1
|
Price AD, Becker ER, Baucom MR, Archdeacon CM, Smith MP, Schuster R, Caskey C, Blakeman TC, Strilka RJ, Pritts TA, Goodman MD. Hypobaric Conditions in Cabin Altitude Restricted Aeromedical Evacuation Induce Systemic Inflammation Following Porcine Traumatic Brain Injury. Mil Med 2025:usaf141. [PMID: 40266609 DOI: 10.1093/milmed/usaf141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025] Open
Abstract
INTRODUCTION Secondary injury following traumatic brain injury (TBI) commonly results from hypoxia. Cabin Altitude Restriction (CAR) is used in postinjury aeromedical evacuation (AE) to reduce the hypobaric effects of flight on wounded warriors. Previous work has shown increased inflammation after high altitude exposure following TBI. The aim of this study is to determine the level of systemic inflammation induced by the hypobaric conditions of CAR after TBI. METHODS Forty-eight female pigs were utilized to test TBI vs. sham, CAR hypobaria and standard cabin (SC) hypobaria vs. ground conditions; as well as relative hypoxia. Traumatic brain injury was induced by controlled cortical injury. Hypobaric conditions were established in an altitude chamber at levels of 5000 ft (CAR) or 8000 ft (SC) for 90 min with or without relative hypoxia (95% SpO2 for 5000 ft or 90% SpO2 for 8000 ft) while at altitude. Serum cytokines were analyzed via enzyme linked immunosorbent assay at the 90-min and 6-h post-injury timepoints. RESULTS Serum interleukin (IL)-1b, IL-6, and tumor necrosis factor-alpha were significantly elevated following TBI with exposure to altitude-induced hypobaria/hypoxia at CAR and SC altitude pressure compared to ground level, normoxic conditions. This increase in cytokine release was present immediately post-flight and following 4 h of post-flight observation. CONCLUSIONS The CAR-prescribed cabin altitude of 5000 ft may not be sufficient in ameliorating altitude-induced inflammatory cytokine release following TBI. This altitude effect was not rescued with supplemental oxygen to promote SpO2 of 100%, demonstrating a hypobaric effect independent of altitude-related hypoxia. Further study may focus on delayed AE after injury rather than CAR for early post-injury flight.
Collapse
Affiliation(s)
- Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ellen R Becker
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chad M Archdeacon
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Maia P Smith
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Rebecca Schuster
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Chelsea Caskey
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas C Blakeman
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Richard J Strilka
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
- Center for Sustainment of Trauma and Readiness Skills (CSTARS), Cincinnati, OH 45267, USA
| | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael D Goodman
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Price AD, Baucom MR, Becker ER, Archdeacon CM, Smith MP, Caskey C, Schuster R, Blakeman TC, Strilka RJ, Pritts TA, Goodman MD. Systemic Inflammatory Effect of Hypobaria During Aeromedical Evacuation after Porcine Traumatic Brain Injury. J Am Coll Surg 2024; 239:430-442. [PMID: 38770953 DOI: 10.1097/xcs.0000000000001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI)-related morbidity is caused largely by secondary injury resulting from hypoxia, excessive sympathetic drive, and uncontrolled inflammation. Aeromedical evacuation (AE) is used by the military for transport of wounded soldiers to higher levels of care. We hypothesized that the hypobaric, hypoxic conditions of AE may exacerbate uncontrolled inflammation after TBI that could contribute to more severe TBI-related secondary injury. STUDY DESIGN Thirty-six female pigs were used to test TBI vs Sham TBI, hypoxia vs normoxia, and hypobaria vs ground conditions. TBI was induced by controlled cortical injury, hypobaric conditions of 12,000 ft were established in an altitude chamber, and hypoxic exposure was titrated to 85% SpO 2 while at altitude. Serum cytokines, ubiquitin C-terminal hydrolase L1, and TBI biomarkers were analyzed via ELISA. Gross analysis and staining of cortex and hippocampus tissue was completed for glial fibrillary acidic protein and phosphorylated tau. RESULTS Serum interleukin-1β, interleukin-6, and tumor necrosis factor-α were significantly elevated after TBI in pigs exposed to altitude-induced hypobaria/hypoxia, as well as hypobaria alone, compared with ground level/normoxia. No difference in TBI biomarkers after TBI or hypobaric, hypoxic exposure was noted. No difference in brain tissue glial fibrillary acidic protein or phosphorylated tau when comparing the most different conditions of Sham TBI + ground or normoxia with the TBI + hypobaria/hypoxia group was noted. CONCLUSIONS The hypobaric environment of AE induces systemic inflammation after TBI. Severe inflammation may play a role in exacerbating secondary injury associated with TBI and contribute to worse neurocognitive outcomes. Measures should be taken to minimize barometric and oxygenation changes during AE after TBI.
Collapse
Affiliation(s)
- Adam D Price
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Matthew R Baucom
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Ellen R Becker
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Chad M Archdeacon
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Maia P Smith
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Chelsea Caskey
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Rebecca Schuster
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Thomas C Blakeman
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Richard J Strilka
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
- United States Air Force Center for Sustainment of Trauma and Readiness Skills, Cincinnati, OH (Strilka)
| | - Timothy A Pritts
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| | - Michael D Goodman
- From the Department of Surgery, University of Cincinnati, Cincinnati, OH (Price, Baucom, Becker, Archdeacon, Smith, Caskey, Schuster, Blakeman, Strilka, Pritts, Goodman)
| |
Collapse
|
3
|
Radhakrishnan V, Golla U, Kudva AK. Role of Immune Cells and Immunotherapy in Multiple Myeloma. Life (Basel) 2024; 14:461. [PMID: 38672732 PMCID: PMC11050867 DOI: 10.3390/life14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The clinical signs of multiple myeloma, a plasma cell (PC) dyscrasia, include bone loss, renal damage, and paraproteinemia. It can be defined as the uncontrolled growth of malignant PCs within the bone marrow. The distinctive bone marrow milieu that regulates the progression of myeloma disease involves interactions between plasma and stromal cells, and myeloid and lymphoid cells. These cells affect the immune system independently or because of a complicated web of interconnections, which promotes disease development and immune evasion. Due to the importance of these factors in the onset of disease, various therapeutic strategies have been created that either target or improve the immunological processes that influence disease progression. The immune system has a role in the mechanism of action of multiple myeloma treatments. The main contributions of immune cells to the bone marrow microenvironment, as well as how they interact and how immune regulation might lead to therapeutic effects, are covered in this study.
Collapse
Affiliation(s)
- Vijay Radhakrishnan
- Department of Surgery, Ellis Fischel Cancer Center, Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA;
| | - Upendarrao Golla
- Department of Medicine, Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, Mangaluru 574199, India
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Stockem CF, Galsky MD, van der Heijden MS. Turning up the heat: CTLA4 blockade in urothelial cancer. Nat Rev Urol 2024; 21:22-34. [PMID: 37608154 DOI: 10.1038/s41585-023-00801-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/24/2023]
Abstract
Anti-PD1 and anti-PDL1 monotherapies have shown clinical efficacy in stage IV urothelial cancer and are integrated into current clinical practice. However, only a small number of the patients treated with single-agent checkpoint blockade experience an antitumour response. Insufficient priming or inhibitory factors in the tumour immune microenvironment might have a role in the lack of response. CTLA4 is an inhibitory checkpoint on activated T cells that is being studied as a therapeutic target in combination with anti-PD1 or anti-PDL1 therapies in advanced urothelial cancer. In locally advanced urothelial cancer, this combination approach has shown encouraging antitumour effects when administered pre-operatively. We believe that the presence of pre-existing intratumoural T cell immunity is not a prerequisite for response to combination therapy and that the additional value of CTLA4 blockade might involve the broadening of peripheral T cell priming, thereby transforming immunologically cold tumours into hot tumours.
Collapse
Affiliation(s)
- Chantal F Stockem
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Matthew D Galsky
- Department of Genitourinary Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | | |
Collapse
|
5
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Liu X, Shi Y, Zhang D, Zhou Q, Liu J, Chen M, Xu Y, Zhao J, Zhong W, Wang M. Risk factors for immune-related adverse events: what have we learned and what lies ahead? Biomark Res 2021; 9:79. [PMID: 34732257 PMCID: PMC8565046 DOI: 10.1186/s40364-021-00314-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have heralded the advent of a new era in oncology by holding the promise of prolonged survival in severe and otherwise treatment-refractory advanced cancers. However, the remarkable antitumor efficacy of these agents is overshadowed by their potential for inducing autoimmune toxic effects, collectively termed immune-related adverse events (irAEs). These autoimmune adverse effects are often difficult to predict, possibly permanent, and occasionally fatal. Hence, the identification of risk factors for irAEs is urgently needed to allow for prompt therapeutic intervention. This review discusses the potential mechanisms through which irAEs arise and summarizes the existing evidence regarding risk factors associated with the occurrence of irAEs. In particular, we examined available data regarding the effect of a series of clinicopathological and demographic factors on the risk of irAEs.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Yuequan Shi
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Dongming Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Qing Zhou
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Jia Liu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Minjiang Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China
| | - Wei Zhong
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No 1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No 1 Shuaifuyuan Wangfujing, Dongcheng District, 100730, Beijing, China.
