1
|
Charar C, Metsuyanim-Cohen S, Gruenbaum Y, Bar DZ. Exploring the nuclear lamina in health and pathology using C. elegans. Curr Top Dev Biol 2021; 144:91-110. [PMID: 33992162 DOI: 10.1016/bs.ctdb.2020.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The eukaryotic genome inside the nucleus is enveloped by two membranes, the Outer Nuclear Membrane (ONM) and the Inner Nuclear Membrane (INM). Tethered to the INM is the nuclear lamina, a fibrillar network composed of lamins-the nuclear intermediate filaments, and membrane associated proteins. The nuclear lamina interacts with several nuclear structures, including chromatin. As most nuclear functions, including regulation of gene expression, chromosome segregation and duplication as well as nuclear structure, are highly conserved in metazoans, the Caenorhabditis elegans nematode serves as a powerful model organism to study nuclear processes and architecture. This translucent organism can easily be observed under a microscope as a live embryo, larvae and even adult. Here we will review the data on nuclear lamina composition and functions gathered from studies using C. elegans model organisms: We will discuss genome spatial organization and its contribution to gene expression. We will review both the interaction between the cytoplasm and the nucleus and mechanotransduction mechanism. Finally, we will discuss disease causing mutation in nuclear lamins, including the use of this animal model in diseases research.
Collapse
Affiliation(s)
- Chayki Charar
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel; Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sally Metsuyanim-Cohen
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yosef Gruenbaum
- Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Z Bar
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Lee MB, Kaeberlein M. Translational Geroscience: From invertebrate models to companion animal and human interventions. TRANSLATIONAL MEDICINE OF AGING 2018; 2:15-29. [PMID: 32368707 PMCID: PMC7198054 DOI: 10.1016/j.tma.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Translational geroscience is an interdisciplinary field descended from basic gerontology that seeks to identify, validate, and clinically apply interventions to maximize healthy, disease-free lifespan. In this review, we describe a research pipeline for the identification and validation of lifespan extending interventions. Beginning in invertebrate model systems, interventions are discovered and then characterized using other invertebrate model systems (evolutionary translation), models of genetic diversity, and disease models. Vertebrate model systems, particularly mice, can then be utilized to validate interventions in mammalian systems. Collaborative, multi-site efforts, like the Interventions Testing Program (ITP), provide a key resource to assess intervention robustness in genetically diverse mice. Mouse disease models provide a tool to understand the broader utility of longevity interventions. Beyond mouse models, we advocate for studies in companion pets. The Dog Aging Project is an exciting example of translating research in dogs, both to develop a model system and to extend their healthy lifespan as a goal in itself. Finally, we discuss proposed and ongoing intervention studies in humans, unmet needs for validating interventions in humans, and speculate on how differences in survival among human populations may influence intervention efficacy.
Collapse
Affiliation(s)
- Mitchell B Lee
- Department of Pathology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA USA
| |
Collapse
|
3
|
Luo S, Horvitz HR. The CDK8 Complex and Proneural Proteins Together Drive Neurogenesis from a Mesodermal Lineage. Curr Biol 2017; 27:661-672. [PMID: 28238659 DOI: 10.1016/j.cub.2017.01.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 01/26/2017] [Indexed: 11/25/2022]
Abstract
At least some animal species can generate neurons from mesoderm or endoderm, but the underlying mechanisms remain unknown. We screened for C. elegans mutants in which the presumptive mesoderm-derived I4 neuron adopts a muscle-like cell fate. From this screen, we identified HLH-3, the C. elegans homolog of a mammalian proneural protein (Ascl1) used for in vitro neuronal reprogramming, as required for efficient I4 neurogenesis. We discovered that the CDK-8 Mediator kinase module acts together with a second proneural protein, HLH-2, and in parallel to HLH-3 to promote I4 neurogenesis. Genetic analysis revealed that CDK-8 most likely promotes I4 neurogenesis by inhibiting the CDK-7/CYH-1 (CDK7/cyclin H) kinase module of the transcription initiation factor TFIIH. Ectopic expression of HLH-2 and HLH-3 together promoted expression of neuronal features in non-neuronal cells. These findings reveal that the Mediator CDK8 kinase module can promote non-ectodermal neurogenesis and suggest that inhibiting CDK7/cyclin H might similarly promote neurogenesis.
Collapse
Affiliation(s)
- Shuo Luo
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - H Robert Horvitz
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Zuela N, Dorfman J, Gruenbaum Y. Global transcriptional changes caused by an EDMD mutation correlate to tissue specific disease phenotypes in C. elegans. Nucleus 2016; 8:60-69. [PMID: 27673727 DOI: 10.1080/19491034.2016.1238999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
There are numerous heritable diseases associated with mutations in the LMNA gene. Most of these laminopathic diseases, including several muscular dystrophies, are autosomal dominant and have tissue-specific phenotypes. Our previous studies have shown that the globally expressed Emery-Dreifuss muscular dystrophy (EDMD)-linked lamin mutation, L535P, disrupts nuclear mechanical response specifically in muscle nuclei of C. elegans leading to atrophy of the body muscle cells and to reduced motility. Here we used RNA sequencing to analyze the global changes in gene expression caused by the L535P EDMD lamin mutation in order to gain better understanding of disease mechanisms and the correlation between transcription and phenotype. Our results show changes in key genes and biological pathways that can help explain the muscle specific phenotypes. In addition, the differential gene expression between wild-type and L535P mutant animals suggests that the pharynx function in the L535P mutant animals is affected by this lamin mutation. Moreover, these transcriptional changes were then correlated with reduced pharynx activity and abnormal pharynx muscle structure. Understanding disease mechanisms will potentially lead to new therapeutic approaches toward curing EDMD.
Collapse
Affiliation(s)
- Noam Zuela
- a Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| | | | - Yosef Gruenbaum
- a Department of Genetics, Institute of Life Sciences, Hebrew University of Jerusalem , Jerusalem , Israel
| |
Collapse
|
5
|
Abstract
The nematode Caenorhabditis elegans is a simple metazoan animal that is widely used as a model to understand the genetic control of development. The completely sequenced C. elegans genome contains 22 T-box genes, and they encode factors that show remarkable diversity in sequence, DNA-binding specificity, and function. Only three of the C. elegans T-box factors can be grouped into the conserved subfamilies found in other organisms, while the remaining factors are significantly diverged and unlike those in most other animals. While some of the C. elegans factors can bind canonical T-box binding elements, others bind and regulate target gene expression through distinct sequences. The nine genetically characterized T-box factors have varied functions in development and morphogenesis of muscle, hypodermal tissues, and neurons, as well as in early blastomere fate specification, cell migration, apoptosis, and sex determination, but the functions of most of the C. elegans T-box factors have not yet been extensively characterized. Like T-box factors in other animals, interaction with a Groucho-family corepressor and posttranslational SUMOylation have been shown to affect C. elegans T-box factor activity, and it is likely that additional mechanisms affecting T-box factor activity will be discovered using the effective genetic approaches in this organism.
Collapse
|
6
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
7
|
Pilon M. Developmental genetics of the Caenorhabditis elegans pharynx. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:263-80. [PMID: 25262818 PMCID: PMC4314705 DOI: 10.1002/wdev.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/03/2014] [Accepted: 04/15/2014] [Indexed: 11/07/2022]
Abstract
The Caenorhabditis elegans pharynx is a rhythmically pumping organ composed initially of 80 cells that, through fusions, amount to 62 cells in the adult worm. During the first 100 min of development, most future pharyngeal cells are born and gather into a double-plate primordium surrounded by a basal lamina. All pharyngeal cells express the transcription factor PHA-4, of which the concentration increases throughout development, triggering a sequential activation of genes with promoters responding differentially to PHA-4 protein levels. The oblong-shaped pharyngeal primordium becomes polarized, many cells taking on wedge shapes with their narrow ends toward the center, hence forming an epithelial cyst. The primordium then elongates, and reorientations of the cells at the anterior and posterior ends form the mouth and pharyngeal-intestinal openings, respectively. The 20 pharyngeal neurons establish complex but reproducible trajectories using 'fishing line' and growth cone-driven mechanisms, and the gland cells also similarly develop their processes. The genetics behind many fate decisions and morphogenetic processes are being elucidated, and reveal the pharynx to be a fruitful model for developmental biologists.
