1
|
Wang Q, Huang T, Zheng Z, Su Y, Wu Z, Zeng C, Yu G, Liu Y, Wang X, Li H, Chen X, Jiang Z, Zhang J, Zhuang Y, Tian Y, Yang Q, Verkhratsky A, Wan Y, Yi C, Niu J. Oligodendroglial precursor cells modulate immune response and early demyelination in a murine model of multiple sclerosis. Sci Transl Med 2025; 17:eadn9980. [PMID: 40173259 DOI: 10.1126/scitranslmed.adn9980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/23/2024] [Accepted: 03/12/2025] [Indexed: 04/04/2025]
Abstract
Reproducing the pathophysiology of human multiple sclerosis (MS) in animal models is critical to identifying mechanisms triggering demyelination and to developing early intervention strategies. Here, we aimed to model overactivated Wnt (wingless-related integration site) signaling previously shown in postmortem brain tissues of patients with MS by inducing experimental autoimmune encephalomyelitis (EAE) in PdgfraCreER;Apcfl/fl and Olig2Cre;Apcfl/fl mice. These mice have overactivated Wnt signaling in oligodendrocyte precursor cells (OPCs) because of a conditional knockout of the pathway repressor adenomatous polyposis coli (APC). PdgfraCreER;Apcfl/fl EAE mice exhibited increased expression of markers for Wnt activation such as Axis inhibition protein 2 (AXIN2) and Wnt inhibitory factor 1 (WIF1) in OPCs and showed exacerbated EAE progression in both the spinal cord and the brain. Genetic or antibody-mediated ablation of CC-chemokine ligand 4 (CCL4) prevented infiltration of CD4+ T cells and arrested disease progression in these mice. A characterization of CNS (central nervous system) immune cell clusters identified an augmented subpopulation of NK1.1+CD11b+Gr-1+ cytotoxic macrophages in PdgfraCreER;Apcfl/fl EAE mice. Microinjection of this subpopulation of macrophages into the brains of wild-type C57/B6J mice was sufficient to induce demyelination. Ablation of CD4+ T cells prevented the effects of Wnt overactivation on demyelination and immune cell infiltration. Antagonizing chemokine receptor 5 (CCR5) using a European Medicines Agency-approved drug, maraviroc, reduced immune cell infiltration, alleviated demyelination, and attenuated EAE progression. We found an OPC-orchestrated immune cellular network that instigates early demyelination, provides insight into MS pathophysiology, and suggests avenues for early interventions.
Collapse
Affiliation(s)
- Qi Wang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Taida Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Zihan Zheng
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Yixun Su
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhonghao Wu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Cong Zeng
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Guangdan Yu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yang Liu
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
| | - Xiaorui Wang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Hui Li
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Xiaoying Chen
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Zhuoxu Jiang
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
| | - Jinyu Zhang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing 400038, China
| | - Yi Tian
- Institute of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Qingwu Yang
- Department of Neurology, Second Affiliated Hospital, Third Military Medical University, Chongqing 400038, China
- Chongqing Institute for Brain and Intelligence, Chongqing 400037, China
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M139PL, UK
- Department of Neurosciences, University of the Basque Country, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- International Joint Research Centre on Purinergic Signalling of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang 110122, China
- Celica Biomedical, Technology Park 24, 1000 Ljubljana, Slovenia
| | - Ying Wan
- Biomedical Analysis Center, Third Military Medical University, Chongqing 400038, China
- Institute for Translational Immunology, Chongqing 400038, China
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou 510080, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen 518107, China
| | - Jianqin Niu
- Department of Histology and Embryology, Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory of Neurobiology, Chongqing 400038, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing 400042, China
| |
Collapse
|
2
|
Molitor TP, Hayashi G, Lin MY, Dunn CJ, Peterson NG, Poston RG, Kurnellas MP, Traver DA, Patel S, Akgungor Z, Leonardi V, Lewis C, Segales JS, Bennett DS, Truong AP, Dani M, Naphade S, Wong JK, McDermott AE, Kovalev SM, Ciaccio GL, Sadiq SA, Pei Z, Wood S, Rassoulpour A. Central TYK2 inhibition identifies TYK2 as a key neuroimmune modulator. Proc Natl Acad Sci U S A 2025; 122:e2422172122. [PMID: 40127268 PMCID: PMC12002270 DOI: 10.1073/pnas.2422172122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/03/2025] [Indexed: 03/26/2025] Open
Abstract
GWAS have identified tyrosine kinase 2 (TYK2) variants in multiple inflammatory disorders, specifically a protective hypomorphic TYK2 allele (P1104A) in multiple sclerosis (MS). Impaired TYK2 signaling within the central nervous system (CNS) may impart the protective effects of TYK2 P1104A allele in MS. We deployed brain-penetrant TYK2 inhibitors (cTYK2i) alongside the peripherally restricted TYK2 inhibitor (pTYK2i; BMS-986165) to untangle the contributions of central TYK2 inhibition in diverse models of neuroinflammation. While pTYK2i had little impact, cTYK2i reduced clinical score, lymphoid cell infiltration, and cytokines/chemokines in experimental autoimmune encephalomyelitis (EAE). Microglial activation was attenuated in cTYK2i-treated EAE spinal cords and circulating neurofilament light (NfL) was reduced in plasma and cerebral spinal fluid (CSF). Additionally, cTYK2i was protective in an antibody-mediated mouse model of primary progressive MS (PPMS). Finally, we demonstrate TYK2 inhibition has a robust impact on a unique subset of activated astrocytes termed Interferon-Responsive-Reactive-Astrocytes (IRRA). The data presented herein identify a key role for CNS TYK2 signaling in regulating neuroinflammation and solidify TYK2 as a potential therapeutic target for MS.
Collapse
Affiliation(s)
- Tyler P. Molitor
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Genki Hayashi
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Mei-Yao Lin
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Carissa J. Dunn
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | | | - Robert G. Poston
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | | | - David A. Traver
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Seona Patel
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Zeynep Akgungor
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | | | - Colizel Lewis
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | | | - Dylan S. Bennett
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Anh P. Truong
- Department of Chemistry, Neuron23, Inc., South San Francisco, CA94080
| | - Manjari Dani
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Swati Naphade
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | - Jamie K. Wong
- Tisch MS Research Center of New York, New York, NY10019
| | | | | | | | - Saud A. Sadiq
- Tisch MS Research Center of New York, New York, NY10019
| | - Zhonghua Pei
- Department of Chemistry, Neuron23, Inc., South San Francisco, CA94080
| | - Stephen Wood
- Department of Biology, Neuron23, Inc., South San Francisco, CA94080
| | | |
Collapse
|
3
|
Arimitsu NN, Witkowska A, Ohashi A, Miyabe C, Miyabe Y. Chemokines as therapeutic targets for multiple sclerosis: a spatial and chronological perspective. Front Immunol 2025; 16:1547256. [PMID: 40191184 PMCID: PMC11968728 DOI: 10.3389/fimmu.2025.1547256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/04/2025] [Indexed: 04/09/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic autoinflammatory disease of unknown origin, involving characterized by immune cell infiltration into the target tissue, central nervous system (CNS), resulting in local and/or systemic inflammation. The symptoms vary from gait disturbance, visual impairment and learning and memory impairment and are being managed with corticosteroid and/or immunosuppressive agents. However, several patients do not respond to these treatments, which can also elevate the risk of severe infections. Therefore, there remains an ongoing need to identify new therapeutic targets. MS exhibits distinctive pathology, clinical course, and treatment responses, suggesting the importance of targeting disease site-specific immune cells to mitigate immune system-induced inflammation, rather than employing broad immunosuppression. Chemokines and chemokine receptors play a crucial role in the pathogenesis of MS by recruiting immune cells to the CNS, leading to inflammation and demyelination. Therapies targeting chemokines have shown promising results in preclinical studies and clinical trials, but more research is needed to fully understand their mechanisms and optimize their efficacy.
Collapse
Affiliation(s)
- Nagisa Nakata Arimitsu
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Alicja Witkowska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, Poland
| | - Ayaka Ohashi
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Chie Miyabe
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University of School of Medicine, Kawasaki, Japan
| | - Yoshishige Miyabe
- Department of Immunology and Parasitology, St. Marianna University of School of Medicine, Kawasaki, Japan
| |
Collapse
|
4
|
Trevino TN, Almousawi AA, Martins-Goncalves R, Ochoa-Raya A, Robinson KF, Abad GL, Tai LM, Oliveira SD, Minshall RD, Lutz SE. A Brain Endothelial Cell Caveolin-1/CXCL10 Axis Promotes T Cell Transcellular Migration Across the Blood-Brain Barrier. ASN Neuro 2025; 17:2472070. [PMID: 40063988 PMCID: PMC12047051 DOI: 10.1080/17590914.2025.2472070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 05/04/2025] Open
Abstract
The mechanisms that govern whether T cells cross blood-brain barrier (BBB) endothelium by transcellular versus paracellular routes are unclear. Caveolin-1 is a membrane scaffolding and signaling protein associated with transcellular transmigration through the endothelial cytoplasm. Here, we report that the neuroinflammatory chemokine CXCL10 induced transcellular, caveolar transmigration of CXCR3+ CD4+ T cells. Specifically, data revealed that CXCL10-induced transcellular transmigration requires expression of Caveolin-1 and ICAM-1 in brain endothelial cells and of the CXCL10 receptor, CXCR3, and LFA-1 in T cells. Moreover, Caveolin-1 promoted CXCL10 aggregation into brain endothelial cytoplasmic stores, providing a mechanism for activation and recruitment of CXCR3+ T cells to migrate at cytoplasmic locations, distal to cell-cell junctions. Consistent with our in vitro data, genetic ablation of Caveolin-1 reduces infiltration of CXCR3+ CD4+ T cells into the CNS in experimental autoimmune encephalomyelitis. Our findings establish a novel mechanism by which brain endothelial cells utilize Caveolin-1 dependent CXCL10 intracellular stores to license T cells for transcellular migration across the blood-brain barrier.
Collapse
Affiliation(s)
- Troy N. Trevino
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Ali A. Almousawi
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Remy Martins-Goncalves
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Andrea Ochoa-Raya
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - KaReisha F. Robinson
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Genesis L. Abad
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Leon M. Tai
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Suellen D. Oliveira
- Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
- Physiology and Biophysics, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Richard D. Minshall
- Anesthesiology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
- Pharmacology and Regenerative Medicine, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | - Sarah E. Lutz
- Departments of Anatomy and Cell Biology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
5
|
Rad LM, Hughes KR, Wheeler SN, Decker JT, Orbach SM, Galvan A, Thornhill J, Griffin KV, Turkistani H, Urie RR, Irani DN, Shea LD, Morris AH. Engineered immunological niche directs therapeutic development in models of progressive multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2409852122. [PMID: 39937858 PMCID: PMC11848328 DOI: 10.1073/pnas.2409852122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/24/2024] [Indexed: 02/14/2025] Open
Abstract
Primary progressive multiple sclerosis (MS) is a demyelinating autoimmune disease with only a single class of FDA-approved treatment, B cell depletion. Novel treatments could emerge from a deeper understanding of the interplay between multiple cell types within diseased tissue throughout progression. We initially describe an engineered biomaterial-based immunological niche (IN) as a surrogate for diseased tissue to investigate immune cell function and phenotype dynamics throughout a chronic progressive mouse model of MS. Using these niches, we identify an array of dysregulated CC chemokine signaling as potential targets. We then develop antigen-loaded nanoparticles that reduce CC chemokine signaling, while delivering antigen. These nanoparticles serve as an antigen-specific treatment, and a single injection reduces disease burden, even if administered after symptomatic disease onset. This report demonstrates proof of principle of a biomaterial scaffold as a diseased tissue surrogate that can monitor immune function, identify potential drug targets, and guide the development of a therapeutic.
