1
|
Shah R, van den Berk PCM, Pritchard CEJ, Song JY, Kreft M, Pilzecker B, Jacobs H. A C57BL/6J Fancg-KO Mouse Model Generated by CRISPR/Cas9 Partially Captures the Human Phenotype. Int J Mol Sci 2023; 24:11129. [PMID: 37446306 DOI: 10.3390/ijms241311129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Fanconi anemia (FA) develops due to a mutation in one of the FANC genes that are involved in the repair of interstrand crosslinks (ICLs). FANCG, a member of the FA core complex, is essential for ICL repair. Previous FANCG-deficient mouse models were generated with drug-based selection cassettes in mixed mice backgrounds, leading to a disparity in the interpretation of genotype-related phenotype. We created a Fancg-KO (KO) mouse model using CRISPR/Cas9 to exclude these confounders. The entire Fancg locus was targeted and maintained on the immunological well-characterized C57BL/6J background. The intercrossing of heterozygous mice resulted in sub-Mendelian numbers of homozygous mice, suggesting the loss of FANCG can be embryonically lethal. KO mice displayed infertility and hypogonadism, but no other developmental problems. Bone marrow analysis revealed a defect in various hematopoietic stem and progenitor subsets with a bias towards myelopoiesis. Cell lines derived from Fancg-KO mice were hypersensitive to the crosslinking agents cisplatin and Mitomycin C, and Fancg-KO mouse embryonic fibroblasts (MEFs) displayed increased γ-H2AX upon cisplatin treatment. The reconstitution of these MEFs with Fancg cDNA corrected for the ICL hypersensitivity. This project provides a new, genetically, and immunologically well-defined Fancg-KO mouse model for further in vivo and in vitro studies on FANCG and ICL repair.
Collapse
Affiliation(s)
- Ronak Shah
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Maaike Kreft
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas Pilzecker
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
2
|
Jeong E, Lee SG, Kim HS, Yang J, Shin J, Kim Y, Kim J, Schärer OD, Kim Y, Yeo JE, Kim HM, Cho Y. Structural basis of the fanconi anemia-associated mutations within the FANCA and FANCG complex. Nucleic Acids Res 2020; 48:3328-3342. [PMID: 32002546 PMCID: PMC7102982 DOI: 10.1093/nar/gkaa062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Monoubiquitination of the Fanconi anemia complementation group D2 (FANCD2) protein by the FA core ubiquitin ligase complex is the central event in the FA pathway. FANCA and FANCG play major roles in the nuclear localization of the FA core complex. Mutations of these two genes are the most frequently observed genetic alterations in FA patients, and most point mutations in FANCA are clustered in the C-terminal domain (CTD). To understand the basis of the FA-associated FANCA mutations, we determined the cryo-electron microscopy (EM) structures of Xenopus laevis FANCA alone at 3.35 Å and 3.46 Å resolution and two distinct FANCA–FANCG complexes at 4.59 and 4.84 Å resolution, respectively. The FANCA CTD adopts an arc-shaped solenoid structure that forms a pseudo-symmetric dimer through its outer surface. FA- and cancer-associated point mutations are widely distributed over the CTD. The two different complex structures capture independent interactions of FANCG with either FANCA C-terminal HEAT repeats, or the N-terminal region. We show that mutations that disturb either of these two interactions prevent the nuclear localization of FANCA, thereby leading to an FA pathway defect. The structure provides insights into the function of FANCA CTD, and provides a framework for understanding FA- and cancer-associated mutations.
Collapse
Affiliation(s)
- Eunyoung Jeong
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Seong-Gyu Lee
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jihyeon Yang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Jinwoo Shin
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Youngran Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jihan Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Youngjin Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Ho Min Kim
- Center for Biomolecular and Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
3
|
Benitez A, Liu W, Palovcak A, Wang G, Moon J, An K, Kim A, Zheng K, Zhang Y, Bai F, Mazin AV, Pei XH, Yuan F, Zhang Y. FANCA Promotes DNA Double-Strand Break Repair by Catalyzing Single-Strand Annealing and Strand Exchange. Mol Cell 2018; 71:621-628.e4. [PMID: 30057198 PMCID: PMC6097932 DOI: 10.1016/j.molcel.2018.06.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/04/2018] [Accepted: 06/20/2018] [Indexed: 01/24/2023]
Abstract
FANCA is a component of the Fanconi anemia (FA) core complex that activates DNA interstrand crosslink repair by monoubiquitination of FANCD2. Here, we report that purified FANCA protein catalyzes bidirectional single-strand annealing (SA) and strand exchange (SE) at a level comparable to RAD52, while a disease-causing FANCA mutant, F1263Δ, is defective in both activities. FANCG, which directly interacts with FANCA, dramatically stimulates its SA and SE activities. Alternatively, FANCB, which does not directly interact with FANCA, does not stimulate this activity. Importantly, five other patient-derived FANCA mutants also exhibit deficient SA and SE, suggesting that the biochemical activities of FANCA are relevant to the etiology of FA. A cell-based DNA double-strand break (DSB) repair assay demonstrates that FANCA plays a direct role in the single-strand annealing sub-pathway (SSA) of DSB repair by catalyzing SA, and this role is independent of the canonical FA pathway and RAD52.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wenjun Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Palovcak
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guanying Wang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jaewon Moon
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin An
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Anna Kim
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kevin Zheng
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yu Zhang
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Feng Bai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Alexander V Mazin
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Xin-Hai Pei
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
4
|
Abstract
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
Collapse
Key Words
- AML , acute myeloid leukemia
- APC/C, anaphase-promoting complex/cyclosome
- APH, aphidicolin
- ARM, armadillo repeat domain
- AT, ataxia-telangiectasia
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BAC, bacterial-artificial-chromosome
- BS, Bloom syndrome
- CUE, coupling of ubiquitin conjugation to endoplasmic reticulum degradation
- ChIP-seq, CHIP sequencing
- CtBP, C-terminal binding protein
- CtIP, CtBP-interacting protein
- DNA interstrand crosslink repair
- DNA repair
- EPS15, epidermal growth factor receptor pathway substrate 15
- FA, Fanconi anemia
- FAN1, FANCD2-associated nuclease1
- FANCD2
- FANCI
- FISH, fluorescence in situ hybridization
- Fanconi anemia
- HECT, homologous to E6-AP Carboxy Terminus
- HJ, Holliday junction
- HR, homologous recombination
- MCM2-MCM7, minichromosome maintenance 2–7
- MEFs, mouse embryonic fibroblasts
- MMC, mitomycin C
- MRN, MRE11/RAD50/NBS1
- NLS, nuclear localization signal
- PCNA, proliferating cell nuclear antigen
- PIKK, phosphatidylinositol-3-OH-kinase-like family of protein kinases
- PIP-box, PCNA-interacting protein motif
- POL κ, DNA polymerase κ
- RACE, rapid amplification of cDNA ends
- RING, really interesting new gene
- RTK, receptor tyrosine kinase
- SCF, Skp1/Cullin/F-box protein complex
- SCKL1, seckel syndrome
- SILAC, stable isotope labeling with amino acids in cell culture
- SLD1/SLD2, SUMO-like domains
- SLIM, SUMO-like domain interacting motif
- TIP60, 60 kDa Tat-interactive protein
- TLS, Translesion DNA synthesis
- UAF1, USP1-associated factor 1
- UBD, ubiquitin-binding domain
- UBZ, ubiquitin-binding zinc finger
- UFB, ultra-fine DNA bridges
- UIM, ubiquitin-interacting motif
- ULD, ubiquitin-like domain
- USP1, ubiquitin-specific protease 1
- VRR-nuc, virus-type replication repair nuclease
- iPOND, isolation of proteins on nascent DNA
- ubiquitin
Collapse
Affiliation(s)
- Rebecca A Boisvert
- a Department of Cell and Molecular Biology ; University of Rhode Island ; Kingston , RI USA
| | | |
Collapse
|
5
|
Takahashi D, Sato K, Hirayama E, Takata M, Kurumizaka H. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA. J Biochem 2015; 158:263-70. [PMID: 25922199 DOI: 10.1093/jb/mvv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Emiko Hirayama
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| |
Collapse
|
6
|
Sato K, Ishiai M, Takata M, Kurumizaka H. Defective FANCI binding by a fanconi anemia-related FANCD2 mutant. PLoS One 2014; 9:e114752. [PMID: 25489943 PMCID: PMC4260917 DOI: 10.1371/journal.pone.0114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2−/− DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Chen X, Wilson JB, McChesney P, Williams SA, Kwon Y, Longerich S, Marriott AS, Sung P, Jones NJ, Kupfer GM. The Fanconi anemia proteins FANCD2 and FANCJ interact and regulate each other's chromatin localization. J Biol Chem 2014; 289:25774-82. [PMID: 25070891 DOI: 10.1074/jbc.m114.552570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia is a genetic disease resulting in bone marrow failure, birth defects, and cancer that is thought to encompass a defect in maintenance of genomic stability. Mutations in 16 genes (FANCA, B, C, D1, D2, E, F, G, I, J, L, M, N, O, P, and Q) have been identified in patients, with the Fanconi anemia subtype J (FA-J) resulting from homozygous mutations in the FANCJ gene. Here, we describe the direct interaction of FANCD2 with FANCJ. We demonstrate the interaction of FANCD2 and FANCJ in vivo and in vitro by immunoprecipitation in crude cell lysates and from fractions after gel filtration and with baculovirally expressed proteins. Mutation of the monoubiquitination site of FANCD2 (K561R) preserves interaction with FANCJ constitutively in a manner that impedes proper chromatin localization of FANCJ. FANCJ is necessary for FANCD2 chromatin loading and focus formation in response to mitomycin C treatment. Our results suggest not only that FANCD2 regulates FANCJ chromatin localization but also that FANCJ is necessary for efficient loading of FANCD2 onto chromatin following DNA damage caused by mitomycin C treatment.