Collapse
Affiliation(s)
- Marc Pilon
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburg, Sweden
| |
Collapse
|
8
|
Hale JJ, Amin NM, George C, Via Z, Shi H, Liu J. A role of the LIN-12/Notch signaling pathway in diversifying the non-striated egg-laying muscles in C. elegans. Dev Biol 2014; 389:137-48. [PMID: 24512688 PMCID: PMC3981933 DOI: 10.1016/j.ydbio.2014.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 02/01/2014] [Indexed: 01/19/2023]
Abstract
The proper formation and function of an organ is dependent on the specification and integration of multiple cell types and tissues. An example of this is the Caenorhabditis elegans hermaphrodite egg-laying system, which requires coordination between the vulva, uterus, neurons, and musculature. While the genetic constituents of the first three components have been well studied, little is known about the molecular mechanisms underlying the specification of the egg-laying musculature. The egg-laying muscles are non-striated in nature and consist of sixteen cells, four each of type I and type II vulval muscles and uterine muscles. These 16 non-striated muscles exhibit distinct morphology, location, synaptic connectivity and function. Using an RNAi screen targeting the putative transcription factors in the C. elegans genome, we identified a number of novel factors important for the diversification of these different types of egg-laying muscles. In particular, we found that RNAi knockdown of lag-1, which encodes the sole C. elegans ortholog of the transcription factor CSL (CBF1, Suppressor of Hairless, LAG-1), an effector of the LIN-12/Notch pathway, led to the production of extra type I vulval muscles. Similar phenotypes were also observed in animals with down-regulation of the Notch receptor LIN-12 and its DSL (Delta, Serrate, LAG-2) ligand LAG-2. The extra type I vulval muscles in animals with reduced LIN-12/Notch signaling resulted from a cell fate transformation of type II vulval muscles to type I vulval muscles. We showed that LIN-12/Notch was activated in the undifferentiated type II vulval muscle cells by LAG-2/DSL that is likely produced by the anchor cell (AC). Our findings provide additional evidence highlighting the roles of LIN-12/Notch signaling in coordinating the formation of various components of the functional C. elegans egg-laying system. We also identify multiple new factors that play critical roles in the proper specification of the different types of egg-laying muscles.
Collapse
Affiliation(s)
- Jared J Hale
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Nirav M Amin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Carolyn George
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Zachary Via
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Herong Shi
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States
| | - Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
9
|
Schiavi A, Torgovnick A, Kell A, Megalou E, Castelein N, Guccini I, Marzocchella L, Gelino S, Hansen M, Malisan F, Condò I, Bei R, Rea SL, Braeckman BP, Tavernarakis N, Testi R, Ventura N. Autophagy induction extends lifespan and reduces lipid content in response to frataxin silencing in C. elegans. Exp Gerontol 2013; 48:191-201. [PMID: 23247094 PMCID: PMC3572394 DOI: 10.1016/j.exger.2012.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 02/02/2023]
Abstract
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreich's ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreich's ataxia and possibly other human mitochondria-associated disorders.
Collapse
Affiliation(s)
- Alfonso Schiavi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alessandro Torgovnick
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alison Kell
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Evgenia Megalou
- IMBB, Foundation for Research and Technology, Heraklion 71110, Crete, Greece
| | | | - Ilaria Guccini
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Laura Marzocchella
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Sara Gelino
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Malene Hansen
- Sanford-Burnham Medical Research Institute, Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | - Florence Malisan
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Ivano Condò
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Bei
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Shane L. Rea
- Sam and Ann Barshop Institute for Longevity and Aging Studies and the Department of Physiology, UTHSCSA, San Antonio, TX, USA
| | | | | | - Roberto Testi
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Natascia Ventura
- Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Institute of Clinical Chemistry and Laboratory Medicine of the Heinrich Heine University, and the IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| |
Collapse
|
10
|
Hench J, Bratić Hench I, Pujol C, Ipsen S, Brodesser S, Mourier A, Tolnay M, Frank S, Trifunović A. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans. PLoS One 2011; 6:e28417. [PMID: 22162770 PMCID: PMC3230600 DOI: 10.1371/journal.pone.0028417] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 11/08/2011] [Indexed: 01/11/2023] Open
Abstract
The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E) stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX) to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.
Collapse
Affiliation(s)
- Jürgen Hench
- Department of Neuropathology, Institute of Pathology, University Hospital Basel, Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Myogenic conversion and transcriptional profiling of embryonic blastomeres in Caenorhabditis elegans. Methods 2011; 56:50-4. [PMID: 22019720 DOI: 10.1016/j.ymeth.2011.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 11/22/2022] Open
Abstract
Myogenesis has proven to be a powerful paradigm for understanding cell fate specification and differentiation in many model organisms. This includes the nematode Caenorhabditis elegans for which the genetic, cellular, and molecular tools have allowed an in-depth understanding of muscle development. One tool not yet available in C. elegans is a robust, pure and prolific cell culture system to study myogenesis. As an alternative, this chapter describes a method by which the cell fates of early, uncommitted blastomeres in the embryo are converted to a myogenic lineage. This technique permits the nearly synchronous induction of myogenesis in vivo with the potential to generate a nearly homogeneous population of cells. Coupled with the RNA isolation and cDNA amplification methods that are also described, one can now profile gene expression throughout myogenesis using any platform of choice (e.g. expression arrays, next generation sequencing). Although limited by the artificial nature of this developing mass of muscle inside the eggshell, blastomere conversion and transcriptional profiling is a very powerful tool to investigate changes in gene expression associated with myogenesis in C. elegans that is applicable to many different cell types. When coupled with next generation sequencing, the method has the potential to yield a very high-resolution map of changes in gene expression throughout myogenesis.
Collapse
|
12
|
Tzahor E, Evans SM. Pharyngeal mesoderm development during embryogenesis: implications for both heart and head myogenesis. Cardiovasc Res 2011; 91:196-202. [PMID: 21498416 DOI: 10.1093/cvr/cvr116] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pharyngeal mesoderm (PM), located in the head region of the developing embryo, recently triggered renewed interest as the major source of cells contributing to broad regions of the heart as well as to the head musculature. What exactly is PM? In this review, we describe the anatomical and molecular characteristics of this mesodermal population and its relationship to the first and second heart fields in chick and mouse embryos. The regulatory network of transcription factors and signalling molecules that regulate PM development is also discussed. In addition, we summarize recent studies into the evolutionary origins of this tissue and its multipotential contributions to both cardiac and pharyngeal muscle progenitors.
Collapse
Affiliation(s)
- Eldad Tzahor
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
13
|
Kelly RG. Core issues in craniofacial myogenesis. Exp Cell Res 2010; 316:3034-41. [DOI: 10.1016/j.yexcr.2010.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/23/2010] [Accepted: 04/28/2010] [Indexed: 11/29/2022]
|
14
|
Lee LW, Lo HW, Lo SJ. Vectors for co-expression of two genes in Caenorhabditis elegans. Gene 2010; 455:16-21. [PMID: 20149852 DOI: 10.1016/j.gene.2010.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 11/19/2022]
Abstract
To meet the increasing need of simultaneously co-expressing two different genes in the same cell of transgenic Caenorhabditis elegans, here, we report the establishment of dicistronic vectors that contain an intercistronic region (ICR) of the C. elegans operon, CEOP5428. In these vectors, a green fluorescence protein (GFP) and a red FP (RFP) genes were placed in the first and second cistrons, respectively, which were separated by the ICR. Driven by the fibrillarin (fib-1) or myo-2 promoter, the GFP- and RFP-fusion proteins were consistently co-expressed in the entire worm cells or in the pharynx muscle cells of the transgenic worms, respectively. Our work demonstrates that ICR-containing dicistronic vectors could be developed into versatile co-expression systems in C. elegans for functional analysis of genes of interest.