Collapse
Affiliation(s)
- Laila M. Rad
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kevin R. Hughes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sydney N. Wheeler
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Joseph T. Decker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Sophia M. Orbach
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Angelica Galvan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Jasmine Thornhill
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Kate V. Griffin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Hamza Turkistani
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Russell R. Urie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
| | - David N. Irani
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Lonnie D. Shea
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI48109
| | - Aaron H. Morris
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
6
|
Kaur N, Singh J. Generation and Characterization of Human iPSC-Derived Astrocytes with Potential for Modeling X-Linked Adrenoleukodystrophy Phenotypes. Int J Mol Sci 2025; 26:1576. [PMID: 40004040 PMCID: PMC11855073 DOI: 10.3390/ijms26041576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
X-adrenoleukodystrophy (X-ALD) is a peroxisomal metabolic disorder caused by mutations in the ABCD1 gene encoding the peroxisomal ABC transporter adrenoleukodystrophy protein (ALDP). Similar mutations in ABCD1 may result in a spectrum of phenotypes in males with slow progressing adrenomyeloneuropathy (AMN) and fatal cerebral adrenoleukodystrophy (cALD) dominating most cases. Mouse models of X-ALD do not capture the phenotype differences and an appropriate model to investigate the mechanism of disease onset and progress remains a critical need. Here, we generated induced pluripotent stem cell (iPSC) lines from skin fibroblasts of two each of apparently healthy control, AMN, and cALD patients with non-integrating mRNA-based reprogramming. iPSC lines expanded normally and expressed pluripotency markers Oct4, SOX2, NANOG, SSEA, and TRA-1-60. Expression of markers SOX17, Brachyury, Desmin, OXT2, and beta tubulin III demonstrated the ability of the iPSCs to differentiate into all three germ layers. iPSC-derived lines from CTL, AMN, and cALD male patients were differentiated into astrocytes. Differentiated AMN and cALD astrocytes lacked ABCD1 expression and accumulated saturated very long chain fatty acids (VLCFAs), a hallmark of X-ALD, and demonstrated differential mitochondrial bioenergetics, cytokine gene expression, and differences in STAT3 and AMPK signaling between AMN and cALD astrocytes. These patient astrocytes provide disease-relevant tools to investigate the mechanism of differential neuroinflammatory response in X-ALD and will be valuable cell models for testing new therapeutics.
Collapse
Affiliation(s)
- Navtej Kaur
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
| | - Jaspreet Singh
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA;
- Department of Physiology, Michigan State University, Lansing, MI 48824, USA
| |
Collapse
|
7
|
Desu HL, Thougaard E, Carney BN, Illiano P, Plastini MJ, Florimon Y, Mini A, Guastucci C, Kang B, Lee JK, Lambertsen KL, Brambilla R. TNFR2 signaling in oligodendrocyte precursor cells suppresses their immune-inflammatory function and detrimental microglia activation in CNS demyelinating disease. Brain Behav Immun 2025; 123:81-98. [PMID: 39243989 PMCID: PMC11624083 DOI: 10.1016/j.bbi.2024.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic degenerative disease of the central nervous system (CNS) characterized by inflammation, demyelination, and progressive neurodegeneration. These processes, combined with the failure of reparative remyelination initiated by oligodendrocyte precursor cells (OPCs), lead to irreversible neurological impairment. The cytokine tumor necrosis factor (TNF) has been implicated in CNS repair via activation of its cognate receptor TNFR2 in glia. Here, we demonstrate the important role of TNFR2 in regulating OPC function in vivo during demyelinating disease, and that TNFR2 expressed in OPCs modulates OPC-microglia interactions. In PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice with selective TNFR2 ablation in OPCs, we observed an earlier onset and disease peak in experimental autoimmune encephalomyelitis (EAE). This was associated with accelerated immune cell infiltration and increased microglia activation in the spinal cord. Similarly, PdgfrαCreERT:Tnfrsf1bfl/fl:Eyfp mice showed rapid and increased microglia reactivity compared to control mice in the corpus callosum after cuprizone-induced demyelination, followed by chronic reduction in the number of mature myelinating oligodendrocytes (OLs). With EAE and cuprizone models combined, we uncovered that TNFR2 does not have a cell autonomous role in OPC differentiation, but may be important for survival of newly formed mature OLs. Finally, using an in vitro approach, we demonstrated that factors released by Tnfrsf1b ablated OPCs drove microglia to develop an exacerbated "foamy" phenotype when incubated with myelin-rich spinal cord homogenate, aberrantly increasing lysosomal lipid accumulation. Together, our data indicate that TNFR2 signaling in OPCs is protective by dampening their immune-inflammatory activation and by suppressing neurotoxic microglia reactivity. This suggests that boosting TNFR2 activation or its downstream cascades could be an effective strategy to restore OPC reparative capacity in neuroimmune and demyelinating disease.
Collapse
MESH Headings
- Oligodendrocyte Precursor Cells/immunology
- Oligodendrocyte Precursor Cells/metabolism
- Animals
- Mice
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Mice, Transgenic
- Multiple Sclerosis/chemically induced
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/pathology
- Microglia/immunology
- Microglia/metabolism
- Microglia/pathology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Cell Survival/genetics
- Cell Survival/immunology
- Cuprizone/toxicity
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- Male
- Female
- Corpus Callosum/cytology
- Corpus Callosum/immunology
- Corpus Callosum/pathology
Collapse
Affiliation(s)
- Haritha L Desu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Estrid Thougaard
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Brianna N Carney
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Placido Illiano
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Melanie J Plastini
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yoleinny Florimon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Antonella Mini
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chelsea Guastucci
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brian Kang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jae K Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
8
|
Kim MW, Gao W, Lichti CF, Gu X, Dykstra T, Cao J, Smirnov I, Boskovic P, Kleverov D, Salvador AFM, Drieu A, Kim K, Blackburn S, Crewe C, Artyomov MN, Unanue ER, Kipnis J. Endogenous self-peptides guard immune privilege of the central nervous system. Nature 2025; 637:176-183. [PMID: 39476864 PMCID: PMC11666455 DOI: 10.1038/s41586-024-08279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/23/2024] [Indexed: 12/06/2024]
Abstract
Despite the presence of strategically positioned anatomical barriers designed to protect the central nervous system (CNS), it is not entirely isolated from the immune system1,2. In fact, it remains physically connected to, and can be influenced by, the peripheral immune system1. How the CNS retains such responsiveness while maintaining an immunologically unique status remains an outstanding question. Here, in searching for molecular cues that derive from the CNS and enable its direct communication with the immune system, we identified an endogenous repertoire of CNS-derived regulatory self-peptides presented on major histocompatibility complex class II (MHC-II) molecules in the CNS and at its borders. During homeostasis, these regulatory self-peptides were found to be bound to MHC-II molecules throughout the path of lymphatic drainage from the brain to its surrounding meninges and its draining cervical lymph nodes. However, in neuroinflammatory disease, the presentation of regulatory self-peptides diminished. After boosting the presentation of these regulatory self-peptides, a population of suppressor CD4+ T cells was expanded, controlling CNS autoimmunity in a CTLA-4- and TGFβ-dependent manner. CNS-derived regulatory self-peptides may be the molecular key to ensuring a continuous dialogue between the CNS and the immune system while balancing overt autoreactivity. This sheds light on how we conceptually think about and therapeutically target neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Min Woo Kim
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Immunology Graduate Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Medical Scientist Training Program, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Cheryl F Lichti
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Xingxing Gu
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jay Cao
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Pavle Boskovic
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Denis Kleverov
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Computer Technologies Laboratory, ITMO University, Saint Petersburg, Russia
| | - Andrea F M Salvador
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Antoine Drieu
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kyungdeok Kim
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Susan Blackburn
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Clair Crewe
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Maxim N Artyomov
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Emil R Unanue
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
- Bursky Center for Human Immunology and Immunotherapy Programs, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
9
|
Waede M, Voss LF, Kingo C, Moeller JB, Elkjaer ML, Illes Z. Longitudinal analysis of peripheral immune cells in patients with multiple sclerosis treated with anti-CD20 therapy. Ann Clin Transl Neurol 2024; 11:2657-2672. [PMID: 39279291 PMCID: PMC11514931 DOI: 10.1002/acn3.52182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Anti-CD20 therapy is a highly effective treatment for multiple sclerosis (MS). In this study, we investigated MS-related changes in peripheral blood mononuclear cell (PBMC) subsets compared to healthy controls and longitudinal changes related to the treatment. METHODS Multicolor spectral flow cytometry analysis was performed on 78 samples to characterize disease- and treatment-related PBMC clusters. Blood samples from MS patients were collected at baseline and up to 8 months post-treatment, with three collection points after treatment initiation. Unsupervised clustering tools and manual gating were applied to identify subclusters of interest and quantify changes. RESULTS B cells were depleted from the periphery after anti-CD20 treatment as expected, and we observed an isolated acute, transitory drop in the proportion of natural killer (NK) and NKT cells among the main populations of PBMC (P = 0.03, P = 0.004). Major affected PBMC subpopulations were cytotoxic immune cells (NK, NKT, and CD8+ T cells), and we observed a higher proportion of cytotoxic cells with reduced brain-homing ability and a higher regulatory function as a long-term anti-CD20-related effect. Additionally, anti-CD20 therapy altered distributions of memory CD8+ T cells and reduced exhaustion markers in both CD4+ and CD8+ T cells. INTERPRETATION The findings of this study elucidate phenotypic clusters of NK and CD8+ T cells, which have previously been underexplored in the context of anti-CD20 therapy. Phenotypic modifications towards a more regulatory and controlled phenotype suggest that these subpopulations may play a critical and previously unrecognized role in mediating the therapeutic efficacy of anti-CD20 treatments.
Collapse
Affiliation(s)
- Mie Waede
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Lasse F. Voss
- Section for Experimental and Translational Immunology, Department of Health TechnologyTechnical University of DenmarkKongens LyngbyDenmark
| | - Christina Kingo
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
| | - Jesper B. Moeller
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study, University of Southern DenmarkOdenseDenmark
| | - Maria L. Elkjaer
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- Institute for Computational Systems Biology, University of HamburgHamburgGermany
| | - Zsolt Illes
- Department of NeurologyOdense University HospitalOdenseDenmark
- Department of Clinical ResearchUniversity of Southern DenmarkOdenseDenmark
- Department of Molecular MedicineUniversity of Southern DenmarkOdenseDenmark
- BRIDGE – Brain Research Interdisciplinary Guided ExcellenceUniversity of Southern DenmarkOdenseDenmark
| |
Collapse
|
10
|
Li X, Ding Z, Qi S, Wang P, Wang J, Zhou J. Genetically Predicted Association of 91 Circulating Inflammatory Proteins with Multiple Sclerosis: A Mendelian Randomization Study. Brain Sci 2024; 14:833. [PMID: 39199524 PMCID: PMC11353031 DOI: 10.3390/brainsci14080833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
Previous studies have validated a close association between inflammatory factors and multiple sclerosis (MS), but their causal relationship is not fully profiled yet. This study used Mendelian randomization (MR) to investigate the causal effect of circulating inflammatory proteins on MS. Data from a large-scale genome-wide association study (GWAS) were analyzed using a two-sample MR method to explore the relationship between 91 circulating inflammatory proteins and MS. The inverse-variance-weighted (IVW) analysis was employed as the main method for evaluating exposures and outcomes. Furthermore, series of the methods of MR Egger, weighted median, simple mode, and weighted mode were used to fortify the final results. The results of the IVW method were corrected with Bonferroni (bon) and false discovery rate (fdr) for validating the robustness of results and ensuring the absence of heterogeneity and horizontal pleiotropy. The sensitivity analysis was also performed. The results of the forward MR analysis showed that higher levels of CCL25 were found to be associated with an increased risk of MS according to IVW results, OR: 1.085, 95% CI (1.011, 1.165), p = 2.42 × 10-2, adjusted p_adj_bon = 1, p_adj_fdr = 0.307. Similarly, higher levels of CXCL10 were found to be associated with an increased risk of MS, OR: 1.231, 95% CI (1.057, 1.433), p = 7.49 × 10-3, adjusted p_adj_bon = 0.682, p_adj_fdr = 0.227. In contrast, elevated levels of neurturin (NRTN) were associated with a decreased risk of MS, OR: 0.815, 95% CI (0.689, 0.964), p = 1.68 × 10-2, adjusted p_adj_bon = 1, p_adj_fdr = 0.307. Reverse MR analysis showed no causal relationship between MS and the identified circulating inflammatory cytokines. The effects of heterogeneity and level pleiotropy were further excluded by sensitivity analysis. This study provides new insights into the relationship between circulating inflammatory proteins and MS and brings up a new possibility of using these cytokines as potential biomarkers and therapeutic targets. The data in this study show that there are only weak associations between inflammatory molecules and MS risk, which did not survive bon and fdr correction, and the obtained p-values are quite low. Therefore, further studies on larger samples are needed.
