DHPR. Meantime the Ca(2+) content of the sarcoplasmic reticulum was not affected, and the amplitude and activation kinetics of the DHPR Ca(2+) currents were slightly affected. The data show that the DHPR beta-subunit, like alpha1S, interacts directly with RyR1 and is critical for the generation of high-speed Ca(2+) signals coupled to membrane depolarization. These findings indicate that EC coupling in skeletal muscle involves the interplay of at least two subunits of the DHPR, namely alpha1S and beta1a, interacting with possibly different domains of RyR1.
Collapse
Affiliation(s)
- Weijun Cheng
- Department of Physiology, University of Wisconsin School of Medicine, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
27
|
Leuranguer V, Papadopoulos S, Beam KG. Organization of calcium channel beta1a subunits in triad junctions in skeletal muscle. J Biol Chem 2005; 281:3521-7. [PMID: 16317008 DOI: 10.1074/jbc.m509566200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, dihydropyridine receptors (DHPRs) in the plasma membrane interact with the type 1 ryanodine receptor (RyR1) at junctions with the sarcoplasmic reticulum. This interaction organizes junctional DHPRs into groups of four termed tetrads. In addition to the principle alpha1S subunit, the beta1a subunit of the DHPR is also important for the interaction with RyR1. To probe this interaction, we measured fluorescence resonance energy transfer (FRET) of beta1a subunits labeled with cyan fluorescent protein (CFP) and/or yellow fluorescent protein (YFP). Expressed in dysgenic (alpha1S-null) myotubes, YFP-beta1a-CFP and CFP-beta1a-YFP were diffusely distributed in the cytoplasm and highly mobile as indicated by fluorescence recovery after photobleaching. Thus, beta1a does not appear to bind to other cellular proteins in the absence of alpha1S. FRET efficiencies for these cytoplasmic beta1a subunits were approximately 6-7%, consistent with the idea that <10 nm separates the N and C termini. After coexpression with unlabeled alpha1S (in dysgenic or beta1-null myotubes), both constructs produced discrete fluorescent puncta, which correspond to assembled DHPRs in junctions and that did not recover after photobleaching. In beta1-null myotubes, FRET efficiencies of doubly labeled beta1a in puncta were similar to those of the same constructs diffusely distributed in the cytoplasm and appeared to arise intramolecularly, since no FRET was measured when mixtures of singly labeled beta1a (CFP or YFP at the N or C terminus) were expressed in beta1-null myotubes. Thus, DHPRs in tetrads may be arranged such that the N and C termini of adjacent beta1a subunits are located >10 nm from one another.
Collapse
Affiliation(s)
- Valérie Leuranguer
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617, USA
| | | | | |
Collapse
|
28
|
Nissinen M, Kaisto T, Salmela P, Peltonen J, Metsikkö K. Restricted distribution of mRNAs encoding a sarcoplasmic reticulum or transverse tubule protein in skeletal myofibers. J Histochem Cytochem 2005; 53:217-27. [PMID: 15684334 DOI: 10.1369/jhc.4a6431.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calsequestrin (CSQ) and dihydropyridine receptor (DHPR) are muscle cell proteins that are directed into the endoplasmic reticulum (ER) during translation. The former is subsequently found in the sarcoplasmic reticulum (SR) and the latter in the transverse tubule membrane. To elucidate the potential role of mRNA targeting within muscle cells, we have analyzed the localization of CSQ and DHPR proteins and mRNAs in primary cultured rat myotubes, in skeletal muscle cryosections, and in isolated flexor digitorum brevis muscle fibers. In the myotube stage of differentiation, the mRNAs distributed throughout the cell, mimicking the distribution of the endogenous ER marker proteins. In the adult skeletal myofibers, however, both CSQ and DHPRalpha1 transcripts located perinuclearly and in cross-striations flanking Z lines beneath the sarcolemma, a distribution pattern that sharply contrasted the interfibrillar distribution of typical ER proteins. Interestingly, all nuclei of the myofibers were transcriptionally active. In summary, the mRNAs encoding either a resident SR protein or a transverse tubule protein were located beneath the sarcolemma, implying that translocation of the respective proteins to the lumen of ER takes place at this location.