Collapse
Affiliation(s)
- Li-Wei Lee
- Department of Life Science, Chang Gung University, Tao-Yuan, Taiwan.
| | | | | |
Collapse
|
15
|
Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 2009; 34:553-72. [DOI: 10.1007/s12038-009-0074-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
16
|
Broitman-Maduro G, Owraghi M, Hung WWK, Kuntz S, Sternberg PW, Maduro MF. The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function in C. elegans mesoderm development. Development 2009; 136:2735-46. [PMID: 19605496 DOI: 10.1242/dev.038307] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The C. elegans MS blastomere, born at the 7-cell stage of embryogenesis, generates primarily mesodermal cell types, including pharynx cells, body muscles and coelomocytes. A presumptive null mutation in the T-box factor gene tbx-35, a target of the MED-1 and MED-2 divergent GATA factors, was previously found to result in a profound decrease in the production of MS-derived tissues, although the tbx-35(-) embryonic arrest phenotype was variable. We report here that the NK-2 class homeobox gene ceh-51 is a direct target of TBX-35 and at least one other factor, and that CEH-51 and TBX-35 share functions. Embryos homozygous for a ceh-51 null mutation arrest as larvae with pharynx and muscle defects, although these tissues appear to be specified correctly. Loss of tbx-35 and ceh-51 together results in a synergistic phenotype resembling loss of med-1 and med-2. Overexpression of ceh-51 causes embryonic arrest and generation of ectopic body muscle and coelomocytes. Our data show that TBX-35 and CEH-51 have overlapping function in MS lineage development. As T-box regulators and NK-2 homeodomain factors are both important for heart development in Drosophila and vertebrates, our results suggest that these regulators function in a similar manner in C. elegans to specify a major precursor of mesoderm.
Collapse
|
17
|
Newman SA, Bhat R, Mezentseva NV. Cell state switching factors and dynamical patterning modules: complementary mediators of plasticity in development and evolution. J Biosci 2009. [DOI: 10.1007/s12038-009-0001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev Biol 2009; 327:273-9. [PMID: 19162003 DOI: 10.1016/j.ydbio.2008.12.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/24/2008] [Accepted: 12/29/2008] [Indexed: 02/02/2023]
Abstract
Head muscle development has been studied less intensively than myogenesis in the trunk, although this situation is gradually changing, as embryological and genetic insights accumulate. This review focuses on novel studies of the origins, composition and evolution of distinct craniofacial muscles. Cellular and molecular parallels are drawn between cardiac and branchiomeric muscle developmental programs, both of which utilize multiple lineages with distinct developmental histories, and argue for the tissues' common evolutionary origin. In addition, there is increasing evidence that the specification of skeletal muscles in the head appears to be distinct from that operating in the trunk: considerable variation among the different craniofacial muscle groups is seen, in a manner resembling myogenic specification in lower organisms.
Collapse
|
19
|
Zinzen RP, Furlong EEM. Divergence in cis-regulatory networks: taking the 'species' out of cross-species analysis. Genome Biol 2008; 9:240. [PMID: 19012800 PMCID: PMC2614484 DOI: 10.1186/gb-2008-9-11-240] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Many essential transcription factors have conserved roles in regulating biological programs, yet their genomic occupancy can diverge significantly. A new study demonstrates that such variations are primarily due to cis-regulatory sequences, rather than differences between the regulators or nuclear environments.
Collapse
Affiliation(s)
- Robert P Zinzen
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | |
Collapse
|
20
|
Ray P, Schnabel R, Okkema PG. Behavioral and synaptic defects in C. elegans lacking the NK-2 homeobox gene ceh-28. Dev Neurobiol 2008; 68:421-33. [PMID: 18161854 DOI: 10.1002/dneu.20599] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
C. elegans pharyngeal behavior consists of two distinct types of muscle contractions, termed pumping and peristalsis. Pumping ingests and concentrates bacteria in the anterior pharyngeal lumen, and it is occasionally followed by a transient peristaltic contraction that carries ingested bacteria through the posterior pharyngeal isthmus. These behaviors are controlled by a small pharyngeal nervous system consisting of 20 neurons that is almost completely independent of the extra-pharyngeal nervous system. The cholinergic motor neuron M4 controls peristalsis via synapses with the posterior isthmus muscles. Here we show that the NK-2 family homeobox gene ceh-28 is expressed in M4, where it regulates synapse assembly and peristalsis. ceh-28 mutants exhibit frequent and prolonged peristalses, and treatment with agonists or antagonists of muscarinic acetylcholine receptors can phenocopy or suppress ceh-28 mutant defects, respectively. Synapses in ceh-28 mutant M4 cells are irregularly spaced and sized, and they are abnormally located along the full length of the isthmus. We suggest that CEH-28 inhibits synaptogenesis, and that ceh-28 mutant behavioral defects result from excessive or ectopic stimulation of muscarinic acetylcholine receptors in the isthmus muscles.
Collapse
Affiliation(s)
- Paramita Ray
- Department of Biological Sciences and Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
21
|
Pocock R, Mione M, Hussain S, Maxwell S, Pontecorvi M, Aslam S, Gerrelli D, Sowden JC, Woollard A. Neuronal function of Tbx20 conserved from nematodes to vertebrates. Dev Biol 2008; 317:671-85. [PMID: 18358469 DOI: 10.1016/j.ydbio.2008.02.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 02/04/2008] [Accepted: 02/06/2008] [Indexed: 11/19/2022]
Abstract
The Tbx20 orthologue, mab-9, is required for development of the Caenorhabditis elegans hindgut, whereas several vertebrate Tbx20 genes promote heart development. Here we show that Tbx20 orthologues also have a role in motor neuron development that is conserved between invertebrates and vertebrates. mab-9 mutants exhibit guidance defects in dorsally projecting axons from motor neurons located in the ventral nerve cord. Danio rerio (Zebrafish) tbx20 morphants show defects in the migration patterns of motor neuron soma of the facial and trigeminal motor neuron groups. Human TBX20 is expressed in motor neurons in the developing hindbrain of human embryos and we show that human TBX20 can substitute for zebrafish tbx20 in promoting cranial motor neuron migration. mab-9 is also partially able to rescue the zebrafish migration defect, whereas other vertebrate T-box genes cannot. Conversely we show that the human TBX20 T-box domain can rescue motor neuron defects in C. elegans. These data suggest the functional equivalence of Tbx20 orthologues in regulating the development of specific motor neuron groups. We also demonstrate the functional equivalence of human and C. elegans Tbx20 T-box domains for regulating male tail development in the nematode even though these genes play highly diverged roles in organogenesis.
Collapse
Affiliation(s)
- Roger Pocock
- Genetics Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rasmussen JP, English K, Tenlen J, Priess JR. Notch signaling and morphogenesis of single-cell tubes in the C. elegans digestive tract. Dev Cell 2008; 14:559-69. [PMID: 18410731 PMCID: PMC2435507 DOI: 10.1016/j.devcel.2008.01.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 10/22/2007] [Accepted: 01/31/2008] [Indexed: 11/19/2022]
Abstract
During organogenesis of the C. elegans digestive system, epithelial cells within a cyst-like primordium develop diverse shapes through largely unknown mechanisms. We here analyze two adjacent, dorsal epithelial cells, called pm8 and vpi1, that remodel their shapes and apical junctions to become donut-shaped, or toroidal, single-cell tubes. pm8 and vpi1 delaminate from the dorsal cyst epithelium and migrate ventrally, across the midline of the cyst, on a transient tract of laminin. pm8 appears to encircle the midline by wrapping around finger-like projections from neighboring cells. Finally, pm8 and vpi1 self-fuse to become toroids by expressing AFF-1 and EFF-1, two fusogens that are each sufficient to promote crossfusion between other cell types. Notch signaling in pm8 induces AFF-1 expression, while simultaneously repressing EFF-1 expression; vpi1 expresses EFF-1 independent of Notch. Thus, the adjacent pm8 and vpi1 cells express different fusogens, allowing them to self-fuse into separate, single-cell tubes while avoiding crossfusion.