Collapse
Affiliation(s)
- Xin’ai Li
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100013, China; (X.L.); (Z.D.); (S.Q.)
| | - Zhiguo Ding
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100013, China; (X.L.); (Z.D.); (S.Q.)
- Sun Simiao Institute, Beijing University of Chinese Medicine, Tongchuan 727000, China
- Thyropathy Hospital, Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727000, China
| | - Shuo Qi
- Department of Thyropathy, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100013, China; (X.L.); (Z.D.); (S.Q.)
- Sun Simiao Institute, Beijing University of Chinese Medicine, Tongchuan 727000, China
- Thyropathy Hospital, Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727000, China
| | - Peng Wang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China;
| | - Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jingwei Zhou
- The 1st Ward, Department of Nephrology and Endocrinology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100010, China
| |
Collapse
|
11
|
Calabrese M, Preziosa P, Scalfari A, Colato E, Marastoni D, Absinta M, Battaglini M, De Stefano N, Di Filippo M, Hametner S, Howell OW, Inglese M, Lassmann H, Martin R, Nicholas R, Reynolds R, Rocca MA, Tamanti A, Vercellino M, Villar LM, Filippi M, Magliozzi R. Determinants and Biomarkers of Progression Independent of Relapses in Multiple Sclerosis. Ann Neurol 2024; 96:1-20. [PMID: 38568026 DOI: 10.1002/ana.26913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 06/20/2024]
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Paolo Preziosa
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College, London, UK
| | - Elisa Colato
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Damiano Marastoni
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Battaglini
- Siena Imaging S.r.l., Siena, Italy
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Simon Hametner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Owain W Howell
- Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - Matilde Inglese
- Dipartimento di neuroscienze, riabilitazione, oftalmologia, genetica e scienze materno-infantili - DINOGMI, University of Genova, Genoa, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Therapeutic Design Unit, Center for Molecular Medicine, Department of Clinical Neurosciences, Karolinska Institutet, Stockholm, Sweden
- Cellerys AG, Schlieren, Switzerland
| | - Richard Nicholas
- Department of Brain Sciences, Faculty of Medicine, Burlington Danes, Imperial College London, London, UK
| | - Richard Reynolds
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Agnese Tamanti
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| | - Marco Vercellino
- Multiple Sclerosis Center & Neurologia I U, Department of Neuroscience, University Hospital AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisa Maria Villar
- Department of Immunology, Ramon y Cajal University Hospital. IRYCIS. REI, Madrid, Spain
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Magliozzi
- Department of Neurosciences and Biomedicine and Movement, The Multiple Sclerosis Center of University Hospital of Verona, Verona, Italy
| |
Collapse
|
12
|
Tao SS, Cao F, Zhang RD, Xu SZ, Li XX, Tang J, Yang XK, Pan HF. Mendelian Randomization Analysis of Circulating Cytokines and Risk of Autoimmune Neuroinflammatory Diseases. Immunotargets Ther 2024; 13:273-286. [PMID: 38881648 PMCID: PMC11178096 DOI: 10.2147/itt.s456326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Background Cytokines act a vital role in autoimmune neuroinflammatory diseases (ANDs) with undetermined causal relationships. Mendelian randomization (MR) analysis was performed to estimate the causal effects of circulating levels of cytokines on the risk of ANDs. Methods The causal relationship between 34 circulating cytokines and 4 kinds of ANDs, including multiple sclerosis (MS), neuromyelitis optica (NOM), chronic inflammatory demyelinating polyneuropathy (CIDP) and myasthenia gravis (MG) were explored using four methods of MR analysis. MR-PRESSO, MR-Egger regression methods and Cochran's Q statistic were utilized to identify the instrumental variables (IVs) with potential pleiotropy and heterogeneity. The Bonferroni correction was used for multiple group comparisons. P-value less than 3.68E-04 (0.05/ (34*4)) was considered statistically significant. Results Negative causal effects of circulating levels of interleukin (IL)-8 (OR = 0.648, 95% CI: 0.494-0.851, P = 0.002) on risk of MS, chemokine (C-C Motif) ligand (CCL)-5 (OR = 0.295, 95% CI: 0.103-0.841, P = 0.022) and stem cell growth factor-beta (SCGF-β) (OR = 0.745, 95% CI: 0.565-0.984, P = 0.038) on risk of CIDP, as well as positive causal effects of circulating levels of IL-2 receptor α (IL-2Rα) (OR = 1.216, 95% CI: 1.120-1.320, P = 3.20E-06) and chemokine C-X-C motif ligand (CXCL)-10 (OR = 1.404, 95% CI: 1.094-1.803, P = 0.008) on MS were observed. Nevertheless, only IL-2Rα still had a causal effect on MS after Bonferroni correction. Conclusion The results identify a genetically predicted causal effect of IL-2Rα, IL-8 and CXCL-10 on MS, CCL-5 and SCGF-β on CIDP.
Collapse
Affiliation(s)
- Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Fan Cao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Ruo-Di Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Xiao-Xiao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Jian Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, People's Republic of China
| |
Collapse
|
13
|
Alwetaid MY, Almanaa TN, Bakheet SA, Ansari MA, Nadeem A, Attia SM, Hussein MH, Attia MSM, Ahmad SF. Aflatoxin B 1 exposure exacerbates chemokine receptor expression in the BTBR T + Itpr3 tf/J Mouse Model, unveiling insights into autism spectrum disorder: A focus on brain and spleen. Reprod Toxicol 2024; 126:108599. [PMID: 38679149 DOI: 10.1016/j.reprotox.2024.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant difficulties in social interaction, communication, and repeated stereotypic behaviour. Aflatoxin B1 (AFB1) is the most potent and well-known mycotoxin in various food sources. Despite its propensity to generate significant biochemical and structural changes in human and animal tissues, the influence of AFB1 on ASD has yet to be thoroughly studied. Mounting evidence indicates that chemokine receptors play a crucial function in the central nervous system and are implicated in developing several neuroinflammatory disorders. Chemokine receptors in individuals with ASD were elevated in the anterior cingulate gyrus astrocytes, cerebellum, and brain. METHODS The BTBR T+Itpr3tf/J (BTBR) mice are inbred strains that exhibit strong and consistently observed deficits in social interactions, characterized by excessive self-grooming and limited vocalization in social contexts. We examined the impact of AFB1 on CCR3-, CCR7-, CCR9-, CXCR3-, CXCR4-, and CXCR6-expressing I-A/I-E+ cells in the spleen of the BTBR mouse model of autism. We evaluated the mRNA levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 chemokine receptors in the brain. RESULTS The exposure to AFB1 in BTBR mice resulted in a significant rise in the number of I-A/I-E+CCR3+, I-A/I-E+CCR7+, I-A/I-E+CCR9+, I-A/I-E+CXCR3+, I-A/I-E+CXCR4+, and I-A/I-E+CXCR6+ cells. Furthermore, exposure to AFB1 increased mRNA expression levels of CCR3, CCR7, CCR9, CXCR3, CXCR4, and CXCR6 in the brain. CONCLUSIONS These findings highlight that AFB1 exposure increases the expression of chemokine receptors in BTBR mice, indicating the necessity for further research into AFB1's role in the development of ASD.
Collapse
Affiliation(s)
- Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed S M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
14
|
Krumm L, Pozner T, Zagha N, Coras R, Arnold P, Tsaktanis T, Scherpelz K, Davis MY, Kaindl J, Stolzer I, Süß P, Khundadze M, Hübner CA, Riemenschneider MJ, Baets J, Günther C, Jayadev S, Rothhammer V, Krach F, Winkler J, Winner B, Regensburger M. Neuroinflammatory disease signatures in SPG11-related hereditary spastic paraplegia patients. Acta Neuropathol 2024; 147:28. [PMID: 38305941 PMCID: PMC10837238 DOI: 10.1007/s00401-023-02675-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL). We delineate a previously unknown role of innate immunity in SPG11-HSP. Neuropathological analysis of SPG11-HSP patient brain tissue revealed profound microgliosis in areas of neurodegeneration, downregulation of homeostatic microglial markers and cell-intrinsic accumulation of lipids and lipofuscin in IBA1+ cells. In a larger cohort of SPG11-HSP patients, the ratio of peripheral classical and intermediate monocytes was increased, along with increased serum levels of IL-6 that correlated with disease severity. Stimulation of patient-specific iMGLs with IFNγ led to increased phagocytic activity compared to control iMGL as well as increased upregulation and release of proinflammatory cytokines and chemokines, such as CXCL10. On a molecular basis, we identified increased STAT1 phosphorylation as mechanism connecting IFNγ-mediated immune hyperactivation and SPG11 loss of function. STAT1 expression was increased both in human postmortem brain tissue and in an Spg11-/- mouse model. Application of an STAT1 inhibitor decreased CXCL10 production in SPG11 iMGL and rescued their toxic effect on SPG11 neurons. Our data establish neuroinflammation as a novel disease mechanism in SPG11-HSP patients and constitute the first description of myeloid cell/ microglia activation in human SPG11-HSP. IFNγ/ STAT1-mediated neurotoxic effects of hyperreactive microglia upon SPG11 loss of function indicate that immunomodulation strategies may slow down disease progression.
Collapse
Affiliation(s)
- Laura Krumm
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Naime Zagha
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Arnold
- Institute of Functional and Clinical Anatomy, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Kathryn Scherpelz
- Division of Neuropathology, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marie Y Davis
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Johanna Kaindl
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Iris Stolzer
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Süß
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Mukhran Khundadze
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
| | - Christian A Hübner
- Institute of Human Genetics, Jena University Hospital Friedrich-Schiller-University Jena, Jena, Germany
- Center for Rare Diseases, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany
| | - Suman Jayadev
- Department of Neurology, University of Washington Medical Center, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Medical Genetics, University of Washington, Seattle, WA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Krach
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Kussmaulallee 4, 91054, Erlangen, Germany.
- Center for Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany.
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
15
|
van Puijfelik F, Blok KM, Klein Kranenbarg RAM, Rip J, de Beukelaar J, Wierenga-Wolf AF, Wokke B, van Luijn MM, Smolders J. Ocrelizumab associates with reduced cerebrospinal fluid B and CD20 dim CD4 + T cells in primary progressive multiple sclerosis. Brain Commun 2024; 6:fcae021. [PMID: 38385000 PMCID: PMC10881107 DOI: 10.1093/braincomms/fcae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/01/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The anti-CD20 monoclonal antibody ocrelizumab reduces disability progression in primary progressive multiple sclerosis. CD20 is a prototypical B-cell marker; however, subpopulations of CD4+ and CD8+ T cells in peripheral blood and cerebrospinal fluid also express low levels of CD20 (CD20dim). Therefore, direct targeting and depletion of these CD20dim T-cell subpopulations may contribute to the therapeutic effect of ocrelizumab. The aim of this observational cohort study was to compare CD20+ B-cell and CD20dim T-cell distributions between peripheral blood and cerebrospinal fluid of ocrelizumab-treated or ocrelizumab-untreated people with primary progressive multiple sclerosis. Ocrelizumab treatment was associated with depletion of circulating B cells and CD20dim CD4+ and CD20dim CD8+ T cells (P < 0.0001, P = 0.0016 and P = 0.0008, respectively) but, in cerebrospinal fluid, only with lower proportions of B cells and CD20dim memory CD4+ T cells (P < 0.0001 and P = 0.0043, respectively). The proportional prevalence of cerebrospinal fluid CD20dim memory CD8+ T cells was not significantly reduced (P = 0.1333). Only in cerebrospinal fluid, the proportions of CD20dim cells within CD4+ and not CD8+ T cells positive for CCR5, CCR6 and CXCR3 were reduced in ocrelizumab-treated participants. The proportion of CD20dim CD4+ T cells and abundance of CD4+ relative to CD8+ T cells in cerebrospinal fluid correlated positively with age (R = 0.6799, P = 0.0150) and Age-Related Multiple Sclerosis Severity score (R = 0.8087, P = 0.0014), respectively. We conclude that, in contrast to cerebrospinal fluid CD20dim CD8+ T cells, B cells and CD20dim CD4+ T cells are reduced in cerebrospinal fluid of people with primary progressive multiple sclerosis with an ocrelizumab-associated depletion of circulating B cells and CD20dim T cells. Therefore, these cells are likely to contribute to the therapeutic effects of ocrelizumab in people with primary progressive multiple sclerosis.