Collapse
Affiliation(s)
- Marja Nissinen
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland
| | | | | | | | | |
Collapse
|
29
|
Moore ED, Voigt T, Kobayashi YM, Isenberg G, Fay FS, Gallitelli MF, Franzini-Armstrong C. Organization of Ca2+ release units in excitable smooth muscle of the guinea-pig urinary bladder. Biophys J 2005; 87:1836-47. [PMID: 15345562 PMCID: PMC1304588 DOI: 10.1529/biophysj.104.044123] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ca(2+) release from internal stores (sarcoplasmic reticulum or SR) in smooth muscles is initiated either via pharmaco-mechanical coupling due to the action of an agonist and involving IP3 receptors, or via excitation-contraction coupling, mostly involving L-type calcium channels in the plasmalemma (DHPRs), and ryanodine receptors (RyRs), or Ca(2+) release channels of the SR. This work focuses attention on the structural basis for the coupling between DHPRs and RyRs in phasic smooth muscle cells of the guinea-pig urinary bladder. Immunolabeling shows that two proteins of the SR: calsequestrin and the RyR, and one protein the plasmalemma, the L-type channel or DHPR, are colocalized with each other within numerous, peripherally located sites located within the caveolar domains. Electron microscopy images from thin sections and freeze-fracture replicas identify feet in small peripherally located SR vesicles containing calsequestrin and distinctive large particles clustered within small membrane areas. Both feet and particle clusters are located within caveolar domains. Correspondence between the location of feet and particle clusters and of RyR- and DHPR-positive foci allows the conclusion that calsequestrin, RyRs, and L-type Ca(2+) channels are associated with peripheral couplings, or Ca(2+) release units, constituting the key machinery involved in excitation-contraction coupling. Structural analogies between smooth and cardiac muscle excitation-contraction coupling complexes suggest a common basic mechanism of action.
Collapse
Affiliation(s)
- Edwin D Moore
- Department of Physiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Berrou L, Dodier Y, Raybaud A, Tousignant A, Dafi O, Pelletier JN, Parent L. The C-terminal Residues in the Alpha-interacting Domain (AID) Helix Anchor CaVβ Subunit Interaction and Modulation of CaV2.3 Channels. J Biol Chem 2005; 280:494-505. [PMID: 15507442 DOI: 10.1074/jbc.m410859200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha-interacting domain (AID) in the I-II linker of high voltage-activated (HVA) Ca(2+) channel alpha1 subunits binds with high affinity to Ca(V)beta auxiliary subunits. The recently solved crystal structures of the AID-Ca(V)beta complex in Ca(V)1.1/1.2 have revealed that this interaction occurs through a set of six mostly invariant residues Glu/Asp(6), Leu(7), Gly(9), Tyr(10), Trp(13), and Ile(14) (where the superscript refers to the position of the residue starting with the QQ signature doublet) distributed among three alpha-helical turns in the proximal section of the I-II linker. We show herein that alanine mutations of N-terminal AID residues Gln(1), Gln(2), Ile(3), Glu(4), Glu(6), Leu(7), and Gly(9) in Ca(V)2.3 did not abolish [(35)S]Ca(V)beta 1b or [(35)S]Ca(V)beta 3 subunit overlay binding to fusion proteins nor did they prevent the typical modulation of whole cell currents by Ca(V)beta 3. Mutations of the invariant Tyr(10) with either hydrophobic (Ala), aromatic (Phe), or positively charged (Arg, Lys) residues yielded Ca(V)beta 3-responsive whole cell currents, whereas mutations with negatively charged residues (Asp, Glu) disrupted Ca(V)beta 3 binding and modulation. In contrast, modulation and binding by Ca(V)beta 3 was significantly weakened in I14A (neutral and hydrophobic) and I14S (neutral and polar) mutants and eradicated in negatively charged I14D and I14E or positively charged I14R and I14K mutants. Ca(V)beta 3-induced modulation was only preserved with the conserved I14L mutation. Molecular replacement analyses carried out using a three-dimensional homology model of the AID helix from Ca(V)2.3 suggests that a high degree of hydrophobicity and a restrained binding pocket could account for the strict structural specificity of the interaction site found at position Ile(14). Altogether these results indicate that the C-terminal residues Trp(13) (1) and Ile(14) anchor Ca(V)beta subunit functional modulation of HVA Ca(2+) channels.