Collapse
Affiliation(s)
- Jeffrey P. Rasmussen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Kathryn English
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute
| | - Jennifer Tenlen
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - James R. Priess
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
23
|
Nathan E, Monovich A, Tirosh-Finkel L, Harrelson Z, Rousso T, Rinon A, Harel I, Evans SM, Tzahor E. The contribution of Islet1-expressing splanchnic mesoderm cells to distinct branchiomeric muscles reveals significant heterogeneity in head muscle development. Development 2008; 135:647-57. [PMID: 18184728 DOI: 10.1242/dev.007989] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
During embryogenesis, paraxial mesoderm cells contribute skeletal muscle progenitors, whereas cardiac progenitors originate in the lateral splanchnic mesoderm (SpM). Here we focus on a subset of the SpM that contributes to the anterior or secondary heart field (AHF/SHF), and lies adjacent to the cranial paraxial mesoderm (CPM), the precursors for the head musculature. Molecular analyses in chick embryos delineated the boundaries between the CPM, undifferentiated SpM progenitors of the AHF/SHF, and differentiating cardiac cells. We then revealed the regionalization of branchial arch mesoderm: CPM cells contribute to the proximal region of the myogenic core, which gives rise to the mandibular adductor muscle. SpM cells contribute to the myogenic cells in the distal region of the branchial arch that later form the intermandibular muscle. Gene expression analyses of these branchiomeric muscles in chick uncovered a distinct molecular signature for both CPM- and SpM-derived muscles. Islet1 (Isl1) is expressed in the SpM/AHF and branchial arch in both chick and mouse embryos. Lineage studies using Isl1-Cre mice revealed the significant contribution of Isl1(+) cells to ventral/distal branchiomeric (stylohyoid, mylohyoid and digastric) and laryngeal muscles. By contrast, the Isl1 lineage contributes to mastication muscles (masseter, pterygoid and temporalis) to a lesser extent, with virtually no contribution to intrinsic and extrinsic tongue muscles or extraocular muscles. In addition, in vivo activation of the Wnt/beta-catenin pathway in chick embryos resulted in marked inhibition of Isl1, whereas inhibition of this pathway increased Isl1 expression. Our findings demonstrate, for the first time, the contribution of Isl1(+) SpM cells to a subset of branchiomeric skeletal muscles.
Collapse
Affiliation(s)
- Elisha Nathan
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
The twisted pharynx phenotype in C. elegans. BMC DEVELOPMENTAL BIOLOGY 2007; 7:61. [PMID: 17540043 PMCID: PMC1904197 DOI: 10.1186/1471-213x-7-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 06/01/2007] [Indexed: 11/10/2022]
Abstract
Background The pharynx of C. elegans is an epithelial tube whose development has been compared to that of the embryonic heart and the kidney and hence serves as an interesting model for organ development. Several C. elegans mutants have been reported to exhibit a twisted pharynx phenotype but no careful studies have been made to directly address this phenomenon. In this study, the twisting mutants dig-1, mig-4, mnm-4 and unc-61 are examined in detail and the nature of the twist is investigated. Results We find that the twisting phenotype worsens throughout larval development, that in most mutants the pharynx retains its twist when dissected away from the worm body, and that double mutants between mnm-4 and mutants with thickened pharyngeal domains (pha-2 and sma-1) have less twisting in these regions. We also describe the ultrastructure of pharyngeal tendinous organs that connect the pharyngeal basal lamina to that of the body wall, and show that these are pulled into a spiral orientation by twisted pharynges. Within twisted pharynges, actin filaments also show twisting and are longer than in controls. In a mini screen of adhesionmolecule mutants, we also identified one more twisting pharynx mutant, sax-7. Conclusion Defects in pharyngeal cytoskeleton length or its anchor points to the extracellular matrix are proposed as the actual source of the twisting force. The twisted pharynx is a useful and easy-to-score phenotype for genes required in extracellular adhesion or organ attachment, and perhaps forgenes required for cytoskeleton regulation.
Collapse
|
25
|
Grifone R, Kelly RG. Heartening news for head muscle development. Trends Genet 2007; 23:365-9. [PMID: 17524520 DOI: 10.1016/j.tig.2007.05.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 04/02/2007] [Accepted: 05/09/2007] [Indexed: 11/15/2022]
Abstract
Branchiomeric craniofacial muscles differ from all other skeletal muscles with respect to embryological origin, motor innervation and upstream activators of myogenesis. A series of recent studies has revealed a striking juxtaposition and overlapping genetic program of craniofacial skeletal muscle progenitor cells with a population of cells giving rise to cardiac muscle. The divergent myogenic fates of adjacent progenitor cells revealed by these data provide a new framework for the study of craniofacial myogenesis.
Collapse
Affiliation(s)
- Raphaëlle Grifone
- Developmental Biology Institute of Marseilles - Luminy, Inserm Avenir Group, UMR 6216 CNRS-Université de la Méditerranée, Campus de Luminy Case 907, 13288 Marseilles Cedex 9, France
| | | |
Collapse
|
26
|
Lam N, Chesney MA, Kimble J. Wnt signaling and CEH-22/tinman/Nkx2.5 specify a stem cell niche in C. elegans. Curr Biol 2006; 16:287-95. [PMID: 16461282 PMCID: PMC1637041 DOI: 10.1016/j.cub.2005.12.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 12/05/2005] [Accepted: 12/08/2005] [Indexed: 10/25/2022]
Abstract
Wnt signaling regulates many aspects of metazoan development, including stem cells. In C. elegans, Wnt/MAPK signaling controls asymmetric divisions. A recent model proposed that the POP-1/TCF DNA binding protein works together with SYS-1/beta-catenin to activate transcription of target genes in response to Wnt/MAPK signaling. The somatic gonadal precursor (SGP) divides asymmetrically to generate distal and proximal daughters of distinct fates: only its distal daughter generates a distal tip cell (DTC), which is required for stem cell maintenance. No DTCs are produced in the absence of POP-1/TCF or SYS-1/beta-catenin, and extra DTCs are made upon overexpression of SYS-1/beta-catenin. Here we report that POP-1/TCF and SYS-1/beta-catenin directly activate transcription of ceh-22/nkx2.5 isoforms in SGP distal daughters, a finding that confirms the proposed model of Wnt/MAPK signaling. In addition, we demonstrate that the CEH-22/Nkx2.5 homeodomain transcription factor is a key regulator of DTC specification. We speculate that these conserved molecular regulators of the DTC niche in nematodes may provide insight into specification of stem cell niches more broadly.
Collapse
Affiliation(s)
- Ngan Lam
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
27
|
Abstract
The endomesoderm gene regulatory network (GRN) of C. elegans is a rich resource for studying the properties of cell-fate-specification pathways. This GRN contains both cell-autonomous and cell non-autonomous mechanisms, includes network motifs found in other GRNs, and ties maternal factors to terminal differentiation genes through a regulatory cascade. In most cases, upstream regulators and their direct downstream targets are known. With the availability of resources to study close and distant relatives of C. elegans, the molecular evolution of this network can now be examined. Within Caenorhabditis, components of the endomesoderm GRN are well conserved. A cursory examination of the preliminary genome sequences of two parasitic nematodes, Haemonchus contortus and Brugia malayi, suggests that evolution in this GRN is occurring most rapidly for the zygotic genes that specify blastomere identity.
Collapse
Affiliation(s)
- Morris F Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
28
|
Mörck C, Axäng C, Goksör M, Pilon M. Misexpression of acetylcholinesterases in the C. elegans pha-2 mutant accompanies ultrastructural defects in pharyngeal muscle cells. Dev Biol 2006; 297:446-60. [PMID: 16806153 DOI: 10.1016/j.ydbio.2006.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 05/08/2006] [Accepted: 05/18/2006] [Indexed: 11/24/2022]
Abstract
pha-2 is the Caenorhabditis elegans homolog of the vertebrate homeobox gene Hex. Embryonic expression of pha-2 is mostly pharyngeal and the only described mutant allele of pha-2 results in a severe pharyngeal defect in which certain muscle cells (pm5 cells) and neurons are grossly deformed. Here, we performed a detailed characterization of the pha-2 phenotype using cell-type-specific reporters, physical manipulation of the nuclei in pharyngeal muscle cells using "optical tweezers", electron microscopy, staining of the actin cytoskeleton as well as phenotypic rescue and ectopic expression experiments. The main findings of the present study are (i) the pha-2 (ad472) mutation specifically impairs the pharyngeal expression of pha-2; (ii) in the pha-2 mutant, the cytoskeleton of the pm5 cells is measurably weaker than in normal cells and is severely disrupted by large tubular structures and organelles; (iii) the pm5 cells of the pha-2 mutant fail to express the acetylcholinesterase genes ace-1 and ace-2; (iv) ectopic expression of pha-2 can induce ectopic expression of ace-1 and ace-2; and (v) the anc-1 mutant with mislocalized pm5 cell nuclei occasionally shows an isthmus phenotype similar to that of pha-2 worms.