Collapse
Affiliation(s)
- Fabiënne van Puijfelik
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Katelijn M Blok
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
- Department of Neurology, Albert Schweitzer Hospital, 3318 AT, Dordrecht, The Netherlands
| | - Romy A M Klein Kranenbarg
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
- Department of Neurology, Albert Schweitzer Hospital, 3318 AT, Dordrecht, The Netherlands
| | - Jasper Rip
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Janet de Beukelaar
- Department of Neurology, Albert Schweitzer Hospital, 3318 AT, Dordrecht, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Beatrijs Wokke
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 GD, Rotterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Gaetani L, Bellomo G, Di Sabatino E, Sperandei S, Mancini A, Blennow K, Zetterberg H, Parnetti L, Di Filippo M. The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis. Int J Mol Sci 2023; 25:139. [PMID: 38203309 PMCID: PMC10778830 DOI: 10.3390/ijms25010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing-remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB-) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB- from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB- included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Elena Di Sabatino
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Silvia Sperandei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 41 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 41 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 518172, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| |
Collapse
|
17
|
Xie L, Lv J, Saimaier K, Han S, Han M, Wang C, Liu G, Zhuang W, Jiang X, Du C. The novel small molecule TPN10518 alleviates EAE pathogenesis by inhibiting AP1 to depress Th1/Th17 cell differentiation. Int Immunopharmacol 2023; 123:110787. [PMID: 37591119 DOI: 10.1016/j.intimp.2023.110787] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Multiple sclerosis (MS) is one of the most common autoimmune diseases of central nervous system (CNS) demyelination. Experimental autoimmune encephalomyelitis (EAE) is the most classic animal model for simulating the onset of clinical symptoms in MS. Previous research has reported the anti-inflammatory effects of artemisinin on autoimmune diseases. In our study, we identified a novel small molecule, TPN10518, an artemisinin derivative, which plays a protective role on the EAE model. We found that TPN10518 reduced CNS inflammatory cell infiltration and alleviated clinical symptoms of EAE. In addition, TPN10518 downregulated the production of Th1 and Th17 cells in vivo and in vitro, and decrease the levels of related chemokines. RNA-seq assay combined with the experimental results demonstrated that TPN10518 lowered the mRNA and protein levels of the AP1 subunits c-Fos and c-Jun in EAE mice. It was further confirmed that TPN10518 was dependent on AP1 to inhibit the differentiation of Th1 and Th17 cells. The results suggest that TPN10518 reduces the production of Th1 and Th17 cells through inhibition of AP1 to alleviate the severity of EAE disease. It is expected to be a potential drug for the treatment of MS.
Collapse
Affiliation(s)
- Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangrui Jiang
- University of Chinese Academy of Sciences, Beijing, China; CAS Key Laboratory for Receptor Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
18
|
Kendirli A, de la Rosa C, Lämmle KF, Eglseer K, Bauer IJ, Kavaka V, Winklmeier S, Zhuo L, Wichmann C, Gerdes LA, Kümpfel T, Dornmair K, Beltrán E, Kerschensteiner M, Kawakami N. A genome-wide in vivo CRISPR screen identifies essential regulators of T cell migration to the CNS in a multiple sclerosis model. Nat Neurosci 2023; 26:1713-1725. [PMID: 37709997 PMCID: PMC10545543 DOI: 10.1038/s41593-023-01432-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Multiple sclerosis (MS) involves the infiltration of autoreactive T cells into the CNS, yet we lack a comprehensive understanding of the signaling pathways that regulate this process. Here, we conducted a genome-wide in vivo CRISPR screen in a rat MS model and identified 5 essential brakes and 18 essential facilitators of T cell migration to the CNS. While the transcription factor ETS1 limits entry to the CNS by controlling T cell responsiveness, three functional modules, centered around the adhesion molecule α4-integrin, the chemokine receptor CXCR3 and the GRK2 kinase, are required for CNS migration of autoreactive CD4+ T cells. Single-cell analysis of T cells from individuals with MS confirmed that the expression of these essential regulators correlates with the propensity of CD4+ T cells to reach the CNS. Our data thus reveal key regulators of the fundamental step in the induction of MS lesions.
Collapse
Affiliation(s)
- Arek Kendirli
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Clara de la Rosa
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrin F Lämmle
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klara Eglseer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Isabel J Bauer
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Vladyslav Kavaka
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - La Zhuo
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lisa Ann Gerdes
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| | - Naoto Kawakami
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, Martinsried, Germany.
| |
Collapse
|
19
|
Blandford SN, Fudge NJ, Moore CS. CXCL10 Is Associated with Increased Cerebrospinal Fluid Immune Cell Infiltration and Disease Duration in Multiple Sclerosis. Biomolecules 2023; 13:1204. [PMID: 37627269 PMCID: PMC10452246 DOI: 10.3390/biom13081204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) is an important sampling site for putative biomarkers and contains immune cells. CXCL10 is a multiple sclerosis (MS)-relevant chemokine that is present in the injured central nervous system and recruits CXCR3+ immune cells toward injured tissues. OBJECTIVE Perform a comprehensive evaluation to determine a potential relationship between CXCL10 and various immune cell subsets in the CNS of MS and control cases. METHODS In MS and control cases, CXCL10 was measured in the CSF and plasma by ELISA. Immune cells within both the CSF and peripheral blood were quantified by flow cytometry. RESULTS Compared to non-inflammatory neurological disease (NIND) cases, MS cases had significantly higher CXCL10 in CSF (p = 0.021); CXCL10 was also correlated with total cell numbers in CSF (p = 0.04) and T cell infiltrates (CD3+, p = 0.01; CD4+, p = 0.01; CD8+, p = 0.02); expression of CXCR3 on peripheral immune cell subsets was not associated with CSF CXCL10. CONCLUSIONS Elevated levels of CXCL10 in the CSF of MS cases are associated with increased T cells but appear to be independent of peripheral CXCR3 expression. These results support the importance of elevated CXCL10 in MS and suggest the presence of an alternative mechanism of CXCL10 outside of solely influencing immune cell trafficking.
Collapse
Affiliation(s)
- Stephanie N. Blandford
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Neva J. Fudge
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
| | - Craig S. Moore
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John’s, NL A1B 3V6, Canada
- Health Sciences Centre, Room HSC4364, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
20
|
Khan Z, Gupta GD, Mehan S. Cellular and Molecular Evidence of Multiple Sclerosis Diagnosis and Treatment Challenges. J Clin Med 2023; 12:4274. [PMID: 37445309 DOI: 10.3390/jcm12134274] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease that impacts the central nervous system and can result in disability. Although the prevalence of MS has increased in India, diagnosis and treatment continue to be difficult due to several factors. The present study examines the difficulties in detecting and treating multiple sclerosis in India. A lack of MS knowledge among healthcare professionals and the general public, which delays diagnosis and treatment, is one of the significant issues. Inadequate numbers of neurologists and professionals with knowledge of MS management also exacerbate the situation. In addition, MS medications are expensive and not covered by insurance, making them inaccessible to most patients. Due to the absence of established treatment protocols and standards for MS care, India's treatment techniques vary. In addition, India's population diversity poses unique challenges regarding genetic variations, cellular and molecular abnormalities, and the potential for differing treatment responses. MS is more difficult to accurately diagnose and monitor due to a lack of specialized medical supplies and diagnostic instruments. Improved awareness and education among healthcare professionals and the general public, as well as the development of standardized treatment regimens and increased investment in MS research and infrastructure, are required to address these issues. By addressing these issues, it is anticipated that MS diagnosis and treatment in India will improve, leading to better outcomes for those affected by this chronic condition.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, IK Gujral Punjab Technical University, Jalandhar 144603, India
| |
Collapse
|
21
|
Rahmat-Zaie R, Amini J, Haddadi M, Beyer C, Sanadgol N, Zendedel A. TNF-α/STAT1/CXCL10 mutual inflammatory axis that contributes to the pathogenesis of experimental models of multiple sclerosis: A promising signaling pathway for targeted therapies. Cytokine 2023; 168:156235. [PMID: 37267677 DOI: 10.1016/j.cyto.2023.156235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Identifying mutual neuroinflammatory axis in different experimental models of multiple sclerosis (MS) is essential to evaluate the de- and re-myelination processes and improve therapeutic interventions' reproducibility. METHODS The expression profile data set of EAE (GSE47900) and cuprizone (GSE100663) models were downloaded from the Gene Expression Omnibus database. The R package and GEO2R software processed these raw chip data. Gene Ontology (GO) functional analysis, KEGG pathway analysis, and protein-protein interaction network analysis were performed to investigate interactions between common differentially expressed genes (DEGs) in all models. Finally, the ELISA method assessed the protein level of highlighted mutual cytokines in serum. RESULTS Our data introduced 59 upregulated [CXCL10, CCL12, and GBP6 as most important] and 17 downregulated [Serpinb1a, Prr18, and Ugt8a as most important] mutual genes. The signal transducer and activator of transcription 1 (STAT1) and CXCL10 were the most crucial hub proteins among mutual upregulated genes. These mutual genes were found to be mainly involved in the TNF-α, TLRs, and complement cascade signaling, and animal models shared 26 mutual genes with MS individuals. Finally, significant upregulation of serum level of TNF-α/IL-1β/CXCL10 cytokines was confirmed in all models in a relatively similar pattern. CONCLUSION For the first time, our study revealed the common neuroinflammatory pathway in animal models of MS and introduced candidate hub genes for better evaluating the preclinical efficacy of pharmacological interventions and designing prospective targeted therapies.
Collapse
Affiliation(s)
- Roya Rahmat-Zaie
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Javad Amini
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Mohammad Haddadi
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Cordian Beyer
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Adib Zendedel
- Institute of Anatomy, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| |
Collapse
|
22
|
Alghibiwi H, Ansari MA, Nadeem A, Algonaiah MA, Attia SM, Bakheet SA, Albekairi TH, Almudimeegh S, Alhamed AS, Shahid M, Alwetaid MY, Alassmrry YA, Ahmad SF. DAPTA, a C-C Chemokine Receptor 5 (CCR5), Leads to the Downregulation of Notch/NF-κB Signaling and Proinflammatory Mediators in CD40 + Cells in Experimental Autoimmune Encephalomyelitis Model in SJL/J Mice. Biomedicines 2023; 11:1511. [PMID: 37371605 DOI: 10.3390/biomedicines11061511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system characterized by motor deficits, cognitive impairment, fatigue, pain, and sensory and visual dysfunction. CD40, highly expressed in B cells, plays a significant role in MS pathogenesis. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS has been well established, as well as its relevance in MS patients. This study aimed to evaluate the therapeutic potential of DAPTA, a selective C-C chemokine receptor 5 (CCR5) antagonist in the murine model of MS, and to expand the knowledge of its mechanism of action. Following the induction of EAE, DAPTA was administrated (0.01 mg/kg, i.p.) daily from day 14 to day 42. We investigated the effects of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α in CD40+ spleen B cells using flow cytometry. Furthermore, we also analyzed the effect of DAPTA on NF-κB p65, IκBα, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α mRNA expression levels using qRT-PCR in brain tissue. EAE mice treated with DAPTA showed substantial reductions in NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α but an increase in the IκBα of CD40+ B lymphocytes. Moreover, EAE mice treated with DAPTA displayed decreased NF-κB p65, Notch-1, Notch-3, GM-CSF, MCP-1, iNOS, and TNF-α and but showed increased IκBα mRNA expression levels. This study showed that DAPTA has significant neuroprotective potential in EAE via the downregulation of inflammatory mediators and NF-κB/Notch signaling. Collectively, DAPTA might have potential therapeutic targets for use in MS treatment.
