1
|
Chen YJ, Cheng SY, Liu CH, Tsai WC, Wu HH, Huang MD. Exploration of the truncated cytosolic Hsp70 in plants - unveiling the diverse T1 lineage and the conserved T2 lineage. FRONTIERS IN PLANT SCIENCE 2023; 14:1279540. [PMID: 38034583 PMCID: PMC10687569 DOI: 10.3389/fpls.2023.1279540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The 70-kDa heat shock proteins (Hsp70s) are chaperone proteins involved in protein folding processes. Truncated Hsp70 (Hsp70T) refers to the variant lacking a conserved C-terminal motif, which is crucial for co-chaperone interactions or protein retention. Despite their significance, the characteristics of Hsp70Ts in plants remain largely unexplored. In this study, we performed a comprehensive genome-wide analysis of 192 sequenced plant and green algae genomes to investigate the distribution and features of Hsp70Ts. Our findings unveil the widespread occurrence of Hsp70Ts across all four Hsp70 forms, including cytosolic, endoplasmic reticulum, mitochondrial, and chloroplast Hsp70s, with cytosolic Hsp70T being the most prevalent and abundant subtype. Cytosolic Hsp70T is characterized by two distinct lineages, referred to as T1 and T2. Among the investigated plant and green algae species, T1 genes were identified in approximately 60% of cases, showcasing a variable gene count ranging from one to several dozens. In contrast, T2 genes were prevalent across the majority of plant genomes, usually occurring in fewer than five gene copies per species. Sequence analysis highlights that the putative T1 proteins exhibit higher similarity to full-length cytosolic Hsp70s in comparison to T2 proteins. Intriguingly, the T2 lineage demonstrates a higher level of conservation within their protein sequences, whereas the T1 lineage presents a diverse range in the C-terminal and SBDα region, leading to categorization into four distinct subtypes. Furthermore, we have observed that T1-rich species characterized by the possession of 15 or more T1 genes exhibit an expansion of T1 genes into tandem gene clusters. The T1 gene clusters identified within the Laurales order display synteny with clusters found in a species of the Chloranthales order and another species within basal angiosperms, suggesting a conserved evolutionary relationship of T1 gene clusters among these plants. Additionally, T2 genes demonstrate distinct expression patterns in seeds and under heat stress, implying their potential roles in seed development and stress response.
Collapse
Affiliation(s)
- Yi-Jing Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sou-Yu Cheng
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Han Liu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Wen-Chieh Tsai
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-Hsin Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ming-Der Huang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Luppino F, Adzhubei IA, Cassa CA, Toth-Petroczy A. DeMAG predicts the effects of variants in clinically actionable genes by integrating structural and evolutionary epistatic features. Nat Commun 2023; 14:2230. [PMID: 37076482 PMCID: PMC10115847 DOI: 10.1038/s41467-023-37661-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Despite the increasing use of genomic sequencing in clinical practice, the interpretation of rare genetic variants remains challenging even in well-studied disease genes, resulting in many patients with Variants of Uncertain Significance (VUSs). Computational Variant Effect Predictors (VEPs) provide valuable evidence in variant assessment, but they are prone to misclassifying benign variants, contributing to false positives. Here, we develop Deciphering Mutations in Actionable Genes (DeMAG), a supervised classifier for missense variants trained using extensive diagnostic data available in 59 actionable disease genes (American College of Medical Genetics and Genomics Secondary Findings v2.0, ACMG SF v2.0). DeMAG improves performance over existing VEPs by reaching balanced specificity (82%) and sensitivity (94%) on clinical data, and includes a novel epistatic feature, the 'partners score', which leverages evolutionary and structural partnerships of residues. The 'partners score' provides a general framework for modeling epistatic interactions, integrating both clinical and functional information. We provide our tool and predictions for all missense variants in 316 clinically actionable disease genes (demag.org) to facilitate the interpretation of variants and improve clinical decision-making.
Collapse
Affiliation(s)
- Federica Luppino
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany
- Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Ivan A Adzhubei
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher A Cassa
- Brigham and Women's Hospital Division of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Agnes Toth-Petroczy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany.
- Center for Systems Biology Dresden, 01307, Dresden, Germany.
- Cluster of Excellence Physics of Life, TU Dresden, 01062, Dresden, Germany.
| |
Collapse
|
3
|
Bautista DE, Carr JF, Mitchell AM. Suppressor Mutants: History and Today's Applications. EcoSal Plus 2021; 9:eESP00372020. [PMID: 34910591 PMCID: PMC9008745 DOI: 10.1128/ecosalplus.esp-0037-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/16/2021] [Indexed: 11/20/2022]
Abstract
For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.
Collapse
Affiliation(s)
- David E. Bautista
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Joseph F. Carr
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Angela M. Mitchell
- Department of Biology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Selective promiscuity in the binding of E. coli Hsp70 to an unfolded protein. Proc Natl Acad Sci U S A 2021; 118:2016962118. [PMID: 34625496 DOI: 10.1073/pnas.2016962118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 01/16/2023] Open
Abstract
Heat shock protein 70 (Hsp70) chaperones bind many different sequences and discriminate between incompletely folded and folded clients. Most research into the origins of this "selective promiscuity" has relied on short peptides as substrates to dissect the binding, but much less is known about how Hsp70s bind full-length client proteins. Here, we connect detailed structural analyses of complexes between the Escherichia coli Hsp70 (DnaK) substrate-binding domain (SBD) and peptides encompassing five potential binding sites in the precursor to E. coli alkaline phosphatase (proPhoA) with SBD binding to full-length unfolded proPhoA. Analysis of SBD complexes with proPhoA peptides by a combination of X-ray crystallography, methyl-transverse relaxation optimized spectroscopy (methyl-TROSY), and paramagnetic relaxation enhancement (PRE) NMR and chemical cross-linking experiments provided detailed descriptions of their binding modes. Importantly, many sequences populate multiple SBD binding modes, including both the canonical N to C orientation and a C to N orientation. The favored peptide binding mode optimizes substrate residue side-chain compatibility with the SBD binding pockets independent of backbone orientation. Relating these results to the binding of the SBD to full-length proPhoA, we observe that multiple chaperones may bind to the protein substrate, and the binding sites, well separated in the proPhoA sequence, behave independently. The hierarchy of chaperone binding to sites on the protein was generally consistent with the apparent binding affinities observed for the peptides corresponding to these sites. Functionally, these results reveal that Hsp70s "read" sequences without regard to the backbone direction and that both binding orientations must be considered in current predictive algorithms.
Collapse
|
5
|
Wang W, Liu Q, Liu Q, Hendrickson WA. Conformational equilibria in allosteric control of Hsp70 chaperones. Mol Cell 2021; 81:3919-3933.e7. [PMID: 34453889 DOI: 10.1016/j.molcel.2021.07.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023]
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70R-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70S-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
6
|
Li H, Hu L, Cuffee CW, Mohamed M, Li Q, Liu Q, Zhou L, Liu Q. Interdomain interactions dictate the function of the Candida albicans Hsp110 protein Msi3. J Biol Chem 2021; 297:101082. [PMID: 34403698 PMCID: PMC8424595 DOI: 10.1016/j.jbc.2021.101082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/29/2021] [Accepted: 08/13/2021] [Indexed: 01/27/2023] Open
Abstract
Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the "holdase" activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain-domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the "holdase" activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Liqing Hu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA; Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Crist William Cuffee
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mahetab Mohamed
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA.
| |
Collapse
|
7
|
Castel B, Fairhead S, Furzer OJ, Redkar A, Wang S, Cevik V, Holub EB, Jones JDG. Evolutionary trade-offs at the Arabidopsis WRR4A resistance locus underpin alternate Albugo candida race recognition specificities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1490-1502. [PMID: 34181787 DOI: 10.1111/tpj.15396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The oomycete Albugo candida causes white rust of Brassicaceae, including vegetable and oilseed crops, and wild relatives such as Arabidopsis thaliana. Novel White Rust Resistance (WRR) genes from Arabidopsis enable new insights into plant/parasite co-evolution. WRR4A from Arabidopsis accession Columbia (Col-0) provides resistance to many but not all white rust races, and encodes a nucleotide-binding, leucine-rich repeat immune receptor. Col-0 WRR4A resistance is broken by AcEx1, an isolate of A. candida. We identified an allele of WRR4A in Arabidopsis accession Øystese-0 (Oy-0) and other accessions that confers full resistance to AcEx1. WRR4AOy-0 carries a C-terminal extension required for recognition of AcEx1, but reduces recognition of several effectors recognized by the WRR4ACol-0 allele. WRR4AOy-0 confers full resistance to AcEx1 when expressed in the oilseed crop Camelina sativa.