| |
Collapse
|
7
|
Fitzgerald B, Connolly KA, Cui C, Fagerberg E, Mariuzza DL, Hornick NI, Foster GG, William I, Cheung JF, Joshi NS. A mouse model for the study of anti-tumor T cell responses in Kras-driven lung adenocarcinoma. CELL REPORTS METHODS 2021; 1:100080. [PMID: 34632444 PMCID: PMC8500377 DOI: 10.1016/j.crmeth.2021.100080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023]
Abstract
Kras-driven lung adenocarcinoma (LUAD) is the most common lung cancer. A significant fraction of patients with Kras-driven LUAD respond to immunotherapy, but mechanistic studies of immune responses against LUAD have been limited because of a lack of immunotherapy-responsive models. We report the development of the immunogenic KP × NINJA (inversion inducible joined neoantigen) (KP-NINJA) LUAD model. This model allows temporal uncoupling of antigen and tumor induction, which allows one to wait until after infection-induced inflammation has subsided to induce neoantigen expression by tumors. Neoantigen expression is restricted to EPCAM+ cells in the lung and expression of neoantigen was more consistent between tumors than when neoantigens were encoded on lentiviruses. Moreover, tumors were infiltrated by tumor-specific CD8 T cells. Finally, LUAD cell lines derived from KP-NINJA mice were immunogenic and responded to immune checkpoint therapy (anti-PD1 and anti-CTLA4), providing means for future studies into the immunobiology of therapeutic responses in LUAD.
Collapse
Affiliation(s)
- Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Kelli A. Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Dylan L. Mariuzza
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Noah I. Hornick
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Gena G. Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ivana William
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Julie F. Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Nikhil S. Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
8
|
Zhai Y, Moosavi R, Chen M. Immune Checkpoints, a Novel Class of Therapeutic Targets for Autoimmune Diseases. Front Immunol 2021; 12:645699. [PMID: 33968036 PMCID: PMC8097144 DOI: 10.3389/fimmu.2021.645699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases, such as multiple sclerosis and type-1 diabetes, are the outcomes of a failure of immune tolerance. Immune tolerance is sustained through interplays between two inter-dependent clusters of immune activities: immune stimulation and immune regulation. The mechanisms of immune regulation are exploited as therapeutic targets for the treatment of autoimmune diseases. One of these mechanisms is immune checkpoints (ICPs). The roles of ICPs in maintaining immune tolerance and hence suppressing autoimmunity were revealed in animal models and validated by the clinical successes of ICP-targeted therapeutics for autoimmune diseases. Recently, these roles were highlighted by the clinical discovery that the blockade of ICPs causes autoimmune disorders. Given the crucial roles of ICPs in immune tolerance, it is plausible to leverage ICPs as a group of therapeutic targets to restore immune tolerance and treat autoimmune diseases. In this review, we first summarize working mechanisms of ICPs, particularly those that have been utilized for therapeutic development. Then, we recount the agents and approaches that were developed to target ICPs and treat autoimmune disorders. These agents take forms of fusion proteins, antibodies, nucleic acids, and cells. We also review and discuss safety information for these therapeutics. We wrap up this review by providing prospects for the development of ICP-targeting therapeutics. In summary, the ever-increasing studies and results of ICP-targeting of therapeutics underscore their tremendous potential to become a powerful class of medicine for autoimmune diseases.
Collapse
Affiliation(s)
- Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Reza Moosavi
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Mingnan Chen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
9
|
GWAS for autoimmune Addison's disease identifies multiple risk loci and highlights AIRE in disease susceptibility. Nat Commun 2021; 12:959. [PMID: 33574239 PMCID: PMC7878795 DOI: 10.1038/s41467-021-21015-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10-8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7-4.3), P = 9.0 × 10-25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h2).
Collapse
|
10
|
Sufficiency of CD40 activation and immune checkpoint blockade for T cell priming and tumor immunity. Proc Natl Acad Sci U S A 2020; 117:8022-8031. [PMID: 32213589 DOI: 10.1073/pnas.1918971117] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Innate immune receptors such as toll-like receptors (TLRs) provide critical molecular links between innate cells and adaptive immune responses. Here, we studied the CD40 pathway as an alternative bridge between dendritic cells (DCs) and adaptive immunity in cancer. Using an experimental design free of chemo- or radiotherapy, we found CD40 activation with agonistic antibodies (⍺CD40) produced complete tumor regressions in a therapy-resistant pancreas cancer model, but only when combined with immune checkpoint blockade (ICB). This effect, unachievable with ICB alone, was independent of TLR, STING, or IFNAR pathways. Mechanistically, αCD40/ICB primed durable T cell responses, and efficacy required DCs and host expression of CD40. Moreover, ICB drove optimal generation of polyfunctional T cells in this "cold" tumor model, instead of rescuing T cell exhaustion. Thus, immunostimulation via αCD40 is sufficient to synergize with ICB for priming. Clinically, combination αCD40/ICB may extend efficacy in patients with "cold" and checkpoint-refractory tumors.
Collapse
|
11
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Gonzalez-Nieto L, Castro IM, Bischof GF, Shin YC, Ricciardi MJ, Bailey VK, Dang CM, Pedreño-Lopez N, Magnani DM, Ejima K, Allison DB, Gil HM, Evans DT, Rakasz EG, Lifson JD, Desrosiers RC, Martins MA. Vaccine protection against rectal acquisition of SIVmac239 in rhesus macaques. PLoS Pathog 2019; 15:e1008015. [PMID: 31568531 PMCID: PMC6791558 DOI: 10.1371/journal.ppat.1008015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
A prophylactic vaccine against human immunodeficiency virus (HIV) remains a top priority in biomedical research. Given the failure of conventional immunization protocols to confer robust protection against HIV, new and unconventional approaches may be needed to generate protective anti-HIV immunity. Here we vaccinated rhesus macaques (RMs) with a recombinant (r)DNA prime (without any exogenous adjuvant), followed by a booster with rhesus monkey rhadinovirus (RRV)-a herpesvirus that establishes persistent infection in RMs (Group 1). Both the rDNA and rRRV vectors encoded a near-full-length simian immunodeficiency virus (SIVnfl) genome that assembles noninfectious SIV particles and expresses all nine SIV gene products. This rDNA/rRRV-SIVnfl vaccine regimen induced persistent anti-Env antibodies and CD8+ T-cell responses against the entire SIV proteome. Vaccine efficacy was assessed by repeated, marginal-dose, intrarectal challenges with SIVmac239. Encouragingly, vaccinees in Group 1 acquired SIVmac239 infection at a significantly delayed rate compared to unvaccinated controls (Group 3). In an attempt to improve upon this outcome, a separate group of rDNA/rRRV-SIVnfl-vaccinated RMs (Group 2) was treated with a cytotoxic T-lymphocyte antigen-4 (CTLA-4)-blocking monoclonal antibody during the vaccine phase and then challenged in parallel with Groups 1 and 3. Surprisingly, Group 2 was not significantly protected against SIVmac239 infection. In sum, SIVnfl vaccination can protect RMs against rigorous mucosal challenges with SIVmac239, a feat that until now had only been accomplished by live-attenuated strains of SIV. Further work is needed to identify the minimal requirements for this protection and whether SIVnfl vaccine efficacy can be improved by means other than anti-CTLA-4 adjuvant therapy.
Collapse
Affiliation(s)
- Lucas Gonzalez-Nieto
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Isabelle M. Castro
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Georg F. Bischof
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Young C. Shin
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Michael J. Ricciardi
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Varian K. Bailey
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Christine M. Dang
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Nuria Pedreño-Lopez
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Diogo M. Magnani
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Keisuke Ejima
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, Indiana, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - David T. Evans
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Ronald C. Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Mauricio A. Martins
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
13
|
Czaja AJ. Immune inhibitory proteins and their pathogenic and therapeutic implications in autoimmunity and autoimmune hepatitis. Autoimmunity 2019; 52:144-160. [PMID: 31298041 DOI: 10.1080/08916934.2019.1641200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Key inhibitory proteins can blunt immune responses to self-antigens, and deficiencies in this repertoire may promote autoimmunity. The goals of this review are to describe the key immune inhibitory proteins, indicate their possible impact on the development of autoimmune disease, especially autoimmune hepatitis, and encourage studies to clarify their pathogenic role and candidacy as therapeutic targets. English abstracts were identified in PubMed by multiple search terms. Full length articles were selected for review, and secondary and tertiary bibliographies were developed. Cytotoxic T lymphocyte antigen-4 impairs ligation of CD28 to B7 ligands on antigen presenting cells and inhibits the adaptive immune response by increasing anti-inflammatory cytokines, generating regulatory T cells, and reducing T cell activation and proliferation. Programed cell death antigen-1 inhibits T cell selection, activation, and proliferation by binding with two ligands at different phases and locations of the immune response. A soluble alternatively spliced variant of this protein can dampen the inhibitory signal. Autoimmune hepatitis has been associated with polymorphisms of the cytotoxic T lymphocyte antigen-4 gene, reduced hepatic expression of a ligand of programed cell death antigen-1, an interfering soluble variant of this key inhibitory protein, and antibodies against it. Findings have been associated with laboratory indices of liver injury and suboptimal treatment response. Abatacept, belatacept, CD28 blockade, and induction of T cell exhaustion are management considerations that require scrutiny. In conclusion, deficiencies in key immune inhibitory proteins may promote the occurrence of autoimmune diseases, such as autoimmune hepatitis, and emerging interventions may overcome these deficiencies. Investigations should define the nature, impact and management of these inhibitory disturbances in autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science , Rochester , MN , USA
| |
Collapse
|
14
|
Co-signal Molecules in T-Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:3-23. [DOI: 10.1007/978-981-32-9717-3_1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Fike AJ, Kumova OK, Tardif VJ, Carey AJ. Neonatal influenza-specific effector CTLs retain elevated CD31 levels at the site of infection and have decreased IFN-γ production. J Leukoc Biol 2018; 105:539-549. [PMID: 30536476 DOI: 10.1002/jlb.4a0518-191r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/08/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
The underlying mechanisms that regulate neonatal immune suppression are poorly characterized. CD31 (PECAM1) is highly expressed on neonatal lymphocytes and is a known modulator of TCR signaling. To further characterize the role of CD31 in the neonatal CTL response, 3-d and 7-d-old murine neonates were infected with influenza virus and compared to adults. The majority of the pulmonary viral-specific CTLs in the 3-d-old murine neonate retain CD31 expression, whereas adult CTLs have decreased CD31 expression. In addition, CD31+ neonatal viral-specific CTLs demonstrate decreased IFN-γ production, decreased proliferative capacity, and increased likelihood of death. At the peak of infection, sorted neonatal effector CTLs continue to transcribe CD31, indicating a developmental regulation of expression. To explore potential mechanisms for this reduced function, we compared the expression of the transcription factors Eomesodermin (Eomes) and T-bet; there was a significant increase in Eomes paired with a reduction in T-bet in CD31+ neonatal effector CTLs in the lung. Furthermore, in vitro stimulated neonatal CTLs significantly reduce IFN-γ production upon CD31 signaling. Altogether, these data indicate that neonatal CTLs may retain elevated levels of CD31 to maintain peripheral T cell suppression during the bridge to ex utero life.