Collapse
Affiliation(s)
- Hanan Alghibiwi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majed Ali Algonaiah
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Almudimeegh
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhamed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yasseen A Alassmrry
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Stroukov W, Mastronicola D, Albany CJ, Catak Z, Lombardi G, Scottà C. OMIP-090: A 20-parameter flow cytometry panel for rapid analysis of cell diversity and homing capacity in human conventional and regulatory T cells. Cytometry A 2023; 103:362-367. [PMID: 36740883 PMCID: PMC10952450 DOI: 10.1002/cyto.a.24720] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/11/2023] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
The panel was developed and optimized for monitoring changes in homing capacity and functional diversity of human CD4+ conventional and regulatory T cell subsets. The analysis was based on expression of only surface markers in freshly isolated peripheral blood mononuclear cells (PBMCs) to reduce at minimum any alteration due to permeabilization or freezing/thawing procedures. We included markers to assess the distribution of naïve and memory populations based on the expression of CD45RA, CCR7, CD25, CD28 and CD95 in both conventional and regulatory T cells. The identification of major functional subsets was performed using CCR4, CCR6, CCR10, CXCR3 and CXCR5. Homing capacity of these subsets to skin, airway tract, gut and inflammatory lesions could finally be assessed with the markers CLA, CCR3, CCR5 and integrin β7. The panel was tested on freshly isolated PBMCs from healthy donors and patients with allergic rhinitis or autoimmune disorders.
Collapse
Affiliation(s)
- Wladislaw Stroukov
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
| | - Daniela Mastronicola
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
| | - Caraugh Jane Albany
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
- British Heart Foundation Centre, School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
| | - Zeynep Catak
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
| | - Giovanna Lombardi
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
| | - Cristiano Scottà
- “Peter Gorer” Department of Immunobiology, School of Immunology & Microbiological SciencesKing's College LondonLondonUK
| |
Collapse
|
24
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
25
|
Burman J, Zjukovskaja C, Svenningsson A, Freyhult E, Wiberg A, Kultima K. Cerebrospinal fluid cytokines after autologous haematopoietic stem cell transplantation and intrathecal rituximab treatment for multiple sclerosis. Brain Commun 2023; 5:fcad011. [PMID: 36756308 PMCID: PMC9901571 DOI: 10.1093/braincomms/fcad011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Multiple sclerosis has been established as an inflammatory disease of the central nervous system. Many aspects of the pathophysiology are still unknown and it is presently unclear how different treatments affect the immunopathology of multiple sclerosis. In this study, we explored cytokines discriminating between individuals with multiple sclerosis and healthy controls and then how these cytokines were affected by treatment intervention with autologous haematopoietic stem cell transplantation or intrathecal rituximab. CSF from individuals with multiple sclerosis and healthy controls were analysed with a proximity extension assay to simultaneously determine the level of 92 cytokines and other inflammation-related proteins. In total, CSF from 158 multiple sclerosis patients and 53 healthy controls were analysed. Sixty-four patients with relapsing-remitting multiple sclerosis and 27 with progressive multiple sclerosis took part in a cross-sectional study and underwent lumbar puncture on a single occasion. Forty-five patients with relapsing-remitting multiple sclerosis were treated with autologous haematopoietic stem cell transplantation and underwent lumbar puncture at baseline and then at follow-up visits made at 1-, 2- and 5 years. Twenty-two patients with progressive multiple sclerosis were treated with intrathecal rituximab and followed with lumbar punctures at baseline and then at follow-up visits made at 3-, 6- and 12 months. Of the 92 studied cytokines, 16 were found to be altered in multiple sclerosis and 11 were decreased after treatment with autologous haematopoietic stem cell transplantation. None of the studied cytokines was affected by treatment with intrathecal rituximab for progressive multiple sclerosis. Some proteins were highly associated with each other. Therefore, a cluster analysis was made and then the highest-ranked protein from the four highest-ranked clusters was used for the subsequent analyses. CCL3, IL-12B, CXCL10 and IL-8 discriminated between multiple sclerosis patients and controls, but only IL-12B differed between patients with relapsing-remitting and progressive multiple sclerosis. The CSF concentrations of CCL3, IL-12B and CXCL10 were decreased after autologous haematopoietic stem cell transplantation, whereas IL-8 appeared to be unaffected by this intervention. High concentrations of IL-8 were associated with worse outcome in both treatment groups. Overall, the results suggest a profound effect of autologous haematopoietic stem cell transplantation on the inflammatory milieu of the CSF in multiple sclerosis.
Collapse
Affiliation(s)
- Joachim Burman
- Correspondence to: Joachim Burman, M.D. Ph.D Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden E-mail:
| | - Christina Zjukovskaja
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Anders Svenningsson
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm SE-171 77, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Uppsala University, Uppsala SE-751 23, Sweden
| | - Anna Wiberg
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
26
|
Hennessy C, Deptula M, Hester J, Issa F. Barriers to Treg therapy in Europe: From production to regulation. Front Med (Lausanne) 2023; 10:1090721. [PMID: 36744143 PMCID: PMC9892909 DOI: 10.3389/fmed.2023.1090721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
There has been an increased interest in cell based therapies for a range of medical conditions in the last decade. This explosion in novel therapeutics research has led to the development of legislation specifically focused on cell and gene based therapies. In Europe, the European medicines agency (EMA) designates any medicines for human use which are based on genes, tissues, or cells as advanced therapy medicinal products or advanced therapy medicinal products (ATMPs). In this article we discuss the hurdles to widespread adoption of ATMPs in Europe, with a focus on regulatory T cells (Tregs). There are numerous barriers which must be overcome before mainstream adoption of Treg therapy becomes a reality. The source of the cells, whether to use autologous or allogenic cells, and the methods through which they are isolated and expanded, must all meet strict good manufacturing practice (GMP) standards to allow use of the products in humans. GMP compliance is costly, with the equipment and reagents providing a significant cost barrier and requiring specialized facilities and personnel. Conforming to the regulations set centrally by the EMA is difficult, and the different interpretations of the regulations across the various member states further complicates the regulatory approval process. The end products then require a complex and robust distribution network to ensure timely delivery of potentially life saving treatments to patients. In a European market whose logistics networks have been hammered by COVID and Brexit, ensuring rapid and reliable delivery systems is a more complex task than ever. In this article we will examine the impact of these barriers on the development and adoption of Tregs in Europe, and potential approaches which could facilitate more widespread use of Tregs, instead of its current concentration in a few very specialized centers.
Collapse
Affiliation(s)
- Conor Hennessy
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Milena Deptula
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
27
|
Harsini S, Rezaei N. Autoimmune diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Lucchini M, De Arcangelis V, Piro G, Nociti V, Bianco A, De Fino C, Di Sante G, Ria F, Calabresi P, Mirabella M. CSF CXCL13 and Chitinase 3-like-1 Levels Predict Disease Course in Relapsing Multiple Sclerosis. Mol Neurobiol 2023; 60:36-50. [PMID: 36215027 PMCID: PMC9758105 DOI: 10.1007/s12035-022-03060-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/03/2022] [Indexed: 12/29/2022]
Abstract
Several biomarkers from multiple sclerosis (MS) patients' biological fluids have been considered to support diagnosis, predict disease course, and evaluate treatment response. In this study, we assessed the CSF concentration of selected molecules implicated in the MS pathological process. To investigate the diagnostic and prognostic significance of CSF concentration of target candidate biomarkers in both relapsing (RMS, n = 107) and progressive (PMS, n = 18) MS patients and in other inflammatory (OIND, n = 10) and non-inflammatory (ONIND, n = 15) neurological disorders. We measured the CSF concentration of APRIL, BAFF, CHI3L1, CCL-2, CXCL-8, CXCL-10, CXCL-12, CXCL-13 through a Luminex Assay. MS patients were prospectively evaluated, and clinical and radiological activity were recorded. CHI3L1 and CXCL13 CSF levels were significantly higher in both MS groups compared to control groups, while CCL2, BAFF, and APRIL concentrations were lower in RMS patients compared to PMS and OIND. Considering RMS patients with a single demyelinating event, higher concentrations of CHI3L1, CXCL10, CXCL12, and CXCL13 were recorded in patients who converted to clinically defined MS(CDMS). RMS patients in the CXCL13 and CHI3L1 high concentration group had a significantly higher risk of relapse (HR 12.61 and 4.57), MRI activity (HR 7.04 and 2.46), and of any evidence of disease activity (HR 12.13 and 2.90) during follow-up. CSF CXCL13 and CHI3L1 levels represent very good prognostic biomarkers in RMS patients, and therefore can be helpful in the treatment choice. Higher CSF concentrations of neuro-inflammatory biomarkers were associated with a higher risk of conversion to CDMS in patients with a first clinical demyelinating event. Differential CSF BAFF and APRIL levels between RMS and PMS suggest a different modulation of B-cells pathways in the different phases of the disease.
Collapse
Affiliation(s)
- Matteo Lucchini
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Valeria De Arcangelis
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Geny Piro
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Oncologia Medica, Rome, Italy
| | - Viviana Nociti
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Assunta Bianco
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Chiara De Fino
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy
| | - Gabriele Di Sante
- grid.9027.c0000 0004 1757 3630Dipartimento Di Medicina e Chirurgia, Sezione Di Anatomia Umana, Clinica e Forense, Università Degli Studi Di Perugia, Perugia, Italy
| | - Francesco Ria
- grid.8142.f0000 0001 0941 3192Dipartimento Di Medicina E Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy ,grid.414603.4Dipartimento Di Scienze Di Laboratorio Ed Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Paolo Calabresi
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| | - Massimiliano Mirabella
- grid.411075.60000 0004 1760 4193Fondazione Policlinico Universitario Agostino Gemelli IRCCS, UOC Neurologia, Rome, Italy ,grid.8142.f0000 0001 0941 3192Centro Di Ricerca Sclerosi Multipla (CERSM), Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy
| |
Collapse
|
29
|
Xue W, He W, Yan M, Zhao H, Pi J. Exploring Shared Biomarkers of Myocardial Infarction and Alzheimer's Disease via Single-Cell/Nucleus Sequencing and Bioinformatics Analysis. J Alzheimers Dis 2023; 96:705-723. [PMID: 37840493 PMCID: PMC10657707 DOI: 10.3233/jad-230559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Patients are at increased risk of dementia, including Alzheimer's disease (AD), after myocardial infarction (MI), but the biological link between MI and AD is unclear. OBJECTIVE To understand the association between the pathogenesis of MI and AD and identify common biomarkers of both diseases. METHODS Using public databases, we identified common biomarkers of MI and AD. Least absolute shrinkage and selection operator (LASSO) regression and protein-protein interaction (PPI) network were performed to further screen hub biomarkers. Functional enrichment analyses were performed on the hub biomarkers. Single-cell/nucleus analysis was utilized to further analyze the hub biomarkers at the cellular level in carotid atherosclerosis and AD datasets. Motif enrichment analysis was used to screen key transcription factors. RESULTS 26 common differentially expressed genes were screened between MI and AD. Function enrichment analyses showed that these differentially expressed genes were mainly associated with inflammatory pathways. A key gene, Regulator of G-protein Signaling 1 (RGS1), was obtained by LASSO regression and PPI network. RGS1 was confirmed to mainly express in macrophages and microglia according to single-cell/nucleus analysis. The difference in expression of RGS1 in macrophages and microglia between disease groups and controls was statistically significant (p < 0.0001). The expression of RGS1 in the disease groups was upregulated with the differentiation of macrophages and microglia. RelA was a key transcription factor regulating RGS1. CONCLUSION Macrophages and microglia are involved in the inflammatory response of MI and AD. RGS1 may be a key biomarker in this process.
Collapse
Affiliation(s)
- Weiqi Xue
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weifeng He
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengyuan Yan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jianbin Pi
- Department of Cardiovascular Disease, The Eighth Clinical Medical College of Guangzhou University of Chinese Medicine, Foshan, Guangdong, China
| |
Collapse
|
30
|
Verreycken J, Baeten P, Broux B. Regulatory T cell therapy for multiple sclerosis: Breaching (blood-brain) barriers. Hum Vaccin Immunother 2022; 18:2153534. [PMID: 36576251 PMCID: PMC9891682 DOI: 10.1080/21645515.2022.2153534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.