Collapse
Affiliation(s)
- Laurent Berrou
- Département de Physiologie, Université de Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Herlitze S, Xie M, Han J, Hümmer A, Melnik-Martinez KV, Moreno RL, Mark MD. Targeting mechanisms of high voltage-activated Ca2+ channels. J Bioenerg Biomembr 2004; 35:621-37. [PMID: 15000523 DOI: 10.1023/b:jobb.0000008027.19384.c0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Functional voltage-dependent Ca2+ channel complexes are assembled by three to four subunits: alpha1, beta, alpha2delta subunits (C. Leveque et al., 1994, J. Biol Chem. 269, 6306-6312; M. W. McEnery et al., 1991, Proc. Natl. Acad. Sci. U.S.A. 88, 11095-11099) and at least in muscle cells also y subunits (B. M. Curtis and W. A. Catterall, 1984, Biochemistry 23, 2113-2118). Ca2+ channels mediate the voltage-dependent Ca2+ influx in subcellular compartments, triggering such diverse processes as neurotransmitter release, dendritic action potentials, excitation-contraction, and excitation-transcription coupling. The targeting of biophysically defined Ca2+ channel complexes to the correct subcellular structures is, thus, critical to proper cell and physiological functioning. Despite their importance, surprisingly little is known about the targeting mechanisms by which Ca2+ channel complexes are transported to their site of function. Here we summarize what we know about the targeting of Ca2+ channel complexes through the cell to the plasma membrane and subcellular structures.
Collapse
Affiliation(s)
- Stefan Herlitze
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Room E604, 10900 Euclid Avenue, Cleveland, Ohio 44106-4975, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Papadopoulos S, Leuranguer V, Bannister RA, Beam KG. Mapping sites of potential proximity between the dihydropyridine receptor and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescence resonance energy transfer probe. J Biol Chem 2004; 279:44046-56. [PMID: 15280389 DOI: 10.1074/jbc.m405317200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excitation-contraction coupling in skeletal muscle involves conformational coupling between the dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) at junctions between the plasma membrane and sarcoplasmic reticulum. In an attempt to find which regions of these proteins are in close proximity to one another, we have constructed a tandem of cyan and yellow fluorescent proteins (CFP and YFP, respectively) linked by a 23-residue spacer, and measured the fluorescence resonance energy transfer (FRET) of the tandem either in free solution or after attachment to sites of the alpha1S and beta1a subunits of the DHPR. For all of the sites examined, attachment of the CFP-YFP tandem did not impair function of the DHPR as a Ca2+ channel or voltage sensor for excitation-contraction coupling. The free tandem displayed a 27.5% FRET efficiency, which decreased significantly after attachment to the DHPR subunits. At several sites examined for both alpha1S (N-terminal, proximal II-III loop of a two fragment construct) and beta1a (C-terminal), the FRET efficiency was similar after expression in either dysgenic (alpha1S-null) or dyspedic (RyR1-null) myotubes. However, compared with dysgenic myotubes, the FRET efficiency in dyspedic myotubes increased from 9.9 to 16.7% for CFP-YFP attached to the N-terminal of beta1a, and from 9.5 to 16.8% for CFP-YFP at the C-terminal of alpha1S. Thus, the tandem reporter suggests that the C terminus of alpha1S and the N terminus of beta1a may be in close proximity to the ryanodine receptor.
Collapse
Affiliation(s)
- Symeon Papadopoulos
- Department of Biomedical Sciences, Anatomy Section, Colorado State University, Fort Collins 80523-1617, USA
| | | | | | | |
Collapse
|
33
|
Kugler G, Grabner M, Platzer J, Striessnig J, Flucher BE. The monoclonal antibody mAB 1A binds to the excitation--contraction coupling domain in the II-III loop of the skeletal muscle calcium channel alpha(1S) subunit. Arch Biochem Biophys 2004; 427:91-100. [PMID: 15178491 DOI: 10.1016/j.abb.2004.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 04/05/2004] [Indexed: 11/19/2022]
Abstract
Interactions of the II-III loop of the voltage-gated Ca(2+) channel alpha(1S) subunit with the Ca(2+) release channel (RyR1) are essential for skeletal-type excitation-contraction (EC) coupling. Here, we characterized the binding site of the monoclonal alpha(1S) antibody mAB 1A and used it to probe the structure of the II-III loop in chimeras with different EC coupling properties. Phage-display epitope mapping of mAB 1A revealed a minimal consensus binding sequence X-P-X-X-D-X-P. Immunofluorescence labeling of (1S), alpha(1C), alpha(1D), and of II-III loop chimeras expressed in dysgenic myotubes established that mAB 1A reacted specifically with amino acids 737-744 in the II-III loop of alpha(1S), which is within the domain (D734-L764) critical for bidirectional coupling with RyR1. Comparing mAB 1A immunoreactivity with known structural and functional properties of II-III loop chimeras in which the non-conserved skeletal residues were systematically mutated to their cardiac counterparts indicated a correlation of mAB 1A immunoreactivity and skeletal-type EC coupling.