Collapse
Affiliation(s)
- Baptiste Castel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
- Warwick Crop Centre, School of Life Sciences, University of Warwick, CV35 9EF, Wellesbourne, United Kingdom
| | - Oliver J Furzer
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Amey Redkar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
- Department of Genetics, University of Cordoba, 14071, Cordoba, Spain
| | - Shanshan Wang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| | - Volkan Cevik
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, BA2 7AY, Bath, United Kingdom
| | - Eric B Holub
- Warwick Crop Centre, School of Life Sciences, University of Warwick, CV35 9EF, Wellesbourne, United Kingdom
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, United Kingdom
| |
Collapse
|
8
|
Abstract
Heat-shock proteins of 70 kDa (Hsp70s) are ubiquitous molecular chaperones that function in protein folding as well as other vital cellular processes. They bind and hydrolyze ATP in a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides in a substrate-binding domain (SBD). However, the molecular mechanism for this allosteric action has remained unclear. Here, we develop and experimentally quantify a theoretical model for Hsp70 allostery based on equilibria among Hsp70 conformational states. We postulate that, when bound to ATP, Hsp70 is in equilibrium between a restraining state (R) that restricts ATP hydrolysis and binds peptides poorly, if at all, and a stimulating state (S) that hydrolyzes ATP relatively rapidly and has high intrinsic substrate affinity but rapid binding kinetics; after the hydrolysis to ADP, NBD and SBD disengage into an uncoupled state (U) that binds peptide substrates tightly, but now with slow kinetics of exchange.
Collapse
|
9
|
Li H, Zhu H, Sarbeng EB, Liu Q, Tian X, Yang Y, Lyons C, Zhou L, Liu Q. An unexpected second binding site for polypeptide substrates is essential for Hsp70 chaperone activity. J Biol Chem 2019; 295:584-596. [PMID: 31806707 DOI: 10.1074/jbc.ra119.009686] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Heat shock proteins of 70 kDa (Hsp70s) are ubiquitous and highly conserved molecular chaperones. They play multiple essential roles in assisting with protein folding and maintaining protein homeostasis. Their chaperone activity has been proposed to require several rounds of binding to and release of polypeptide substrates at the substrate-binding domain (SBD) of Hsp70s. All available structures have revealed a single substrate-binding site in the SBD that binds a single segment of an extended polypeptide of 3-4 residues. However, this well-established single peptide-binding site alone has made it difficult to explain the efficient chaperone activity of Hsp70s. In this study, using purified proteins and site-directed mutagenesis, along with fluorescence polarization and luciferase-refolding assays, we report the unexpected discovery of a second peptide-binding site in Hsp70s. More importantly, the biochemical analyses suggested that this novel binding site, named here P2, is essential for Hsp70 chaperone activity. Furthermore, cross-linking and mutagenesis studies indicated that this second binding site is in the SBD adjacent to the first binding site. Taken together, our results suggest that these two essential binding sites of Hsp70s cooperate in protein folding.
Collapse
Affiliation(s)
- Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Huanyu Zhu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Evans Boateng Sarbeng
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qingdai Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xueli Tian
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Ying Yang
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Charles Lyons
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
10
|
Liu Q, Liang C, Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Protein Sci 2019; 29:378-390. [PMID: 31509306 DOI: 10.1002/pro.3725] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/22/2022]
Abstract
As one of the most abundant and highly conserved molecular chaperones, the 70-kDa heat shock proteins (Hsp70s) play a key role in maintaining cellular protein homeostasis (proteostasis), one of the most fundamental tasks for every living organism. In this role, Hsp70s are inextricably linked to many human diseases, most notably cancers and neurodegenerative diseases, and are increasingly recognized as important drug targets for developing novel therapeutics for these diseases. Hsp40s are a class of essential and universal partners for Hsp70s in almost all aspects of proteostasis. Thus, Hsp70s and Hsp40s together constitute one of the most important chaperone systems across all kingdoms of life. In recent years, we have witnessed significant progress in understanding the molecular mechanism of this chaperone system through structural and functional analysis. This review will focus on this recent progress, mainly from a structural perspective.
Collapse
Affiliation(s)
- Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Ce Liang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
11
|
The Link That Binds: The Linker of Hsp70 as a Helm of the Protein's Function. Biomolecules 2019; 9:biom9100543. [PMID: 31569820 PMCID: PMC6843406 DOI: 10.3390/biom9100543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/13/2019] [Accepted: 09/21/2019] [Indexed: 12/26/2022] Open
Abstract
The heat shock 70 (Hsp70) family of molecular chaperones plays a central role in maintaining cellular proteostasis. Structurally, Hsp70s are composed of an N-terminal nucleotide binding domain (NBD) which exhibits ATPase activity, and a C-terminal substrate binding domain (SBD). The binding of ATP at the NBD and its subsequent hydrolysis influences the substrate binding affinity of the SBD through allostery. Similarly, peptide binding at the C-terminal SBD stimulates ATP hydrolysis by the N-terminal NBD. Interdomain communication between the NBD and SBD is facilitated by a conserved linker segment. Hsp70s form two main subgroups. Canonical Hsp70 members generally suppress protein aggregation and are also capable of refolding misfolded proteins. Hsp110 members are characterized by an extended lid segment and their function tends to be largely restricted to suppression of protein aggregation. In addition, the latter serve as nucleotide exchange factors (NEFs) of canonical Hsp70s. The linker of the Hsp110 family is less conserved compared to that of the canonical Hsp70 group. In addition, the linker plays a crucial role in defining the functional features of these two groups of Hsp70. Generally, the linker of Hsp70 is quite small and varies in size from seven to thirteen residues. Due to its small size, any sequence variation that Hsp70 exhibits in this motif has a major and unique influence on the function of the protein. Based on sequence data, we observed that canonical Hsp70s possess a linker that is distinct from similar segments present in Hsp110 proteins. In addition, Hsp110 linker motifs from various genera are distinct suggesting that their unique features regulate the flexibility with which the NBD and SBD of these proteins communicate via allostery. The Hsp70 linker modulates various structure-function features of Hsp70 such as its global conformation, affinity for peptide substrate and interaction with co-chaperones. The current review discusses how the unique features of the Hsp70 linker accounts for the functional specialization of this group of molecular chaperones.
Collapse
|
12
|
Liu Q, Li H, Yang Y, Tian X, Su J, Zhou L, Liu Q. A disulfide-bonded DnaK dimer is maintained in an ATP-bound state. Cell Stress Chaperones 2017; 22:201-212. [PMID: 27975204 PMCID: PMC5352592 DOI: 10.1007/s12192-016-0752-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/16/2023] Open
Abstract
DnaK, a major Hsp70 molecular chaperones in Escherichia coli, is a widely used model for studying Hsp70s. We recently solved a crystal structure of DnaK in complex with ATP and showed that DnaK was packed as a dimer in the crystal structure. Our previous biochemical studies supported the formation of a specific DnaK dimer as observed in the crystal structure in solution in the presence of ATP and suggested an important role of this dimer in efficient interaction with Hsp40 co-chaperones. In this study, we dissected the biochemical properties of this DnaK dimer. To restrict DnaK in this dimer form, we mutated two residues on the dimer interface to cysteine, A303C, and H541C. Upon oxidation, this DnaK-A303C-H541C protein formed a specific dimer linked by disulfide bonds formed between A303C and H541C only in the presence of ATP, consistent with the crystal structure. Intriguingly, this disulfide-bond-linked dimer of DnaK-A303C-H541C has reduced ATPase activity and decreased affinity for peptide substrate. More interestingly, unlike wild-type DnaK, the peptide substrate-binding kinetics of this dimer is drastically accelerated even in the absence of ATP, suggesting this dimer is restricted in an ATP-bound conformation regardless of nucleotide bound, which was further supported by our analysis using tryptophan fluorescence and ATP-induced peptide release. Thus, formation of the dimer restricted DnaK in an ATP-bound state and blocked the progression through the chaperone cycle. Productive progression through the chaperone cycle requires the dissociation of this transient dimer. Surprisingly, a significantly compromised interaction with Hsp40 co-chaperone was observed for this disulfide-bond-linked dimer. Thus, dissociation of this DnaK dimer is equally crucial for efficient Hsp40 interaction. An initial interaction between Hsp70 and Hsp40 requires the formation of DnaK dimer; but a stable Hsp70-Hsp40 interaction may follow the dissociation of the dimer.
Collapse
Affiliation(s)
- Qingdai Liu
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China.
| | - Hongtao Li
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Ying Yang
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Xueli Tian
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
| | - Jiayue Su
- Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, Tianjin, 300457, China
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
13
|
Ramírez MP, Rivera M, Quiroga-Roger D, Bustamante A, Vega M, Baez M, Puchner EM, Wilson CAM. Single molecule force spectroscopy reveals the effect of BiP chaperone on protein folding. Protein Sci 2017; 26:1404-1412. [PMID: 28176394 DOI: 10.1002/pro.3137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/18/2017] [Accepted: 02/03/2017] [Indexed: 11/10/2022]
Abstract
BiP (Immunoglobulin Binding Protein) is a member of the Hsp70 chaperones that participates in protein folding in the endoplasmic reticulum. The function of BiP relies on cycles of ATP hydrolysis driving the binding and release of its substrate proteins. It still remains unknown how BiP affects the protein folding pathway and there has been no direct demonstration showing which folding state of the substrate protein is bound by BiP, as previous work has used only peptides. Here, we employ optical tweezers for single molecule force spectroscopy experiments to investigate how BiP affects the folding mechanism of a complete protein and how this effect depends on nucleotides. Using the protein MJ0366 as the substrate for BiP, we performed pulling and relaxing cycles at constant velocity to unfold and refold the substrate. In the absence of BiP, MJ0366 unfolded and refolded in every cycle. However, when BiP was added, the frequency of folding events of MJ0366 significantly decreased, and the loss of folding always occurred after a successful unfolding event. This process was dependent on ATP and ADP, since when either ATP was decreased or ADP was added, the duration of periods without folding events increased. Our results show that the affinity of BiP for the substrate protein increased in these conditions, which correlates with previous studies in bulk. Therefore, we conclude that BiP binds to the unfolded state of MJ0366 and prevents its refolding, and that this effect is dependent on both the type and concentration of nucleotides.