Collapse
Affiliation(s)
| | - James B Wilson
- the Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, United Kingdom
| | | | | | - Youngho Kwon
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Simonne Longerich
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Andrew S Marriott
- the Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom, and
| | - Patrick Sung
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, Section of Hematology/Oncology, New Haven, Connecticut 06520
| | - Nigel J Jones
- the Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom, and
| | | |
Collapse
|
8
|
Huang Y, Leung JWC, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J, Li L. Modularized functions of the Fanconi anemia core complex. Cell Rep 2014; 7:1849-57. [PMID: 24910428 DOI: 10.1016/j.celrep.2014.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022] Open
Abstract
The Fanconi anemia (FA) core complex provides the essential E3 ligase function for spatially defined FANCD2 ubiquitination and FA pathway activation. Of the seven FA gene products forming the core complex, FANCL possesses a RING domain with demonstrated E3 ligase activity. The other six components do not have clearly defined roles. Through epistasis analyses, we identify three functional modules in the FA core complex: a catalytic module consisting of FANCL, FANCB, and FAAP100 is absolutely required for the E3 ligase function, and the FANCA-FANCG-FAAP20 and the FANCC-FANCE-FANCF modules provide nonredundant and ancillary functions that help the catalytic module bind chromatin or sites of DNA damage. Disruption of the catalytic module causes complete loss of the core complex function, whereas loss of any ancillary module component does not. Our work reveals the roles of several FA gene products with previously undefined functions and a modularized assembly of the FA core complex.
Collapse
Affiliation(s)
- Yaling Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin W C Leung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Lowery
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yucai Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Do Huong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Towards a molecular understanding of the fanconi anemia core complex. Anemia 2012; 2012:926787. [PMID: 22675617 PMCID: PMC3364535 DOI: 10.1155/2012/926787] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/21/2012] [Indexed: 11/17/2022] Open
Abstract
Fanconi Anemia (FA) is a genetic disorder characterized by the inability of patient cells to repair DNA damage caused by interstrand crosslinking agents. There are currently 14 verified FA genes, where mutation of any single gene prevents repair of DNA interstrand crosslinks (ICLs). The accumulation of ICL damage results in genome instability and patients having a high predisposition to cancers. The key event of the FA pathway is dependent on an eight-protein core complex (CC), required for the monoubiquitination of each member of the FANCD2-FANCI complex. Interestingly, the majority of patient mutations reside in the CC. The molecular mechanisms underlying the requirement for such a large complex to carry out a monoubiquitination event remain a mystery. This paper documents the extensive efforts of researchers so far to understand the molecular roles of the CC proteins with regard to its main function in the FA pathway, the monoubiquitination of FANCD2 and FANCI.
Collapse
|
10
|
Fanconi anemia proteins and their interacting partners: a molecular puzzle. Anemia 2012; 2012:425814. [PMID: 22737580 PMCID: PMC3378961 DOI: 10.1155/2012/425814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/13/2012] [Indexed: 11/17/2022] Open
Abstract
In recent years, Fanconi anemia (FA) has been the subject of intense investigations, primarily in the DNA repair research field. Many discoveries have led to the notion of a canonical pathway, termed the FA pathway, where all FA proteins function sequentially in different protein complexes to repair DNA cross-link damages. Although a detailed architecture of this DNA cross-link repair pathway is emerging, the question of how a defective DNA cross-link repair process translates into the disease phenotype is unresolved. Other areas of research including oxidative metabolism, cell cycle progression, apoptosis, and transcriptional regulation have been studied in the context of FA, and some of these areas were investigated before the fervent enthusiasm in the DNA repair field. These other molecular mechanisms may also play an important role in the pathogenesis of this disease. In addition, several FA-interacting proteins have been identified with roles in these “other” nonrepair molecular functions. Thus, the goal of this paper is to revisit old ideas and to discuss protein-protein interactions related to other FA-related molecular functions to try to give the reader a wider perspective of the FA molecular puzzle.
Collapse
|
11
|
FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 2012; 119:3285-94. [PMID: 22343915 DOI: 10.1182/blood-2011-10-385963] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fanconi anemia (FA) nuclear core complex is a multiprotein complex required for the functional integrity of the FA-BRCA pathway regulating DNA repair. This pathway is inactivated in FA, a devastating genetic disease, which leads to hematologic defects and cancer in patients. Here we report the isolation and characterization of a novel 20-kDa FANCA-associated protein (FAAP20). We show that FAAP20 is an integral component of the FA nuclear core complex. We identify a region on FANCA that physically interacts with FAAP20, and show that FANCA regulates stability of this protein. FAAP20 contains a conserved ubiquitin-binding zinc-finger domain (UBZ), and binds K-63-linked ubiquitin chains in vitro. The FAAP20-UBZ domain is not required for interaction with FANCA, but is required for DNA-damage-induced chromatin loading of FANCA and the functional integrity of the FA pathway. These findings reveal critical roles for FAAP20 in the FA-BRCA pathway of DNA damage repair and genome maintenance.
Collapse
|
12
|
Evidence for complete epistasis of null mutations in murine Fanconi anemia genes Fanca and Fancg. DNA Repair (Amst) 2011; 10:1252-61. [PMID: 22036606 DOI: 10.1016/j.dnarep.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/02/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
Fanconi anemia (FA) is a heritable disease characterized by bone marrow failure, congenital abnormalities, and cancer predisposition. The 15 identified FA genes operate in a molecular pathway to preserve genomic integrity. Within this pathway the FA core complex operates as an ubiquitin ligase that activates the complex of FANCD2 and FANCI to coordinate DNA repair. The FA core complex is formed by at least 12 proteins. However, only the FANCL subunit displays ubiquitin ligase activity. FANCA and FANCG are members of the FA core complex for which no other functions have been described than to participate in protein interactions. In this study we generated mice with combined null alleles for Fanca and Fancg to identify extended functions for these genes by characterizing the double mutant mice and cells. Double mutant a(-/-)/g(-/-) mice were born at near Mendelian frequencies without apparent developmental abnormalities. Histological analysis of a(-/-)/g(-/-) mice revealed a Leydig cell hyperplasia and frequent vacuolization of Sertoli cells in testes, while ovaries were depleted from developing follicles and displayed an interstitial cell hyperplasia. These gonadal aberrations were associated with a compromised fertility of a(-/-)/g(-/-) males and females. During the first year of life a(-/-)/g(-/-) did not develop malignancies or bone marrow failure. At the cellular level a(-/-)/g(-/-), Fanca(-/-), and Fancg(-/-) cells proved equally compromised in DNA crosslink and homology-directed repair. Overall the phenotype of a(-/-)/g(-/-) double knockout mice and cells appeared highly similar to the phenotype of Fanca or Fancg single knockouts. The lack of an augmented phenotype suggest that null mutations in Fanca or Fancg are fully epistatic, making additional important functions outside of the FA core complex highly unlikely.
Collapse
|
13
|
Sun CYJ, van Koningsbruggen S, Long SW, Straasheijm K, Klooster R, Jones TI, Bellini M, Levesque L, Brieher WM, van der Maarel SM, Jones PL. Facioscapulohumeral muscular dystrophy region gene 1 is a dynamic RNA-associated and actin-bundling protein. J Mol Biol 2011; 411:397-416. [PMID: 21699900 DOI: 10.1016/j.jmb.2011.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 05/22/2011] [Accepted: 06/08/2011] [Indexed: 11/18/2022]
Abstract
FSHD region gene 1 (FRG1) is a dynamic nuclear and cytoplasmic protein that, in skeletal muscle, shows additional localization to the sarcomere. Maintaining appropriate levels of FRG1 protein is critical for muscular and vascular development in vertebrates; however, its precise molecular function is unknown. This study investigates the molecular functions of human FRG1, along with mouse FRG1 and Xenopus frg1, using molecular, biochemical, and cellular-biological approaches, to provide further insight into its roles in vertebrate development. The nuclear fraction of the endogenous FRG1 is localized in nucleoli, Cajal bodies, and actively transcribed chromatin; however, contrary to overexpressed FRG1, the endogenous FRG1 is not associated with nuclear speckles. We characterize the nuclear and nucleolar import of FRG1, the potential effect of phosphorylation, and its interaction with the importin karyopherin α2. Consistent with a role in RNA biogenesis, human FRG1 is associated with mRNA in vivo and invitro, interacts directly with TAP (Tip-associated protein; the major mRNA export receptor), and is a dynamic nuclear-cytoplasmic shuttling protein supporting a function for FRG1 in mRNA transport. Biochemically, we characterize FRG1 actin binding activity and show that the cytoplasmic pool of FRG1 is dependent on an intact actin cytoskeleton for its localization. These data provide the first biochemical activities (actin binding and RNA binding) for human FRG1 and the characterization of the endogenous human FRG1, together indicating that FRG1 is involved in multiple aspects of RNA biogenesis, including mRNA transport and, potentially, cytoplasmic mRNA localization.