Collapse
Affiliation(s)
- Gerlinde Kugler
- Department of Biochemical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
34
|
Beard NA, Laver DR, Dulhunty AF. Calsequestrin and the calcium release channel of skeletal and cardiac muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2004; 85:33-69. [PMID: 15050380 DOI: 10.1016/j.pbiomolbio.2003.07.001] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Calsequestrin is by far the most abundant Ca(2+)-binding protein in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle. It allows the Ca2+ required for contraction to be stored at total concentrations of up to 20mM, while the free Ca2+ concentration remains at approximately 1mM. This storage capacity confers upon muscle the ability to contract frequently with minimal run-down in tension. Calsequestrin is highly acidic, containing up to 50 Ca(2+)-binding sites, which are formed simply by clustering of two or more acidic residues. The Kd for Ca2+ binding is between 1 and 100 microM, depending on the isoform, species and the presence of other cations. Calsequestrin monomers have a molecular mass of approximately 40 kDa and contain approximately 400 residues. The monomer contains three domains each with a compact alpha-helical/beta-sheet thioredoxin fold which is stable in the presence of Ca2+. The protein polymerises when Ca2+ concentrations approach 1mM. The polymer is anchored at one end to ryanodine receptor (RyR) Ca2+ release channels either via the intrinsic membrane proteins triadin and junctin or by binding directly to the RyR. It is becoming clear that calsequestrin has several functions in the lumen of the SR in addition to its well-recognised role as a Ca2+ buffer. Firstly, it is a luminal regulator of RyR activity. When triadin and junctin are present, calsequestrin maximally inhibits the Ca2+ release channel when the free Ca2+ concentration in the SR lumen is 1mM. The inhibition is relieved when the Ca2+ concentration alters, either because of small changes in the conformation of calsequestrin or its dissociation from the junctional face membrane. These changes in calsequestrin's association with the RyR amplify the direct effects of luminal Ca2+ concentration on RyR activity. In addition, calsequestrin activates purified RyRs lacking triadin and junctin. Further roles for calsequestrin are indicated by the kinase activity of the protein, its thioredoxin-like structure and its influence over store operated Ca2+ entry. Clearly, calsequestrin plays a major role in calcium homeostasis that extends well beyond its ability to buffer Ca2+ ions.
Collapse
Affiliation(s)
- N A Beard
- John Curtin School of Medical Research, Australian National University, PO Box 334, Canberra 2601, Australia
| | | | | |
Collapse
|
35
|
Fry M, Porter DM, Maue RA. Adenoviral-mediated expression of functional Na+ channel beta1 subunits tagged with a yellow fluorescent protein. J Neurosci Res 2004; 74:794-800. [PMID: 14635231 DOI: 10.1002/jnr.10804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-gated sodium (Na(+)) channels typically contain a pore-forming alpha subunit and one or two auxiliary beta subunits. Although initial characterization of known alpha and beta subunits has been facilitated by expression in heterologous cells, to understand fully the differences between individual subunits and the functional consequences of selective subunit expression, there is a need to acutely manipulate expression in cells that endogenously express Na(+) channels. To this end, we have constructed a recombinant adenovirus containing a cDNA for a mouse Na(+) channel beta1 subunit with a yellow fluorescent protein fused to its C-terminus (Ad-beta1-EYFP), and with fluorescence microscopy detected beta1-EYFP expression in primary cerebellar neurons and Chinese hamster ovary (CHO) cells upon transduction with this adenovirus, including expression in the plasma membrane. Consistent with this, patch clamp recordings confirmed that Na(+) currents in CHO cells expressing mouse Na(v)1.4 alpha subunits were appropriately modified by the viral-mediated expression of beta1-EYFP subunits. The results demonstrate that adenoviral-mediated gene delivery can be used effectively to express epitope-tagged Na(+) channel subunits with properties similar to wild-type subunits, and suggest that Ad-beta1-EYFP will be a useful reagent for investigating Na(+) channels in a variety of excitable cell types, including neurons.