Collapse
Affiliation(s)
- María Paz Ramírez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile.,Laboratory of Cellular and Molecular Biophysics, School of Physics & Astronomy, University of Minnesota, Twin Cities, Minnesota
| | - Maira Rivera
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| | - Diego Quiroga-Roger
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| | - Andrés Bustamante
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| | - Marcela Vega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| | - Elias M Puchner
- Laboratory of Cellular and Molecular Biophysics, School of Physics & Astronomy, University of Minnesota, Twin Cities, Minnesota
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, RM, Chile
| |
Collapse
|
14
|
Yang J, Nune M, Zong Y, Zhou L, Liu Q. Close and Allosteric Opening of the Polypeptide-Binding Site in a Human Hsp70 Chaperone BiP. Structure 2015; 23:2191-2203. [PMID: 26655470 DOI: 10.1016/j.str.2015.10.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/16/2022]
Abstract
Binding immunoglobulin protein (BiP), an essential and ubiquitous Hsp70 chaperone in the ER, plays a key role in protein folding and quality control. BiP contains two functional domains: a nucleotide-binding domain (NBD) and a substrate-binding domain (SBD). NBD binds and hydrolyzes ATP; the substrates for SBD are extended polypeptides. ATP binding allosterically accelerates polypeptide binding and release. Although crucial to the chaperone activity, the molecular mechanisms of polypeptide binding and allosteric coupling of BiP are poorly understood. Here, we present crystal structures of an intact human BiP in the ATP-bound state, the first intact eukaryotic Hsp70 structure, and isolated BiP-SBD with a peptide substrate bound representing the ADP-bound state. These structures and our biochemical analysis demonstrate that BiP has a unique NBD-SBD interface that is highly conserved only in eukaryotic Hsp70s found in the cytosol and ER to fortify its ATP-bound state and promote the opening of its polypeptide-binding pocket.
Collapse
Affiliation(s)
- Jiao Yang
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Melesse Nune
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yinong Zong
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lei Zhou
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Qinglian Liu
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
15
|
Needham PG, Patel HJ, Chiosis G, Thibodeau PH, Brodsky JL. Mutations in the Yeast Hsp70, Ssa1, at P417 Alter ATP Cycling, Interdomain Coupling, and Specific Chaperone Functions. J Mol Biol 2015; 427:2948-65. [PMID: 25913688 DOI: 10.1016/j.jmb.2015.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/08/2015] [Accepted: 04/17/2015] [Indexed: 01/05/2023]
Abstract
The major cytoplasmic Hsp70 chaperones in the yeast Saccharomyces cerevisiae are the Ssa proteins, and much of our understanding of Hsp70 biology has emerged from studying ssa mutant strains. For example, Ssa1 catalyzes multiple cellular functions, including protein transport and degradation, and to this end, the ssa1-45 mutant has proved invaluable. However, the biochemical defects associated with the corresponding Ssa1-45 protein (P417L) are unknown. Consequently, we characterized Ssa1 P417L, as well as a P417S variant, which corresponds to a mutation in the gene encoding the yeast mitochondrial Hsp70. We discovered that the P417L and P417S proteins exhibit accelerated ATPase activity that was similar to the Hsp40-stimulated rate of ATP hydrolysis of wild-type Ssa1. We also found that the mutant proteins were compromised for peptide binding. These data are consistent with defects in peptide-stimulated ATPase activity and with results from limited proteolysis experiments, which indicated that the mutants' substrate binding domains were highly vulnerable to digestion. Defects in the reactivation of heat-denatured luciferase were also evident. Correspondingly, yeast expressing P417L or P417S as the only copy of Ssa were temperature sensitive and exhibited defects in Ssa1-dependent protein translocation and misfolded protein degradation. Together, our studies suggest that the structure of the substrate binding domain is altered and that coupling between this domain and the nucleotide binding domain is disabled when the conserved P417 residue is mutated. Our data also provide new insights into the nature of the many cellular defects associated with the ssa1-45 allele.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Gabriela Chiosis
- Program in Molecular Pharmacology and Chemistry; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Patrick H Thibodeau
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
16
|
Sarbeng EB, Liu Q, Tian X, Yang J, Li H, Wong JL, Zhou L, Liu Q. A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein. J Biol Chem 2015; 290:8849-62. [PMID: 25635056 DOI: 10.1074/jbc.m114.596288] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 12/28/2022] Open
Abstract
Highly conserved molecular chaperone Hsp70 heat shock proteins play a key role in maintaining protein homeostasis (proteostasis). DnaK, a major Hsp70 in Escherichia coli, has been widely used as a paradigm for studying Hsp70s. In the absence of ATP, purified DnaK forms low-ordered oligomer, whereas ATP binding shifts the equilibrium toward the monomer. Recently, we solved the crystal structure of DnaK in complex with ATP. There are two molecules of DnaK-ATP in the asymmetric unit. Interestingly, the interfaces between the two molecules of DnaK are large with good surface complementarity, suggesting functional importance of this crystallographic dimer. Biochemical analyses of DnaK protein supported the formation of dimer in solution. Furthermore, our cross-linking experiment based on the DnaK-ATP structure confirmed that DnaK forms specific dimer in an ATP-dependent manner. To understand the physiological function of the dimer, we mutated five residues on the dimer interface. Four mutations, R56A, T301A, N537A, and D540A, resulted in loss of chaperone activity and compromised the formation of dimer, indicating the functional importance of the dimer. Surprisingly, neither the intrinsic biochemical activities, the ATP-induced allosteric coupling, nor GrpE co-chaperone interaction is affected appreciably in all of the mutations except for R56A. Unexpectedly, the interaction with co-chaperone Hsp40 is significantly compromised. In summary, this study suggests that DnaK forms a transient dimer upon ATP binding, and this dimer is essential for the efficient interaction of DnaK with Hsp40.
Collapse
Affiliation(s)
- Evans Boateng Sarbeng
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qingdai Liu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Xueli Tian
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jiao Yang
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Hongtao Li
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Jennifer Li Wong
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Lei Zhou
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Qinglian Liu
- From the Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| |
Collapse
|
17
|
Samaddar M, Goswami AV, Purushotham J, Hegde P, D'Silva P. Role of the loop L4,5 in allosteric regulation in mtHsp70s: in vivo significance of domain communication and its implications in protein translocation. Mol Biol Cell 2014; 25:2129-42. [PMID: 24829379 PMCID: PMC4091826 DOI: 10.1091/mbc.e14-03-0821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The SBD loop L4,5 in mtHsp70s functions synergistically with the linker region to maintain the interdomain interface governing protein translocation and mitochondrial biogenesis. Intragenic suppressors of a communication-impaired L4,5 mutant reveal molecular insights into the allosteric regulation of mtHsp70s at the in vivo level. Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein–bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Madhuja Samaddar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | - Jaya Purushotham
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Pushpa Hegde
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
18
|
General IJ, Liu Y, Blackburn ME, Mao W, Gierasch LM, Bahar I. ATPase subdomain IA is a mediator of interdomain allostery in Hsp70 molecular chaperones. PLoS Comput Biol 2014; 10:e1003624. [PMID: 24831085 PMCID: PMC4022485 DOI: 10.1371/journal.pcbi.1003624] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
The versatile functions of the heat shock protein 70 (Hsp70) family of molecular chaperones rely on allosteric interactions between their nucleotide-binding and substrate-binding domains, NBD and SBD. Understanding the mechanism of interdomain allostery is essential to rational design of Hsp70 modulators. Yet, despite significant progress in recent years, how the two Hsp70 domains regulate each other's activity remains elusive. Covariance data from experiments and computations emerged in recent years as valuable sources of information towards gaining insights into the molecular events that mediate allostery. In the present study, conservation and covariance properties derived from both sequence and structural dynamics data are integrated with results from Perturbation Response Scanning and in vivo functional assays, so as to establish the dynamical basis of interdomain signal transduction in Hsp70s. Our study highlights the critical roles of SBD residues D481 and T417 in mediating the coupled motions of the two domains, as well as that of G506 in enabling the movements of the α-helical lid with respect to the β-sandwich. It also draws attention to the distinctive role of the NBD subdomains: Subdomain IA acts as a key mediator of signal transduction between the ATP- and substrate-binding sites, this function being achieved by a cascade of interactions predominantly involving conserved residues such as V139, D148, R167 and K155. Subdomain IIA, on the other hand, is distinguished by strong coevolutionary signals (with the SBD) exhibited by a series of residues (D211, E217, L219, T383) implicated in DnaJ recognition. The occurrence of coevolving residues at the DnaJ recognition region parallels the behavior recently observed at the nucleotide-exchange-factor recognition region of subdomain IIB. These findings suggest that Hsp70 tends to adapt to co-chaperone recognition and activity via coevolving residues, whereas interdomain allostery, critical to chaperoning, is robustly enabled by conserved interactions.