Collapse
Affiliation(s)
- Janne Verreycken
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Paulien Baeten
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium,University MS Center, Campus Diepenbeek, Diepenbeek, Belgium,CONTACT Bieke Broux Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Martelarenlaan 42, Hasselt 3500, Belgium
| |
Collapse
|
31
|
Clarkson TC, Iguchi N, Xie AX, Malykhina AP. Differential transcriptomic changes in the central nervous system and urinary bladders of mice infected with a coronavirus. PLoS One 2022; 17:e0278918. [PMID: 36490282 PMCID: PMC9733897 DOI: 10.1371/journal.pone.0278918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) often leads to the development of neurogenic lower urinary tract symptoms (LUTS). We previously characterized neurogenic bladder dysfunction in a mouse model of MS induced by a coronavirus, mouse hepatitis virus (MHV). The aim of the study was to identify genes and pathways linking neuroinflammation in the central nervous system with urinary bladder (UB) dysfunction to enhance our understanding of the mechanisms underlying LUTS in demyelinating diseases. Adult C57BL/6 male mice (N = 12) received either an intracranial injection of MHV (coronavirus-induced encephalomyelitis, CIE group), or sterile saline (control group). Spinal cord (SC) and urinary bladders (UB) were collected from CIE mice at 1 wk and 4 wks, followed by RNA isolation and NanoString nCounter Neuroinflammation assay. Transcriptome analysis of SC identified a significantly changed expression of >150 genes in CIE mice known to regulate astrocyte, microglia and oligodendrocyte functions, neuroinflammation and immune responses. Two genes were significantly upregulated (Ttr and Ms4a4a), and two were downregulated (Asb2 and Myct1) only in the UB of CIE mice. Siglec1 and Zbp1 were the only genes significantly upregulated in both tissues, suggesting a common transcriptomic link between neuroinflammation in the CNS and neurogenic changes in the UB of CIE mice.
Collapse
Affiliation(s)
- Taylor C. Clarkson
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alison Xiaoqiao Xie
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Anna P. Malykhina
- Division of Urology, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
32
|
Fettig NM, Robinson HG, Allanach JR, Davis KM, Simister RL, Wang EJ, Sharon AJ, Ye J, Popple SJ, Seo JH, Gibson DL, Crowe SA, Horwitz MS, Osborne LC. Inhibition of Th1 activation and differentiation by dietary guar gum ameliorates experimental autoimmune encephalomyelitis. Cell Rep 2022; 40:111328. [PMID: 36103823 DOI: 10.1016/j.celrep.2022.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 06/29/2022] [Accepted: 08/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dietary fibers are potent modulators of immune responses that can restrain inflammation in multiple disease contexts. However, dietary fibers encompass a biochemically diverse family of carbohydrates, and it remains unknown how individual fiber sources influence immunity. In a direct comparison of four different high-fiber diets, we demonstrate a potent ability of guar gum to delay disease and neuroinflammation in experimental autoimmune encephalomyelitis, a T cell-mediated mouse model of multiple sclerosis. Guar gum-specific alterations to the microbiota are limited, and disease protection appears to be independent of fiber-induced increases in short-chain fatty acid levels or regulatory CD4+ T cells. Instead, CD4+ T cells of guar gum-supplemented mice are less encephalitogenic due to reduced activation, proliferation, Th1 differentiation, and altered migratory potential. These findings reveal specificity in the host response to fiber sources and define a pathway of fiber-induced immunomodulation that protects against pathologic neuroinflammation.
Collapse
Affiliation(s)
- Naomi M Fettig
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Hannah G Robinson
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jessica R Allanach
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katherine M Davis
- Department of Botany, University of British Columba, Vancouver, BC V6T 1Z3, Canada
| | - Rachel L Simister
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Elsie J Wang
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Andrew J Sharon
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jiayu Ye
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Sarah J Popple
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jung Hee Seo
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Deanna L Gibson
- Department of Biology, University of British Columbia-Okanagan, Kelowna, BC V1V 1V7, Canada
| | - Sean A Crowe
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marc S Horwitz
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Lisa C Osborne
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
33
|
Lemaître F, Farzam-Kia N, Carmena Moratalla A, Carpentier Solorio Y, Clenet ML, Tastet O, Cleret-Buhot A, Guimond JV, Haddad E, Duquette P, Girard JM, Prat A, Larochelle C, Arbour N. IL-27 shapes the immune properties of human astrocytes and their impact on encountered human T lymphocytes. J Neuroinflammation 2022; 19:212. [PMID: 36050707 PMCID: PMC9434874 DOI: 10.1186/s12974-022-02572-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1β exposure. Main body Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL‑27 or IL-1β. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors’ cells. Conclusion Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02572-1.
Collapse
Affiliation(s)
- Florent Lemaître
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Negar Farzam-Kia
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Ana Carmena Moratalla
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Yves Carpentier Solorio
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Marie-Laure Clenet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Olivier Tastet
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada
| | - Aurélie Cleret-Buhot
- Centre de Recherche du Centre Hospitalier de L'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Jean Victor Guimond
- CLSC Des Faubourgs, CIUSSS du Centre-Sud-de-L'Ile-de-Montréal, Montréal, QC, Canada
| | - Elie Haddad
- Department of Microbiology, Infectious Diseases, and Immunology and Department of Pediatrics, Centre de Recherche du Centre Hospitalier, Université de Montréal, Universitaire Sainte-Justine (CHU Sainte-Justine), Montreal, QC, Canada
| | - Pierre Duquette
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - J Marc Girard
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Alexandre Prat
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Catherine Larochelle
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.,MS-CHUM Clinic, 900 St-Denis Street, Montreal, QC, H2X 0A9, Canada
| | - Nathalie Arbour
- Department of Neurosciences, Université de Montréal and Centre de Recherche du CHUM (CRCHUM), 900 St-Denis Street, Room R09.464, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
34
|
Holm Hansen R, Talbot J, Højsgaard Chow H, Bredahl Hansen M, Buhelt S, Herich S, Schwab N, Hellem MNN, Nielsen JE, Sellebjerg F, von Essen MR. Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 9:9/5/e200009. [PMID: 35835563 PMCID: PMC9621607 DOI: 10.1212/nxi.0000000000200009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/06/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Follicular helper T (Tfh) cells play a critical role in protective immunity helping B cells produce antibodies against foreign pathogens and are likely implicated in the pathogenesis of various autoimmune diseases. The purpose of this study was to investigate the role of Tfh cells in the pathogenesis of multiple sclerosis (MS). METHODS Using flow cytometry, we investigated phenotype, prevalence, and function of Tfh cells in blood and CSF from controls and patients with relapsing-remitting MS (RRMS) and primary progressive MS (PPMS). In addition, an in vitro blood-brain barrier coculture assay of primary human astrocytes and brain microvascular endothelial cells grown in a Boyden chamber was used to assess the migratory capacity of peripheral Tfh cells. RESULTS This study identified 2 phenotypically and functionally distinct Tfh cell populations: CD25- Tfh cells (Tfh1-like) and CD25int Tfh cells (Tfh17-like). Whereas minor differences in Tfh cell populations were found in blood between patients with MS and controls, we observed an increased frequency of CD25- Tfh cells in CSF of patients with RRMS and PPMS and CD25int Tfh cells in patients with RRMS, compared with controls. Increasing frequencies of CSF CD25- Tfh cells and the CD25- Tfh/Tfr ratio scaled with increasing IgG index in patients with RRMS. Despite an increased prevalence of intrathecal Tfh cells in patients with MS, no difference in the migratory capacity of circulating Tfh cells was observed between controls and patients with MS. Instead, CSF concentrations of CXCL13 scaled with total counts of Tfh and Tfr cell subsets in the CSF. DISCUSSION Our study indicates substantial changes in intrathecal Tfh dynamics, particularly in patients with RRMS, and suggests that the intrathecal inflammatory environment in patients with RRMS promotes recruitment of peripheral Tfh cells rather than the Tfh cells having an increased capacity to migrate to CNS.
Collapse
|
35
|
Atkinson JR, Jerome AD, Sas AR, Munie A, Wang C, Ma A, Arnold WD, Segal BM. Biological aging of CNS-resident cells alters the clinical course and immunopathology of autoimmune demyelinating disease. JCI Insight 2022; 7:e158153. [PMID: 35511417 PMCID: PMC9309055 DOI: 10.1172/jci.insight.158153] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing-remitting MS typically presents in the third or fourth decade, whereas the mean age of presentation of progressive MS (PMS) is 45 years old. Here, we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, was more severe, and less likely to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils were more abundant, while B cells were relatively sparse, in CNS infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrated that radio-resistant, nonhematopoietic cells played a dominant role in shaping age-dependent features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of PMS, EAE in middle-aged adoptive transfer recipients was characterized by widespread microglial activation. Microglia from older mice expressed a distinctive transcriptomic profile suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Jeffrey R. Atkinson
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew D. Jerome
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Andrew R. Sas
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Ashley Munie
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - William D. Arnold
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin M. Segal
- Department of Neurology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Neuroscience Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
36
|
Basic principles of neuroimmunology. Semin Immunopathol 2022; 44:685-695. [PMID: 35732977 DOI: 10.1007/s00281-022-00951-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/08/2022] [Indexed: 01/20/2023]
Abstract
The brain is an immune-privileged organ such that immune cell infiltration is highly regulated and better tolerating the introduction of antigen to reduce risk of harmful inflammation. Thus, the composition and the nature of the immune response is fundamentally different in the brain where avoiding immunopathology is prioritized compared to other peripheral organs. While the principle of immune privilege in the central nervous system (CNS) still holds true, the role of the immune system in the CNS has been revisited over the recent years. This redefining of immune privilege in the brain is a result of the recent re-discovery of the extensive CNS meningeal lymphatic system and the identification of resident T cells in the brain, meningeal layers, and its surrounding cerebrospinal fluid (CSF) in both humans and rodents. While neuro-immune interactions have been classically studied in the context of neuroinflammatory disease, recent works have also elucidated unconventional roles of immune-derived cytokines in neurological function, highlighting the many implications and potential of neuro-immune interactions. As a result, the study of neuro-immune interactions is becoming increasingly important in understanding both CNS homeostasis and disease. Here, we review the anatomically distinct immune compartments within the brain, the known mechanisms of leukocyte trafficking and infiltration into the CNS and unique transcriptional and functional characteristics of CNS-resident immune cells.
Collapse
|
37
|
Satarkar D, Patra C. Evolution, Expression and Functional Analysis of CXCR3 in Neuronal and Cardiovascular Diseases: A Narrative Review. Front Cell Dev Biol 2022; 10:882017. [PMID: 35794867 PMCID: PMC9252580 DOI: 10.3389/fcell.2022.882017] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Chemokines form a sophisticated communication network wherein they maneuver the spatiotemporal migration of immune cells across a system. These chemical messengers are recognized by chemokine receptors, which can trigger a cascade of reactions upon binding to its respective ligand. CXC chemokine receptor 3 (CXCR3) is a transmembrane G protein-coupled receptor, which can selectively bind to CXCL9, CXCL10, and CXCL11. CXCR3 is predominantly expressed on immune cells, including activated T lymphocytes and natural killer cells. It thus plays a crucial role in immunological processes like homing of effector cells to infection sites and for pathogen clearance. Additionally, it is expressed on several cell types of the central nervous system and cardiovascular system, due to which it has been implicated in several central nervous system disorders, including Alzheimer's disease, multiple sclerosis, dengue viral disease, and glioblastoma, as well as cardiovascular diseases like atherosclerosis, Chronic Chagas cardiomyopathy, and hypertension. This review provides a narrative description of the evolution, structure, function, and expression of CXCR3 and its corresponding ligands in mammals and zebrafish and the association of CXCR3 receptors with cardiovascular and neuronal disorders. Unraveling the mechanisms underlying the connection of CXCR3 and disease could help researchers investigate the potential of CXCR3 as a biomarker for early diagnosis and as a therapeutic target for pharmacological intervention, along with developing robust zebrafish disease models.