Collapse
Affiliation(s)
- Adam J Fike
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ogan K Kumova
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Virginie J Tardif
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alison J Carey
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Pediatrics, St. Christopher's Hospital for Children, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
16
|
Machicote A, Belén S, Baz P, Billordo LA, Fainboim L. Human CD8 +HLA-DR + Regulatory T Cells, Similarly to Classical CD4 +Foxp3 + Cells, Suppress Immune Responses via PD-1/PD-L1 Axis. Front Immunol 2018; 9:2788. [PMID: 30555473 PMCID: PMC6281883 DOI: 10.3389/fimmu.2018.02788] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/12/2018] [Indexed: 01/12/2023] Open
Abstract
We have previously identified a human CD8+HLA-DR+ regulatory T cell subset with the ability to suppress proliferation of autologous PBMCs responder cells through cell contact and CTLA-4 co-inhibitory molecule. The present study characterizes the complete phenotype of CD8+HLA-DR+ Treg cells which showed great similarities with classical CD4+ cells expressing forkhead box P3 (FOXP3). The shared features included the expression of programmed cell death protein 1 (PD-1), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), C-C chemokine receptor type 4 and 5 (CCR4 and CCR5), low expression of CD127, and a memory and effector-like phenotype. CD8+HLA-DR+ Treg-induced suppression on CD8+ responder T cells was abrogated by an anti-PD1 neutralizing antibody. Anti-PD-1 did not abrogate the suppressor effect induced on responder CD4+ T cells. In addition, CD8+HLA-DR+ Treg induced a preferential death on responder CD8+ T cells. This effect was not reversed by PD-1 neutralization. After activation, most CD8+HLA-DR+ Treg acquire programmed death-ligand 1 (PD-L1) expression. Interestingly, PD-L1 may induce apoptosis through CD80 expressed on activated CD8+ responder T cells. After PBMCs stimulation, CD8+HLA-DR+ Treg cells showed an increased frequency of IFN-γ and TNFα positive cells and higher degranulation. These data strongly argue against CD8+HLA-DR+ Treg being exhausted cells. Overall, the data presented in this study indicate that CD8+HLA-DR+ Treg and CD4+FOXP3+ Treg share phenotypic and functional features, which may provide cues to similar involvements in the control of antitumor immune responses and autoimmunity.
Collapse
Affiliation(s)
- Andres Machicote
- Laboratorio de Inmunogenética, Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Santiago Belén
- Laboratorio de Inmunogenética, Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Placida Baz
- Laboratorio de Inmunogenética, Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luis A Billordo
- Laboratorio de Inmunogenética, Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Leonardo Fainboim
- Laboratorio de Inmunogenética, Facultad de Farmacia y Bioquímica, Instituto de Inmunología, Genética y Metabolismo, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.,Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
17
|
Pierotti MA. The molecular understanding of cancer: from the unspeakable illness to a curable disease. Ecancermedicalscience 2017; 11:747. [PMID: 28690678 PMCID: PMC5481195 DOI: 10.3332/ecancer.2017.747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 12/30/2022] Open
Abstract
The beginning of our understanding of the molecular basis of cancer and the discovery in the 1980s of cancer associated genes, oncogenes, and tumour suppressor genes has led to cancer becoming a treatable condition rather than an unspeakable disease. In 1971, the then USA President, Richard Nixon, declared ‘war against cancer’ with a far too optimistic perspective of winning in just a few years. This tactic failed because our knowledge of the disease was still very limited and even its origin—viral or due to exposure to external agents—was still highly debated. A better understanding of the cause(s) of the origin of cancer led to its definition as a genetic disease at the somatic level and heralded a new era for molecular diagnosis and the development of more mechanistic evidence-based, targeted cancer therapies. However, the initial positive results were soon overshadowed by a major limitation of targeted agents, namely resistance mechanisms, which still represent an obstacle for the full eradication of the disease. More recently, effective therapeutic approaches have been developed in the field of ‘immunotherapy’. The combination of novel therapies will hopefully result in effective cancer growth control and make the disease ‘chronic’. The launch of the ‘Moonshot Cancer Program’ by President Barack Obama aims to significantly reduce cancer deaths in the next decade—let us see.
Collapse
Affiliation(s)
- Marco A Pierotti
- FIRC Institute of Molecular Oncology (IFOM), via Adamello, 16 20136, Milan, Italy
| |
Collapse
|
18
|
Patsoukis N, Weaver JD, Strauss L, Herbel C, Seth P, Boussiotis VA. Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Front Immunol 2017; 8:330. [PMID: 28443090 PMCID: PMC5387055 DOI: 10.3389/fimmu.2017.00330] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/08/2017] [Indexed: 12/18/2022] Open
Abstract
Host immunity provides wide spectrum protection that serves to eradicate pathogens and cancer cells, while maintaining self-tolerance and immunological homeostasis. Ligation of the T cell receptor (TCR) by antigen activates signaling pathways that coordinately induce aerobic glycolysis, mitochondrial activity, anabolic metabolism, and T effector cell differentiation. Activation of PI3K, Akt, and mTOR triggers the switch to anabolic metabolism by inducing transcription factors such as Myc and HIF1, and the glucose transporter Glut1, which is pivotal for the increase of glucose uptake after T cell activation. Activation of MAPK signaling is required for glucose and glutamine utilization, whereas activation of AMPK is critical for energy balance and metabolic fitness of T effector and memory cells. Coinhibitory receptors target TCR-proximal signaling and generation of second messengers. Imbalanced activation of such signaling pathways leads to diminished rates of aerobic glycolysis and impaired mitochondrial function resulting in defective anabolic metabolism and altered T cell differentiation. The coinhibitory receptors mediate distinct and synergistic effects on the activation of signaling pathways thereby modifying metabolic programs of activated T cells and resulting in altered immune functions. Understanding and therapeutic targeting of metabolic programs impacted by coinhibitory receptors might have significant clinical implications for the treatment of chronic infections, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Nikolaos Patsoukis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica D Weaver
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Laura Strauss
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christoph Herbel
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pankaj Seth
- Division of Interdisciplinary Medicine and Biotechnology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
19
|
Moy JD, Moskovitz JM, Ferris RL. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur J Cancer 2017; 76:152-166. [PMID: 28324750 DOI: 10.1016/j.ejca.2016.12.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/26/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive malignancy with high morbidity and mortality. Despite advances in cytotoxic therapies and surgical techniques, overall survival (OS) has not improved over the past few decades. This emphasises the need for intense investigation into novel therapies with good tumour control and minimal toxicity. Cancer immunotherapy has led this endeavour, attempting to improve tumour recognition and expand immune responses against tumour cells. While various forms of HNSCC immunotherapy are in preclinical trials, the most promising direction thus far has been with monoclonal antibodies (mAbs), targeting growth factor and immune checkpoint receptors. Preclinical and early phase trials have shown unprecedented efficacy with minimal adverse effects. This article will review biological mechanisms of immune escape and implications for immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Jennifer D Moy
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Abstract
The response of peripheral T lymphocytes (T cell) is controlled by multiple checkpoints to avoid unwanted activation against self-tissues. Two opposing costimulatory receptors, CD28 and CTLA-4, on T cells bind to the same ligands (CD80 and CD86) on antigen-presenting cells (APCs), and provide positive and negative feedback for T-cell activation, respectively. Early studies suggested that CTLA-4 is induced on activated T cells and binds to CD80/CD86 with much stronger affinity than CD28, providing a competitive inhibition. Subsequent studies by many researchers revealed the more complex mode of T-cell inhibition by CTLA-4. After T-cell activation, CTLA-4 is stored in the intracellular vesicles, and recruited to the immunological synapse formed between T cells and APCs, and inhibits further activation of T cells by blocking signals initiated by T-cell receptors and CD28. CTLA-4-positive cells can also provide cell-extrinsic regulation on other autoreactive T cells, and are considered to provide an essential regulatory mechanism for FoxP3+ regulatory T cells. Genetic deficiency of CTLA-4 leads to CD28-mediated severe autoimmunity in mice and humans, suggesting its function as a fundamental brake that restrains the expansion and activation of self-reactive T cells. In cancer, therapeutic approaches targeting CTLA-4 by humanized blocking antibodies has been demonstrated to be an effective immunotherapy by reversing T-cell tolerance against tumors. This chapter introduces CTLA-4 biology, including its discovery and mechanism of action, and discusses questions related to CTLA-4.