Collapse
Affiliation(s)
- Catarina Mörck
- Department of Cell and Molecular Biology, Göteborg University, Box 462, SE-405 30 Göteborg, Sweden
| | | | | | | |
Collapse
|
29
|
Roy Chowdhuri S, Crum T, Woollard A, Aslam S, Okkema PG. The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived pharyngeal muscle in C. elegans. Dev Biol 2006; 295:664-77. [PMID: 16701625 DOI: 10.1016/j.ydbio.2006.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 03/29/2006] [Accepted: 04/03/2006] [Indexed: 11/24/2022]
Abstract
The C. elegans pharynx is produced from the embryonic blastomeres ABa and MS. Pharyngeal fate in the ABa lineage is specified by the combined activities of GLP-1/Notch-mediated signals and the TBX-37 and TBX-38 T-box transcription factors. Here, we show another T-box factor TBX-2 also functions in ABa-derived pharyngeal development. tbx-2 mutants arrest as L1 larvae lacking most or all ABa-derived pharyngeal muscles. In comparison, tbx-2 mutants retain ABa-derived marginal cells and pharyngeal muscles derived from MS. A tbx-2Colon, two colonsgfp translational fusion is expressed in a dynamic pattern in C. elegans embryos beginning near the 100-cell stage. Early expression is limited to a small number of cells, which likely include the ABa-derived pharyngeal precursors, while later expression is observed in body wall muscles and a subset of pharyngeal neurons. TBX-2 contains 2 consensus sumoylation sites, and it interacts in a yeast two-hybrid assay with the UBC-9 and GEI-17 components of the C. elegans SUMO-conjugating pathway. ubc-9(RNAi) has been previously shown to cause variable embryonic and larval arrest, and we find that, like tbx-2 mutants, ubc-9(RNAi) animals lack ABa-derived pharyngeal muscles. ubc-9(RNAi) also alters the subnuclear distribution of TBX-2::GFP fusion protein, suggesting that UBC-9 and TBX-2 interact in C. elegans. Together, these results indicate that TBX-2 and SUMO-conjugating enzymes are necessary for ABa-derived pharyngeal muscle, and we hypothesize that TBX-2 function requires sumoylation. Sumoylation is increasingly recognized as an important mechanism controlling activity of many nuclear factors, and these results provide the first evidence that T-box factor activity may require sumoylation.
Collapse
Affiliation(s)
- Sinchita Roy Chowdhuri
- Department of Biological Sciences (MC567), University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
30
|
Broitman-Maduro G, Lin KTH, Hung WWK, Maduro MF. Specification of the C. elegans MS blastomere by the T-box factor TBX-35. Development 2006; 133:3097-106. [PMID: 16831832 DOI: 10.1242/dev.02475] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In C. elegans, many mesodermal cell types are made by descendants of the progenitor MS, born at the seven-cell stage of embryonic development. Descendants of MS contribute to body wall muscle and to the posterior half of the pharynx. We have previously shown that MS is specified by the activity of the divergent MED-1,2 GATA factors. We report that the MED-1,2 target gene tbx-35, which encodes a T-box transcription factor, specifies the MS fate. Embryos homozygous for a putative tbx-35-null mutation fail to generate MS-derived pharynx and body muscle, and instead generate ectopic PAL-1-dependent muscle and hypodermis, tissues normally made by the C blastomere. Conversely, overexpression of tbx-35 results in the generation of ectopic pharynx and muscle tissue. The MS and E sister cells are made different by transduction of a Wnt/MAPK/Src pathway signal through the nuclear effector TCF/POP-1. We show that in E, tbx-35 is repressed in a Wnt-dependent manner that does not require activity of TCF/POP-1, suggesting that an additional nuclear Wnt effector functions in E to repress MS development. Genes of the T-box family are known to function in protostomes and deuterostomes in the specification of mesodermal fates. Our results show that this role has been evolutionarily conserved in the early C. elegans embryo, and that a progenitor of multiple tissue types can be specified by a surprisingly simple gene cascade.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Biology, University of California, Riverside, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
31
|
Elliott DA, Solloway MJ, Wise N, Biben C, Costa MW, Furtado MB, Lange M, Dunwoodie S, Harvey RP. A tyrosine-rich domain within homeodomain transcription factor Nkx2-5 is an essential element in the early cardiac transcriptional regulatory machinery. Development 2006; 133:1311-22. [PMID: 16510504 DOI: 10.1242/dev.02305] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Homeodomain factor Nkx2-5 is a central component of the transcription factor network that guides cardiac development; in humans, mutations in NKX2.5 lead to congenital heart disease (CHD). We have genetically defined a novel conserved tyrosine-rich domain (YRD) within Nkx2-5 that has co-evolved with its homeodomain. Mutation of the YRD did not affect DNA binding and only slightly diminished transcriptional activity of Nkx2-5 in a context-specific manner in vitro. However, the YRD was absolutely essential for the function of Nkx2-5 in cardiogenesis during ES cell differentiation and in the developing embryo. Furthermore, heterozygous mutation of all nine tyrosines to alanine created an allele with a strong dominant-negative-like activity in vivo: ES cell<-->embryo chimaeras bearing the heterozygous mutation died before term with cardiac malformations similar to the more severe anomalies seen in NKX2.5 mutant families. These studies suggest a functional interdependence between the NK2 class homeodomain and YRD in cardiac development and evolution, and establish a new model for analysis of Nkx2-5 function in CHD.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Blotting, Western
- Cell Line
- Cells, Cultured
- Cephalopoda
- Conserved Sequence
- Electrophoretic Mobility Shift Assay
- Embryo, Mammalian
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Gene Targeting
- Genes, Reporter
- Glutathione Transferase/metabolism
- Green Fluorescent Proteins/metabolism
- Heterozygote
- Homeobox Protein Nkx-2.5
- Homeodomain Proteins/chemistry
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- In Situ Hybridization
- Luciferases/metabolism
- Mice
- Molecular Sequence Data
- Mutation
- Myocardium/cytology
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Phylogeny
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
- Tyrosine/chemistry
Collapse
Affiliation(s)
- David A Elliott
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Claus Nielsen
- Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Abstract
The Caenorhabditis elegans pharynx is a neuromuscular tube of which the function is to pump and crush bacteria, and inject them into the intestine. The 80-cell pharynx develops via the morphogenesis and differentiation of the cells that compose its semi-spherical primordium, and requires the activity of several evolutionarily conserved genes, such as pha-4 (the homolog to the Drosophila forkhead and vertebrate FoxA), ceh-22 (the homolog to the Drosophila tinman and vertebrate Nkx2.5), and pha-2 (the homolog to the vertebrate Hex). There are 20 neurons in the pharynx, each with a reproducible unique trajectory. Developmental genetic analysis of axon guidance in the pharynx indicates that some axon trajectories are in part established without growth cones, whereas other parts necessitate growth cone function and guidance. Here we provide an overview of the developmental genetics of the Caenorhabditis elegans pharynx, with an emphasis on its nervous system.