Collapse
Affiliation(s)
- Devi Satarkar
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, India
- SP Phule University, Pune, India
| |
Collapse
|
38
|
Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM. The Translational Potential of Microglia and Monocyte-Derived Macrophages in Ischemic Stroke. Front Immunol 2022; 13:897022. [PMID: 35795678 PMCID: PMC9251541 DOI: 10.3389/fimmu.2022.897022] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response to ischemic stroke is an area of study that is at the forefront of stroke research and presents promising new avenues for treatment development. Upon cerebral vessel occlusion, the innate immune system is activated by danger-associated molecular signals from stressed and dying neurons. Microglia, an immune cell population within the central nervous system which phagocytose cell debris and modulate the immune response via cytokine signaling, are the first cell population to become activated. Soon after, monocytes arrive from the peripheral immune system, differentiate into macrophages, and further aid in the immune response. Upon activation, both microglia and monocyte-derived macrophages are capable of polarizing into phenotypes which can either promote or attenuate the inflammatory response. Phenotypes which promote the inflammatory response are hypothesized to increase neuronal damage and impair recovery of neuronal function during the later phases of ischemic stroke. Therefore, modulating neuroimmune cells to adopt an anti-inflammatory response post ischemic stroke is an area of current research interest and potential treatment development. In this review, we outline the biology of microglia and monocyte-derived macrophages, further explain their roles in the acute, subacute, and chronic stages of ischemic stroke, and highlight current treatment development efforts which target these cells in the context of ischemic stroke.
Collapse
|
39
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
40
|
Koetzier SC, van Langelaar J, Melief MJ, Wierenga-Wolf AF, Corsten CEA, Blok KM, Hoeks C, Broux B, Wokke B, van Luijn MM, Smolders J. Distinct Effector Programs of Brain-Homing CD8+ T Cells in Multiple Sclerosis. Cells 2022; 11:cells11101634. [PMID: 35626671 PMCID: PMC9139595 DOI: 10.3390/cells11101634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
The effector programs of CD8+ memory T cells are influenced by the transcription factors RUNX3, EOMES and T-bet. How these factors define brain-homing CD8+ memory T cells in multiple sclerosis (MS) remains unknown. To address this, we analyzed blood, CSF and brain tissues from MS patients for the impact of differential RUNX3, EOMES and T-bet expression on CD8+ T cell effector phenotypes. The frequencies of RUNX3- and EOMES-, but not T-bet-expressing CD8+ memory T cells were reduced in the blood of treatment-naïve MS patients as compared to healthy controls. Such reductions were not seen in MS patients treated with natalizumab (anti-VLA-4 Ab). We found an additional loss of T-bet in RUNX3-expressing cells, which was associated with the presence of MS risk SNP rs6672420 (RUNX3). RUNX3+EOMES+T-bet− CD8+ memory T cells were enriched for the brain residency-associated markers CCR5, granzyme K, CD20 and CD69 and selectively dominated the MS CSF. In MS brain tissues, T-bet coexpression was recovered in CD20dim and CD69+ CD8+ T cells, and was accompanied by increased coproduction of granzyme K and B. These results indicate that coexpression of RUNX3 and EOMES, but not T-bet, defines CD8+ memory T cells with a pre-existing brain residency-associated phenotype such that they are prone to enter the CNS in MS.
Collapse
Affiliation(s)
- Steven C. Koetzier
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Jamie van Langelaar
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Marie-José Melief
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Annet F. Wierenga-Wolf
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
| | - Cato E. A. Corsten
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Katelijn M. Blok
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Cindy Hoeks
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (C.H.); (B.B.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Bieke Broux
- Neuro-Immune Connections and Repair Lab, Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium; (C.H.); (B.B.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Beatrijs Wokke
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
| | - Marvin M. van Luijn
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Correspondence: (M.M.v.L.); (J.S.)
| | - Joost Smolders
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (S.C.K.); (J.v.L.); (M.-J.M.); (A.F.W.-W.)
- MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands; (C.E.A.C.); (K.M.B.); (B.W.)
- Department of Neurology, Erasmus MC, University Medical Center Rotterdam, 3000 Rotterdam, The Netherlands
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 Amsterdam, The Netherlands
- Correspondence: (M.M.v.L.); (J.S.)
| |
Collapse
|
41
|
Shetty A, Tripathi SK, Junttila S, Buchacher T, Biradar R, Bhosale S, Envall T, Laiho A, Moulder R, Rasool O, Galande S, Elo L, Lahesmaa R. A systematic comparison of FOSL1, FOSL2 and BATF-mediated transcriptional regulation during early human Th17 differentiation. Nucleic Acids Res 2022; 50:4938-4958. [PMID: 35511484 PMCID: PMC9122603 DOI: 10.1093/nar/gkac256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 12/21/2022] Open
Abstract
Th17 cells are essential for protection against extracellular pathogens, but their aberrant activity can cause autoimmunity. Molecular mechanisms that dictate Th17 cell-differentiation have been extensively studied using mouse models. However, species-specific differences underscore the need to validate these findings in human. Here, we characterized the human-specific roles of three AP-1 transcription factors, FOSL1, FOSL2 and BATF, during early stages of Th17 differentiation. Our results demonstrate that FOSL1 and FOSL2 co-repress Th17 fate-specification, whereas BATF promotes the Th17 lineage. Strikingly, FOSL1 was found to play different roles in human and mouse. Genome-wide binding analysis indicated that FOSL1, FOSL2 and BATF share occupancy over regulatory regions of genes involved in Th17 lineage commitment. These AP-1 factors also share their protein interacting partners, which suggests mechanisms for their functional interplay. Our study further reveals that the genomic binding sites of FOSL1, FOSL2 and BATF harbour hundreds of autoimmune disease-linked SNPs. We show that many of these SNPs alter the ability of these transcription factors to bind DNA. Our findings thus provide critical insights into AP-1-mediated regulation of human Th17-fate and associated pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Rahul Biradar
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Santosh D Bhosale
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- Department of Biochemistry and Molecular Biology, Protein Research Group, University of Southern Denmark, Campusvej 55, Odense M, DK 5230, Denmark
| | - Tapio Envall
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Robert Moulder
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku 20520, Finland
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research (IISER), Pune 411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR
| | - Laura L Elo
- Correspondence may also be addressed to Laura Elo. Tel: +358 29 450 2090;
| | - Riitta Lahesmaa
- To whom correspondence should be addressed. Tel: +358 29 450 2415;
| |
Collapse
|
42
|
Heng AHS, Han CW, Abbott C, McColl SR, Comerford I. Chemokine-Driven Migration of Pro-Inflammatory CD4 + T Cells in CNS Autoimmune Disease. Front Immunol 2022; 13:817473. [PMID: 35250997 PMCID: PMC8889115 DOI: 10.3389/fimmu.2022.817473] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Pro-inflammatory CD4+ T helper (Th) cells drive the pathogenesis of many autoimmune conditions. Recent advances have modified views of the phenotype of pro-inflammatory Th cells in autoimmunity, extending the breadth of known Th cell subsets that operate as drivers of these responses. Heterogeneity and plasticity within Th1 and Th17 cells, and the discovery of subsets of Th cells dedicated to production of other pro-inflammatory cytokines such as GM-CSF have led to these advances. Here, we review recent progress in this area and focus specifically upon evidence for chemokine receptors that drive recruitment of these various pro-inflammatory Th cell subsets to sites of autoimmune inflammation in the CNS. We discuss expression of specific chemokine receptors by subsets of pro-inflammatory Th cells and highlight which receptors may be tractable targets of therapeutic interventions to limit pathogenic Th cell recruitment in autoimmunity.
Collapse
Affiliation(s)
- Aaron H S Heng
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caleb W Han
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Caitlin Abbott
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Shaun R McColl
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| | - Iain Comerford
- The Chemokine Biology Laboratory, Department of Molecular and Biomedical Science, School of Biological Sciences, Faculty of Science, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
43
|
CCR1 antagonist ameliorates experimental autoimmune encephalomyelitis by inhibition of Th9/Th22-related markers in the brain and periphery. Mol Immunol 2022; 144:127-137. [DOI: 10.1016/j.molimm.2022.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022]
|
44
|
Rolla S, De Mercanti SF, Bardina V, Maglione A, Taverna D, Novelli F, Cocco E, Vladic A, Habek M, Adamec I, Annovazzi POL, Horakova D, Clerico M. Long-Term Effects of Alemtuzumab on CD4+ Lymphocytes in Multiple Sclerosis Patients: A 72-Month Follow-Up. Front Immunol 2022; 13:818325. [PMID: 35296069 PMCID: PMC8919044 DOI: 10.3389/fimmu.2022.818325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Alemtuzumab is highly effective in the treatment of patients with relapsing multiple sclerosis (PwRMS) and selectively targets the CD52 antigen, with a consequent profound lymphopenia, particularly of CD4+ T lymphocytes. However, the immunological basis of its long-term efficacy has not been clearly elucidated. Methods We followed up 29 alemtuzumab-treated RMS patients over a period of 72 months and studied the immunological reconstitution of their CD4+ T cell subsets by means of phenotypic and functional analysis and through mRNA-related molecule expression, comparing them to healthy subject (HS) values (rate 2:1). Results In patients receiving only two-course alemtuzumab, the percentage of CD4+ lymphocytes decreased and returned to basal levels only at month 48. Immune reconstitution of the CD4+ subsets was characterized by a significant increase (p < 0.001) in Treg cell percentage at month 24, when compared to baseline, and was accompanied by restoration of the Treg suppressor function that increased within a range from 2- to 6.5-fold compared to baseline and that persisted through to the end of the follow-up. Furthermore, a significant decrease in self-reactive myelin basic protein-specific Th17 (p < 0.0001) and Th1 (p < 0.05) cells reaching HS values was observed starting from month 12. There was a change in mRNA of cytokines, chemokines, and transcriptional factors related to Th17, Th1, and Treg cell subset changes, consequently suggesting a shift toward immunoregulation and a reduction of T cell recruitment to the central nervous system. Conclusions These data provide further insight into the mechanism that could contribute to the long-term 6-year persistence of the clinical effect of alemtuzumab on RMS disease activity.
Collapse
Affiliation(s)
- Simona Rolla
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- *Correspondence: Simona Rolla,
| | | | - Valentina Bardina
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
- Laboratory of Microbiology and Virology, Amedeo di Savoia Hospital, Torino, Italy
| | - Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Eleonora Cocco
- Department of Medical Science and Public Health, University of Cagliari and Multiple Sclerosis Center, Cagliari, Italy
| | - Anton Vladic
- Department of Neurology, Clinical Hospital Sveti Duh Zagreb and Medical Faculty, University J.J Strossmayer Osijek, Prague, Croatia
| | - Mario Habek
- Referral Center for Autonomic Nervous System, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Adamec
- Referral Center for Autonomic Nervous System, University Hospital Center Zagreb, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Dana Horakova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| |
Collapse
|
45
|
Ansari MA, Nadeem A, Alshammari MA, Attia SM, Bakheet SA, Khan MR, Albekairi TH, Alasmari AF, Alhosaini K, Alqahtani F, Al-Mazroua HA, Ahmad SF. Cathepsin B inhibitor alleviates Th1, Th17, and Th22 transcription factor signaling dysregulation in experimental autoimmune encephalomyelitis. Exp Neurol 2022; 351:113997. [PMID: 35122866 DOI: 10.1016/j.expneurol.2022.113997] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 01/04/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by inflammatory infiltration in association with demyelination in the central nervous system. Among the factors involved in the immunological mechanisms of MS, Th1, Th17, and Th22 cells play a critical role. In the present study, we investigated the role of CA-074, a potent Cathepsin B inhibitor, in MS progression, using the SJL/J mouse model of experimental autoimmune encephalomyelitis (EAE). Following induction of EAE, mice were administered CA-074 (10 mg/kg) intraperitoneally each day, beginning on day 14 and continuing until day 28, and were evaluated for clinical signs. We further investigated the effect of CA-074 on Th1 (T-bet/STAT4), Th17 (IL-17A/RORγT), Th22 (TNF-α/IL-22), and regulatory T (Treg/Foxp3) cells in the spleen, using flow cytometry. We also analyzed the effect of CA-074 on T-bet, IL-17A, RORγT, IL-22, and mRNA and protein levels using RT-PCR and western blot analysis for brain tissues. Cathepsin B expression were also assessed by western blot in the brain tissues. The severity of clinical scores decreased significantly in CA-074-treated mice compared with that in EAE control mice. Moreover, the percentage of CD4+T-bet+, CXCR5+T-bet+, CD4+STAT4+, CD4+IL-17A+, CXCR5+IL-17A+, CD4+RORγT+, CCR6+RORγT+, CD4+TNF-α+, CD4+IL-22+, and CCR6+IL-22+ cells decreased while CD25+Foxp3+ increased in CA-074-treated EAE mice as compared to vehicle-treated EAE mice. Further, CA-074-treated EAE mice had downregulated Cathepsin B protein expression which was associated with decreased T-bet, IL-17A, RORγT, and IL-22 mRNA/protein expression. These results suggest that Cathepsin B could be a novel therapeutic candidate against for the treatment of MS.