Collapse
Affiliation(s)
- Chia-Yun Jessica Sun
- B107 Chemical and Life Sciences Laboratory, Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gari K, Constantinou A. The role of the Fanconi anemia network in the response to DNA replication stress. Crit Rev Biochem Mol Biol 2009; 44:292-325. [PMID: 19728769 DOI: 10.1080/10409230903154150] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d'être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.
Collapse
Affiliation(s)
- Kerstin Gari
- DNA Damage Response Laboratory, Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, UK
| | | |
Collapse
|
15
|
van der Lelij P, Godthelp BC, van Zon W, van Gosliga D, Oostra AB, Steltenpool J, de Groot J, Scheper RJ, Wolthuis RM, Waisfisz Q, Darroudi F, Joenje H, de Winter JP. The cellular phenotype of Roberts syndrome fibroblasts as revealed by ectopic expression of ESCO2. PLoS One 2009; 4:e6936. [PMID: 19738907 PMCID: PMC2734174 DOI: 10.1371/journal.pone.0006936] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 08/07/2009] [Indexed: 12/04/2022] Open
Abstract
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability.
Collapse
Affiliation(s)
- Petra van der Lelij
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Barbara C. Godthelp
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter van Zon
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Djoke van Gosliga
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Anneke B. Oostra
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jûrgen Steltenpool
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan de Groot
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rik J. Scheper
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rob M. Wolthuis
- Division of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Firouz Darroudi
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Joenje
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan P. de Winter
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
de Winter JP, Joenje H. The genetic and molecular basis of Fanconi anemia. Mutat Res 2009; 668:11-19. [PMID: 19061902 DOI: 10.1016/j.mrfmmm.2008.11.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/28/2008] [Accepted: 11/06/2008] [Indexed: 05/27/2023]
Abstract
The capacity to maintain genomic integrity is shared by all living organisms. Multiple pathways are distinguished that safeguard genomic stability, most of which have originated in primitive life forms. In human individuals, defects in these pathways are typically associated with cancer proneness. The Fanconi anemia pathway, one of these pathways, has evolved relatively late during evolution and exists - in its fully developed form - only in vertebrates. This pathway, in which thus far 13 distinct proteins have been shown to participate, appears essential for error-free DNA replication. Inactivating mutations in the corresponding genes underlie the recessive disease Fanconi anemia (FA). In the last decade the genetic basis of this disorder has been uncovered by a variety of approaches, including complementation cloning, genetic linkage analysis and protein association studies. Here we review these approaches, introduce the encoded proteins, and discuss their possible role in ensuring genomic integrity.
Collapse
Affiliation(s)
- Johan P de Winter
- Department of Clinical Genetics, Section Oncogenetics, VU University Medical Center, Van der Boechorststraat 7, Amsterdam 1081 BT, The Netherlands.
| | | |
Collapse
|
17
|
Tremblay CS, Huard CC, Huang FF, Habi O, Bourdages V, Lévesque G, Carreau M. The fanconi anemia core complex acts as a transcriptional co-regulator in hairy enhancer of split 1 signaling. J Biol Chem 2009; 284:13384-13395. [PMID: 19321451 DOI: 10.1074/jbc.m807921200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in one of the 13 Fanconi anemia (FA) genes cause a progressive bone marrow failure disorder associated with developmental abnormalities and a predisposition to cancer. Although FA has been defined as a DNA repair disease based on the hypersensitivity of patient cells to DNA cross-linking agents, FA patients develop various developmental defects such as skeletal abnormalities, microphthalmia, and endocrine abnormalities that may be linked to transcriptional defects. Recently, we reported that the FA core complex interacts with the transcriptional repressor Hairy Enhancer of Split 1 (HES1) suggesting that the core complex plays a role in transcription. Here we show that the FA core complex contributes to transcriptional regulation of HES1-responsive genes, including HES1 and the cyclin-dependent kinase inhibitor p21(cip1/waf1). Chromatin immunoprecipitation studies show that the FA core complex interacts with the HES1 promoter but not the p21(cip1/waf1) promoter. Furthermore, we show that the FA core complex interferes with HES1 binding to the co-repressor transducin-like-Enhancer of Split, suggesting that the core complex affects transcription both directly and indirectly. Taken together these data suggest a novel function of the FA core complex in transcriptional regulation.
Collapse
Affiliation(s)
- Cédric S Tremblay
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Caroline C Huard
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Feng-Fei Huang
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Ouassila Habi
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Valérie Bourdages
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada
| | - Georges Lévesque
- Centre Hospitalier de l'Université Laval, Université Laval, Québec GIV 4G2, Canada; Medical Biology and Université Laval, Québec GIV 4G2, Canada
| | - Madeleine Carreau
- Medical Biology and Université Laval, Québec GIV 4G2, Canada; Departments of Pediatrics Université Laval, Québec GIV 4G2, Canada.
| |
Collapse
|
18
|
Xie Y, De Winter JP, Waisfisz Q, Nieuwint AWM, Scheper RJ, Arwert F, Hoatlin ME, Ossenkoppele GJ, Schuurhuis GJ, Joenje H. Aberrant Fanconi anaemia protein profiles in acute myeloid leukaemia cells. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.2000.02450.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Abstract
Fanconi anemia (FA) proteins are thought to play a role in chromosome stability and repair of DNA cross-links; however, these functions may not fully explain the developmental abnormalities and bone marrow failure that are characteristic of FA individuals. Here we associate the FA proteins with the Notch1 developmental pathway through a direct protein-protein interaction between the FA core complex and the hairy enhancer of split 1 (HES1). HES1 interaction with FA core complex members is dependent on a functional FA pathway. Cells depleted of HES1 exhibit an FA-like phenotype that includes cellular hypersensitivity to mitomycin C (MMC) and lack of FANCD2 monoubiquitination and foci formation. HES1 is also required for proper nuclear localization or stability of some members of the core complex. Our results suggest that HES1 is a novel interacting protein of the FA core complex.
Collapse
|
20
|
Kelly PF, Radtke S, von Kalle C, Balcik B, Bohn K, Mueller R, Schuesler T, Haren M, Reeves L, Cancelas JA, Leemhuis T, Harris R, Auerbach AD, Smith FO, Davies SM, Williams DA. Stem cell collection and gene transfer in Fanconi anemia. Mol Ther 2008; 15:211-9. [PMID: 17164793 DOI: 10.1038/sj.mt.6300033] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fanconi anemia (FA) is a rare genetic syndrome characterized by progressive bone marrow failure (BMF), congenital anomalies, and a predisposition to malignancy. Successful gene transfer into hematopoietic stem cells (HSCs) could reverse BMF in this disease. We developed clinical trials to determine whether a sufficient number of CD34(+) stem cells could be collected for gene modification and to evaluate the safety and efficacy of HSC-corrective gene transfer in FA genotype A (FANCA) patients. Here, we report that FA patients have significant depletion of their BM CD34(+) cell compartment even before severe pancytopenia is present. However, oncoretroviral-mediated ex vivo gene transfer was efficient in clinical scale in FA-A cells, leading to reversal of the cellular phenotype in a significant percentage of CD34(+) cells. Re-infusion of gene-corrected products in two patients was safe and well tolerated and accompanied by transient improvements in hemoglobin and platelet counts. Gene correction was transient, likely owing to the low dose of gene-corrected cells infused. Our early experience shows that stem cell collection is well tolerated in FA patients and suggests that collection be considered as early as possible in patients who are potential candidates for future gene transfer trials.
Collapse
Affiliation(s)
- Patrick F Kelly
- Fanconi Anemia Comprehensive Care Center, Divisions of Experimental Hematology and Hematology/Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3. Oncogene 2008; 27:3641-52. [PMID: 18212739 DOI: 10.1038/sj.onc.1211034] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.
Collapse
|
22
|
Stone S, Sobeck A, van Kogelenberg M, de Graaf B, Joenje H, Christian J, Hoatlin ME. Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9. Genes Cells 2007; 12:841-51. [PMID: 17584296 DOI: 10.1111/j.1365-2443.2007.01096.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.