Collapse
Affiliation(s)
- Marc Pilon
- Lundberg Laboratory, Chalmers University, Göteborg S-405 30, Sweden.
| | | |
Collapse
|
34
|
Mörck C, Rauthan M, Wågberg F, Pilon M. pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Dev Biol 2004; 272:403-18. [PMID: 15282157 DOI: 10.1016/j.ydbio.2004.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 05/12/2004] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
The pha-2 mutant was isolated in 1993 by Leon Avery in a screen for worms with visible defects in pharyngeal feeding behavior. In pha-2 mutant worms, the pharyngeal isthmus is abnormally thick and short and, in contrast to wild-type worms, harbors several cell nuclei. We show here that pha-2 encodes a homeodomain protein and is homologous to the vertebrate homeobox gene, Hex (also known as Prh). Consistent with a function in pharyngeal development, the pha-2 gene is expressed in the pharyngeal primordium of Caenorhabditis elegans embryos, particularly in pm5 cells that form the bulk of the isthmus. We show that in the pha-2 mutant there is a failure of the pm5 cells to elongate anteriorly while keeping their nuclei within the nascent posterior bulb to form the isthmus during the 3-fold embryonic stage. We also present evidence that pha-2 regulates itself positively in pm5 cells, that it is a downstream target of the forkhead gene pha-4, and that it may also act in the isthmus as an inhibitor of the ceh-22 gene, an Nkx2.5 homolog. Finally, we have begun characterizing the regulation of the pha-2 gene and find that intronic sequences are essential for the complete pha-2 expression profile. The present report is the first to examine the expression and function of an invertebrate Hex homolog, that is, the C. elegans pha-2 gene.
Collapse
Affiliation(s)
- Catarina Mörck
- Lundberg Laboratory, Chalmers University, Göteborg S-405 30, Sweden
| | | | | | | |
Collapse
|
35
|
Vilimas T, Abraham A, Okkema PG. An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. Dev Biol 2004; 266:388-98. [PMID: 14738885 DOI: 10.1016/j.ydbio.2003.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caenorhabditis elegans pharyngeal muscle development involves ceh-22, an NK-2 family homeobox gene related to genes controlling heart development in other species. ceh-22 is the earliest known gene expressed in the pharyngeal muscles and is likely regulated directly by factors specifying pharyngeal muscle fate. We have previously implicated the ceh-22 distal enhancer in initiating ceh-22 expression. Here we analyze the distal enhancer using functional and comparative assays. The distal enhancer contains three subelements contributing additively to its activity, and functionally important regulatory sequences are highly conserved in Caenorhabditis briggsae. One subelement, termed DE3, is strongly active in the pharyngeal muscles, and we identified two short oligonucleotides (de199 and de209) contributing to DE3 activity. Multimerized de209 enhances transcription similarly to DE3 specifically in the pharyngeal muscles, suggesting it may be an essential site regulating ceh-22. de209 binds the pan-pharyngeal Forkhead factor PHA-4 in vitro and responds to ectopic pha-4 expression in vivo, suggesting that PHA-4 directly initiates ceh-22 expression through de209. Because de209 enhancer activity is primarily limited to the pharyngeal muscles, we hypothesize that de209 also binds factors functioning with PHA-4 to specifically activate ceh-22 expression in pharyngeal muscle.
Collapse
Affiliation(s)
- Tomas Vilimas
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
36
|
Good K, Ciosk R, Nance J, Neves A, Hill RJ, Priess JR. The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in C. elegans embryos. Development 2004; 131:1967-78. [PMID: 15056620 DOI: 10.1242/dev.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The four-cell C. elegans embryo contains two sister cells called ABa and ABp that initially have equivalent abilities to produce ectodermal cell types. Multiple Notch-mediated interactions occur during the early cell divisions that diversify the ABa and ABp descendants. The first interaction determines the pattern of ectodermal cell types produced by ABp. The second interaction induces two ABa granddaughters to become mesodermal precursors. We show that T-box transcription factors called TBX-37 and TBX-38 are essential for mesodermal induction, and that these factors are expressed in ABa, but not ABp, descendants. We provide evidence that the first Notch interaction functions largely, if not entirely, to prevent TBX-37, TBX-38 expression in ABp descendants. Neither the second Notch interaction nor TBX-37, TBX-38 alone are sufficient for mesodermal induction, indicating that both must function together. We conclude that TBX-37, TBX-38 play a key role in distinguishing the outcomes of two sequential Notch-mediated interactions.
Collapse
Affiliation(s)
- Kathryn Good
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
37
|
Cai CL, Liang X, Shi Y, Chu PH, Pfaff SL, Chen J, Evans S. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell 2004; 5:877-89. [PMID: 14667410 PMCID: PMC5578462 DOI: 10.1016/s1534-5807(03)00363-0] [Citation(s) in RCA: 1185] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hearts of mice lacking Isl1, a LIM homeodomain transcription factor, are completely missing the outflow tract, right ventricle, and much of the atria. isl1 expression and lineage tracing of isl1-expressing progenitors demonstrate that Isl1 is a marker for a distinct population of undifferentiated cardiac progenitors that give rise to the cardiac segments missing in isl1 mutants. Isl1 function is required for these progenitors to contribute to the heart. In isl1 mutants, isl1-expressing progenitors are progressively reduced in number, and FGF and BMP growth factors are downregulated. Our studies define two sets of cardiogenic precursors, one of which expresses and requires Isl1 and the other of which does not. Our results have implications for the development of specific cardiac lineages, left-right asymmetry, cardiac evolution, and isolation of cardiac progenitor cells.
Collapse
Affiliation(s)
- Chen-Leng Cai
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
| | - Xingqun Liang
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
| | - Yunqing Shi
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
| | - Po-Hsien Chu
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
| | - Samuel L. Pfaff
- Gene Expression Laboratory The Salk Institute La Jolla, California 92037
| | - Ju Chen
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
| | - Sylvia Evans
- Institute of Molecular Medicine Department of Medicine University of California, San Diego La Jolla, California 92093
- Correspondence:
| |
Collapse
|
38
|
Ruvinsky I, Ruvkun G. Functional tests of enhancer conservation between distantly related species. Development 2003; 130:5133-42. [PMID: 12944426 DOI: 10.1242/dev.00711] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression patterns of orthologous genes are often conserved, even between distantly related organisms, suggesting that once established, developmental programs can be stably maintained over long periods of evolutionary time. Because many orthologous transcription factors are also functionally conserved, one possible model to account for homologous gene expression patterns, is conservation of specific binding sites within cis-regulatory elements of orthologous genes. If this model is correct, a cis-regulatory element from one organism would be expected to function in a distantly related organism. To test this hypothesis, we fused the green fluorescent protein gene to neuronal and muscular enhancer elements from a variety of Drosophila melanogaster genes, and tested whether these would activate expression in the homologous cell types in Caenorhabditis elegans. Regulatory elements from several genes directed appropriate expression in homologous tissue types, suggesting conservation of regulatory sites. However, enhancers of most Drosophila genes tested were not properly recognized in C. elegans, implying that over this evolutionary distance enough changes occurred in cis-regulatory sequences and/or transcription factors to prevent proper recognition of heterospecific enhancers. Comparisons of enhancer elements of orthologous genes between C. elegans and C. briggsae revealed extensive conservation, as well as specific instances of functional divergence. Our results indicate that functional changes in cis-regulatory sequences accumulate on timescales much shorter than the divergence of arthropods and nematodes, and that mechanisms other than conservation of individual binding sites within enhancer elements are responsible for the conservation of expression patterns of homologous genes between distantly related species.
Collapse
Affiliation(s)
- Ilya Ruvinsky
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Wellman 8, Boston, MA 02114, USA
| | | |
Collapse
|
39
|
Marcellini S, Technau U, Smith JC, Lemaire P. Evolution of Brachyury proteins: identification of a novel regulatory domain conserved within Bilateria. Dev Biol 2003; 260:352-61. [PMID: 12921737 DOI: 10.1016/s0012-1606(03)00244-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Orthologues of Brachyury, a subfamily of T-box transcription factors, specify distinct cell types in different metazoan phyla, suggesting that the function of these genes has changed through the course of evolution. To investigate this evolutionary process, we have compared the activities of Brachyury orthologues from all major phyla in a single cellular context, the pluripotent Xenopus laevis animal cap. In this assay, an ancestral function is revealed: most orthologues, including the Hydra protein, mimic the action of endogenous Xenopus Brachyury, in that they induce mesoderm but not endoderm. Orthologues from Drosophila and ascidians, however, display an additional derived property, represented in our assay by the induction of endoderm. Misexpression of chimeric versions of Brachyury reveals that the C-terminal half of the protein is important for the strength of the induced response but not for its specificity. In contrast, amino acids located within the T-domain and in a short N-terminal peptide are involved in restricting the activity of Brachyury proteins to induction of mesoderm and not endoderm. Possession of this N-terminal motif is correlated with early circumblastoporal expression of Brachyury orthologues. We propose that restriction of Brachyury activity by this motif plays a conserved role in the control of Bilaterian gastrulation.