Collapse
Affiliation(s)
- Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khaled Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
46
|
Löb S, Ochmann B, Ma Z, Vilsmaier T, Kuhn C, Schmoeckel E, Herbert SL, Kolben T, Wöckel A, Mahner S, Jeschke U. The role of Interleukin-18 in recurrent early pregnancy loss. J Reprod Immunol 2021; 148:103432. [PMID: 34627076 DOI: 10.1016/j.jri.2021.103432] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND A successful pregnancy is a unique and complex immunological state. Cytokines seem to be crucial for the implementation of a tolerogenic environment at the feto-maternal interphase towards the semi-allogenic fetus. Importantly, the switch from a Th1- to a Th2 cytokine profile might play a key role. Interestingly, Interleukin-18 (IL-18) can induce either Th1 or Th2 immune response depending on the local cytokine environment. Therefore, this study investigates the expression of IL-18 in early pregnancy loss. PATIENTS AND METHODS The TaqMan® Human Cytokine Network Array was carried out with placental tissue of patients with healthy pregnancies (n = 15) and recurrent miscarriage (n = 15) in order to investigate differences in IL-18 mRNA expression. Immunohistochemical staining was applied to examine the IL-18 protein expression in the syncytiotrophoblast and decidua of healthy pregnancies (n = 15), spontaneous (n = 12) and recurrent miscarriage (n = 9). The characterization of IL-18 expressing cells in the decidua was evaluated by double-immunofluorescence. Correlation analysis between IL-18 protein expression and clinical data of the study population was performed via spearman correlation coefficient. RESULTS Gene expression analysis revealed a 4,9-times higher expression of IL-18 in recurrent miscarriage patients. IL-18 protein expression was significantly upregulated only in the decidua in the recurrent miscarriage group (p = 0.031). We did not observe significant changes of IL-18 protein expression in spontaneous miscarriage specimens when compared to healthy controls (p = 0.172). Double-immunofluorescence identified decidual stroma cells as IL-18 expressing cells. Correlation analysis showed a significant negative correlation of IL-18 protein expression and gestational age in healthy controls (r = -,745, p = 0.034). Also, a positive correlation of IL-18 and maternal age was observed in patients suffering from recurrent pregnancy loss (r =, 894, p = 0.041). CONCLUSION Our results indicate that IL-18 expression might be necessary in early gestation but requires a tight regulation for a successful ongoing pregnancy. In the present study we observed that a significant upregulation of IL-18 in the decidua was restricted to patients with recurrent miscarriage and therefore might be interesting as a diagnostic marker. Further studies need to evaluate the exact pathophysiological mechanisms.
Collapse
Affiliation(s)
- Sanja Löb
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Beate Ochmann
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Zhi Ma
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Theresa Vilsmaier
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377, Munich, Germany
| | - Saskia-Laureen Herbert
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Achim Wöckel
- Department of Obstetrics and Gynecology, University Hospital, University of Wuerzburg, Josef-Schneider-Str. 4, 97080, Würzburg, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany; Department of Obstetrics and Gynecology, University Hospital Augsburg, Stenglinstrasse 2, 86156, Augsburg, Germany.
| |
Collapse
|
47
|
Stampanoni Bassi M, Gilio L, Iezzi E, Moscatelli A, Pekmezovic T, Drulovic J, Furlan R, Finardi A, Mandolesi G, Musella A, Galifi G, Fantozzi R, Bellantonio P, Storto M, Centonze D, Buttari F. Age at Disease Onset Associates With Oxidative Stress, Neuroinflammation, and Impaired Synaptic Plasticity in Relapsing-Remitting Multiple Sclerosis. Front Aging Neurosci 2021; 13:694651. [PMID: 34566620 PMCID: PMC8461180 DOI: 10.3389/fnagi.2021.694651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
Age at onset is the main risk factor for disease progression in patients with relapsing-remitting multiple sclerosis (RR-MS). In this cross-sectional study, we explored whether older age is associated with specific disease features involved in the progression independent of relapse activity (PIRA). In 266 patients with RR-MS, the associations between age at onset, clinical characteristics, cerebrospinal fluid (CSF) levels of lactate, and that of several inflammatory molecules were analyzed. The long-term potentiation (LTP)-like plasticity was studied using transcranial magnetic stimulation (TMS). Older age was associated with a reduced prevalence of both clinical and radiological focal inflammatory disease activity. Older patients showed also increased CSF levels of lactate and that of the pro-inflammatory molecules monocyte chemoattractant protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1-alpha (MIP-1α)/CCL3, and interleukin (IL)-8. Finally, TMS evidenced a negative correlation between age and LTP-like plasticity. In newly diagnosed RR-MS, older age at onset is associated with reduced acute disease activity, increased oxidative stress, enhanced central inflammation, and altered synaptic plasticity. Independently of their age, patients with multiple sclerosis (MS) showing similar clinical, immunological, and neurophysiological characteristics may represent ideal candidates for early treatments effective against PIRA.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Tatjana Pekmezovic
- Institute of Epidemiology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, Rome, Italy.,Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
| | - Giovanni Galifi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Roberta Fantozzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Paolo Bellantonio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Marianna Storto
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
48
|
Li K, Tan YH, Feng SY, Fu KY. CXCR3 signalling partially contributes to the pathogenesis of neuropathic pain in male rodents. J Oral Rehabil 2021; 49:186-194. [PMID: 34570922 DOI: 10.1111/joor.13262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Currently, there is a lack of effective therapy for chronic pain. Increasing evidence has shown that chemokines and their correlative receptors involved in the neuron-glial cell cross-talk could contribute to the pathogenesis of neuropathic pain. Our previous studies suggested that CXCR3 expression was elevated in the spinal dorsal horn after nerve injury. OBJECTIVES In this study, we aimed to explore the role of CXCR3 signalling in chronic pain modulation. METHODS Reverse transcription quantitative PCR and Western blotting were used to measure the expression of CXCR3 and its ligands in the spinal cord following chronic constriction injury (CCI) of the sciatic nerve. Cxcr3 -knockout mice were used to observe the effect of the receptor on pain-related behaviour and microglial activation. Immunohistochemistry was used to investigate the expression of two activation markers for spinal microglia, Iba-1 and phosphorylated-p38 (p-p38) in these mice. RESULTS The expression of CXCR3 and its ligand CXCL11 was upregulated in the lumbar dorsal horn of the spinal cord in CCI models. In Cxcr3 -knockout mice, CCI-induced tactile allodynia and thermal hyperalgesia were observed to be alleviated during the early stage of pain processing. Meanwhile, the expression of the glial activation markers, namely, Iba-1 and p-p38, was decreased. CONCLUSION Our results demonstrate that CXCR3 could be a key modulator involved in pain modulation of the spinal cord; therefore, CXCR3-related signalling pathways could be potential targets for the treatment of intractable pathological pain.
Collapse
Affiliation(s)
- Kai Li
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of General Dentistry II, Peking University School & Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School & Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Yong-Hui Tan
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Department of Stomatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Shi-Yang Feng
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School & Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Kai-Yuan Fu
- Center for TMD & Orofacial Pain, Peking University School & Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School & Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
49
|
Ferrer-Raventós P, Beyer K. Alternative platelet activation pathways and their role in neurodegenerative diseases. Neurobiol Dis 2021; 159:105512. [PMID: 34537329 DOI: 10.1016/j.nbd.2021.105512] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE OF THE REVIEW The study of platelets in the context of neurodegenerative diseases is intensifying, and increasing evidence suggests that platelets may play an important role in the pathogenesis of neurodegenerative disorders. Therefore, we aim to provide a comprehensive overview of the role of platelets and their diverse activation pathways in the development of these diseases. RECENT FINDINGS Platelets participate in synaptic plasticity, learning, memory, and platelets activated by exercise promote neuronal differentiation in several brain regions. Platelets also contribute to the immune response by modulating their surface protein profile and releasing pro- and anti-inflammatory mediators. In Alzheimer's disease, increased levels of platelet amyloid precursor protein raise the production of amyloid-beta peptides promoting platelet activation, triggering at the same time amyloid-beta fibrillation. In Parkinson's disease, increased platelet α-synuclein is associated with elevated ROS production and mitochondrial dysfunction. SUMMARY In this review, we revise different platelet activation pathways, those classically involved in hemostasis and wound healing, and alternative activation pathways recently described in the context of neurodegenerative diseases, especially in Alzheimer's disease.
Collapse
Affiliation(s)
- Paula Ferrer-Raventós
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Katrin Beyer
- Department of Pathology, Germans Trias i Pujol Research Institute (IGTP), Universitat Autònoma de Barcelona (UAB), 08916 Badalona, Barcelona, Spain.
| |
Collapse
|
50
|
Desu HL, Illiano P, Choi JS, Ascona MC, Gao H, Lee JK, Brambilla R. TNFR2 Signaling Regulates the Immunomodulatory Function of Oligodendrocyte Precursor Cells. Cells 2021; 10:1785. [PMID: 34359956 PMCID: PMC8306473 DOI: 10.3390/cells10071785] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a neuroimmune disorder characterized by inflammation, CNS demyelination, and progressive neurodegeneration. Chronic MS patients exhibit impaired remyelination capacity, partly due to the changes that oligodendrocyte precursor cells (OPCs) undergo in response to the MS lesion environment. The cytokine tumor necrosis factor (TNF) is present in the MS-affected CNS and has been implicated in disease pathophysiology. Of the two active forms of TNF, transmembrane (tmTNF) and soluble (solTNF), tmTNF signals via TNFR2 mediating protective and reparative effects, including remyelination, whereas solTNF signals predominantly via TNFR1 promoting neurotoxicity. To better understand the mechanisms underlying repair failure in MS, we investigated the cellular responses of OPCs to inflammatory exposure and the specific role of TNFR2 signaling in their modulation. Following treatment of cultured OPCs with IFNγ, IL1β, and TNF, we observed, by RNA sequencing, marked inflammatory and immune activation of OPCs, accompanied by metabolic changes and dysregulation of their proliferation and differentiation programming. We also established the high likelihood of cell-cell interaction between OPCs and microglia in neuroinflammatory conditions, with OPCs able to produce chemokines that can recruit and activate microglia. Importantly, we showed that these functions are exacerbated when TNFR2 is ablated. Together, our data indicate that neuroinflammation leads OPCs to shift towards an immunomodulatory phenotype while diminishing their capacity to proliferate and differentiate, thus impairing their repair function. Furthermore, we demonstrated that TNFR2 plays a key role in this process, suggesting that boosting TNFR2 activation or its downstream signals could be an effective strategy to restore OPC reparative capacity in demyelinating disease.
Collapse
Affiliation(s)
- Haritha L. Desu
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
| | - Placido Illiano
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
| | - James S. Choi
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
| | - Maureen C. Ascona
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
| | - Han Gao
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Jae K. Lee
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (H.L.D.); (P.I.); (J.S.C.); (M.C.A.); (H.G.); (J.K.L.)
- Department of Neurobiology Research, Institute of Molecular Medicine, and BRIDGE—Brain Research Inter Disciplinary Guided Excellence, 5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|