Collapse
Affiliation(s)
- Shunsuke Chikuma
- Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
21
|
Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, H. Busch D, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 2016; 7:13404. [PMID: 27869121 PMCID: PMC5121339 DOI: 10.1038/ncomms13404] [Citation(s) in RCA: 512] [Impact Index Per Article: 56.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 09/30/2016] [Indexed: 02/07/2023] Open
Abstract
Although mutations may represent attractive targets for immunotherapy, direct identification of mutated peptide ligands isolated from human leucocyte antigens (HLA) on the surface of native tumour tissue has so far not been successful. Using advanced mass spectrometry (MS) analysis, we survey the melanoma-associated immunopeptidome to a depth of 95,500 patient-presented peptides. We thereby discover a large spectrum of attractive target antigen candidates including cancer testis antigens and phosphopeptides. Most importantly, we identify peptide ligands presented on native tumour tissue samples harbouring somatic mutations. Four of eleven mutated ligands prove to be immunogenic by neoantigen-specific T-cell responses. Moreover, tumour-reactive T cells with specificity for selected neoantigens identified by MS are detected in the patient's tumour and peripheral blood. We conclude that direct identification of mutated peptide ligands from primary tumour material by MS is possible and yields true neoepitopes with high relevance for immunotherapeutic strategies in cancer.
Collapse
Affiliation(s)
- Michal Bassani-Sternberg
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Eva Bräunlein
- IIIrd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Richard Klar
- IIIrd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Thomas Engleitner
- IInd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Pavel Sinitcyn
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Stefan Audehm
- IIIrd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Melanie Straub
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Julia Weber
- IInd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julia Slotta-Huspenina
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- MRI-TUM-Biobank at the Institute of Pathology, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Katja Specht
- Institute of Pathology, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
| | - Marc E. Martignoni
- Surgery Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich, 81675, Germany
| | - Angelika Werner
- Surgery Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich, 81675, Germany
| | - Rüdiger Hein
- Dermatology Department, Klinikum rechts der Isar, Technische Universität München, Biedersteiner Str 29, Munich 80802, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Trogerstr. 30, Munich 81675, Germany
| | - Christian Peschel
- IIIrd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Roland Rad
- IInd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Angela M. Krackhardt
- IIIrd Medical Department, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, Munich 81675, Germany
- German Cancer Consortium of Translational Cancer Research (DKTK) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| |
Collapse
|
22
|
Wang SD, Li HY, Li BH, Xie T, Zhu T, Sun LL, Ren HY, Ye ZM. The role of CTLA-4 and PD-1 in anti-tumor immune response and their potential efficacy against osteosarcoma. Int Immunopharmacol 2016; 38:81-9. [PMID: 27258185 DOI: 10.1016/j.intimp.2016.05.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/02/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022]
Abstract
Immunotherapy is proved to be a promising therapeutic strategy against human malignancies. Evasion of immune surveillance is considered to be a major factor of malignant progression. Inhibitory receptors, especially CTLA-4 and PD-1, are found to play critical roles in the mediation of anti-tumor immune efficacy. Thus, antibodies targeting these immune checkpoints have emerged as the attractive treatment approaches to those patients with cancer. Osteosarcoma is highly malignant and current treatment remains a challenge, especially for those patients with metastasis. Despite some achievements, the effect of immunotherapy against osteosarcoma is still unsatisfactory. The present review attempts to show the role and mechanism of CTLA-4 and PD-1 in immune response and summarize the recent findings related to the effect of inhibitory receptor antibodies on the immune response against tumors, especially osteosarcoma, and the correlation between PD-1 or/and CTLA-4 expression and outcome of osteosarcoma patients. We further discuss the utilization of the combination therapy against osteosarcoma.
Collapse
Affiliation(s)
- Sheng-Dong Wang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Heng-Yuan Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Bing-Hao Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Tao Xie
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Ting Zhu
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Ling-Ling Sun
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Hai-Yong Ren
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China
| | - Zhao-Ming Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, No.88, Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
23
|
Ward FJ, Dahal LN, Khanolkar RC, Shankar SP, Barker RN. Targeting the alternatively spliced soluble isoform of CTLA-4: prospects for immunotherapy? Immunotherapy 2015; 6:1073-84. [PMID: 25428646 DOI: 10.2217/imt.14.73] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
CTLA-4 is an inhibitory protein that contributes to immune homeostasis and tolerance, a role that has led to its exploitation as a therapeutic in several clinical settings including cancer and autoimmune disease. Development of CTLA-4 therapies focused largely on the full-length receptor isoform but other CTLA-4 isoforms are also expressed, including a secretable form of CTLA-4 (soluble CTLA-4 [sCTLA-4]). The contribution of sCTLA-4 to immune regulation has been less well studied, primarily because it was identified some years after the original description of CTLA-4. Here, we examine how sCTLA-4 might contribute to immune regulation and ask whether it might be a biomarker to inform current CTLA-4 therapies or represent a novel CTLA-4 target for future therapeutics.
Collapse
Affiliation(s)
- Frank J Ward
- Section of Immunology & Infection, Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | | | | | | | | |
Collapse
|
24
|
Pedicord VA, Cross JR, Montalvo-Ortiz W, Miller ML, Allison JP. Friends not foes: CTLA-4 blockade and mTOR inhibition cooperate during CD8+ T cell priming to promote memory formation and metabolic readiness. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:2089-98. [PMID: 25624453 DOI: 10.4049/jimmunol.1402390] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory.
Collapse
Affiliation(s)
- Virginia A Pedicord
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and
| | - Welby Montalvo-Ortiz
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Martin L Miller
- Computational Biology Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - James P Allison
- Department of Immunology, Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| |
Collapse
|
25
|
Baksh K, Weber J. Immune checkpoint protein inhibition for cancer: preclinical justification for CTLA-4 and PD-1 blockade and new combinations. Semin Oncol 2015; 42:363-77. [PMID: 25965355 DOI: 10.1053/j.seminoncol.2015.02.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last two decades, our understanding of the molecular basis of immunity has revealed the complexity of regulatory pathways involved in immune responses to cancer. A significant body of data support the critical importance of immune checkpoints in the control of the adaptive immune response to malignancy, and suggest that inhibitors of those checkpoints might have significant utility in treating cancer. This has been borne out by the recent US Food and Drug Administration (FDA) approvals of two different antibodies, one against cytotoxic T-lymphocyte antigen-4 (CTLA-4) and one against programmed death-1 (PD-1). Here, we provide a comprehensive review of the literature regarding the preclinical justification for the use of CTLA-4 and PD-1 blockade as monotherapy, and as combination therapy in the treatment of cancer. The animal data strongly supported the use of these drugs in patients, and in many cases suggested strategies that directly led to successful registration trials. In contrast, many of the toxicities, and some of the unusual response patterns seen in patients with these drugs, were not predicted by the preclinical work that we cite, highlighting the importance of early-phase trials with patients to inform future drug development. In addition, we review herein the preclinical data surrounding emerging immune checkpoint proteins, including BTLA, VISTA, CD160, LAG3, TIM3, and CD244 as potential targets for inhibition. The current comprehensive review of the literature regarding CTLA-4 and PD-1, as well as a number of novel checkpoint proteins demonstrates a strong preclinical basis for the use of these antibodies singly and in combination to overcome checkpoint inhibition in the treatment of cancer. We also suggest that the use of these antibodies may augment the efficacy of other activating immune antibodies, cytokines, radiation, and adoptive cell therapy in human cancer.
Collapse
Affiliation(s)
- Kathryn Baksh
- Donald A. Adam Comprehensive Melanoma Research Center and Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL; University of South Florida School of Medicine, Tampa, FL.
| | - Jeffrey Weber
- Donald A. Adam Comprehensive Melanoma Research Center and Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
26
|
Abstract
The immune system provides defenses against invading pathogens while maintaining immune tolerance to self-antigens. This immune homeostasis is harmonized by the direct interactions between immune cells and the cytokine environment in which immune cells develop and function. Herein, we discuss three non-redundant paradigms by which cytokines maintain or break immune tolerance. We firstly describe how anti-inflammatory cytokines exert direct inhibitory effects on immune cells to enforce immune tolerance, followed by discussing other cytokines that maintain immune tolerance through inducing CD4(+)Foxp3(+) regulatory T cells (Tregs), which negatively control immune cells. Interleukin (IL)-2 is the most potent cytokine in promoting the development and survival of Tregs, thereby mediating immune tolerance. IL-35 is mainly produced by Tregs, but its biology function remains to be defined. Finally, we discuss the actions of proinflammatory cytokines that breach immune tolerance and induce autoimmunity, which include IL-7, IL-12, IL-21, and IL-23. Recent genetic studies have revealed the role of these cytokines (or their cognate receptors) in susceptibility to autoimmune diseases. Taken together, we highlight in this review the cytokine regulation of immune tolerance, which will help in further understanding of human diseases that are caused by dysregulated immune system.