Collapse
Affiliation(s)
- Mark Fry
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
36
|
Berrou L, Klein H, Bernatchez G, Parent L. A specific tryptophan in the I-II linker is a key determinant of beta-subunit binding and modulation in Ca(V)2.3 calcium channels. Biophys J 2002; 83:1429-42. [PMID: 12202369 PMCID: PMC1302242 DOI: 10.1016/s0006-3495(02)73914-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ancillary beta subunits modulate the activation and inactivation properties of high-voltage activated (HVA) Ca(2+) channels in an isoform-specific manner. The beta subunits bind to a high-affinity interaction site, alpha-interaction domain (AID), located in the I-II linker of HVA alpha1 subunits. Nine residues in the AID motif are absolutely conserved in all HVA channels (QQxExxLxGYxxWIxxxE), but their contribution to beta-subunit binding and modulation remains to be established in Ca(V)2.3. Mutations of W386 to either A, G, Q, R, E, F, or Y in Ca(V)2.3 disrupted [(35)S]beta3-subunit overlay binding to glutathione S-transferase fusion proteins containing the mutated I-II linker, whereas mutations (single or multiple) of nonconserved residues did not affect the protein-protein interaction with beta3. The tryptophan residue at position 386 appears to be an essential determinant as substitutions with hydrophobic (A and G), hydrophilic (Q, R, and E), or aromatic (F and Y) residues yielded the same results. beta-Subunit modulation of W386 (A, G, Q, R, E, F, and Y) and Y383 (A and S) mutants was investigated after heterologous expression in Xenopus oocytes. All mutant channels expressed large inward Ba(2+) currents with typical current-voltage properties. Nonetheless, the typical hallmarks of beta-subunit modulation, namely the increase in peak currents, the hyperpolarization of peak voltages, and the modulation of the kinetics and voltage dependence of inactivation, were eliminated in all W386 mutants, although they were preserved in part in Y383 (A and S) mutants. Altogether these results suggest that W386 is critical for beta-subunit binding and modulation of HVA Ca(2+) channels.
Collapse
Affiliation(s)
- L Berrou
- Département de Physiologie, Membrane Transport Research Group, Université de Montréal, Montréal, Quebec H3C 3J7, Canada
| | | | | | | |
Collapse
|
37
|
Hitzl M, Striessnig J, Neuhuber B, Flucher BE. A mutation in the beta interaction domain of the Ca(2+) channel alpha(1C) subunit reduces the affinity of the (+)-[(3)H]isradipine binding site. FEBS Lett 2002; 524:188-92. [PMID: 12135765 DOI: 10.1016/s0014-5793(02)03054-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms of how alpha(1) and beta subunits of voltage-gated Ca(2+) channels interact with one another are still controversial. Here we show that despite a mutation in the beta interaction domain that has previously been shown to disrupt binding, alpha(1C)Y467S and beta(1a-myc) still formed immunoprecipitable complexes when coexpressed in tsA201 cells. However, the alpha(1C)Y467S-beta(1a-myc) complexes had a decreased affinity to (+)-[(3)H]isradipine. This indicates that the beta interaction domain in the I-II loop of the alpha(1) subunit is not merely an anchor required for the functional interaction of the two Ca(2+) channel subunits but is itself part of the effector pathway for beta-induced channel modulation.
Collapse
Affiliation(s)
- Monika Hitzl
- Department of Biochemical Pharmacology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
38
|
Flucher BE, Weiss RG, Grabner M. Cooperation of two-domain Ca(2+) channel fragments in triad targeting and restoration of excitation- contraction coupling in skeletal muscle. Proc Natl Acad Sci U S A 2002; 99:10167-72. [PMID: 12119388 PMCID: PMC126642 DOI: 10.1073/pnas.122345799] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The specific incorporation of the skeletal muscle voltage-dependent Ca(2+) channel in the triad is a prerequisite of normal excitation-contraction (EC) coupling. Sequences involved in membrane expression and in targeting of Ca(2+) channels into skeletal muscle triads have been described in different regions of the alpha(1S) subunit. Here we studied the targeting properties of two-domain alpha(1S) fragments, green fluorescent protein (GFP)-I x II (1-670) and III x IV (691-1873) expressed alone or in combination in dysgenic (alpha(1S)-null) myotubes. Immunofluorescence analysis showed that GFP-I x II or III x IV expressed separately were not targeted into triads. In contrast, on coexpression the two alpha(1S) fragments were colocalized with one another and with the ryanodine receptor in the triads. Coexpression of GFP-I x II and III x IV also fully restored Ca(2+) currents and depolarization-induced Ca(2+) transients, despite the severed connection between the two channel halves and the absence of amino acids 671-690 from either alpha(1S) fragment. Thus, triad targeting, like the rescue of function, requires the cooperation and coassembly of the two complementary channel fragments. Transferring the C terminus of alpha(1S) to the N-terminal two-domain fragment (GFP-I x II x tail), or transferring the I-II connecting loop containing the beta interaction domain to the C-terminal fragment (III x IV x beta in) did not improve the targeting properties of the individually expressed two-domain channel fragments. Thus, the cooperation of GFP-I.II and III.IV in targeting cannot be explained solely by a sequential action of the beta subunit by means of the I-II loop in releasing the channel from the sarcoplasmic reticulum and of the C terminus in triad targeting.