Collapse
Affiliation(s)
- Ignacio J. General
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Ying Liu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mandy E. Blackburn
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Wenzhi Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology, Tsinghua University, Beijing, China
| | - Lila M. Gierasch
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ponmani T, Munavar MH. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli. Microbiologyopen 2014; 3:369-82. [PMID: 24811065 PMCID: PMC4082710 DOI: 10.1002/mbo3.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 11/08/2022] Open
Abstract
The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5.
Collapse
Affiliation(s)
- Thangaraj Ponmani
- Department of Molecular Biology, School of Biological Sciences, Centre for Excellence in Genomic Sciences, Centre for Advanced Studies in functional and organismal Genomics, Madurai Kamaraj University [University with Potential for Excellence], Madurai, 625 021, India
| | | |
Collapse
|
20
|
Decipher the mechanisms of protein conformational changes induced by nucleotide binding through free-energy landscape analysis: ATP binding to Hsp70. PLoS Comput Biol 2013; 9:e1003379. [PMID: 24348227 PMCID: PMC3861046 DOI: 10.1371/journal.pcbi.1003379] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 10/15/2013] [Indexed: 11/30/2022] Open
Abstract
ATP regulates the function of many proteins in the cell by transducing its binding and hydrolysis energies into protein conformational changes by mechanisms which are challenging to identify at the atomic scale. Based on molecular dynamics (MD) simulations, a method is proposed to analyze the structural changes induced by ATP binding to a protein by computing the effective free-energy landscape (FEL) of a subset of its coordinates along its amino-acid sequence. The method is applied to characterize the mechanism by which the binding of ATP to the nucleotide-binding domain (NBD) of Hsp70 propagates a signal to its substrate-binding domain (SBD). Unbiased MD simulations were performed for Hsp70-DnaK chaperone in nucleotide-free, ADP-bound and ATP-bound states. The simulations revealed that the SBD does not interact with the NBD for DnaK in its nucleotide-free and ADP-bound states whereas the docking of the SBD was found in the ATP-bound state. The docked state induced by ATP binding found in MD is an intermediate state between the initial nucleotide-free and final ATP-bound states of Hsp70. The analysis of the FEL projected along the amino-acid sequence permitted to identify a subset of 27 protein internal coordinates corresponding to a network of 91 key residues involved in the conformational change induced by ATP binding. Among the 91 residues, 26 are identified for the first time, whereas the others were shown relevant for the allosteric communication of Hsp70 s in several experiments and bioinformatics analysis. The FEL analysis revealed also the origin of the ATP-induced structural modifications of the SBD recently measured by Electron Paramagnetic Resonance. The pathway between the nucleotide-free and the intermediate state of DnaK was extracted by applying principal component analysis to the subset of internal coordinates describing the transition. The methodology proposed is general and could be applied to analyze allosteric communication in other proteins. The precise biophysical characterization of the mechanisms of the protein conformational changes controlled by a nucleotide remains a challenge in biology. Molecular dynamics simulations of proteins in different nucleotide-binding states contain information on the nucleotide-dependent conformational dynamics. However, it is difficult to extract relevant information about the conformation-induced mechanism from the raw molecular dynamics data. Herein, we addressed this issue for the major ATP-dependent molecular chaperones Hsp70 s, which contribute to crucial cellular processes and are involved in several neurodegenerative diseases and in cancer. To function, Hsp70 undergoes several conformational changes controlled by the state of its nucleotide-binding domain. We demonstrated that the analysis of the effective free-energy landscape of the protein projected along the amino-acid sequence and computed from the molecular dynamics simulations of Hsp70 in different nucleotide-binding states, holds the key to identify the key residues of the conformational induced pathway. Identification of the key residues involved in the propagation of the structural changes induced by ATP binding offer alternative druggable specific sites other than the ligand binding clefts. The methodology developed for Hsp70 is general and can be adapted to any ligand induced conformational change in proteins.
Collapse
|
21
|
Dong X, Wang X, Zhang L, Yang Z, Xin X, Wu S, Sun C, Liu J, Yang J, Luo X. Identification and characterization of OsEBS, a gene involved in enhanced plant biomass and spikelet number in rice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:1044-57. [PMID: 23924074 DOI: 10.1111/pbi.12097] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/27/2013] [Accepted: 06/19/2013] [Indexed: 05/03/2023]
Abstract
Common wild rice (Oryza rufipogon Griff.) is an important genetic reservoir for rice improvement. We investigated a quantitative trait locus (QTL), qGP5-1, which is related to plant height, leaf size and panicle architecture, using a set of introgression lines of O. rufipogon in the background of the Indica cultivar Guichao2 (Oryza sativa L.). We cloned and characterized qGP5-1 and confirmed that the newly identified gene OsEBS (enhancing biomass and spikelet number) increased plant height, leaf size and spikelet number per panicle, leading to an increase in total grain yield per plant. Our results showed that the increased size of vegetative organs in OsEBS-expressed plants was enormously caused by increasing cell number. Sequence alignment showed that OsEBS protein contains a region with high similarity to the N-terminal conserved ATPase domain of Hsp70, but it lacks the C-terminal regions of the peptide-binding domain and the C-terminal lid. More results indicated that OsEBS gene did not have typical characteristics of Hsp70 in this study. Furthermore, Arabidopsis (Arabidopsis thaliana) transformed with OsEBS showed a similar phenotype to OsEBS-transgenic rice, indicating a conserved function of OsEBS among plant species. Together, we report the cloning and characterization of OsEBS, a new QTL that controls rice biomass and spikelet number, through map-based cloning, and it may have utility in improving grain yield in rice.
Collapse
Affiliation(s)
- Xianxin Dong
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sodhi M, Mukesh M, Kishore A, Mishra BP, Kataria RS, Joshi BK. Novel polymorphisms in UTR and coding region of inducible heat shock protein 70.1 gene in tropically adapted Indian zebu cattle (Bos indicus) and riverine buffalo (Bubalus bubalis). Gene 2013; 527:606-15. [PMID: 23792016 DOI: 10.1016/j.gene.2013.05.078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 11/18/2022]
Abstract
Due to evolutionary divergence, cattle (taurine, and indicine) and buffalo are speculated to have different responses to heat stress condition. Variation in candidate genes associated with a heat-shock response may provide an insight into the dissimilarity and suggest targets for intervention. The present work was undertaken to characterize one of the inducible heat shock protein genes promoter and coding regions in diverse breeds of Indian zebu cattle and buffaloes. The genomic DNA from a panel of 117 unrelated animals representing 14 diversified native cattle breeds and 6 buffalo breeds were utilized to determine the complete sequence and gene diversity of HSP70.1 gene. The coding region of HSP70.1 gene in Indian zebu cattle, Bos taurus and buffalo was similar in length (1,926 bp) encoding a HSP70 protein of 641 amino acids with a calculated molecular weight (Mw) of 70.26 kDa. However buffalo had a longer 5' and 3' untranslated region (UTR) of 204 and 293 nucleotides respectively, in comparison to Indian zebu cattle and Bos taurus wherein length of 5' and 3'-UTR was 172 and 286 nucleotides, respectively. The increased length of buffalo HSP70.1 gene compared to indicine and taurine gene was due to two insertions each in 5' and 3'-UTR. Comparative sequence analysis of cattle (taurine and indicine) and buffalo HSP70.1 gene revealed a total of 54 gene variations (50 SNPs and 4 INDELs) among the three species in the HSP70.1 gene. The minor allele frequencies of these nucleotide variations varied from 0.03 to 0.5 with an average of 0.26. Among the 14 B. indicus cattle breeds studied, a total of 19 polymorphic sites were identified: 4 in the 5'-UTR and 15 in the coding region (of these 2 were non-synonymous). Analysis among buffalo breeds revealed 15 SNPs throughout the gene: 6 at the 5' flanking region and 9 in the coding region. In bubaline 5'-UTR, 2 additional putative transcription factor binding sites (Elk-1 and C-Re1) were identified, other than three common sites (CP2, HSE and Pax-4) observed across all the analyzed animals. No polymorphism was found within the 3'-UTR of Indian cattle or buffalo as it was found to be monomorphic. The promoter sequences generated in 117 individuals showed a rich array of sequence elements known to be involved in transcription regulation. A total of 11 nucleotide changes were observed in the promoter sequence across the analyzed species, 3 of these changes were located within the potential transcription factor binding domains. We also identified 4 microsatellite markers within the buffalo HSP70.1 gene and 3 microsatellites within bovine HSP70.1. The present study identified several distinct changes across indicine, taurine and bubaline HSP70.1 genes that could further be evaluated as molecular markers for thermotolerance.