Collapse
Affiliation(s)
- Jie Wu
- Department of Surgery, Center for Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas USA
| | - Aini Xie
- Department of Surgery, Center for Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas USA
| | - Wenhao Chen
- Department of Surgery, Center for Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas USA
| |
Collapse
|
27
|
Intlekofer AM, Thompson CB. At the bench: preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy. J Leukoc Biol 2013; 94:25-39. [PMID: 23625198 DOI: 10.1189/jlb.1212621] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors can avoid immune surveillance by stimulating immune inhibitory receptors that function to turn off established immune responses. By blocking the ability of tumors to stimulate inhibitory receptors on T cells, sustained, anti-tumor immune responses can be generated in animals. Thus, therapeutic blockade of immune inhibitory checkpoints provides a potential method to boost anti-tumor immunity. The CTLA-4 and PD-1Rs represent two T cell-inhibitory receptors with independent mechanisms of action. Preclinical investigations revealed that CTLA-4 enforces an activation threshold and attenuates proliferation of tumor-specific T lymphocytes. In contrast, PD-1 functions primarily as a stop signal that limits T cell effector function within a tumor. The unique mechanisms and sites of action of CTLA-4 and PD-1 suggest that although blockade of either has the potential to promote anti-tumor immune responses, combined blockade of both might offer even more potent anti-tumor activity. See related review At the Bedside: CTLA-4 and PD-1 blocking antibodies in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew M Intlekofer
- Department of Medicine, Cancer Biology and Genetics Program, and Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
28
|
Grosso JF, Jure-Kunkel MN. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. CANCER IMMUNITY 2013; 13:5. [PMID: 23390376 PMCID: PMC3559193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is a key negative regulator of T cell activation. A complex integration of positive and negative co-stimulatory signals in the well-defined B7:CD28/CTLA-4 pathway modulates the generation and maintenance of immune responses. Inhibiting negative regulation through binding of CTLA-4 has been shown to promote stimulation of adaptive immunity and potentiation of T cell activation. CTLA-4-blocking antibodies have demonstrated efficacy in various murine malignancy models when administered as monotherapy; additionally, they have shown synergistic anti-tumor activity when utilized with other agents, such as vaccines, chemotherapy, and radiation. Preclinical studies have supported the rationale for current clinical development of anti-CTLA-4 antibodies, including ipilimumab and tremelimumab, as novel therapeutic strategies to augment anti-tumor immunity in cancer. Both ipilimumab and tremelimumab have been evaluated extensively in melanoma; notably, ipilimumab was recently approved as monotherapy for the treatment of advanced melanoma. Tremelimumab is currently undergoing evaluation in phase II trials as monotherapy in melanoma and malignant mesothelioma, while ipilimumab is under clinical investigation in phase II and III trials in various tumor types, including in melanoma, prostate, and lung cancers as monotherapy and with other therapeutic modalities, such as chemotherapy and radiation. In this review, we will provide a detailed overview of preclinical advances that have delineated many features of CTLA-4 and have helped define its role in T cell response. We will also highlight clinical application of anti-CTLA-4 therapy in cancer and describe knowledge gaps that future studies may address.
Collapse
Affiliation(s)
- Joseph F Grosso
- Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA.
| | | |
Collapse
|
29
|
Corse E, Allison JP. Cutting Edge: CTLA-4 on Effector T Cells Inhibits In Trans. THE JOURNAL OF IMMUNOLOGY 2012; 189:1123-7. [DOI: 10.4049/jimmunol.1200695] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
HBcAg induces PD-1 upregulation on CD4+T cells through activation of JNK, ERK and PI3K/AKT pathways in chronic hepatitis-B-infected patients. J Transl Med 2012; 92:295-304. [PMID: 22042085 DOI: 10.1038/labinvest.2011.157] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hyper-expression of programmed death-1 (PD-1) is a hallmark of exhausted T cells. In chronic hepatitis-B virus (HBV)-infected patients, PD-1 upregulation on T cells was often observed. The mechanism of it has not been fully understood. In this study, we examined the dynamic changes of PD-1 expression on T cells during the natural history of chronic HBV infection and explored the signaling pathway of PD-1 upregulation by the hepatitis-B core antigen (HBcAg). Sixty-seven chronic HBV-infected patients were categorized into an immune tolerance group, an immune clearance group and an inactive virus carrier group, and 20 healthy volunteers were chosen as normal control group. Peripheral blood mononuclear cells from patients and healthy volunteers, and T lymphocytes from healthy volunteers were separated. Results showed that the PD-1 expression level on CD4(+)T cells in every phase of chronic HBV infection was significantly higher than that in healthy volunteers, whereas such effects were not observed on CD8(+)T cells. In the immune clearance phase, a positive correlation was found between serum HBV DNA level and the PD-1 expression level on CD4(+)T cells. In all phases, no correlation was shown between serum alanine amino transferase (ALT) level and PD-1 expression level. Phosphorylation of JNK, ERK and AKT was induced by HBcAg, and inhibitors of JNK, ERK and PI3K/AKT significantly decreased the HBcAg-induced PD-1 upregulation on CD4(+)T cells. In conclusion, the PD-1 expression level on CD4(+)T cells was upregulated in every phase of chronic HBV infection, which was induced by HBcAg through JNK, ERK and PI3K/AKT signaling pathways.
Collapse
|
31
|
Abstract
Cancer immunotherapy consists of approaches that modify the host immune system, and/or the utilization of components of the immune system, as cancer treatment. During the past 25 years, 17 immunologic products have received regulatory approval based on anticancer activity as single agents and/or in combination with chemotherapy. These include the nonspecific immune stimulants BCG and levamisole; the cytokines interferon-α and interleukin-2; the monoclonal antibodies rituximab, ofatumumab, alemtuzumab, trastuzumab, bevacizumab, cetuximab, and panitumumab; the radiolabeled antibodies Y-90 ibritumomab tiuxetan and I-131 tositumomab; the immunotoxins denileukin diftitox and gemtuzumab ozogamicin; nonmyeloablative allogeneic transplants with donor lymphocyte infusions; and the anti-prostate cancer cell-based therapy sipuleucel-T. All but two of these products are still regularly used to treat various B- and T-cell malignancies, and numerous solid tumors, including breast, lung, colorectal, prostate, melanoma, kidney, glioblastoma, bladder, and head and neck. Positive randomized trials have recently been reported for idiotype vaccines in lymphoma and a peptide vaccine in melanoma. The anti-CTLA-4 monoclonal antibody ipilumumab, which blocks regulatory T-cells, is expected to receive regulatory approval in the near future, based on a randomized trial in melanoma. As the fourth modality of cancer treatment, biotherapy/immunotherapy is an increasingly important component of the anticancer armamentarium.
Collapse
Affiliation(s)
- Robert O Dillman
- Hoag Cancer Institute of Hoag Hospital , Newport Beach, California 92658, USA.
| |
Collapse
|
32
|
Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer--preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010; 37:430-9. [PMID: 21074057 DOI: 10.1053/j.seminoncol.2010.09.005] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Much of the recent excitement in the translational field of tumor immunology and immunotherapy has been generated by the recognition that immune checkpoint proteins can be blocked by human antibodies with profound effects in vitro, in animal tumor systems, and in patients. Promising clinical data have already been generated in melanoma and other tumor types with human antibodies directed against cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1). The preclinical data that supported the clinical development of these two antibodies will be discussed in detail in this review, showing that many of the therapeutic effects of these two agents were predicted by the animal models, as were the immune-related side effects noted with these drugs. In contrast, much of the early work with anti-CTLA-4 antibodies indicated that it had a potent therapeutic effect only when combined with granulocyte-macrophage colony-stimulating factor (GM-CSF)-transduced tumor vaccines, and that the antibody alone was effective only in the most immunogenic tumor models in mice. Intriguingly, in patients, the drug alone clearly has had important therapeutic effects, but the addition of vaccines has not added to its clinical benefit. Murine experiments also suggested that CTLA-4 abrogation might function via important effects on natural T-regulatory cells that were CD4(+), CD25(+high), and FOXp3(+), but this has not been borne out in experiments using peripheral blood mononuclear cells from patients treated with anti-CTLA-4 antibodies, and unlike in animals, in humans the exact mechanism(s) by which CTLA-4 abrogation induced an anti-tumor effect is still unclear. Abrogation of PD-1 functions via different immune signaling pathways than CTLA-4 and is likely to have a different spectrum of effects than blocking CTLA-4. For PD-1 blockade, murine experiments have suggested that the antibody alone and combined with adoptive cell transfer or vaccine approaches would be therapeutically beneficial, and that clear effects on T-cell proliferation and activation, as well as T-regulatory cell function would be observed in patients. The clinical development of anti-PD-1 antibody so far has shown that it has a potent effect when administered alone, and trials of vaccines with anti-PD-1 are just being initiated to test the idea that the predicted effects of that antibody observed in animal systems also would be seen in patients. These observations support the idea that animal preclinical therapeutic experiments are an important guide to the conduct of trials employing abrogation of immune checkpoint proteins in T cells in patients. Nonetheless, clinical investigators must be flexible and prepared to find that the biology of those systems may be very different in humans compared to mice.