Collapse
Affiliation(s)
- Stacie Stone
- Division of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, Kalb R, Yan Z, Xue Y, Oostra AB, Auerbach AD, Hoatlin ME, Schindler D, Joenje H, de Winter JP, Takata M, Meetei AR, Wang W. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J 2007; 26:2104-14. [PMID: 17396147 PMCID: PMC1852792 DOI: 10.1038/sj.emboj.7601666] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Accepted: 03/06/2007] [Indexed: 01/17/2023] Open
Abstract
The Fanconi anemia (FA) core complex plays a central role in the DNA damage response network involving breast cancer susceptibility gene products, BRCA1 and BRCA2. The complex consists of eight FA proteins, including a ubiquitin ligase (FANCL) and a DNA translocase (FANCM), and is essential for monoubiquitination of FANCD2 in response to DNA damage. Here, we report a novel component of this complex, termed FAAP100, which is essential for the stability of the core complex and directly interacts with FANCB and FANCL to form a stable subcomplex. Formation of this subcomplex protects each component from proteolytic degradation and also allows their coregulation by FANCA and FANCM during nuclear localization. Using siRNA depletion and gene knockout techniques, we show that FAAP100-deficient cells display hallmark features of FA cells, including defective FANCD2 monoubiquitination, hypersensitivity to DNA crosslinking agents, and genomic instability. Our study identifies FAAP100 as a new critical component of the FA-BRCA DNA damage response network.
Collapse
Affiliation(s)
- Chen Ling
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Masamichi Ishiai
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Abdullah Mahmood Ali
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Annette L Medhurst
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Kornelia Neveling
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Reinhard Kalb
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Zhijiang Yan
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Anneke B Oostra
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Arleen D Auerbach
- Laboratory of Human Genetics and Hematology, The Rockefeller University, New York, NY, USA
| | - Maureen E Hoatlin
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - Detlev Schindler
- Department of Human Genetics, University of Wurzburg, Wurzburg, Germany
| | - Hans Joenje
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Johan P de Winter
- Department of Clinical Genetics, VU Medical Center, Amsterdam, The Netherlands
| | - Minoru Takata
- Department of Immunology and Molecular Genetics, Kawasaki Medical School, Kurashiki, Okayama, Japan
- Department of Human Genetics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Amom Ruhikanta Meetei
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Research Foundation and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA. Tel.: +1 513 636 1768; Fax: +1 513 636 3768; E-mail:
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Genetics, National Institute on Aging, NIH, 333 Cassell Drive, TRIAD Center Room 3000, Baltimore, MD 21224, USA. Tel.: +1 410 558 8334; Fax: +1 410 558 8331; E-mail:
| |
Collapse
|
24
|
Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, Meetei AR, Laghmani EH, Joenje H, McDonald N, de Winter JP, Wang W, West SC. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol Cell 2007; 25:331-43. [PMID: 17289582 DOI: 10.1016/j.molcel.2007.01.003] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 11/28/2006] [Accepted: 01/02/2007] [Indexed: 11/26/2022]
Abstract
The Fanconi anemia (FA) core complex plays a crucial role in a DNA damage response network with BRCA1 and BRCA2. How this complex interacts with damaged DNA is unknown, as only the FA core protein FANCM (the homolog of an archaeal helicase/nuclease known as HEF) exhibits DNA binding activity. Here, we describe the identification of FAAP24, a protein that targets FANCM to structures that mimic intermediates formed during the replication/repair of damaged DNA. FAAP24 shares homology with the XPF family of flap/fork endonucleases, associates with the C-terminal region of FANCM, and is a component of the FA core complex. FAAP24 is required for normal levels of FANCD2 monoubiquitylation following DNA damage. Depletion of FAAP24 by siRNA results in cellular hypersensitivity to DNA crosslinking agents and chromosomal instability. Our data indicate that the FANCM/FAAP24 complex may play a key role in recruitment of the FA core complex to damaged DNA.
Collapse
Affiliation(s)
- Alberto Ciccia
- Cancer Research UK, London Research Institute, Clare Hall Laboratories, South Mimms, Herts, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
van der Groep P, Hoelzel M, Buerger H, Joenje H, de Winter JP, van Diest PJ. Loss of expression of FANCD2 protein in sporadic and hereditary breast cancer. Breast Cancer Res Treat 2007; 107:41-7. [PMID: 17333336 PMCID: PMC2096638 DOI: 10.1007/s10549-007-9534-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/30/2007] [Indexed: 11/10/2022]
Abstract
Fanconi anemia (FA) is a recessive disorder associated with progressive pancytopenia, multiple developmental defects, and marked predisposition to malignancies. FA is genetically heterogeneous, comprising at least 12 complementation groups (A–M). Activation of one of the FA proteins (FANCD2) by mono-ubiquitination is an essential step in DNA damage response. As FANCD2 interacts with BRCA1, is expressed in proliferating normal breast cells, and FANCD2 knockout mice develop breast tumors, we investigated the expression of FANCD2 in sporadic and hereditary invasive breast cancer patients to evaluate its possible role in breast carcinogenesis. Two tissue microarrays of 129 and 220 sporadic breast cancers and a tissue microarray containing 25 BRCA1 germline mutation-related invasive breast cancers were stained for FANCD2. Expression results were compared with several clinicopathological variables and tested for prognostic value. Eighteen of 96 (19%) sporadic breast cancers and two of 21 (10%) BRCA1-related breast cancers were completely FANCD2-negative, which, however, still showed proliferation. In the remaining cases, the percentage of FANCD2-expressing cells correlated strongly with mitotic index and percentage of cells positive for the proliferation markers Ki-67 and Cyclin A. In immunofluorescence double staining, coexpression of FANCD2 and Ki-67 was apparent. In survival analysis, high FANCD2 expression appeared to be prognostically unfavorable for overall survival (p = 0.03), independent from other major prognosticators (p = 0.026). In conclusion, FANCD2 expression is absent in 10–20% of sporadic and BRCA1-related breast cancers, indicating that somatic inactivating (epi)genetic events in FANCD2 may be important in both sporadic and hereditary breast carcinogenesis. FANCD2 is of independent prognostic value in sporadic breast cancer.
Collapse
Affiliation(s)
- Petra van der Groep
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Michael Hoelzel
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
| | - Horst Buerger
- Institute of Pathology, University of Muenster, Muenster, Germany
| | - Hans Joenje
- Department of Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Johan P. de Winter
- Department of Human Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
26
|
Oda T, Hayano T, Miyaso H, Takahashi N, Yamashita T. Hsp90 regulates the Fanconi anemia DNA damage response pathway. Blood 2007; 109:5016-26. [PMID: 17327415 DOI: 10.1182/blood-2006-08-038638] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Heat shock protein 90 (Hsp90) regulates diverse signaling pathways. Emerging evidence suggests that Hsp90 inhibitors, such as 17-allylamino-17-demethoxygeldanamycin (17-AAG), enhance DNA damage-induced cell death, suggesting that Hsp90 may regulate cellular responses to genotoxic stress. However, the underlying mechanisms are poorly understood. Here, we show that the Fanconi anemia (FA) pathway is involved in the Hsp90-mediated regulation of genotoxic stress response. In the FA pathway, assembly of 8 FA proteins including FANCA into a nuclear multiprotein complex, and the complex-dependent activation of FANCD2 are critical events for cellular tolerance against DNA cross-linkers. Hsp90 associates with FANCA, in vivo and in vitro, in a 17-AAG-sensitive manner. Disruption of the FANCA/Hsp90 association by cellular treatment with 17-AAG induces rapid proteasomal degradation and cytoplasmic relocalization of FANCA, leading to impaired activation of FANCD2. Furthermore, 17-AAG promotes DNA cross-linker-induced cytotoxicity, but this effect is much less pronounced in FA pathway-defective cells. Notably, 17-AAG enhances DNA cross-linker-induced chromosome aberrations. In conclusion, our results identify FANCA as a novel client of Hsp90, suggesting that Hsp90 promotes activation of the FA pathway through regulation of intracellular turnover and trafficking of FANCA, which is critical for cellular tolerance against genotoxic stress.