Collapse
Affiliation(s)
- M Sodhi
- National Bureau of Animal Genetic resources, Karnal 132001, India.
| | | | | | | | | | | |
Collapse
|
23
|
Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 2013; 20:900-7. [PMID: 23708608 DOI: 10.1038/nsmb.2583] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/08/2013] [Indexed: 01/29/2023]
Abstract
The 70-kilodalton (kDa) heat-shock proteins (Hsp70s) are ubiquitous molecular chaperones essential for cellular protein folding and proteostasis. Each Hsp70 has two functional domains: a nucleotide-binding domain (NBD), which binds and hydrolyzes ATP, and a substrate-binding domain (SBD), which binds extended polypeptides. NBD and SBD interact little when in the presence of ADP; however, ATP binding allosterically couples the polypeptide- and ATP-binding sites. ATP binding promotes polypeptide release; polypeptide rebinding stimulates ATP hydrolysis. This allosteric coupling is poorly understood. Here we present the crystal structure of an intact ATP-bound Hsp70 from Escherichia coli at 1.96-Å resolution. The ATP-bound NBD adopts a unique conformation, forming extensive interfaces with an SBD that has changed radically, having its α-helical lid displaced and the polypeptide-binding channel of its β-subdomain restructured. These conformational changes, together with our biochemical assays, provide a structural explanation for allosteric coupling in Hsp70 activity.
Collapse
Affiliation(s)
- Ruifeng Qi
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kumar DP, Vorvis C, Sarbeng EB, Cabra Ledesma VC, Willis JE, Liu Q. The four hydrophobic residues on the Hsp70 inter-domain linker have two distinct roles. J Mol Biol 2011; 411:1099-113. [PMID: 21762702 DOI: 10.1016/j.jmb.2011.07.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 07/01/2011] [Indexed: 12/14/2022]
Abstract
The ubiquitous molecular chaperone 70-kDa heat shock proteins (Hsp70) play key roles in maintaining protein homeostasis. Hsp70s contain two functional domains: a nucleotide binding domain and a substrate binding domain. The two domains are connected by a highly conserved inter-domain linker, and allosteric coupling between the two domains is critical for chaperone function. The auxiliary chaperone 40-kDa heat shock proteins (Hsp40) facilitate all the biological processes associated with Hsp70s by stimulating the ATPase activity of Hsp70s. Although an overall essential role of the inter-domain linker in both allosteric coupling and Hsp40 interaction has been suggested, the molecular mechanisms remain largely unknown. Previously, we reported a crystal structure of a full-length Hsp70 homolog, in which the inter-domain linker forms a well-ordered β strand. Four highly conserved hydrophobic residues reside on the inter-domain linker. In DnaK, a well-studied Hsp70, these residues are V389, L390, L391, and L392. In this study, we biochemically dissected their roles. The inward-facing side chains of V389 and L391 form extensive hydrophobic contacts with the nucleotide binding domain, suggesting their essential roles in coupling the two functional domains, a hypothesis confirmed by mutational analysis. On the other hand, L390 and L392 face outward on the surface. Mutation of either abolishes DnaK's in vivo function, yet intrinsic biochemical properties remain largely intact. In contrast, Hsp40 interaction is severely compromised. Thus, for the first time, we separated the two essential roles of the highly conserved Hsp70 inter-domain linker: coupling the two functional domains through V389 and L391 and mediating the interaction with Hsp40 through L390 and L392.
Collapse
Affiliation(s)
- Divya Prasanna Kumar
- Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | | | | | | | |
Collapse
|
25
|
Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proc Natl Acad Sci U S A 2011; 108:6987-92. [PMID: 21482798 DOI: 10.1073/pnas.1014448108] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 70-kDa heat shock protein (Hsp70) chaperones perform a wide array of cellular functions that all derive from the ability of their N-terminal nucleotide-binding domains (NBDs) to allosterically regulate the substrate affinity of their C-terminal substrate-binding domains in a nucleotide-dependent mechanism. To explore the structural origins of Hsp70 allostery, we performed NMR analysis on the NBD of DnaK, the Escherichia coli Hsp70, in six different states (ligand-bound or apo) and in two constructs, one that retains the conserved and functionally crucial portion of the interdomain linker (residues ) and another that lacks the linker. Chemical-shift perturbation patterns identify residues at subdomain interfaces that constitute allosteric networks and enable the NBD to act as a nucleotide-modulated switch. Nucleotide binding results in changes in subdomain orientations and long-range perturbations along subdomain interfaces. In particular, our findings provide structural details for a key mechanism of Hsp70 allostery, by which information is conveyed from the nucleotide-binding site to the interdomain linker. In the presence of ATP, the linker binds to the edge of the IIA β-sheet, which structurally connects the linker and the nucleotide-binding site. Thus, a pathway of allosteric communication leads from the NBD nucleotide-binding site to the substrate-binding domain via the interdomain linker.
Collapse
|
26
|
Pareek G, Samaddar M, D'Silva P. Primary sequence that determines the functional overlap between mitochondrial heat shock protein 70 Ssc1 and Ssc3 of Saccharomyces cerevisiae. J Biol Chem 2011; 286:19001-13. [PMID: 21474445 PMCID: PMC3099715 DOI: 10.1074/jbc.m110.197434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can "make or break" mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.
Collapse
Affiliation(s)
- Gautam Pareek
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
27
|
Smock RG, Rivoire O, Russ WP, Swain JF, Leibler S, Ranganathan R, Gierasch LM. An interdomain sector mediating allostery in Hsp70 molecular chaperones. Mol Syst Biol 2011; 6:414. [PMID: 20865007 PMCID: PMC2964120 DOI: 10.1038/msb.2010.65] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 05/20/2010] [Indexed: 11/09/2022] Open
Abstract
Allosteric coupling between protein domains is fundamental to many cellular processes. For example, Hsp70 molecular chaperones use ATP binding by their actin-like N-terminal ATPase domain to control substrate interactions in their C-terminal substrate-binding domain, a reaction that is critical for protein folding in cells. Here, we generalize the statistical coupling analysis to simultaneously evaluate co-evolution between protein residues and functional divergence between sequences in protein sub-families. Applying this method in the Hsp70/110 protein family, we identify a sparse but structurally contiguous group of co-evolving residues called a 'sector', which is an attribute of the allosteric Hsp70 sub-family that links the functional sites of the two domains across a specific interdomain interface. Mutagenesis of Escherichia coli DnaK supports the conclusion that this interdomain sector underlies the allosteric coupling in this protein family. The identification of the Hsp70 sector provides a basis for further experiments to understand the mechanism of allostery and introduces the idea that cooperativity between interacting proteins or protein domains can be mediated by shared sectors.
Collapse
Affiliation(s)
- Robert G Smock
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Ihara Y, Manabe S, Ikezaki M, Inai Y, Matsui ISL, Ohta Y, Muroi E, Ito Y. C-Mannosylated peptides derived from the thrombospondin type 1 repeat interact with Hsc70 to modulate its signaling in RAW264.7 cells. Glycobiology 2010; 20:1298-310. [PMID: 20581007 DOI: 10.1093/glycob/cwq096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The thrombospondin type 1 repeat (TSR) is a functional module of proteins called TSR superfamily proteins (e.g., thrombospondin, F-spondin, mindin, etc.) and includes a conserved Trp-x-x-Trp (W-x-x-W) motif, in which the first Trp residue is preferably modified by C-mannosylation. We previously reported that synthesized C-mannosylated TSR-derived peptides (e.g., C-Man-WSPW) specifically enhanced lipopolysaccharide-induced signaling in macrophage-like RAW264.7 cells. In this study, we searched for the proteins that bind to C-mannosylated TSR-derived peptides in RAW264.7 cells and identified heat shock cognate protein 70 (Hsc70). The binding affinity of Hsc70 for C-mannosylated peptides in solution was higher than that for the peptides without C-mannose. The binding was influenced by a nucleotide-induced conformational change of Hsc70, and C-mannosylated peptides preferred the substrate-binding domain of Hsc70. Furthermore, in RAW264.7 cells, addition of Hsc70 stimulated cellular signaling to produce tumor necrosis factor-alpha, via transforming growth factor-beta-activated kinase 1, and the Hsc70-induced signaling was enhanced more in the presence of the peptides with C-mannose than that without C-mannose, suggesting functional interaction between Hsc70 and the C-mannosylated peptides in the cells. Together, these results demonstrate a novel function of the C-mannosylation of TSR-derived peptides in terms of interaction with Hsc70 to regulate cellular signaling.
Collapse
Affiliation(s)
- Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Horne BE, Li T, Genevaux P, Georgopoulos C, Landry SJ. The Hsp40 J-domain stimulates Hsp70 when tethered by the client to the ATPase domain. J Biol Chem 2010; 285:21679-88. [PMID: 20448033 DOI: 10.1074/jbc.m110.113118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli Hsp40 DnaJ uses its J-domain (Jd) to couple ATP hydrolysis and client protein capture in Hsp70 DnaK. Fusion of the Jd to peptide p5 (as in Jdp5) dramatically increases the apparent affinity of the p5 moiety for DnaK in the presence of ATP, and Jdp5 stimulates ATP hydrolysis in DnaK by several orders of magnitude. NMR experiments with [(15)N]Jdp5 demonstrated that the peptide tethers the Jd to the ATPase domain. Thus, ATP hydrolysis and client protein binding in DnaK are coupled principally through the association of the client with DnaJ. Overexpression of a recombinant Jd was specifically toxic to cells that simultaneously expressed DnaK. No toxicity was observed when overexpressing Jdp5 or mutant Jd or when co-overexpressing the Jd and the nucleotide exchange factor GrpE. The results suggest that the Jd shifts DnaK to a client-bound form by stimulating the DnaK ATPase but only when the Jd is brought to DnaK by a client-Hsp40 complex.