Collapse
Affiliation(s)
- Jeffrey Weber
- Moffitt Cancer Center, Donald A. Adam Comprehensive Melanoma Research Center, Tampa, FL 33612, USA.
| |
Collapse
|
33
|
Abstract
T-cell therapy involves the ex vivo isolation and expansion of antigen-specific T cells for adoptive transfer. The use of T-cell clones represents one embodiment of this approach and provides a uniform population of effector cells, so that parameters contributing to an effective response can be rigorously evaluated. T cells of defined specificity, phenotype, and function are isolated and expanded; when infused into patients, these intrinsic factors can be considered in light of extrinsic factors such as the type of conditioning regimen, cytokine support, and immunomodulatory reagents. In this chapter, 2 topics related to the use of antigen-specific T-cell clones are discussed: first, advances enabling the isolation and expansion of antigen-specific T-cell clones for human trials of adoptive therapy, and second, a contextual framework of advantages and limitations in which the use of adoptively transferred T-cell clones can be judiciously applied as a means to dissect the requirements for effective therapy.
Collapse
|
34
|
Callahan MK, Wolchok JD, Allison JP. Anti-CTLA-4 antibody therapy: immune monitoring during clinical development of a novel immunotherapy. Semin Oncol 2010; 37:473-84. [PMID: 21074063 PMCID: PMC3008567 DOI: 10.1053/j.seminoncol.2010.09.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytotoxic T-lymphocyte-associated antigen (CTLA-4), also known as CD152, is a co-inhibitory molecule that functions to regulate T-cell activation. Antibodies that block the interaction of CTLA-4 with its ligands B7.1 and B7.2 can enhance immune responses, including antitumor immunity. Two CTLA-4-blocking antibodies are presently under clinical investigation: ipilimumab and tremelimumab. CTLA-4 blockade has shown promise in treatment of patients with metastatic melanoma, with a recently completed randomized, double-blind phase III trial demonstrating a benefit in overall survival (OS) in the treated population. However, this approach appears to benefit only a subset of patients. Understanding the mechanism(s) of action of CTLA-4 blockade and identifying prognostic immunologic correlates of clinical endpoints to monitor are presently areas of intense investigation. Several immunologic endpoints have been proposed to correlate with clinical activity. This review will focus on the endpoints of immune monitoring described in studies to date and discuss future areas of additional work needed.
Collapse
MESH Headings
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/blood
- Antigens, Differentiation, T-Lymphocyte/drug effects
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/immunology
- Antineoplastic Agents/pharmacology
- Biomarkers
- CTLA-4 Antigen
- HLA-DR Antigens/blood
- HLA-DR Antigens/drug effects
- Humans
- Inducible T-Cell Co-Stimulator Protein
- Ipilimumab
- Leukocyte Common Antigens/blood
- Leukocyte Common Antigens/drug effects
- Lymphocyte Count
- Melanoma/drug therapy
- Melanoma/immunology
- Monitoring, Immunologic/methods
- Skin Neoplasms/drug therapy
- Skin Neoplasms/immunology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/metabolism
Collapse
Affiliation(s)
- Margaret K Callahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
35
|
Abstract
During the past decade, new insights into the mechanisms by which T-cell activation and proliferation are regulated have led to the identification of checkpoint proteins that either up- or down-modulate T-cell reactivity. In the presence of active malignancy, pathophysiologic inhibition of T-cell activity may predominate over stimulation. A number of antibodies have been generated that can block inhibitory checkpoint proteins or promote the activity of activating molecules. In murine models, their use alone or with a vaccine strategy has resulted in regression of poorly immunogenic tumors and cures of established tumors. The prototypical immune regulatory antibodies are those directed against cytotoxic T-lymphocyte antigen-4, a molecule present on activated T cells. In this review, the preclinical rationale and clinical experience with 2 anticytotoxic T-lymphocyte antigen-4 antibodies are extensively discussed, demonstrating that abrogation of an immune inhibitory molecule can result in significant regression of tumors and long-lasting responses. The unique kinetics of antitumor response and the characteristic immune-related side effects of ipilimumab are also discussed. This clinical efficacy of this promising antitumor agent has been evaluated in 2 randomized phase III trials, whose results are eagerly awaited. Programmed death (PD)-1 is another immune inhibitory molecule against which an abrogating human antibody has been prepared. Initial preclinical testing with anti-PD-1 and anti-PD-L1 has shown encouraging results. Stimulatory molecules such as CD40, 41-BB, and OX-40 are also targets for antibody binding and activation, not blockade, and early dose ranging trials with antibodies against all 3 have shown that they can mediate regression of tumors, albeit with their own spectrum of side effects that are different from those that occur with abrogation of immune inhibition.
Collapse
Affiliation(s)
- Jedd D. Wolchok
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Arvin S. Yang
- Ludwig Center for Cancer Immunotherapy, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jeffrey S. Weber
- Donald A. Adam Comprehensive Melanoma Research Center, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
36
|
Emery P, Durez P, Dougados M, Legerton CW, Becker JC, Vratsanos G, Genant HK, Peterfy C, Mitra P, Overfield S, Qi K, Westhovens R. Impact of T-cell costimulation modulation in patients with undifferentiated inflammatory arthritis or very early rheumatoid arthritis: a clinical and imaging study of abatacept (the ADJUST trial). Ann Rheum Dis 2010; 69:510-6. [PMID: 19933744 PMCID: PMC2927615 DOI: 10.1136/ard.2009.119016] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2009] [Indexed: 11/13/2022]
Abstract
BACKGROUND Several agents provide treatment for established rheumatoid arthritis (RA), but a crucial therapeutic goal is to delay/prevent progression of undifferentiated arthritis (UA) or very early RA. OBJECTIVE To determine the impact of T-cell costimulation modulation in patients with UA or very early RA. METHODS In this double-blind, phase II, placebocontrolled, 2-year study, anti-cyclic citrullinated peptide (CCP)2-positive patients with UA (not fulfilling the ACR criteria for RA) and clinical synovitis of two or more joints were randomised to abatacept ( approximately 10 mg/kg) or placebo for 6 months; the study drug was then terminated. The primary end point was development of RA (by ACR criteria) at year 1. Patients were monitored by radiography, MRI, CCP2, rheumatoid factor and 28 joint count Disease Activity Score (DAS28) over 2 years. RESULTS At year 1, 12/26 (46%) abatacept-treated versus 16/24 (67%) placebo-treated patients developed RA (difference (95% CI) -20.5% (-47.4% to 7.8%)). Adjusted mean changes from baseline to year 1 in Genant-modified Sharp radiographic scores for abatacepttreated versus placebo-treated patients, respectively, were 0 versus 1.1 for total score, and 0 versus 0.9 for erosion score. Mean changes from baseline to year 1 in MRI erosion, osteitis and synovitis scores were 0, 0.2 and 0.2, respectively, versus 5.0, 6.7 and 2.3 in the abatacept versus placebo groups. Safety was comparable between groups; serious adverse events occurred in one patient (3.6%) in each group. CONCLUSION Abatacept delayed progression of UA/very early RA in some patients. An impact on radiographic and MRI inhibition was seen, which was maintained for 6 months after treatment stopped. This suggests that it is possible to alter the progression of RA by modulating T-cell responses at a very early stage of disease. Trial registration number NCT00124449.
Collapse
Affiliation(s)
- P Emery
- Section of Musculoskeletal Disease, Leeds Institute of Molecular Medicine, University of Leeds. [corrected]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Avogadri F, Yuan J, Yang A, Schaer D, Wolchok JD. Modulation of CTLA-4 and GITR for cancer immunotherapy. Curr Top Microbiol Immunol 2010; 344:211-44. [PMID: 20563707 DOI: 10.1007/82_2010_49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rational manipulation of antigen-specific T cells to reignite a tumor-specific immune response in cancer patients is a challenge for cancer immunotherapy. Targeting coinhibitory and costimulatory T cell receptors with specific antibodies in cancer patients is an emerging approach to T cell manipulation, namely "immune modulation." Cytotoxic T-lymphocyte antigen-4 (CTLA-4) and glucocorticoid-induced tumor necrosis factor family receptor (GITR) are potential targets for immune modulation through anti-CTLA-4 blocking antibodies and anti-GITR agonistic antibodies, respectively. In this review, we first discuss preclinical findings key to the understanding of the mechanisms of action of these immunomodulatory antibodies and the preclinical evidence of antitumor activity which preceded translation into the clinic. We next describe the outcomes and immune related adverse effects associated with anti-CTLA-4 based clinical trials with particular emphasis on specific biomarkers used to elucidate the mechanisms of tumor immunity in patients. The experience with anti-CTLA-4 therapy and the durable clinical benefit observed provide proof of principle to effective antitumor immune modulation and the promise of future clinical immune modulatory antibodies.