Collapse
Affiliation(s)
- Bernhard E Flucher
- Department of Physiology, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
39
|
Dulhunty AF, Haarmann CS, Green D, Laver DR, Board PG, Casarotto MG. Interactions between dihydropyridine receptors and ryanodine receptors in striated muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2002; 79:45-75. [PMID: 12225776 DOI: 10.1016/s0079-6107(02)00013-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca(2+) channels in the surface/transverse tubular membrane and ryanodine receptor Ca(2+) release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation-contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein-protein interaction remain unknown. The trigger for Ca(2+) release through ryanodine receptors in cardiac muscle is a Ca(2+) influx through the L-type Ca(2+) channel. The Ca(2+) entering through the surface membrane Ca(2+) channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.
Collapse
Affiliation(s)
- A F Dulhunty
- John Curtin School of Medical Research, Australian National University, P.O. Box 334 2601 Canberra, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Okagaki R, Izumi H, Okada T, Nagahora H, Nakajo K, Okamura Y. The maternal transcript for truncated voltage-dependent Ca2+ channels in the ascidian embryo: a potential suppressive role in Ca2+ channel expression. Dev Biol 2001; 230:258-77. [PMID: 11161577 DOI: 10.1006/dbio.2000.0119] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca2+ entry during electrical activity plays several critical roles in development. However, the mechanisms that regulate Ca2+ influx during early embryogenesis remain unknown. In ascidians, a primitive chordate, development is rapid and blastomeres of the muscle and neuronal lineages are easily identified, providing a simple model for studying the expression of voltage-dependent Ca2) channels (VDCCs) in cell differentiation. Here we isolate an ascidian cDNA, TuCa1, a homologue of the alpha(1)-subunit of L-type class Ca2+ channels. We unexpectedly found another form of Ca2+ channel cDNA (3-domain-type) potentially encoding a truncated type which lacked the first domain and a part of the second domain. An analysis of genomic sequence suggested that 3-domain-type RNA and the full-length type have alternative transcriptional start sites. The temporal pattern of the amount of 3-domain-type RNA was the reverse of that of the full-length type; the 3-domain type was provided maternally and persisted during early embryogenesis, whereas the full-length type was expressed zygotically in neuronal and muscular lineage cells. Switching of the two forms occurred at a critical stage when VDCC currents appeared in neuronal or muscular blastomeres. To examine the functional roles of the 3-domain type, it was coexpressed with the full-length type in Xenopus oocyte. The 3-domain type did not produce a functional VDCC current, whereas it had a remarkable inhibitory effect on the functional expression of the full-length form. In addition, overexpression of the 3-domain type under the control of the muscle-specific actin promoter in ascidian muscle blastomeres led to a significant decrease in endogenous VDCC currents. These findings raise the possibility that the 3-domain type has some regulatory role in tuning current amplitudes of VDCCs during early development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Calcium Channels/physiology
- Calcium Channels, L-Type/chemistry
- Calcium Channels, L-Type/genetics
- Cloning, Molecular
- DNA, Complementary
- Embryo, Nonmammalian/physiology
- Female
- Genomic Imprinting
- Molecular Sequence Data
- Morphogenesis
- Muscles/embryology
- Oocytes/physiology
- Protein Structure, Secondary
- RNA Splicing
- RNA, Messenger/analysis
- Rabbits
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- Urochordata/embryology
- Urochordata/genetics
- Xenopus laevis
Collapse
Affiliation(s)
- R Okagaki