Collapse
Affiliation(s)
- Tsukasa Oda
- Laboratory of Molecular Genetics, Department of Molecular and Cellular Biology, Institute of Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | |
Collapse
|
27
|
Larder R, Karali D, Nelson N, Brown P. Fanconi anemia A is a nucleocytoplasmic shuttling molecule required for gonadotropin-releasing hormone (GnRH) transduction of the GnRH receptor. Endocrinology 2006; 147:5676-89. [PMID: 16946016 PMCID: PMC1975762 DOI: 10.1210/en.2006-0383] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GnRH binds its cognate G protein-coupled GnRH receptor (GnRHR) located on pituitary gonadotropes and drives expression of gonadotropin hormones. There are two gonadotropin hormones, comprised of a common alpha- and hormone-specific beta-subunit, which are required for gonadal function. Recently we identified that Fanconi anemia a (Fanca), a DNA damage repair gene, is differentially expressed within the LbetaT2 gonadotrope cell line in response to stimulation with GnRH. FANCA is mutated in more than 60% of cases of Fanconi anemia (FA), a rare genetically heterogeneous autosomal recessive disorder characterized by bone marrow failure, endocrine tissue cancer susceptibility, and infertility. Here we show that induction of FANCA protein is mediated by the GnRHR and that the protein constitutively adopts a nucleocytoplasmic intracellular distribution pattern. Using inhibitors to block nuclear import and export and a GnRHR antagonist, we demonstrated that GnRH induces nuclear accumulation of FANCA and green fluorescent protein (GFP)-FANCA before exporting back to the cytoplasm using the nuclear export receptor CRM1. Using FANCA point mutations that locate GFP-FANCA to the cytoplasm (H1110P) or functionally uncouple GFP-FANCA (Q1128E) from the wild-type nucleocytoplasmic distribution pattern, we demonstrated that wild-type FANCA was required for GnRH-induced activation of gonadotrope cell markers. Cotransfection of H1110P and Q1128E blocked GnRH activation of the alphaGsu and GnRHR but not the beta-subunit gene promoters. We conclude that nucleocytoplasmic shuttling of FANCA is required for GnRH transduction of the alphaGSU and GnRHR gene promoters and propose that FANCA functions as a GnRH-induced signal transducer.
Collapse
Affiliation(s)
- Rachel Larder
- Medical Research Council, Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4JT, Scotland, United Kingdom
| | | | | | | |
Collapse
|
28
|
Mukhopadhyay SS, Leung KS, Hicks MJ, Hastings PJ, Youssoufian H, Plon SE. Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia. ACTA ACUST UNITED AC 2006; 175:225-35. [PMID: 17060495 PMCID: PMC2064564 DOI: 10.1083/jcb.200607061] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cells from patients with Fanconi anemia (FA), an inherited disorder that includes bone marrow failure and cancer predisposition, have increased sensitivity to oxidative stress through an unknown mechanism. We demonstrate that the FA group G (FANCG) protein is found in mitochondria. Wild-type but not G546R mutant FANCG physically interacts with the mitochondrial peroxidase peroxiredoxin-3 (PRDX3). PRDX3 is deregulated in FA cells, including cleavage by a calpainlike cysteine protease and mislocalization. FA-G cells demonstrate distorted mitochondrial structures, and mitochondrial extracts have a sevenfold decrease in thioredoxin-dependent peroxidase activity. Transient overexpression of PRDX3 suppresses the sensitivity of FA-G cells to H2O2, and decreased PRDX3 expression increases sensitivity to mitomycin C. Cells from the FA-A and -C subtypes also have PRDX3 cleavage and decreased peroxidase activity. This study demonstrates a role for the FA proteins in mitochondria witsh sensitivity to oxidative stress resulting from diminished peroxidase activity. These defects may lead to apoptosis and the accumulation of oxidative DNA damage in bone marrow precursors.
Collapse
|
29
|
van Koningsbruggen S, Straasheijm KR, Sterrenburg E, de Graaf N, Dauwerse HG, Frants RR, van der Maarel SM. FRG1P-mediated aggregation of proteins involved in pre-mRNA processing. Chromosoma 2006; 116:53-64. [PMID: 17103222 DOI: 10.1007/s00412-006-0083-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/03/2006] [Accepted: 09/08/2006] [Indexed: 11/24/2022]
Abstract
FRG1 is considered a candidate gene for facioscapulohumeral muscular dystrophy (FSHD) based on its location at chromosome 4qter and its upregulation in FSHD muscle. The FRG1 protein (FRG1P) localizes to nucleoli, Cajal bodies (and speckles), and has been suggested to be a component of the human spliceosome but its exact function is unknown. Recently, transgenic mice overexpressing high levels of FRG1P in skeletal muscle were described to present with muscular dystrophy. Moreover, upregulation of FRG1P was demonstrated to correlate with missplicing of specific pre-mRNAs. In this study, we have combined colocalization studies with yeast two-hybrid screens to identify proteins that associate with FRG1P. We demonstrate that artificially induced nucleolar aggregates of VSV-FRG1P specifically sequester proteins involved in pre-mRNA processing. In addition, we have identified SMN, PABPN1, and FAM71B, a novel speckle and Cajal body protein, as binding partners of FRG1P. All these proteins are, or seem to be, involved in RNA biogenesis. Our data confirm the presence of FRG1P in protein complexes containing human spliceosomes and support a potential role of FRG1P in either splicing or another step in nuclear RNA biogenesis. Intriguingly, among FRG1P-associated proteins are SMN and PABPN1, both being involved in neuromuscular disorders, possibly through RNA biogenesis-related processes.
Collapse
Affiliation(s)
- Silvana van Koningsbruggen
- Department of Human Genetics, Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands.
| | | | | | | | | | | | | |
Collapse
|
30
|
Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem 2006; 282:2047-55. [PMID: 17082180 DOI: 10.1074/jbc.m608356200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fanconi anemia (FA) is a rare autosomal recessive and X-linked chromosomal instability disorder. At least eight FA proteins (FANCA, B, C, E, F, G, L, and M) form a nuclear core complex required for monoubiquitination of a downstream protein, FANCD2. The human FANCF protein reportedly functions as a molecular adaptor within the FA nuclear complex, bridging between the subcomplexes A:G and C:E. Our x-ray crystallographic studies of the C-terminal domain of FANCF reveal a helical repeat structure similar to the Cand1 regulator of the Cul1-Rbx1-Skp1-Fbox(Skp2) ubiquitin ligase complex. Two C-terminal loops of FANCF are essential for monoubiquitination of FANCD2 and normal cellular resistance to the DNA cross-linking agent mitomycin C. FANCF mutants bearing amino acid substitutions in this C-terminal surface fail to interact with other components of the FA complex, indicating that this surface is critical for the proper assembly of the FA core complex.
Collapse
Affiliation(s)
- Przemyslaw Kowal
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
31
|
Vilcheck SK, Ceryak S, O'Brien TJ, Patierno SR. FANCD2 monoubiquitination and activation by hexavalent chromium [Cr(VI)] exposure: activation is not required for repair of Cr(VI)-induced DSBs. Mutat Res 2006; 610:21-30. [PMID: 16893675 PMCID: PMC2080350 DOI: 10.1016/j.mrgentox.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2006] [Indexed: 12/29/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disorder characterized by congenital abnormalities, progressive bone marrow failure, and cancer susceptibility. FA cells are hypersensitive to DNA crosslinking agents. FA is a genetically heterogeneous disease with at least 11 complementation groups. The eight cloned FA proteins interact in a common pathway with established DNA-damage-response proteins, including BRCA1 and ATM. Six FA proteins (A, C, E, F, G, and L) regulate the monoubiquitination of FANCD2 after DNA damage by crosslinking agents, which targets FANCD2 to BRCA1 nuclear foci containing BRCA2 (FANCD1) and RAD51. Some forms of hexavalent chromium [Cr(VI)] are implicated as respiratory carcinogens and induce several types of DNA lesions, including DNA interstrand crosslinks. We have shown that FA-A fibroblasts are hypersensitive to both Cr(VI)-induced apoptosis and clonogenic lethality. Here we show that Cr(VI) treatment induced monoubiquitination of FANCD2 in normal human fibroblasts, providing the first molecular evidence of Cr(VI)-induced activation of the FA pathway. FA-A fibroblasts demonstrated no FANCD2 monoubiquitination, in keeping with the requirement of FA-A for this modification. We also found that Cr(VI) treatment induced significantly more S-phase-dependent DNA double strand breaks (DSBs), as measured by gamma-H2AX expression, in FA-A fibroblasts compared to normal cells. However, and notably, DSBs were repaired equally in both normal and FA-A fibroblasts during recovery from Cr(VI) treatment. While previous research on FA has defined the genetic causes of this disease, it is critical in terms of individual risk assessment to address how cells from FA patients respond to genotoxic insult.
Collapse
Affiliation(s)
- Susan K Vilcheck
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 Eye Street, NW, Washington, DC 20037, United States
| | | | | | | |
Collapse
|
32
|
Hinz JM, Nham PB, Salazar EP, Thompson LH. The Fanconi anemia pathway limits the severity of mutagenesis. DNA Repair (Amst) 2006; 5:875-84. [PMID: 16815103 DOI: 10.1016/j.dnarep.2006.05.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/17/2006] [Indexed: 12/13/2022]
Abstract
Fanconi anemia (FA) is a developmental and cancer predisposition disorder in which key, yet unknown, physiological events promoting chromosome stability are compromised. FA cells exhibit excess metaphase chromatid breaks and are universally hypersensitive to DNA interstrand crosslinking agents. Published mutagenesis data from single-gene mutation assays show both increased and decreased mutation frequencies in FA cells. In this review we discuss the data from the literature and from our isogenic fancg knockout hamster CHO cells, and interpret these data within the framework of a molecular model that accommodates these seemingly divergent observations. In FA cells, reduced rates of recovery of viable X-linked hypoxanthine phosphoribosyltransferase (hprt) mutants are characteristically observed for diverse mutagenic agents, but also in untreated cultures, indicating the relevance of the FA pathway for processing assorted DNA lesions. We ascribe these reductions to: (1) impaired mutagenic translesion synthesis within hprt during DNA replication and (2) lethality of mutant cells following replication fork breakage on the X chromosome, caused by unrepaired double-strand breaks or large deletions/translocations encompassing essential genes flanking hprt. These findings, along with studies showing increased spontaneous mutability of FA cells at two autosomal loci, support a model in which FA proteins promote both translesion synthesis at replication-blocking lesions and repair of broken replication forks by homologous recombination and DNA end joining. The essence of this model is that the FANC protein pathway serves to restrict the severity of mutational outcome by favoring base substitutions and small deletions over larger deletions and chromosomal rearrangements.