Collapse
|
38
|
CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 2009; 11:129-35. [PMID: 20037585 PMCID: PMC3235641 DOI: 10.1038/ni.1835] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 11/24/2009] [Indexed: 01/25/2023]
Abstract
The inhibitory immunoregulatory receptor CTLA-4 is critical in maintaining self-tolerance, but the mechanisms of its actions have remained controversial. Here we examined the antigen specificity of tissue-infiltrating CD4(+) T cells in Ctla4(-/-) mice. After adoptive transfer, T cells isolated from tissues of Ctla4(-/-) mice showed T cell antigen receptor (TCR)-dependent accumulation in the tissues from which they were derived, which suggested reactivity to tissue-specific antigens. We identified the pancreas-specific enzyme PDIA2 as an autoantigen in Ctla4(-/-) mice. CTLA-4 expressed either on PDIA2-specific effector cells or on regulatory T cells was sufficient to control tissue destruction mediated by PDIA2-specific T cells. Our results demonstrate that both cell-intrinsic and non-cell-autonomous actions of CTLA-4 operate to maintain T cell tolerance to a self antigen.
Collapse
|
39
|
Coquerelle C, Oldenhove G, Acolty V, Denoeud J, Vansanten G, Verdebout JM, Mellor A, Bluestone JA, Moser M. Anti-CTLA-4 treatment induces IL-10-producing ICOS+ regulatory T cells displaying IDO-dependent anti-inflammatory properties in a mouse model of colitis. Gut 2009; 58:1363-73. [PMID: 19505881 PMCID: PMC2917097 DOI: 10.1136/gut.2008.162842] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has been shown to act as a negative regulator of T cell function and has been implicated in the regulation of T helper 1 (Th1)/Th2 development and the function of regulatory T cells. Tests were carried out to determine whether anti-CTLA-4 treatment would alter the polarisation of naive T cells in vivo. METHODS Mice were treated with anti-CTLA-4 monoclonal antibody (mAb) (UC10-4F10) at the time of immunisation or colonic instillation of trinitrobenzene sulfonic acid (TNBS). The cytokines produced by lymph node cells after in vitro antigenic stimulation and the role of indoleamine 2,3 dioxygenase (IDO) and of interleukin-10 (IL-10) were tested, and the survival of mice was monitored. RESULTS Injection of anti-CTLA-4 mAb in mice during priming induced the development of adaptive CD4(+) regulatory T cells which expressed high levels of ICOS (inducible co-stimulator), secreted IL-4 and IL-10. This treatment inhibited Th1 memory responses in vivo and repressed experimental intestinal inflammation. The anti-CTLA-4-induced amelioration of disease correlated with IDO expression and infiltration of ICOS(high) Foxp3(+) T cells in the intestine, suggesting that anti-CTLA-4 acted indirectly through the development of regulatory T cells producing IL-10 and inducing IDO. CONCLUSIONS These observations emphasise the synergy between IL-10 and IDO as anti-inflammatory agents and highlight anti-CTLA-4 treatment as a potential novel immunotherapeutic approach for inducing adaptive regulatory T cells.
Collapse
Affiliation(s)
- C Coquerelle
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - G Oldenhove
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - V Acolty
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - J Denoeud
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - G Vansanten
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| | - J-M Verdebout
- Département d’anatomopathologie, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - A Mellor
- Immunotherapy Center, Medical College of Georgia, Augusta, Georgia, USA
| | - J A Bluestone
- UCSF Diabetes Center, Department of Medicine, UCSF, San Francisco, California, USA
| | - M Moser
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Gosselies, Belgium
| |
Collapse
|
40
|
Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. ACTA ACUST UNITED AC 2009; 206:1717-25. [PMID: 19581407 PMCID: PMC2722174 DOI: 10.1084/jem.20082492] [Citation(s) in RCA: 729] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is a critical negative regulator of immune responses. Uniquely among known inhibitory receptors, its genetic ablation results in a fulminating and fatal lymphoproliferative disorder. This central regulatory role led to the development of antibodies designed to block CTLA-4 activity in vivo, aiming to enhance immune responses against cancer. Despite their preclinical efficacy and promising clinical activity against late stage metastatic melanoma, the critical cellular targets for their activity remains unclear. In particular, debate has focused on whether the effector T cell (T(eff)) or regulatory T cell (T reg cell) compartment is the primary target of antibody-mediated blockade. We developed a mouse expressing human instead of mouse CTLA-4, allowing us to evaluate the independent contributions of CTLA-4 blockade of each T cell compartment during cancer immunotherapy in an in vivo model of mouse melanoma. The data show that although blockade on effector cells significantly improves tumor protection, unicompartmental blockade on regulatory cells completely fails to enhance antitumor responses. However, concomitant blockade of both compartments leads to a synergistic effect and maximal antitumor activity. We conclude that the combination of direct enhancement of T(eff) cell function and concomitant inhibition of T reg cell activity through blockade of CTLA-4 on both cell types is essential for mediating the full therapeutic effects of anti-CTLA-4 antibodies during cancer immunotherapy.
Collapse
Affiliation(s)
- Karl S Peggs
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
41
|
Assessment of Belatacept-Mediated Costimulation Blockade Through Evaluation of CD80/86-Receptor Saturation. Transplantation 2009; 87:926-33. [DOI: 10.1097/tp.0b013e31819b5a58] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Kvist M, Kanje M, Ekberg H, Corbascio M, Dahlin LB. Costimulation blockade in transplantation of nerve allografts: long-term effects. J Peripher Nerv Syst 2008; 13:200-7. [DOI: 10.1111/j.1529-8027.2008.00178.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Ahmed A, Mukherjee S, Nandi D. Intracellular concentrations of Ca(2+) modulate the strength of signal and alter the outcomes of cytotoxic T-lymphocyte antigen-4 (CD152)-CD80/CD86 interactions in CD4(+) T lymphocytes. Immunology 2008; 126:363-77. [PMID: 18710402 DOI: 10.1111/j.1365-2567.2008.02902.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The costimulatory receptors CD28 and cytotoxic T-lymphocyte antigen (CTLA)-4 and their ligands, CD80 and CD86, are expressed on T lymphocytes; however, their functional roles during T cell-T cell interactions are not well known. The consequences of blocking CTLA-4-CD80/CD86 interactions on purified mouse CD4(+) T cells were studied in the context of the strength of signal (SOS). CD4(+) T cells were activated with phorbol 12-myristate 13-acetate (PMA) and different concentrations of a Ca(2+) ionophore, Ionomycin (I), or a sarcoplasmic Ca(2+) ATPase inhibitor, Thapsigargin (TG). Increasing concentrations of I or TG increased the amount of interleukin (IL)-2, reflecting the conversion of a low to a high SOS. During activation with PMA and low amounts of I, intracellular concentrations of calcium ([Ca(2+)](i)) were greatly reduced upon CTLA-4-CD80/CD86 blockade. Further experiments demonstrated that CTLA-4-CD80/CD86 interactions reduced cell cycling upon activation with PMA and high amounts of I or TG (high SOS) but the opposite occurred with PMA and low amounts of I or TG (low SOS). These results were confirmed by surface T-cell receptor (TCR)-CD3 signalling using a low SOS, for example soluble anti-CD3, or a high SOS, for example plate-bound anti-CD3. Also, CTLA-4-CD80/CD86 interactions enhanced the generation of reactive oxygen species (ROS). Studies with catalase revealed that H(2)O(2) was required for IL-2 production and cell cycle progression during activation with a low SOS. However, the high amounts of ROS produced during activation with a high SOS reduced cell cycle progression. Taken together, these results indicate that [Ca(2+)](i) and ROS play important roles in the modulation of T-cell responses by CTLA-4-CD80/CD86 interactions.
Collapse
Affiliation(s)
- Asma Ahmed
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
44
|
Slovin SF. Tribulations or triumphs in prostate cancer immunotherapy: on the road to victory? Expert Rev Anticancer Ther 2008; 8:465-74. [PMID: 18366293 DOI: 10.1586/14737140.8.3.465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phase I, II and III clinical trials have shown that immunologic tolerance can be abrogated against specific tumor-associated antigens: but that the immunologic readouts are suboptimal in determining whether a trial can or should go forward in its development. While vaccines have been associated with declines in prostate-specific antigen, with occasional changes in scans by Response Evaluation Criteria in Solid Tumors (RECIST) criteria, nevertheless, prostate vaccines alone appear to be insufficient to generate significant antitumor effects. Therefore, vaccines given in combination with cytokines or inhibitors of checkpoint molecules may not only enhance efficacy, but also validate the role of immune cells to effect the antitumor response. However, no one approach has been able to show improved overall survival. This article reviews the current issues and potential resolutions as to how we might go forward in developing and interpreting immunologic trials.