- Ion Channel Group, National Institute of Bioscience and Human Technology, Ibaraki, 305-8566, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Flucher BE, Kasielke N, Grabner M. The triad targeting signal of the skeletal muscle calcium channel is localized in the COOH terminus of the alpha(1S) subunit. J Cell Biol 2000; 151:467-78. [PMID: 11038191 PMCID: PMC2192640 DOI: 10.1083/jcb.151.2.467] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The specific localization of L-type Ca(2+) channels in skeletal muscle triads is critical for their normal function in excitation-contraction (EC) coupling. Reconstitution of dysgenic myotubes with the skeletal muscle Ca(2+) channel alpha(1S) subunit restores Ca(2+) currents, EC coupling, and the normal localization of alpha(1S) in the triads. In contrast, expression of the neuronal alpha(1A) subunit gives rise to robust Ca(2+) currents but not to triad localization. To identify regions in the primary structure of alpha(1S) involved in the targeting of the Ca(2+) channel into the triads, chimeras of alpha(1S) and alpha(1A) were constructed, expressed in dysgenic myotubes, and their subcellular distribution was analyzed with double immunofluorescence labeling of the alpha(1S)/alpha(1A) chimeras and the ryanodine receptor. Whereas chimeras containing the COOH terminus of alpha(1A) were not incorporated into triads, chimeras containing the COOH terminus of alpha(1S) were correctly targeted. Mapping of the COOH terminus revealed a triad-targeting signal contained in the 55 amino-acid sequence (1607-1661) proximal to the putative clipping site of alpha(1S). Transferring this triad targeting signal to alpha(1A) was sufficient for targeting and clustering the neuronal isoform into skeletal muscle triads and caused a marked restoration of Ca(2+)-dependent EC coupling.
Collapse
Affiliation(s)
- B E Flucher
- Department of Biochemical Pharmacology, University of Innsbruck, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
42
|
Gao T, Bunemann M, Gerhardstein BL, Ma H, Hosey MM. Role of the C terminus of the alpha 1C (CaV1.2) subunit in membrane targeting of cardiac L-type calcium channels. J Biol Chem 2000; 275:25436-44. [PMID: 10816591 DOI: 10.1074/jbc.m003465200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.
Collapse
Affiliation(s)
- T Gao
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
43
|
Flucher BE, Kasielke N, Gerster U, Neuhuber B, Grabner M. Insertion of the full-length calcium channel alpha(1S) subunit into triads of skeletal muscle in vitro. FEBS Lett 2000; 474:93-8. [PMID: 10828458 DOI: 10.1016/s0014-5793(00)01583-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A full-length and a C-terminally truncated form of the calcium channel alpha(1S) subunit can be isolated from skeletal muscle. Here we studied whether full-length alpha(1S) is functionally incorporated into the skeletal muscle excitation-contraction coupling apparatus. A fusion protein of alpha(1S) with the green fluorescent protein attached to its C-terminus (alpha(1S)-GFP) or alpha(1S) and GFP separately (alpha(1S)+GFP) were expressed in dysgenic myotubes, which lack endogenous alpha(1S). Full-length alpha(1S)-GFP was targeted into triad junctions and restored calcium currents and excitation-contraction coupling. GFP remained colocalized with alpha(1S), indicating that intact alpha(1S)-GFP was inserted into triads and that the C-terminus remained associated with the excitation-contraction coupling apparatus.
Collapse
Affiliation(s)
- B E Flucher
- Department of Physiology and Department of Biochemical Pharmacology, University of Innsbruck, Fritz-Pregl-Str. 3, A-6020, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
44
|
Bichet D, Cornet V, Geib S, Carlier E, Volsen S, Hoshi T, Mori Y, De Waard M. The I-II loop of the Ca2+ channel alpha1 subunit contains an endoplasmic reticulum retention signal antagonized by the beta subunit. Neuron 2000; 25:177-90. [PMID: 10707982 DOI: 10.1016/s0896-6273(00)80881-8] [Citation(s) in RCA: 282] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The auxiliary beta subunit is essential for functional expression of high voltage-activated Ca2+ channels. This effect is partly mediated by a facilitation of the intracellular trafficking of alpha1 subunit toward the plasma membrane. Here, we demonstrate that the I-II loop of the alpha1 subunit contains an endoplasmic reticulum (ER) retention signal that severely restricts the plasma membrane incorporation of alpha1 subunit. Coimmunolabeling reveals that the I-II loop restricts expression of a chimera CD8-I-II protein to the ER. The beta subunit reverses the inhibition imposed by the retention signal. Extensive deletion of this retention signal in full-length alpha1 subunit facilitates the cell surface expression of the channel in the absence of beta subunit. Our data suggest that the beta subunit favors Ca2+ channel plasma membrane expression by inhibiting an expression brake contained in beta-binding alpha1 sequences.