Collapse
Affiliation(s)
- B Erin Horne
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
30
|
Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE. Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 2010; 285:21282-91. [PMID: 20439464 DOI: 10.1074/jbc.m110.124149] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli 70-kDa heat shock protein, DnaK, is a molecular chaperone that engages in a variety of cellular activities, including the folding of proteins. During this process, DnaK binds its substrates in coordination with a catalytic ATPase cycle. Both the ATPase and protein folding activities of DnaK are stimulated by its co-chaperones, DnaJ and GrpE. However, it is not yet clear how changes in the stimulated ATPase rate of DnaK impact the folding process. In this study, we performed mutagenesis throughout the nucleotide-binding domain of DnaK to generate a collection of mutants in which the stimulated ATPase rates varied from 0.7 to 13.6 pmol/microg/min(-1). We found that this range was largely established by differences in the ability of the mutants to be stimulated by one or both of the co-chaperones. Next, we explored how changes in ATPase rate might impact refolding of denatured luciferase in vitro and found that the two activities were poorly correlated. Unexpectedly, we found several mutants that refold luciferase normally in the absence of significant ATP turnover, presumably by increasing the flexibility of DnaK. Finally, we tested whether DnaK mutants could complement growth of DeltadnaK E. coli cells under heat shock and found that the ability to refold luciferase was more predictive of in vivo activity than ATPase rate. This study provides insights into how flexibility and co-chaperone interactions affect DnaK-mediated ATP turnover and protein folding.
Collapse
Affiliation(s)
- Lyra Chang
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
31
|
Goswami AV, Chittoor B, D'Silva P. Understanding the functional interplay between mammalian mitochondrial Hsp70 chaperone machine components. J Biol Chem 2010; 285:19472-82. [PMID: 20392697 PMCID: PMC2885226 DOI: 10.1074/jbc.m110.105957] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.
Collapse
Affiliation(s)
- Arvind Vittal Goswami
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
32
|
Aponte RA, Zimmermann S, Reinstein J. Directed evolution of the DnaK chaperone: mutations in the lid domain result in enhanced chaperone activity. J Mol Biol 2010; 399:154-67. [PMID: 20381501 DOI: 10.1016/j.jmb.2010.03.060] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/18/2022]
Abstract
We improved the DnaK molecular chaperone system for increased folding efficiency towards two target proteins, by using a multi-parameter screening procedure. First, we used a folding-deficient C-terminal truncated chloramphenicol acetyl transferase (CAT_Cd9) to obtain tunable selective pressure for enhanced DnaK chaperon function in vivo. Second, we screened selected clones in vitro for CAT_Cd9 activity after growth under selective pressure. We then analyzed how these variants performed as compared to wild type DnaK towards folding assistance of a second target protein; namely, chemically denatured firefly luciferase. A total of 11 single point DnaK mutants and 1 truncated variant were identified using CAT_Cd9 as the protein target, while 4 of the 12 selected variants showed improved luciferase refolding in vitro. This shows that improving the DnaK chaperone by using a certain target substrate protein, does not necessarily result in a loss or reduction in its ability to assist other proteins. Of the 12 identified mutations, half were clustered in the nucleotide binding domain, and half in the lid domain (LD) of DnaK. The truncated variant is characterized by a 35-residue C-terminal truncation (Cd35) and exhibited the highest improvement for luciferase refolding. Cd35 showed a 7-fold increase in initial refolding rate for denatured luciferase and resulted in a 5-fold increase in maximal luminescence as compared to wild type DnaK. Given that the best in vitro performing mutants contained LD substitutions, and that the LD is not involved in ATP binding, ATP hydrolysis or client protein association, but is involved in allosteric regulation of the chaperone cycle, we propose that improved DnaK variants result in changes to allosteric domain communication, ultimately retuning the ATP-dependent chaperone cycle.
Collapse
Affiliation(s)
- Raphael A Aponte
- Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
33
|
Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology 2010; 11:401-19. [PMID: 20237955 DOI: 10.1007/s10522-010-9269-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/26/2010] [Indexed: 12/26/2022]
Abstract
Oxidative stress is a phenotypic hallmark in several genetic disorders characterized by cancer predisposition and/or propensity to premature ageing. Here we review the published evidence for the involvement of oxidative stress in the phenotypes of Ataxia-Telangiectasia (A-T), Down Syndrome (DS), Fanconi Anaemia (FA), and Werner Syndrome (WS), from the viewpoint of mitochondrial dysfunction. Mitochondria are recognized as both the cell compartment where energetic metabolism occurs and as the first and most susceptible target of reactive oxygen species (ROS) formation. Thus, a critical evaluation of the basic mechanisms leading to an in vivo pro-oxidant state relies on elucidating the features of mitochondrial impairment in each disorder. The evidence for different mitochondrial dysfunctions reported in A-T, DS, and FA is reviewed. In the case of WS, clear-cut evidence linking human WS phenotype to mitochondrial abnormalities is lacking so far in the literature. Nevertheless, evidence relating mitochondrial dysfunctions to normal ageing suggests that WS, as a progeroid syndrome, is likely to feature mitochondrial abnormalities. Hence, ad hoc research focused on elucidating the nature of mitochondrial dysfunction in WS pathogenesis is required. Based on the recognized, or reasonably suspected, role of mitochondrial abnormalities in the pathogenesis of these disorders, studies of chemoprevention with mitochondria-targeted supplements are warranted.
Collapse
|
34
|
Chen XW, Jeong JC. Sequence-based prediction of protein interaction sites with an integrative method. Bioinformatics 2009; 25:585-91. [DOI: 10.1093/bioinformatics/btp039] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Sauna ZE, Bohn SS, Rutledge R, Dougherty MP, Cronin S, May L, Xia D, Ambudkar SV, Golin J. Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport. J Biol Chem 2008; 283:35010-22. [PMID: 18842589 DOI: 10.1074/jbc.m806446200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Pdr5 multidrug transporter is an important member of the ATP-binding cassette superfamily of proteins. We describe a novel mutation (S558Y) in transmembrane helix 2 of Pdr5 identified in a screen for suppressors that eliminated Pdr5-mediated cycloheximide hyper-resistance. Nucleotides as well as transport substrates bind to the mutant Pdr5 with an affinity comparable with that for wild-type Pdr5. Wild-type and mutant Pdr5s show ATPase activity with comparable K(m)((ATP)) values. Nonetheless, drug sensitivity is equivalent in the mutant pdr5 and the pdr5 deletion. Finally, the transport substrate clotrimazole, which is a noncompetitive inhibitor of Pdr5 ATPase activity, has a minimal effect on ATP hydrolysis by the S558Y mutant. These results suggest that the drug sensitivity of the mutant Pdr5 is attributable to the uncoupling of NTPase activity and transport. We screened for amino acid alterations in the nucleotide-binding domains that would reverse the phenotypic effect of the S558Y mutation. A second-site mutation, N242K, located between the Walker A and signature motifs of the N-terminal nucleotide-binding domain, restores significant function. This region of the nucleotide-binding domain interacts with the transmembrane domains via the intracellular loop-1 (which connects transmembrane helices 2 and 3) in the crystal structure of Sav1866, a bacterial ATP-binding cassette drug transporter. These structural studies are supported by biochemical and genetic evidence presented here that interactions between transmembrane helix 2 and the nucleotide-binding domain, via the intracellular loop-1, may define at least part of the translocation pathway for coupling ATP hydrolysis to drug transport.
Collapse
Affiliation(s)
- Zuben E Sauna
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-4256, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Deocaris CC, Kaul SC, Wadhwa R. From proliferative to neurological role of an hsp70 stress chaperone, mortalin. Biogerontology 2008; 9:391-403. [PMID: 18770009 DOI: 10.1007/s10522-008-9174-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Accepted: 08/18/2008] [Indexed: 12/21/2022]
Abstract
Although the brain makes up approximately 2% of a person's body weight, it consumes more than 15% of total cardiac output and has a per capita caloric requirement of 10 times more than the rest of the body. Such continuous metabolic demand that supports the generation of action potentials in neuronal cells relies on the mitochondria, the main organelle for power generation. The phenomenon of mitochondrial biogenesis, although has long been a neglected theme in neurobiology, can be regarded as critical to brain physiology. The present review emphasizes the role of a key molecular player of mitochondrial biogenesis, the mortalin/mthsp70. Brain mortalin is discussed in relation to its aptitude to impact on mitochondrial function and homeostasis, to its interfacing energy metabolic functions with synaptic plasticity, and to its modulation of brain aging via the cellular senescence pathways. Recently, this chaperone has been implicated in Alzheimer's (AD) and Parkinson's (PD) diseases, with proteomic studies consistently identifying oxidatively-damaged mortalin as potential biomarker. Hence, it is possible that mitochondrial dysfunction coincides with the collapse in the mitochondrial chaperone network that aim not only to import, sort and maintain integrity of protein components within the mitochondria, but also to act as buffer to the molecular heterogeneity of damaged and aging mitochondrial proteins within a ROS-rich microenvironment. Inversely, it may also seem that vulnerability to mitochondrial dysfunction could be precipitated by malevolent (anti-chaperone) gain-of-function of a 'sick mortalin'.