Collapse
Affiliation(s)
- Susan F Slovin
- Sidney Kimmel Center for Prostate & Urologic Cancers, Genitourinary Oncology Service, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, NY 10065, USA.
| |
Collapse
|
45
|
Abstract
PURPOSE Immunotherapy with vaccines, cytokines, and monoclonal antibodies against checkpoint molecules has been introduced into the clinical arena. Although all have demonstrated safety in clinical trials in patients with castrate metastatic prostate cancer, no one approach has been able to provide improved overall survival. This article is a review of the current issues and potential resolutions as to how we might go forward in developing and interpreting immunologic trials. DESIGN Phase I, II, and III trials showed that immunologic tolerance can be abrogated against specific tumor-associated antigens, but the immunologic readouts are suboptimal in determining whether a trial can go forward in its development. RESULTS Combinatorial approaches appear to be necessary for inducing immunogenicity and antitumor effects. Strategies include irradiated tumor cells lines, costimulatory molecules, or immune checkpoint inhibitors, which are in trials and are under intense scrutiny as to their impact on clinical end points such as time to disease progression and survival. DISCUSSION Strategies to enhance immunogenicity of vaccines and reassess how to effectively establish interpretable immunologic end points are under development and appear to be successful in affecting how these trials go forward.
Collapse
|
46
|
Tai X, Van Laethem F, Sharpe AH, Singer A. Induction of autoimmune disease in CTLA-4-/- mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A 2007; 104:13756-61. [PMID: 17702861 PMCID: PMC1949493 DOI: 10.1073/pnas.0706509104] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CTLA-4-deficient mice develop a lethal autoimmune lymphoproliferative disorder that is strictly dependent on in vivo CD28 costimulation. Nevertheless, it is not known whether there is a specific site on the CD28 molecule that is required for induction of autoimmunity. Using CTLA-4-deficient mice expressing CD28 molecules with various point mutations in the CD28 cytosolic tail, the present study documents that in vivo costimulation for induction of autoimmune disease strictly requires an intact C-terminal proline motif that promotes lymphocyte-specific protein tyrosine kinase Lck binding to the CD28 cytosolic tail, because point mutations in C-terminal proline residues (Pro-187 and Pro-190) completely prevented disease induction. In contrast, in vivo costimulation for disease induction did not require either an intact YMNM motif or an intact N-terminal proline motif, which, respectively, promote phosphoinositide 3-kinase and IL2-inducible T cell kinase binding to the CD28 cytosolic tail. Thus, in vivo CD28 costimulation for induction of autoimmune disease is strictly and specifically dependent on an intact C-terminal proline motif that serves as a lymphocyte-specific protein tyrosine Lck kinase binding site in the CD28 cytosolic tail.
Collapse
Affiliation(s)
- Xuguang Tai
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
| | - Francois Van Laethem
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
| | - Arlene H. Sharpe
- Department of Pathology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115
| | - Alfred Singer
- *Experimental Immunology Branch, National Cancer Institute, Bethesda, MD 20892; and
- To whom correspondence should be addressed at:
Experimental Immunology Branch, National Cancer Institute, Building 10, Room 4B36, Bethesda, MD 20892. E-mail:
| |
Collapse
|
47
|
Love VA, Grabie N, Duramad P, Stavrakis G, Sharpe A, Lichtman A. CTLA-4 ablation and interleukin-12 driven differentiation synergistically augment cardiac pathogenicity of cytotoxic T lymphocytes. Circ Res 2007; 101:248-57. [PMID: 17569889 DOI: 10.1161/circresaha.106.147124] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CD8+ cytotoxic T lymphocytes contribute to viral and autoimmune myocarditis and cardiac allograft rejection. The role of cytotoxic T-lymphocyte-associated antigen (CTLA)-4 as a negative regulator of CD4+ T cells is well defined, yet CTLA-4 regulation of CD8+ T cells is less clear. We studied CTLA-4 regulation of cytotoxic T lymphocytes in a transgenic model of CD8+ T-cell-mediated myocarditis. We generated CTLA-4(-/-) Rag 2(-/-) OT-1 mice, the CD8+ T cells of which express an ovalbumin (OVA) peptide-specific, class I major histocompatibility complex-restricted T-cell receptor. CTLA-4(-/-Tc12) OT-1 effectors, differentiated with interleukin-12 present, are hyperproliferative in vitro, compared with CTLA-4(+/+)Tc12 OT-1 controls. Transfer of low doses of CTLA-4(-/-Tc12) OT-1 cells to cMy-mOVA mice, which express OVA on cardiac myocytes, causes severe myocarditis, with 99% mortality, compared with no mortality after transfer of low doses of CTLA-4(+/+)Tc12 OT-1 cells. High doses of CTLA-4(+/+)Tc12 cells cause lethal myocarditis in cMy-mOVA mice, but high doses of CTLA-4(+/+)Tc0 CTL, generated without interleukin-12, are hypoproliferative within the cardiac-draining lymph node and do not significantly infiltrate the heart. In contrast, CTLA-4(-/-Tc0) cytotoxic T lymphocytes do proliferate in the cardiac-draining lymph node and diffusely infiltrate the heart. Nonetheless, high doses of CTLA-4(-/-Tc0) cells cause only limited tissue damage, and the disease is not lethal. These data show that CTLA-4 regulates myocarditic CD8+ T cell responses and that CTLA-4 deficiency partly overcomes a differentiation block that exists when naïve CD8+ T cells are stimulated without interleukin-12. Therefore, targeting CTLA-4 solely or in conjunction with interleukin-12 could influence effector CD8+ T cell responses in therapeutically beneficial ways.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- CTLA-4 Antigen
- Cell Differentiation
- Cells, Cultured/drug effects
- Cells, Cultured/immunology
- Crosses, Genetic
- Cytotoxicity, Immunologic
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- Egg Proteins/immunology
- Egg Proteins/pharmacology
- Egg Proteins/toxicity
- Interferon-gamma/metabolism
- Interleukin-12/physiology
- Lymph Nodes/pathology
- Lymphocyte Activation
- Lymphokines/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Models, Immunological
- Myocarditis/immunology
- Myocarditis/physiopathology
- Myocarditis/prevention & control
- Ovalbumin/immunology
- Ovalbumin/pharmacology
- Ovalbumin/toxicity
- Peptide Fragments
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Victoria A Love
- Vascular Research Division, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
48
|
Vincenti F, Luggen M. T cell costimulation: a rational target in the therapeutic armamentarium for autoimmune diseases and transplantation. Annu Rev Med 2007; 58:347-58. [PMID: 17020493 DOI: 10.1146/annurev.med.58.080205.154004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are central mediators of adaptive immunity. As such, they are involved in both normal immune responses (e.g., rejection of a transplanted organ) and abnormal ones (e.g., rheumatoid arthritis). T cells require both antigen-specific and costimulatory signals for their full activation. Advances in protein engineering and an increased understanding of the immune response have culminated in the evolution and creation of protein therapeutics that target specific costimulatory molecules. The selective costimulation modulator abatacept (CTLA-4Ig) binds to CD80 and CD86, blocking interaction with CD28, and is approved for the treatment of moderate to severe rheumatoid arthritis. Belatacept, currently enrolling phase III trials in renal transplantation, was rationally designed from abatacept to bind with more avidity to CD86, providing the more potent immunosuppressive properties required for immunosuppression in transplantation. This review describes the relevant immunology and summarizes recent clinical findings on these two molecules. Although both inhibit the CD28 costimulatory pathway, they are tailored for specific disease states--abatacept for autoimmune diseases and belatacept for transplantation.
Collapse
Affiliation(s)
- Flavio Vincenti
- Departments of Medicine and Surgery, University of California, San Francisco, California, 94143, USA.
| | | |
Collapse
|
49
|
Homann D, Dummer W, Wolfe T, Rodrigo E, Theofilopoulos AN, Oldstone MBA, von Herrath MG. Lack of intrinsic CTLA-4 expression has minimal effect on regulation of antiviral T-cell immunity. J Virol 2007; 80:270-80. [PMID: 16352552 PMCID: PMC1317527 DOI: 10.1128/jvi.80.1.270-280.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CTLA-4 is considered one of the most potent negative regulators of T-cell activation. To circumvent experimental limitations due to fatal lymphoproliferative disease associated with genetic ablation of CTLA-4, we have used radiation chimeras reconstituted with a mixture of CTLA-4+/+ and CTLA-4-/- bone marrow that retain a normal phenotype and allow the evaluation of long-term T-cell immunity under conditions of intrinsic CTLA-4 deficiency. Following virus infection, we profiled primary, memory, and secondary CD8+ and CD4+ T-cell responses directed against eight different viral epitopes. Our data demonstrate unaltered antigen-driven proliferation, acquisition of effector functions, distribution of epitope hierarchies, T-cell receptor repertoire selection, functional avidities, and long-term memory maintenance in the absence of CTLA-4. Moreover, regulation of memory T-cell survival and homeostatic proliferation, as well as secondary responses, was equivalent in virus-specific CTLA4+/+ and CTL-A-4-/- T-cell populations. Thus, lack of CTLA-4 expression by antigen-specific T cells can be compensated for by extrinsic factors in the presence of CTLA-4 expression by other cells. These findings have implications for the physiologic, pathological, and therapeutic regulation of costimulation.
Collapse
Affiliation(s)
- Dirk Homann
- Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center. Mail stop B140, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Raué HP, Slifka MK. Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection. J Leukoc Biol 2007; 81:1165-75. [PMID: 17215523 DOI: 10.1189/jlb.0806535] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.
Collapse
Affiliation(s)
- Hans-Peter Raué
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, 505 N.W. 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|