Collapse
Affiliation(s)
- D Bichet
- Institut National de la Santé et de la Recherche Médicale U464, Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Beurg M, Ahern CA, Vallejo P, Conklin MW, Powers PA, Gregg RG, Coronado R. Involvement of the carboxy-terminus region of the dihydropyridine receptor beta1a subunit in excitation-contraction coupling of skeletal muscle. Biophys J 1999; 77:2953-67. [PMID: 10585919 PMCID: PMC1300568 DOI: 10.1016/s0006-3495(99)77128-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.
Collapse
Affiliation(s)
- M Beurg
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Burgess DL, Noebels JL. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Res 1999; 36:111-22. [PMID: 10515159 DOI: 10.1016/s0920-1211(99)00045-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nineteen genes encoding alpha1, beta, gamma, or alpha2delta voltage-dependent calcium channel subunits have been identified to date. Recent studies have found that three of these genes are mutated in mice with generalised cortical spike-wave discharges (models of human absence epilepsy), emphasising the importance of calcium channels in regulating the expression of this inherited seizure phenotype. The tottering (tg) locus encodes the calcium channel alpha1 subunit gene Cacna1a, lethargic (lh) encodes the beta subunit gene Cacnb4, and stargazer (stg) encodes the gamma subunit gene Cacng2. These calcium channel mutants should provide important insights into the basic mechanisms of neuronal synchronisation, and the genes may be considered candidates for involvement in similar human disorders. The mutant models offer an important opportunity to elucidate the molecular, developmental, and physiological mechanisms underlying one subtype of absence epilepsy. Since calcium channels are involved in numerous cellular functions, including proliferation and differentiation, membrane excitability, neurite outgrowth and synaptogenesis, signal transduction, and gene expression, their role in generating the absence epilepsy phenotype may be complex. A comparative analysis of channel function and neural excitability patterns in tottering, lethargic, and stargazer brain should be useful in identifying the common elements of calcium channel involvement in these absence models.
Collapse
Affiliation(s)
- D L Burgess
- Department of Neurology, Baylor College of Medicine, Houston, TX 77303, USA.
| | | |
Collapse
|
47
|
Hofmann F, Lacinová L, Klugbauer N. Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 1999; 139:33-87. [PMID: 10453692 DOI: 10.1007/bfb0033648] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- F Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Germany
| | | | | |
Collapse
|
48
|
Gerster U, Neuhuber B, Groschner K, Striessnig J, Flucher BE. Current modulation and membrane targeting of the calcium channel alpha1C subunit are independent functions of the beta subunit. J Physiol 1999; 517 ( Pt 2):353-68. [PMID: 10332087 PMCID: PMC2269342 DOI: 10.1111/j.1469-7793.1999.0353t.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. The beta subunits of voltage-sensitive calcium channels facilitate the incorporation of channels into the plasma membrane and modulate calcium currents. In order to determine whether these two effects of the beta subunit are interdependent or independent of each other we studied plasma membrane incorporation of the channel subunits with green fluorescent protein and immunofluorescence labelling, and current modulation with whole-cell and single-channel patch-clamp recordings in transiently transfected human embryonic kidney tsA201 cells. 2. Coexpression of rabbit cardiac muscle alpha1C with rabbit skeletal muscle beta1a, rabbit heart/brain beta2a or rat brain beta3 subunits resulted in the colocalization of alpha1C with beta and in a marked translocation of the channel complexes into the plasma membrane. In parallel, the whole-cell current density and single-channel open probability were increased. Furthermore, the beta2a isoform specifically altered the voltage dependence of current activation and the inactivation kinetics. 3. A single amino acid substitution in the beta subunit interaction domain of alpha1C (alpha1CY467S) disrupted the colocalization and plasma membrane targeting of both subunits without affecting the beta subunit-induced modulation of whole-cell currents and single-channel properties. 4. These results show that the modulation of calcium currents by beta subunits can be explained by beta subunit-induced changes of single-channel properties, but the formation of stable alpha1C-beta complexes and their increased incorporation into the plasma membrane appear not to be necessary for functional modulation.
Collapse
Affiliation(s)
- U Gerster
- Department of Biochemical Pharmacology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|