Collapse
Affiliation(s)
- Custer C Deocaris
- Institute of Health and Sports Science, University of Tsukuba, Ibaraki, 305-8574, Japan
| | | | | |
Collapse
|
37
|
Awad W, Estrada I, Shen Y, Hendershot LM. BiP mutants that are unable to interact with endoplasmic reticulum DnaJ proteins provide insights into interdomain interactions in BiP. Proc Natl Acad Sci U S A 2008; 105:1164-9. [PMID: 18203820 PMCID: PMC2234109 DOI: 10.1073/pnas.0702132105] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein (Hsp)70 family of molecular chaperones interacts with unfolded proteins through a C-terminal substrate-binding domain (SBD) that is controlled by nucleotide binding to the N-terminal domain. The ATPase cycle is regulated by cochaperones, including DnaJ proteins that accelerate ATP hydrolysis to stabilize the Hsp70-substrate complex. We found that R197 in hamster BiP, which resides at the surface of the nucleotide-binding domain, is critical for both association with endoplasmic reticulum DnaJ proteins and interaction with the SBD. Decreasing the positive charge at this residue enhanced basal ATPase activity, destabilized interaction with the SBD, and reduced substrate release both in vitro and in vivo. Mutation of three glutamic acids in the SBD mimicked many of these effects. Our data provide insights into communications between the two domains and suggest a mechanism by which DnaJ proteins increase ATP hydrolysis.
Collapse
Affiliation(s)
- Walid Awad
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Isaac Estrada
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Ying Shen
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Linda M. Hendershot
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| |
Collapse
|
38
|
ZHOU XUXIA, LI WEIFEN, PAN YUANJIANG. Functional and structural characterization of apidaecin and itsN-terminal andC-terminal fragments. J Pept Sci 2007; 14:697-707. [DOI: 10.1002/psc.976] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Javid B, MacAry PA, Lehner PJ. Structure and function: heat shock proteins and adaptive immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:2035-40. [PMID: 17675458 DOI: 10.4049/jimmunol.179.4.2035] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Heat shock proteins (HSPs) have been implicated in the stimulation and generation of both innate and adaptive immunity. The ability of HSPs to bind antigenic peptides and deliver them to APCs is the basis of the generation of peptide-specific T lymphocyte responses both in vitro and in vivo. The different HSP families are genetically and biochemically unrelated, and the structural basis of peptide binding and the dynamic models of ligand interaction are known only for some of the HSPs. We examine the contribution of HSP structure to its immunological functions and the potential "immunological repertoire" of HSPs as well as the use of biophysical techniques to quantify HSP-peptide interactions and optimize vaccine design. Although biochemical evidence for HSP-mediated endogenous processing of Ag has now emerged, the issue of whether HSP-peptide complexes act as physiological sources of Ag in cross-presentation is controversial. We assess the contribution of biochemical studies in this field.
Collapse
Affiliation(s)
- Babak Javid
- Department of Medicine, Cambridge Institute for Medical Research, Addenbrooke's Hospital, Cambridge, United Kingdom.
| | | | | |
Collapse
|
40
|
Li XS, Sun JN, Okamoto-Shibayama K, Edgerton M. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histatin 5 required for toxicity. J Biol Chem 2006; 281:22453-63. [PMID: 16720580 DOI: 10.1074/jbc.m604064200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fungicidal activity of Hst 5 is initiated by binding to cell surface proteins on Candida albicans, followed by intracellular transport to cytoplasmic effectors leading to cell death. As we identified heat shock 70 proteins (Ssa1p and/or Ssa2p) from C. albicans lysates that bind Hst 5, direct interactions between purified recombinant Ssa proteins and Hst 5 were tested by pull-down and yeast two-hybrid assays. Pulldown of both native complexes and those stabilized by cross-linking demonstrated higher affinity of Hst 5 for Ssa2p than for Ssa1p, in agreement with higher levels of interactions between Ssa2p and Hst 5 measured by yeast two-hybrid analyses. C. albicans ssa1Delta and ssa2Delta mutants were constructed to examine Hst 5 binding, translocation, and candidacidal activities. Both ssa1Delta and ssa2Delta mutants were indistinguishable from wild-type cells in growth and hyphal formation. However, C. albicans ssa2Delta mutants were highly resistant to the candidacidal activity of Hst 5, although the ssa1Delta mutant did not have any significant reduction in killing by Hst 5. Total cellular binding of 125I-Hst 5 in the ssa2Delta mutant was reduced to one-third that of wild-type cells, in contrast to the ssa1Delta mutant whose total cellular binding of Hst 5 was similar to the wild-type strain. Intracellular transport of Hst 5 was significantly impaired in the ssa2Delta mutant strain, but only mildly so in the ssa1Delta mutant. Thus, C. albicans Ssa2p facilitates fungicidal activity of Hst 5 in binding and intracellular translocation, whereas Ssa1p appears to have a lesser functional role in Hst 5 toxicity.
Collapse
Affiliation(s)
- Xuewei S Li
- Department of Oral Biology and Restorative Dentistry, School of Dental Medicine, State University of New York, Buffalo, New York 14214, USA
| | | | | | | |
Collapse
|
41
|
Fernández-Sáiz V, Moro F, Arizmendi JM, Acebrón SP, Muga A. Ionic contacts at DnaK substrate binding domain involved in the allosteric regulation of lid dynamics. J Biol Chem 2006; 281:7479-88. [PMID: 16415343 DOI: 10.1074/jbc.m512744200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain further insight into the interactions involved in the allosteric transition of DnaK we have characterized wild-type (wt) protein and three mutants in which ionic interactions at the interface between the two subdomains of the substrate binding domain, and within the lid subdomain have been disrupted. Our data show that ionic contacts, most likely forming an electrically charged network, between the N-terminal region of helix B and an inner loop of the beta-sandwich are involved in maintaining the position of the lid relative to the beta-subdomain in the ADP state but not in the ATP state of the protein. Disruption of the ionic interactions between the C-terminal region of helix B and the outer loops of the beta-sandwich, known as the latch, does not have the same conformational consequences but results equally in an inactive protein. This indicates that a variety of mechanisms can inactivate this complex allosteric machine. Our results identify the ionic contacts at the subdomain and interdomain interfaces that are part of the hinge region involved in the ATP-induced allosteric displacement of the lid away from the peptide binding site. These interactions also stabilize peptide-Hsp70 complexes at physiological (37 degrees C) and stress (42 degrees C) temperatures, a requirement for productive substrate (re)folding.
Collapse
MESH Headings
- Adenosine Diphosphate/chemistry
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphate/chemistry
- Allosteric Regulation
- Allosteric Site
- Amino Acid Sequence
- Anisotropy
- Bacterial Proteins/chemistry
- Binding Sites
- Calorimetry, Differential Scanning
- Escherichia coli/metabolism
- Hot Temperature
- Ions
- Kinetics
- Luciferases/metabolism
- Mass Spectrometry
- Microscopy, Fluorescence
- Molecular Chaperones/chemistry
- Molecular Conformation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Peptides/chemistry
- Protein Binding
- Protein Conformation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Sequence Homology, Amino Acid
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Substrate Specificity
- Temperature
- Thermodynamics
- Time Factors
- Trypsin/chemistry
- Trypsin/pharmacology
Collapse
Affiliation(s)
- Vanesa Fernández-Sáiz
- Unidad de Biofísica (Consejo Superior de Investigaciones Científicas-Universidad del País Vasco, Euskal Herriko Unibertsitatea), 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
42
|
Calderwood SK, Theriault JR, Gong J. Message in a bottle: role of the 70-kDa heat shock protein family in anti-tumor immunity. Eur J Immunol 2005; 35:2518-27. [PMID: 16144035 DOI: 10.1002/eji.200535002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Extracellular heat shock protein 70 (HSP70) is a potent agent for tumor immunotherapy, which can break tolerance to tumor-associated antigens and cause specific tumor cell killing by cytotoxic CD8+ T cells. The pro-immune effects of extracellular HSP70 are, to some extent, extensions of its molecular properties as an intracellular stress protein. The HSP70 are characterized by massive inducibility after stress, preventing cell death by inhibiting aggregation of cell proteins and directly antagonizing multiple cell death pathways. HSP70 family members possess a domain in the C terminus that chaperones unfolded proteins and peptides, and a N-terminal ATPase domain that controls the opening and closing of the peptide binding domain. These properties not only enable intracellular HSP70 to inhibit tumor apoptosis, but also promote formation of stable complexes with cytoplasmic tumor antigens that can then escape intact from dying cells to interact with antigen-processing cells (APC) and stimulate anti-tumor immunity. HSP70 may be released from tumors undergoing therapy at high local extracellular concentrations, and send a danger signal to the host leading to APC activation. Extracellular HSP70 bind to high-affinity receptors on APC, leading to activation of maturation and re-presentation of the peptide antigen cargo of HSP70 by the APC. The ability of HSP70-peptide complexes (HSP70-PC) to break tolerance and cause tumor regression employs these dual properties as signaling ligand and antigen transporter. HSP70-PC thus coordinately activate innate immune responses and deliver antigens for re-presentation by MHC class I and II molecules on the APC cell surface, leading to specific anti-tumor immunity.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Division of Molecular and Cellular Radiation Oncology, BIDMC, Harvard Medical School, Boston, MA 02215, USA.