Collapse
Affiliation(s)
- John M Hinz
- Biosciences Directorate, L441, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | |
Collapse
|
33
|
Medhurst AL, Laghmani EH, Steltenpool J, Ferrer M, Fontaine C, de Groot J, Rooimans MA, Scheper RJ, Meetei AR, Wang W, Joenje H, de Winter JP. Evidence for subcomplexes in the Fanconi anemia pathway. Blood 2006; 108:2072-80. [PMID: 16720839 PMCID: PMC1895538 DOI: 10.1182/blood-2005-11-008151] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fanconi anemia (FA) is a genomic instability disorder, clinically characterized by congenital abnormalities, progressive bone marrow failure, and predisposition to malignancy. Cells derived from patients with FA display a marked sensitivity to DNA cross-linking agents, such as mitomycin C (MMC). This observation has led to the hypothesis that the proteins defective in FA are involved in the sensing or repair of interstrand cross-link lesions of the DNA. A nuclear complex consisting of a majority of the FA proteins plays a crucial role in this process and is required for the monoubiquitination of a downstream target, FANCD2. Two new FA genes, FANCB and FANCL, have recently been identified, and their discovery has allowed a more detailed study into the molecular architecture of the FA pathway. We demonstrate a direct interaction between FANCB and FANCL and that a complex of these proteins binds FANCA. The interaction between FANCA and FANCL is dependent on FANCB, FANCG, and FANCM, but independent of FANCC, FANCE, and FANCF. These findings provide a framework for the protein interactions that occur "upstream" in the FA pathway and suggest that besides the FA core complex different subcomplexes exist that may have specific functions other than the monoubiquitination of FANCD2.
Collapse
Affiliation(s)
- Annette L Medhurst
- Department of Clinical Genetics and Human Genetics, Vrije Universiteit University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hussain S, Wilson JB, Blom E, Thompson LH, Sung P, Gordon SM, Kupfer GM, Joenje H, Mathew CG, Jones NJ. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair (Amst) 2006; 5:629-40. [PMID: 16621732 DOI: 10.1016/j.dnarep.2006.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 02/07/2006] [Accepted: 02/13/2006] [Indexed: 01/07/2023]
Abstract
Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.
Collapse
Affiliation(s)
- Shobbir Hussain
- Department of Medical and Molecular Genetics, King's College London School of Medicine at Guy's Hospital, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Léveillé F, Ferrer M, Medhurst AL, Laghmani EH, Rooimans MA, Bier P, Steltenpool J, Titus TA, Postlethwait JH, Hoatlin ME, Joenje H, de Winter JP. The nuclear accumulation of the Fanconi anemia protein FANCE depends on FANCC. DNA Repair (Amst) 2006; 5:556-65. [PMID: 16513431 DOI: 10.1016/j.dnarep.2006.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 01/10/2006] [Accepted: 01/13/2006] [Indexed: 01/18/2023]
Abstract
The Fanconi anemia (FA) protein FANCE is an essential component of the nuclear FA core complex, which is required for monoubiquitination of the downstream target FANCD2, an important step in the FA pathway of DNA cross-link repair. FANCE is predominantly localized in the nucleus and acts as a molecular bridge between the FA core complex and FANCD2, through direct binding of both FANCC and FANCD2. At present, it is poorly understood how the nuclear accumulation of FANCE is regulated and therefore we investigated the nuclear localization of this FA protein. We found that FANCE has a strong tendency to localize in the nucleus, since the addition of a nuclear export signal does not interfere with the nuclear localization of FANCE. We also demonstrate that the nuclear accumulation of FANCE does not rely solely on its nuclear localization signal motifs, but also on FANCC. The other FA proteins are not involved in the nuclear accumulation of FANCE, indicating a tight relationship between FANCC and FANCE, as suggested from their direct interaction. Finally, we show that the region of FANCE interacting with FANCC appears to be different from the region involved in binding FANCD2. This strengthens the idea that FANCE recruits FANCD2 to the core complex, without interfering with the binding of FANCC.
Collapse
Affiliation(s)
- France Léveillé
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sobeck A, Stone S, Costanzo V, de Graaf B, Reuter T, de Winter J, Wallisch M, Akkari Y, Olson S, Wang W, Joenje H, Christian JL, Lupardus PJ, Cimprich KA, Gautier J, Hoatlin ME. Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol Cell Biol 2006; 26:425-37. [PMID: 16382135 PMCID: PMC1346898 DOI: 10.1128/mcb.26.2.425-437.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 07/20/2005] [Accepted: 10/13/2005] [Indexed: 12/19/2022] Open
Abstract
Fanconi anemia (FA) is a multigene cancer susceptibility disorder characterized by cellular hypersensitivity to DNA interstrand cross-linking agents such as mitomycin C (MMC). FA proteins are suspected to function at the interface between cell cycle checkpoints, DNA repair, and DNA replication. Using replicating extracts from Xenopus eggs, we developed cell-free assays for FA proteins (xFA). Recruitment of the xFA core complex and xFANCD2 to chromatin is strictly dependent on replication initiation, even in the presence of MMC indicating specific recruitment to DNA lesions encountered by the replication machinery. The increase in xFA chromatin binding following treatment with MMC is part of a caffeine-sensitive S-phase checkpoint that is controlled by xATR. Recruitment of xFANCD2, but not xFANCA, is dependent on the xATR-xATR-interacting protein (xATRIP) complex. Immunodepletion of either xFANCA or xFANCD2 from egg extracts results in accumulation of chromosomal DNA breaks during replicative synthesis. Our results suggest coordinated chromatin recruitment of xFA proteins in response to replication-associated DNA lesions and indicate that xFA proteins function to prevent the accumulation of DNA breaks that arise during unperturbed replication.
Collapse
Affiliation(s)
- Alexandra Sobeck
- Division of Biochemistry and Molecular Biology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yagasaki H, Hamanoue S, Oda T, Nakahata T, Asano S, Yamashita T. Identification and characterization of novel mutations of the major Fanconi anemia gene FANCA in the Japanese population. Hum Mutat 2005; 24:481-90. [PMID: 15523645 DOI: 10.1002/humu.20099] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fanconi anemia (FA) is a rare autosomal recessive disorder of hematopoiesis, with at least 11 complementation groups. FANCA, a gene for group A, accounts for the majority of FA patients. Previous studies of FANCA mutations revealed high allelic heterogeneity, frequent occurrence of large deletions, and interpopulation differences. However, systematic mutational analysis, including gene dosage assay to detect large deletions, has not been documented for Asian populations. A newly developed TaqMan quantitative PCR-based gene dosage assay, combined with sequencing of exons and cDNA fragments, allowed for detection of 48 mutant alleles of FANCA in 27 (77%) of 35 unrelated Japanese FA families with no detectable mutations in FANCC or FANCG. We identified 29 different mutations (21 nucleotide substitutions or small deletions/insertions and eight large deletions), at least 20 of which were novel. The FANCA mutational spectrum of the Japanese was different from that of other ethnic groups so far studied. This is the largest scale of mutation analysis of FANCA in the Japanese population. Characterization of these mutations provided new information regarding the mutagenesis mechanisms and structure-function relationship of FANCA. Specifically, our data suggest that diverse mechanisms including nonhomologous recombination as well as Alu-mediated homologous recombination are involved in the generation of large deletions in FANCA.
Collapse
Affiliation(s)
- Hiroshi Yagasaki
- Division of Genetic Diagnosis, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Macé G, Bogliolo M, Guervilly JH, Dugas du Villard JA, Rosselli F. 3R coordination by Fanconi anemia proteins. Biochimie 2005; 87:647-58. [PMID: 15935541 DOI: 10.1016/j.biochi.2005.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.