Collapse
Affiliation(s)
- Sylvain Marcellini
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS/INSERM/Universite de la Méditerranée/AP de Marseille, Parc Scientifique de Luminy, Case 907, F-13288, Marseille Cedex 9, France
| | | | | | | |
Collapse
|
40
|
An JH, Blackwell TK. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes Dev 2003; 17:1882-93. [PMID: 12869585 PMCID: PMC196237 DOI: 10.1101/gad.1107803] [Citation(s) in RCA: 585] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During the earliest stages of Caenorhabditis elegans embryogenesis, the transcription factor SKN-1 initiates development of the digestive system and other mesendodermal tissues. Postembryonic SKN-1 functions have not been elucidated. SKN-1 binds to DNA through a unique mechanism, but is distantly related to basic leucine-zipper proteins that orchestrate the major oxidative stress response in vertebrates and yeast. Here we show that despite its distinct mode of target gene recognition, SKN-1 functions similarly to resist oxidative stress in C. elegans. During postembryonic stages, SKN-1 regulates a key Phase II detoxification gene through constitutive and stress-inducible mechanisms in the ASI chemosensory neurons and intestine, respectively. SKN-1 is present in ASI nuclei under normal conditions, and accumulates in intestinal nuclei in response to oxidative stress. skn-1 mutants are sensitive to oxidative stress and have shortened lifespans. SKN-1 represents a connection between developmental specification of the digestive system and one of its most basic functions, resistance to oxidative and xenobiotic stress. This oxidative stress response thus appears to be both widely conserved and ancient, suggesting that the mesendodermal specification role of SKN-1 was predated by its function in these detoxification mechanisms.
Collapse
Affiliation(s)
- Jae Hyung An
- Center for Blood Research and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
41
|
Aspöck G, Ruvkun G, Bürglin TR. The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function. Development 2003; 130:3369-78. [PMID: 12810585 DOI: 10.1242/dev.00551] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several homeobox genes, for example those of the ems class, play important roles in animal head development. We report on the expression pattern and function of ceh-2, the Caenorhabditis elegans ems/Emx ortholog. CEH-2 protein is restricted to the nuclei of one type of small muscle cell, one type of epithelial cell, and three types of neurons in the anterior pharynx in the head. We have generated a deletion allele of ceh-2 that removes the homeobox. Animals homozygous for this deletion are viable and fertile, but grow slightly slower and lay fewer eggs than wild type. We assayed the function of two types of pharynx neurons that express ceh-2, the pairs M3 and NSM. M3 activity is substantially reduced in electropharyngeograms of ceh-2 deletion mutants; this defect can account for the observed retardation in larval development, as M3 activity is known to be necessary for effective feeding. NSM function and metabolism are normal based on the assays used. All cells that express ceh-2 in wild type are present in the ceh-2 mutant and have normal morphologies. Therefore, unlike other ems/Emx genes, ceh-2 seems to be important for a late differentiation step and not for neuron specification or regional patterning. Because the CEH-2 homeodomain is well conserved, we tested whether ceh-2 can rescue ems(-) brain defects in Drosophila, despite the apparent differences in biological roles. We found that the C. elegans ems ortholog is able to substitute for fly ems in brain development, indicating that sequence conservation rather than conservation of biological function is important.
Collapse
Affiliation(s)
- Gudrun Aspöck
- Division of Cell Biology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
42
|
Li S, Dent JA, Roy R. Regulation of intermuscular electrical coupling by the Caenorhabditis elegans innexin inx-6. Mol Biol Cell 2003; 14:2630-44. [PMID: 12857852 PMCID: PMC165664 DOI: 10.1091/mbc.e02-11-0716] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The innexins represent a highly conserved protein family, the members of which make up the structural components of gap junctions in invertebrates. We have isolated and characterized a Caenorhabditis elegans gene inx-6 that encodes a new member of the innexin family required for the electrical coupling of pharyngeal muscles. inx-6(rr5) mutants complete embryogenesis without detectable abnormalities at restrictive temperature but fail to initiate postembryonic development after hatching. inx-6 is expressed in the pharynx at all larval stages, and an INX-6::GFP fusion protein showed a punctate expression pattern characteristic of gap junction proteins localized to plasma membrane plaques. Video recording and electropharyngeograms revealed that in inx-6(rr5) mutants the anterior pharyngeal (procorpus) muscles were electrically coupled to a lesser degree than the posterior metacorpus muscles, which caused a premature relaxation in the anterior pharynx and interfered with feeding. Dye-coupling experiments indicate that the gap junctions that link the procorpus to the metacorpus are functionally compromised in inx-6(rr5) mutants. We also show that another C. elegans innexin, EAT-5, can partially substitute for INX-6 function in vivo, underscoring their likely analogous function.
Collapse
Affiliation(s)
- Shaolin Li
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | | |
Collapse
|
43
|
Strange K. From genes to integrative physiology: ion channel and transporter biology in Caenorhabditis elegans. Physiol Rev 2003; 83:377-415. [PMID: 12663863 DOI: 10.1152/physrev.00025.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The stunning progress in molecular biology that has occurred over the last 50 years drove a powerful reductionist approach to the study of physiology. That same progress now forms the foundation for the next revolution in physiological research. This revolution will be focused on integrative physiology, which seeks to understand multicomponent processes and the underlying pathways of information flow from an organism's "parts" to increasingly complex levels of organization. Genetically tractable and genomically defined nonmammalian model organisms such as the nematode Caenorhabditis elegans provide powerful experimental advantages for elucidating gene function and the molecular workings of complex systems. This review has two main goals. The first goal is to describe the experimental utility of C. elegans for investigating basic physiological problems. A detailed overview of C. elegans biology and the experimental tools, resources, and strategies available for its study is provided. The second goal of this review is to describe how forward and reverse genetic approaches and direct behavioral and physiological measurements in C. elegans have generated novel insights into the integrative physiology of ion channels and transporters. Where appropriate, I describe how insights from C. elegans have provided new understanding of the physiology of membrane transport processes in mammals.
Collapse
Affiliation(s)
- Kevin Strange
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| |
Collapse
|
44
|
Nielsen C, Martinez P. Patterns of gene expression: homology or homocracy? Dev Genes Evol 2003; 213:149-54. [PMID: 12690454 DOI: 10.1007/s00427-003-0301-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 01/05/2003] [Indexed: 02/03/2023]
Abstract
Numerous papers over the years have stated that the original meaning of the term homology is historical and morphological and denotes organs/structures in two or more species derived from the same structure in their latest common ancestor. However, several more recent papers have extended the use of the term to cover organs/structures which are organised through the expression of homologous genes. This usage has created an ambiguity about the meaning of the term, and we propose to remove this by proposing a new term, homocracy, for organs/structures which are organised through the expression of identical patterning genes. We want to emphasise that the terms homologous and homocratic are not mutually exclusive. Many homologous structures are in all probability homocratic, whereas only a small number of homocratic structures are homologous.