| | | | | |
Collapse
|
43
|
Hennessy F, Nicoll WS, Zimmermann R, Cheetham ME, Blatch GL. Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions. Protein Sci 2005; 14:1697-709. [PMID: 15987899 PMCID: PMC2253343 DOI: 10.1110/ps.051406805] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
Collapse
Affiliation(s)
- Fritha Hennessy
- Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, South Africa
| | | | | | | | | |
Collapse
|
44
|
Shomura Y, Dragovic Z, Chang HC, Tzvetkov N, Young JC, Brodsky JL, Guerriero V, Hartl FU, Bracher A. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol Cell 2005; 17:367-79. [PMID: 15694338 DOI: 10.1016/j.molcel.2004.12.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 11/05/2004] [Accepted: 12/23/2004] [Indexed: 10/25/2022]
Abstract
HspBP1 belongs to a family of eukaryotic proteins recently identified as nucleotide exchange factors for Hsp70. We show that the S. cerevisiae ortholog of HspBP1, Fes1p, is required for efficient protein folding in the cytosol at 37 degrees C. The crystal structure of HspBP1, alone and complexed with part of the Hsp70 ATPase domain, reveals a mechanism for its function distinct from that of BAG-1 or GrpE, previously characterized nucleotide exchange factors of Hsp70. HspBP1 has a curved, all alpha-helical fold containing four armadillo-like repeats unlike the other nucleotide exchange factors. The concave face of HspBP1 embraces lobe II of the ATPase domain, and a steric conflict displaces lobe I, reducing the affinity for nucleotide. In contrast, BAG-1 and GrpE trigger a conserved conformational change in lobe II of the ATPase domain. Thus, nucleotide exchange on eukaryotic Hsp70 occurs through two distinct mechanisms.
Collapse
Affiliation(s)
- Yasuhito Shomura
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL. Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 2004; 279:51131-40. [PMID: 15448148 DOI: 10.1074/jbc.m404857200] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone and cytoprotective activities of the Hsp70 and Hsp40 chaperones represent therapeutic targets for human diseases such as cancer and those that arise from defects in protein folding; however, very few Hsp70 and no Hsp40 modulators have been described. Using an assay for ATP hydrolysis, we identified and screened small molecules with structural similarity to 15-deoxyspergualin and NSC 630668-R/1 for their effects on endogenous and Hsp40-stimulated Hsp70 ATPase activity. Several of these compounds modulated Hsp70 ATPase activity, consistent with the action of NSC 630668-R/1 observed previously (Fewell, S. W., Day, B. W., and Brodsky, J. L. (2001) J. Biol. Chem. 276, 910-914). In contrast, three compounds inhibited the ability of Hsp40 to stimulate Hsp70 ATPase activity but did not affect the endogenous activity of Hsp70. Two of these agents also compromised the Hsp70/Hsp40-mediated post-translational translocation of a secreted pre-protein in vitro. Together, these data indicate the potential for continued screening of small molecule Hsp70 effectors and that specific modulators of Hsp70-Hsp40 interaction can be obtained, potentially for future therapeutic use.
Collapse
Affiliation(s)
- Sheara W Fewell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Revington M, Holder TM, Zuiderweg ERP. NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. J Biol Chem 2004; 279:33958-67. [PMID: 15175340 DOI: 10.1074/jbc.m313967200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We present an NMR investigation of the nucleotide-dependent conformational properties of a 44-kDa nucleotide binding domain (NBD) of an Hsp70 protein. Conformational changes driven by ATP binding and hydrolysis in the N-terminal NBD are believed to allosterically regulate substrate affinity in the C-terminal substrate binding domain. Several crystal structures of Hsc70 NBDs in different nucleotide states have, however, not shown significant structural differences. We have previously reported the NMR assignments of the backbone resonances of the NBD of the bacterial Hsp70 homologue Thermus thermophilus DnaK in the ADP-bound state. In this study we show, by assigning the NBD with the ATP/transition state analogue, ADP.AlFx, bound, that it closely mimics the ATP-bound state. Chemical shift difference mapping of the two nucleotide states identified differences in a cluster of residues at the interface between subdomains 1A and 1B. Further analysis of the spectra revealed that the ATP state exhibited a single conformation, whereas the ADP state was in slow conformational exchange between a form similar to the ATP state and another state unique to the ADP-bound form. A model is proposed of the allosteric mechanism based on the nucleotide state altering the balance of a dynamic equilibrium between the open and closed states. The observed chemical shift perturbations were concentrated in an area close to a previously described J-domain binding channel, confirming the importance of that region in the allosteric mechanism.
Collapse
Affiliation(s)
- Matthew Revington
- Biophysics Research Division and Department of Biological Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
47
|
Shaner L, Trott A, Goeckeler JL, Brodsky JL, Morano KA. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family. J Biol Chem 2004; 279:21992-2001. [PMID: 15028727 DOI: 10.1074/jbc.m313739200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.
Collapse
Affiliation(s)
- Lance Shaner
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
48
|
Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL. Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 2003; 14:3437-48. [PMID: 12925775 PMCID: PMC181579 DOI: 10.1091/mbc.e02-12-0847] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
ER-associated degradation (ERAD) removes defective and mis-folded proteins from the eukaryotic secretory pathway, but mutations in the ER lumenal Hsp70, BiP/Kar2p, compromise ERAD efficiency in yeast. Because attenuation of ERAD activates the UPR, we screened for kar2 mutants in which the unfolded protein response (UPR) was induced in order to better define how BiP facilitates ERAD. Among the kar2 mutants isolated we identified the ERAD-specific kar2-1 allele (Brodsky et al. J. Biol. Chem. 274, 3453-3460). The kar2-1 mutation resides in the peptide-binding domain of BiP and decreases BiP's affinity for a peptide substrate. Peptide-stimulated ATPase activity was also reduced, suggesting that the interdomain coupling in Kar2-1p is partially compromised. In contrast, Hsp40 cochaperone-activation of Kar2-1p's ATPase activity was unaffected. Consistent with UPR induction in kar2-1 yeast, an ERAD substrate aggregated in microsomes prepared from this strain but not from wild-type yeast. Overexpression of wild-type BiP increased substrate solubility in microsomes obtained from the mutant, but the ERAD defect was exacerbated, suggesting that simply retaining ERAD substrates in a soluble, retro-translocation-competent conformation is insufficient to support polypeptide transit to the cytoplasm.
Collapse
Affiliation(s)
- Mehdi Kabani
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kondrashov AS, Sunyaev S, Kondrashov FA. Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci U S A 2002; 99:14878-83. [PMID: 12403824 PMCID: PMC137512 DOI: 10.1073/pnas.232565499] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We study fitness landscape in the space of protein sequences by relating sets of human pathogenic missense mutations in 32 proteins to amino acid substitutions that occurred in the course of evolution of these proteins. On average, approximately 10% of deviations of a nonhuman protein from its human ortholog are compensated pathogenic deviations (CPDs), i.e., are caused by an amino acid substitution that, at this site, would be pathogenic to humans. Normal functioning of a CPD-containing protein must be caused by other, compensatory deviations of the nonhuman species from humans. Together, a CPD and the corresponding compensatory deviation form a Dobzhansky-Muller incompatibility that can be visualized as the corner on a fitness ridge. Thus, proteins evolve along fitness ridges which contain only approximately 10 steps between successive corners. The fraction of CPDs among all deviations of a protein from its human ortholog does not increase with the evolutionary distance between the proteins, indicating that substitutions that carry evolving proteins around these corners occur in rapid succession, driven by positive selection. Data on fitness of interspecies hybrids suggest that the compensatory change that makes a CPD fit usually occurs within the same protein. Data on protein structures and on cooccurrence of amino acids at different sites of multiple orthologous proteins often make it possible to provisionally identify the substitution that compensates a particular CPD.
Collapse
Affiliation(s)
- Alexey S Kondrashov
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
50
|
Zimmer C, Henics T. Surface binding and uptake of heat shock protein 70 by antigen-presenting cells require all 3 domains of the molecule. Cell Stress Chaperones 2002; 7:243-9. [PMID: 12482200 PMCID: PMC514824 DOI: 10.1379/1466-1268(2002)007<0243:sbauoh>2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The surprisingly efficient uptake of peptide-loaded heat shock proteins (Hsps) by antigen-presenting cells (APCs) has been recently associated with a specific receptor-ligand-based mechanism, and the identity of at least 1 receptor has been determined. In this study, we tested how the domain composition of the stress protein affected its surface association and internalization by APCs, and this was facilitated by the availability of the 70-kDa human heat shock protein (Hsp70) and its various deletion mutants. We show that both these processes strictly depend on the presence of all 3 domains of Hsp70. We propose that the previously described interdomain interactions as a determinant of a favorable conformational status might also govern a sterical adaptation of Hsps to components of the internalization machinery.
Collapse
Affiliation(s)
- Christine Zimmer
- Department of Molecular Biology, INTERCELL Inc, Rennweg 95b, A-1030 Vienna, Austria
| | | |
Collapse
|