Collapse
Affiliation(s)
- Gaëtane Macé
- Institut Gustave-Roussy PR2, UPR2169 du CNRS, 39, rue Camille-Desmoulins, 94805 Villejuif cedex, France
| | | | | | | | | |
Collapse
|
39
|
Ferrer M, Rodríguez JA, Spierings EA, de Winter JP, Giaccone G, Kruyt FAE. Identification of multiple nuclear export sequences in Fanconi anemia group A protein that contribute to CRM1-dependent nuclear export. Hum Mol Genet 2005; 14:1271-81. [PMID: 15790592 DOI: 10.1093/hmg/ddi138] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Fanconi anemia (FA) pathway plays an important role in maintaining genomic stability, and defects in this pathway cause cancer susceptibility. The FA proteins have been found to function primarily in a nuclear complex, although a cytoplasmic localization and function for several FA proteins has also been reported. In this study, we investigated the possibility that FANCA, FANCC and FANCG are subjected to active export out of the nucleus. After treatment with leptomycin B, a specific inhibitor of CRM1-mediated nuclear export, the accumulation of epitope-tagged FANCA in the nucleus increased, whereas FANCC was affected to a lesser extent and FANCG showed no response. CRM1-mediated export of FANCA was further confirmed using CRM1 cotransfection, which led to a dramatic relocalization of FANCA to the cytoplasm. Five functional leucine-rich nuclear export sequences (NESs) distributed throughout the FANCA sequence were identified and characterized using an in vivo export assay. Simultaneous inactivation of three of these NESs resulted in a discrete but reproducible increase of FANCA nuclear accumulation. However, these NES mutations did not affect the ability of FANCA to complement the mitomycin C or cisplatin sensitivity of FA-A lymphoblasts. Surprisingly, mutations in the other two NESs resulted in an almost complete relocation of the protein to cytoplasm, suggesting that these motifs overlap with domains that are crucial for nuclear import. Taken together, these findings indicate that FANCA can be actively exported out of the nucleus by CRM1, revealing a new mechanism to regulate the function of the FA protein complex.
Collapse
Affiliation(s)
- Miriam Ferrer
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Tebbs RS, Hinz JM, Yamada NA, Wilson JB, Salazar EP, Thomas CB, Jones IM, Jones NJ, Thompson LH. New insights into the Fanconi anemia pathway from an isogenic FancG hamster CHO mutant. DNA Repair (Amst) 2005; 4:11-22. [PMID: 15533833 DOI: 10.1016/j.dnarep.2004.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2004] [Revised: 06/21/2004] [Accepted: 06/21/2004] [Indexed: 01/09/2023]
Abstract
The Fanconi anemia (FA) proteins overlap with those of homologous recombination through FANCD1/BRCA2, but the biochemical functions of other FA proteins are largely unknown. By constructing and characterizing a null fancg mutant (KO40) of hamster CHO cells, we show that FancG protects cells against a broad spectrum of genotoxic agents. KO40 is consistently hypersensitive to both alkylating agents that produce monoadducts and those that produce interstrand crosslinks. KO40 cells were no more sensitive to mitomycin C (3x) and diepoxybutane (2x) than to 6-thioguanine (5x), ethylnitrosourea (3x), or methyl methanesulfonate (MMS) (3x). These results contrast with the pattern of selective sensitivity to DNA crosslinking agents seen historically with cell lines from FA patients. The hypersensitivity of KO40 to MMS was not associated with a higher level of initial DNA single-strand breaks; nor was there a defect in removing MNU-induced methyl groups from DNA. Both control and MMS-treated synchronized G1-phase KO40 cells progressed through S phase at a normal rate but showed a lengthening of G2 phase compared with wild type. MMS-treated and untreated early S-phase KO40 cells had increased levels of Rad51 foci compared with wild type. Asynchronous KO40 treated with ionizing radiation (IR) exhibited a normal Rad51 focus response, consistent with KO40 having only slight sensitivity to killing by IR. The plating efficiency and doubling time of KO40 cells were nearly normal, and they showed no increase in spontaneous chromosomal aberrations or sister chromatid exchanges. Collectively, our results do not support a role for FancG during DNA replication that deals specifically with processing DNA crosslinks. Nor do they suggest that the main function of the FA protein "pathway" is to promote efficient homologous recombination. We propose that the primary function of FA proteins is to maintain chromosomal continuity by stabilizing replication forks that encounter nicks, gaps, or replication-blocking lesions.
Collapse
Affiliation(s)
- Robert S Tebbs
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thompson LH, Hinz JM, Yamada NA, Jones NJ. How Fanconi anemia proteins promote the four Rs: replication, recombination, repair, and recovery. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2005; 45:128-142. [PMID: 15668941 DOI: 10.1002/em.20109] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The genetically complex disease Fanconi anemia (FA) comprises cancer predisposition, developmental defects, and bone marrow failure due to elevated apoptosis. The FA cellular phenotype includes universal sensitivity to DNA crosslinking damage, symptoms of oxidative stress, and reduced mutability at the X-linked HPRT gene. In this review article, we present a new heuristic molecular model that accommodates these varied features of FA cells. In our view, the FANCA, -C, and -G proteins, which are both cytoplasmic and nuclear, have an integrated dual role in which they sense and convey information about cytoplasmic oxidative stress to the nucleus, where they participate in the further assembly and functionality of the nuclear core complex (NCCFA= FANCA/B/C/E/F/G/L). In turn, NCCFA facilitates DNA replication at sites of base damage and strand breaks by performing the critical monoubiquitination of FANCD2, an event that somehow helps stabilize blocked and broken replication forks. This stabilization facilitates two kinds of processes: translesion synthesis at sites of blocking lesions (e.g., oxidative base damage), which produces point mutations by error-prone polymerases, and homologous recombination-mediated restart of broken forks, which arise spontaneously and when crosslinks are unhooked by the ERCC1-XPF endonuclease. In the absence of the critical FANCD2 monoubiquitination step, broken replication forks further lose chromatid continuity by collapsing into a configuration that is more difficult to restart through recombination and prone to aberrant repair through nonhomologous end joining. Thus, the FA regulatory pathway promotes chromosome integrity by monitoring oxidative stress and coping efficiently with the accompanying oxidative DNA damage during DNA replication.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, Livermore, California 94551, USA.
| | | | | | | |
Collapse
|
42
|
Mi J, Qiao F, Wilson JB, High AA, Schroeder MJ, Stukenberg PT, Moss A, Shabanowitz J, Hunt DF, Jones NJ, Kupfer GM. FANCG is phosphorylated at serines 383 and 387 during mitosis. Mol Cell Biol 2004; 24:8576-85. [PMID: 15367677 PMCID: PMC516759 DOI: 10.1128/mcb.24.19.8576-8585.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease marked by congenital defects, bone marrow failure, and high incidence of leukemia and solid tumors. Eight genes have been cloned, with the accompanying protein products participating in at least two complexes, which appear to be functionally dependent upon one another. Previous studies have described chromatin localization of the FA core complex, except at mitosis, which is associated with phosphorylation of the FANCG protein (F. Qiao, A. Moss, and G. M. Kupfer, J. Biol. Chem. 276:23391-23396, 2001). The phosphorylation of FANCG at serine 7 by using mass spectrometry was previously mapped. The purpose of this study was to map the phosphorylation sites of FANCG at mitosis and to assess their functional importance. Reasoning that a potential kinase might be cdc2, which was previously reported to bind to FANCC, we showed that cdc2 chiefly phosphorylated a 14-kDa fragment of the C-terminal half of FANCG. Mass spectrometry analysis demonstrated that this fragment contains amino acids 374 to 504. Kinase motif analysis demonstrated that three amino acids in this fragment were leading candidates for phosphorylation. By using PCR-directed in vitro mutagenesis we mutated S383, S387, and T487 to alanine. Mutation of S383 and S387 abolished the phosphorylation of FANCG at mitosis. These results were confirmed by use of phosphospecific antibodies directed against phosphoserine 383 and phosphoserine 387. Furthermore, the ability to correct FA-G mutant cells of human or hamster (where S383 and S387 are conserved) origin was also impaired by these mutations, demonstrating the functional importance of these amino acids. S387A mutant abolished FANCG fusion protein phosphorylation by cdc2. The FA pathway, of which FANCG is a part, is highly regulated by a series of phosphorylation steps that are important to its overall function.
Collapse
Affiliation(s)
- Jun Mi
- Department of Microbiology, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Freie BW, Ciccone SLM, Li X, Plett PA, Orschell CM, Srour EF, Hanenberg H, Schindler D, Lee SH, Clapp DW. A role for the Fanconi anemia C protein in maintaining the DNA damage-induced G2 checkpoint. J Biol Chem 2004; 279:50986-93. [PMID: 15377654 DOI: 10.1074/jbc.m407160200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.