Collapse
Affiliation(s)
- Claus Nielsen
- Zoological Museum, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | | |
Collapse
|
45
|
Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R. AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev Biol 2003; 255:128-37. [PMID: 12618138 DOI: 10.1016/s0012-1606(02)00050-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We isolated a full-length cDNA clone of amphioxus AmphiNk2-tin, an NK2 gene similar in sequence to vertebrate NK2 cardiac genes, suggesting a potentially similar function to Drosophila tinman and to vertebrate NK2 cardiac genes during heart development. During the neurula stage of amphioxus, AmphiNk2-tin is expressed first within the foregut endoderm, then transiently in muscle precursor cells in the somites, and finally in some mesoderm cells of the visceral peritoneum arranged in an approximately midventral row running beneath the midgut and hindgut. The peritoneal cells that express AmphiNk2-tin are evidently precursors of the myocardium of the heart, which subsequently becomes morphologically detectable ventral to the gut. The amphioxus heart is a rostrocaudally extended tube consisting entirely of myocardial cells (at both the larval and adult stages); there are no chambers, valves, endocardium, epicardium, or other differentiated features of vertebrate hearts. Phylogenetic analysis of the AmphiNk2-tin sequence documents its close relationship to vertebrate NK2 class cardiac genes, and ancillary evidence suggests a relationship with the Drosophila NK2 gene tinman. Apparently, an amphioxus-like heart, and the developmental program directing its development, was the foundation upon which the vertebrate heart evolved by progressive modular innovations at the genetic and morphological levels of organization.
Collapse
Affiliation(s)
- Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0202, USA
| | | | | | | | | |
Collapse
|
46
|
Kuchenthal CA, Chen W, Okkema PG. Multiple enhancers contribute to expression of the NK-2 homeobox gene ceh-22 in C. elegans pharyngeal muscle. Genesis 2001; 31:156-66. [PMID: 11783006 DOI: 10.1002/gene.10018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene expression in the pharyngeal muscles of C. elegans is regulated in part by the NK-2 family homeodomain factor CEH-22, which is structurally and functionally related to Drosophila Tinman and the vertebrate Nkx2-5 factors. ceh-22 is expressed exclusively in the pharyngeal muscles and is the earliest gene known to be expressed in this tissue. Here we characterize the ceh-22 promoter region in transgenic C. elegans. A 1.9-kb fragment upstream of ceh-22 is sufficient to regulate reporter gene expression in a pattern identical to the endogenous gene. Within this promoter we identified two transcriptional enhancers and characterized their cell type and temporal specificity. The distal enhancer becomes active in the pharynx near the time that ceh-22 expression initiates; however, it becomes active more broadly later in development. The proximal enhancer becomes active after the onset of ceh-22 expression, but it is active specifically in the ceh-22-expressing pharyngeal muscles. We suggest these enhancers respond to distinct signals that initiate and maintain ceh-22 gene expression. Proximal enhancer activity requires a short segment containing a CEH-22 responsive element, suggesting that CEH-22 autoregulates its own expression.
Collapse
Affiliation(s)
- C A Kuchenthal
- Department of Biological Sciences and the Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
47
|
Maduro MF, Meneghini MD, Bowerman B, Broitman-Maduro G, Rothman JH. Restriction of mesendoderm to a single blastomere by the combined action of SKN-1 and a GSK-3beta homolog is mediated by MED-1 and -2 in C. elegans. Mol Cell 2001; 7:475-85. [PMID: 11463373 DOI: 10.1016/s1097-2765(01)00195-2] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The endoderm and much of the mesoderm arise from the EMS cell in the four-cell C. elegans embryo. We report that the MED-1 and -2 GATA factors specify the entire fate of EMS, which otherwise produces two C-like mesectodermal progenitors. The meds are direct targets of the maternal SKN-1 transcription factor; however, their forced expression can direct SKN-1-independent reprogramming of non-EMS cells into mesendodermal progenitors. We find that SGG-1/GSK-3beta kinase acts both as a Wnt-dependent activator of endoderm in EMS and an apparently Wnt-independent repressor of the meds in the C lineage, indicating a dual role for this kinase in mesendoderm development. Our results suggest that a broad tissue territory, mesendoderm, in vertebrates has been confined to a single cell in nematodes through a common gene regulatory network.
Collapse
Affiliation(s)
- M F Maduro
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California, Santa Barbara 93106, USA
| | | | | | | | | |
Collapse
|
48
|
Sparrow DB, Cai C, Kotecha S, Latinkic B, Cooper B, Towers N, Evans SM, Mohun TJ. Regulation of the tinman homologues in Xenopus embryos. Dev Biol 2000; 227:65-79. [PMID: 11076677 DOI: 10.1006/dbio.2000.9891] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vertebrate homologues of the Drosophila tinman transcription factor have been implicated in the processes of specification and differentiation of cardiac mesoderm. In Xenopus three members of this family have been isolated to date. Here we show that the XNkx2-3, Xnkx2-5, and XNkx2-10 genes are expressed in increasingly distinctive patterns in endodermal and mesodermal germ layers through early development, suggesting that their protein products (either individually or in different combinations) perform distinct functions. Using amphibian transgenesis, we find that the expression pattern of one of these genes, XNkx2-5, can be reproduced using transgenes containing only 4.3 kb of promoter sequence. Sequence analysis reveals remarkable conservation between the distalmost 300 bp of the Xenopus promoter and a portion of the AR2 element upstream of the mouse and human Nkx2-5 genes. Interestingly, only the 3' half of this evolutionarily conserved sequence element is required for correct transgene expression in frog embryos. Mutation of conserved GATA sites or a motif resembling the dpp-response element in the Drosophila tinman tinD enhancer dramatically reduces the levels of transgene expression. Finally we show that, despite its activity in Xenopus embryos, in transgenic mice the Xenopus Nkx2-5 promoter is able to drive reporter gene expression only in a limited subset of cells expressing the endogenous gene. This intriguing result suggests that despite evolutionary conservation of some cis-regulatory sequences, the regulatory controls on Nkx2-5 expression have diverged between mammals and amphibians.
Collapse
Affiliation(s)
- D B Sparrow
- Division of Developmental Biology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Manuel M, Le Parco Y. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. Mol Phylogenet Evol 2000; 17:97-107. [PMID: 11020308 DOI: 10.1006/mpev.2000.0822] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Knowledge of the developmental mechanisms in living basal metazoan phyla is crucial for understanding the genetic bases of morphological evolution in early animal history. We looked for homeobox genes in the calcareous sponge, Sycon raphanus, using the polymerase chain reaction. Partial sequences of eight homeoboxes were recovered, five of which are assignable to the NK-2 class of homeoboxes. The three remaining sequences are related members of a new class of homeoboxes, the Sycox class, showing limited similarity to bilaterian Lbx, Hlx, HEX, En, and Cad classes. Among the five NK-2 class homeoboxes are four closely related sequences occupying a divergent position within the class, the remaining one on the contrary showing high sequence similarity with members of the NK-2 family, a particular subgroup within the NK-2 class, previously known only from the Bilateria. This suggests that diversification of the NK-2 class occurred early in metazoan history. Altogether, the results reveal an unexpected diversification of homeobox genes in S. raphanus.
Collapse
Affiliation(s)
- M Manuel
- Laboratoire Diversité et Fonctionnement des Ecosystèmes Marins Côtiers (DIMAR CNRS UMR-6540), Centre d'Océanologie de Marseille, Université de la Méditerranée, Station Marine d'Endoume, Marseille, 13007, France.
| | | |
Collapse
|
50
|
Abstract
Although often viewed as a simple pulsating tube, the Drosophila dorsal vessel is intricate in terms of its structure, cell types, and patterns of gene expression. Two nonidentical groups of cardial cells are observed in segments of the heart based on the differential expression of transcriptional regulators. These include sets of four cell pairs that express the homeodomain protein Tinman (Tin), alternating with groups of two cell pairs that express the orphan steroid hormone receptor Seven Up (Svp). Here we show that these myocardial cell populations are distinct in terms of their formation and gene expression profiles. The Svp-expressing cells are generated by asymmetric cell divisions of precursor cells based on decreases or increases in their numbers in numb or sanpodo mutant embryos. In contrast, the numbers of Tin-expressing cardial cells are unchanged in these genetic backgrounds, suggesting they arise from symmetric cell divisions. One function for Svp in the two pairs of cardial cells is to repress the expression of the tin gene and at least one of its targets, the beta3 tubulin gene. Further differences in the cells are substantiated by the identification of separable enhancers for D-mef2 gene transcription in the distinct cardioblast sets. Taken together, these results demonstrate a greater cellular and genetic complexity of the Drosophila heart than previously appreciated.
Collapse
Affiliation(s)
- K Gajewski
- Department of Biochemistry and Molecular Biology, Graduate Program in Genes & Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|