Collapse
Affiliation(s)
- Brian W Freie
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Qiao F, Mi J, Wilson JB, Zhi G, Bucheimer NR, Jones NJ, Kupfer GM. Phosphorylation of fanconi anemia (FA) complementation group G protein, FANCG, at serine 7 is important for function of the FA pathway. J Biol Chem 2004; 279:46035-45. [PMID: 15299017 DOI: 10.1074/jbc.m408323200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disease of cancer susceptibility. FA cells exhibit a characteristic hypersensitivity to DNA cross-linking agents. The molecular mechanism for the disease is unknown as few of the FA proteins have functional motifs. Several post-translational modifications of the proteins have been described. We and others have reported that the FANCG protein (Fanconi complementation group G) is phosphorylated. We show that in an in vitro kinase reaction FANCG is radioactively labeled. Mass spectrometry analysis detected a peptide containing phosphorylation of serine 7. Using PCR-mediated site-directed mutagenesis we mutated serine 7 to alanine. Only wild-type FANCG cDNA fully corrected FA-G mutant cells. We also tested the effect of human wild-type FANCG in Chinese hamster ovary cells in which the FANCG homologue is mutant. Human FANCG complemented these cells, whereas human FANCG(S7A) did not. Unexpectedly, FANCG(S7A) bound to and stabilized the endogenous forms of the FANCA and FANCC proteins in the FA-G cells. FANCG(S7A) aberrantly localized to globules in chromatin and did not abrogate the internuclear bridges seen in the FA-G mutant cells. Phosphorylation of serine 7 in FANCG is functionally important in the FA pathway.
Collapse
Affiliation(s)
- Fengyu Qiao
- Departments of Microbiology and Pediatrics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Zhang X, Li J, Sejas DP, Rathbun KR, Bagby GC, Pang Q. The Fanconi anemia proteins functionally interact with the protein kinase regulated by RNA (PKR). J Biol Chem 2004; 279:43910-9. [PMID: 15299030 DOI: 10.1074/jbc.m403884200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase regulated by RNA (PKR) plays critical roles in cell growth and apoptosis and is implicated as a potential pathogenic factor of Alzheimer's, Parkinson's, and Huntington's diseases. Here we report that this proapoptotic kinase is also involved in Fanconi anemia (FA), a disease characterized by bone marrow (BM) failure and leukemia. We have used a BM extract to show that three FA proteins, FANCA, FANCC, and FANCG, functionally interact with the PKR kinase, which in turn regulates translational control. By using a combined immunoprecipitation and reconstituted kinase assay, in which an active PKR kinase complex was captured from a normal cell extract, we demonstrated functional interactions between the FA proteins and the PKR kinase. In primary human BM cells, mutations in the FANCA, FANCC, and FANCG genes markedly increase the amount of PKR bound to FANCC, and this PKR accumulation is correlated with elevated PKR activation and hypersensitivity of BM progenitor cells to growth repression mediated by the inhibitory cytokines interferon-gamma and tumor necrosis factor-alpha. Specific inhibition of PKR by 2-aminopurine in these FA BM cells attenuates PKR activation and apoptosis induction. In lymphoblasts derived from an FA-C patient, overexpression of a dominant negative mutant PKR (PKRK296R) suppressed PKR activation and apoptosis induced by interferon-gamma and tumor necrosis factor-alpha. Furthermore, by using genetically matched wild-type and PKR-null cells, we demonstrated that forced expression of a patient-derived FA-C mutant (FANCCL554P) augmented double-stranded RNA-induced PKR activation and cell death. Thus, inappropriate activation of PKR as a consequence of certain FA mutations might play a role in bone marrow failure that frequently occurred in FA.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Division of Experimental Hematology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
46
|
Pichierri P, Franchitto A, Rosselli F. BLM and the FANC proteins collaborate in a common pathway in response to stalled replication forks. EMBO J 2004; 23:3154-63. [PMID: 15257300 PMCID: PMC514912 DOI: 10.1038/sj.emboj.7600277] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Accepted: 05/25/2004] [Indexed: 12/28/2022] Open
Abstract
Fanconi anaemia (FA) and Bloom syndrome (BS) are autosomal recessive diseases characterised by chromosome fragility and cancer proneness. Here, we report that BLM and the FA pathway are activated in response to both crosslinked DNA and replication fork stall. We provide evidence that BLM and FANCD2 colocalise and co-immunoprecipitate following treatment with either DNA crosslinkers or agents inducing replication arrest. We also find that the FA core complex is necessary for BLM phosphorylation and assembly in nuclear foci in response to crosslinked DNA. Moreover, we show that knock-down of the MRE11 complex, whose function is also under the control of the FA core complex, enhances cellular and chromosomal sensitivity to DNA interstrand crosslinks in BS cells. These findings suggest the existence of a functional link between BLM and the FA pathway and that BLM and the MRE11 complex are in two separated branches of a pathway resulting in S-phase checkpoint activation, chromosome integrity and cell survival in response to crosslinked DNA.
Collapse
Affiliation(s)
- Pietro Pichierri
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Annapaola Franchitto
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| | - Filippo Rosselli
- UPR2169 CNRS, ‘Genetic Instability and Cancer', Institut Gustave Roussy, Pavillon de Recherche, Rue Camille Desmoulins, Villejuif, France
| |
Collapse
|
47
|
Abstract
Fanconi anemia (FA) is an autosomal recessive disease marked by bone marrow failure, birth defects, and cancer. The FA proteins FANCA, FANCC, FANCE, FANCF, FANCG, and FANCL participate in a core complex. We previously have shown that several members of this complex bind to chromatin until mitosis and that this binding increases after DNA damage. The purpose of the present study was to determine the dynamics of complex movement between cytoplasm and nuclear compartments. Fluorescent-tagged versions of FANCA, FANCC, and FANCG colocalize in cytoplasm and nucleus, chiefly in chromatin. At the G1-S border, the FA core complex exists as foci on chromatin, progressively diffusing and migrating to the nuclear periphery and becoming completely excluded from condensed chromosomes by mitosis. Chromatin fiber analysis shows FA proteins diffusely staining along chromatin fibers during G1-S and S phase. Treatment with the DNA cross-linker mitomycin C results in a diffusion of foci and increased binding of complex proteins to chromatin, as well as diffuse and increased complex binding to chromatin fibers. These data are consistent with the idea that the FA proteins function at the level of chromatin during S phase to regulate and maintain genomic stability.
Collapse
Affiliation(s)
- Jun Mi
- Department of Microbiology, the University of Virginia Health System, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
48
|
Léveillé F, Blom E, Medhurst AL, Bier P, Laghmani EH, Johnson M, Rooimans MA, Sobeck A, Waisfisz Q, Arwert F, Patel KJ, Hoatlin ME, Joenje H, de Winter JP. The Fanconi anemia gene product FANCF is a flexible adaptor protein. J Biol Chem 2004; 279:39421-30. [PMID: 15262960 DOI: 10.1074/jbc.m407034200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Fanconi anemia (FA) protein FANCF is an essential component of a nuclear core complex that protects the genome against chromosomal instability, but the specific function of FANCF is still poorly understood. Based upon the homology between human and Xenopus laevis FANCF, we carried out an extensive mutagenesis study to examine which domains are functionally important and to gain more insight into the function of FANCF. In contrast to previous suggestions, we show that FANCF does not have a ROM-like function. We found that the C terminus of FANCF interacts directly with FANCG and allows the assembly of other FA proteins into a stable complex. The N terminus appears to stabilize the interaction with FANCA and FANCG and is essential for the binding of the FANCC/FANCE subcomplex. We identified several important amino acids in this N-terminal region but, surprisingly, many amino acid changes failed to affect the function of the FANCF protein. Our data demonstrate that FANCF acts as a flexible adaptor protein that plays a key role in the proper assembly of the FA core complex.
Collapse
Affiliation(s)
- France Léveillé
- Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, NL-1081BT Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Park SJ, Ciccone SLM, Beck BD, Hwang B, Freie B, Clapp DW, Lee SH. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 2004; 279:30053-9. [PMID: 15138265 DOI: 10.1074/jbc.m403527200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FANC) is a heterogeneous genetic disorder characterized by a hypersensitivity to DNA-damaging agents, chromosomal instability, and defective DNA repair. Eight FANC genes have been identified so far, and five of them (FANCA, -C, -E, -F, and -G) assemble in a multinuclear complex and function at least in part in a complex to activate FANCD2 by monoubiquitination. Here we show that FANCA and FANCG are redox-sensitive proteins that are multimerized and/or form a nuclear complex in response to oxidative stress/damage. Both FANCA and FANCG proteins exist as monomers under non-oxidizing conditions, whereas they become multimers following H2O2 treatment. Treatment of cells with oxidizing agent not only triggers the multimeric complex of FANCA and FANCG in vivo but also induces the interaction between FANCA and FANCG. N-Ethylmaleimide treatment abolishes multimerization and interaction of FANCA and FANCG in vitro. Taken together, our results lead us to conclude that FANCA and FANCG uniquely respond to oxidative damage by forming complex(es) via intermolecular disulfide linkage(s), which may be crucial in forming such complexes and in determining their function.
Collapse
Affiliation(s)
- Su-Jung Park
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Larder R, Chang L, Clinton M, Brown P. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells. Biol Reprod 2004; 71:828-36. [PMID: 15128600 PMCID: PMC1950776 DOI: 10.1095/biolreprod.104.030569] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.
Collapse
Affiliation(s)
- Rachel Larder
- Human Reproductive Sciences Unit, Centre for Reproductive Biology, The University of Edinburgh Chancellors Building, Edinburgh EH16 4SB, UK
| | | | | | | |
Collapse
|