1
|
Sangeet S, Sinha A, Nair MB, Mahata A, Sarkar R, Roy S. EVOLVE: A Web Platform for AI-Based Protein Mutation Prediction and Evolutionary Phase Exploration. J Chem Inf Model 2025; 65:4293-4310. [PMID: 40309917 DOI: 10.1021/acs.jcim.5c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
While predicting structure-function relationships from sequence data is fundamental in biophysical chemistry, identifying prospective single-point and collective mutation sites in proteins can help us stay ahead in understanding their potential effects on protein structure and function. Addressing the challenges of large sequence-space analysis, we present EVOLVE, a web tool enabling researchers to explore prospective mutation sites and their collective behavior. EVOLVE integrates a statistical mechanics-guided machine learning algorithms to predict probable mutational sites, with statistical mechanics calculating mutational entropy to accurately identify mutational hotspots. Validation against a number of viral protein sequences confirms its ability to predict mutations and their functional consequences. By leveraging statistical mechanics of phase transition concept, EVOLVE also quantifies mutational entropy fluctuations, offering a quantitative foundation for identifying Variants of Concern (VOC) or Variants under Monitoring (VUM) as per World Health Organization (WHO) guidelines. EVOLVE streamlines data upload and analysis with a user-friendly interface and comprehensive tutorials. Access EVOLVE free at https://evolve-iiserkol.com.
Collapse
Affiliation(s)
- Satyam Sangeet
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Madhav B Nair
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Arpita Mahata
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India
| |
Collapse
|
2
|
Molina IS, Jimenez-Vasquez V, Lizarraga W, Sevilla N, Hurtado V, Padilla-Rojas C. Sub-lineage B.1.6 of hMPXV in a global context: Phylogeny and epidemiology. J Med Virol 2023; 95:e29056. [PMID: 37671858 DOI: 10.1002/jmv.29056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/26/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
During the 2022 COVID-19 pandemic, monkeypox emerged as a significant threat to global health. The virus responsible for the disease, the human monkeypox virus (hMPXV), underwent various genetic changes, resulting in the emergence of over a dozen distinct lineages, which could be identified by only a small number of unique mutations. As of January 25, 2023, genomic information of hMPXV generated had reached 4632 accessions in the GISAID database. In this study, we aimed to investigate the epidemiological and phylogenetic characteristics of the B.1.6 sub-lineage of hMPXV in Peru, compared with other circulating sub-lineages during the global outbreak. The B.1.6 sub-lineage, characterized by the 111029G>A mutation, was estimated to have emerged in June 2022 and was found mainly in Peru. Most cases (95.8%) were men with an average age of 33 years, and nearly half of the patients had HIV, of whom only 77.35% received antiretroviral therapy. Our findings revealed that the B.1.6, B.1.4, and B.1.2 sub-lineages were well represented and had a higher number of mutations despite having the lowest media substitution rates per site per year. Moreover, it was estimated that B.1.2 and B.1.4 appeared in February 2022 and were the first two sub-lineages to emerge. A mutation profile was also obtained for each sub-lineage, reflecting that several mutations had a pattern similar to the characteristic mutation. This study provides the first estimation of the substitution rate and ancestry of each monkeypox sub-lineage belonging to the 2022 outbreak. Based on our findings, continued genomic surveillance of monkeypox is necessary to understand better and track the evolution of the virus.
Collapse
Affiliation(s)
- Iris S Molina
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Victor Jimenez-Vasquez
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Wendy Lizarraga
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Nieves Sevilla
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Veronica Hurtado
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Carlos Padilla-Rojas
- Area de Innovacion y Desarrollo Tecnológico, Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| |
Collapse
|
3
|
Gessain A, Ramassamy JL, Afonso PV, Cassar O. Geographic distribution, clinical epidemiology and genetic diversity of the human oncogenic retrovirus HTLV-1 in Africa, the world's largest endemic area. Front Immunol 2023; 14:1043600. [PMID: 36817417 PMCID: PMC9935834 DOI: 10.3389/fimmu.2023.1043600] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
The African continent is considered the largest high endemic area for the oncogenic retrovirus HTLV-1 with an estimated two to five million infected individuals. However, data on epidemiological aspects, in particular prevalence, risk factors and geographical distribution, are still very limited for many regions: on the one hand, few large-scale and representative studies have been performed and, on the other hand, many studies do not include confirmatory tests, resulting in indeterminate serological results, and a likely overestimation of HTLV-1 seroprevalence. For this review, we included the most robust studies published since 1984 on the prevalence of HTLV-1 and the two major diseases associated with this infection in people living in Africa and the Indian Ocean islands: adult T-cell leukemia (ATL) and tropical spastic paraparesis or HTLV-1-associated myelopathy (HAM/TSP). We also considered most of the book chapters and abstracts published at the 20 international conferences on HTLV and related viruses held since 1985, as well as the results of recent meta-analyses regarding the status of HTLV-1 in West and sub-Saharan Africa. Based on this bibliography, it appears that HTLV-1 distribution is very heterogeneous in Africa: The highest prevalences of HTLV-1 are reported in western, central and southern Africa, while eastern and northern Africa show lower prevalences. In highly endemic areas, the HTLV-1 prevalence in the adult population ranges from 0.3 to 3%, increases with age, and is highest among women. In rural areas of Gabon and the Democratic Republic of the Congo (DRC), HTLV-1 prevalence can reach up to 10-25% in elder women. HTLV-1-associated diseases in African patients have rarely been reported in situ on hospital wards, by local physicians. With the exception of the Republic of South Africa, DRC and Senegal, most reports on ATL and HAM/TSP in African patients have been published by European and American clinicians and involve immigrants or medical returnees to Europe (France and the UK) and the United States. There is clearly a huge underreporting of these diseases on the African continent. The genetic diversity of HTLV-1 is greatest in Africa, where six distinct genotypes (a, b, d, e, f, g) have been identified. The most frequent genotype in central Africa is genotype b. The other genotypes found in central Africa (d, e, f and g) are very rare. The vast majority of HTLV-1 strains from West and North Africa belong to genotype a, the so-called 'Cosmopolitan' genotype. These strains form five clades roughly reflecting the geographic origin of the infected individuals. We have recently shown that some of these clades are the result of recombination between a-WA and a-NA strains. Almost all sequences from southern Africa belong to Transcontinental a-genotype subgroup.
Collapse
Affiliation(s)
- Antoine Gessain
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Jill-Léa Ramassamy
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Philippe V Afonso
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| | - Olivier Cassar
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
| |
Collapse
|
4
|
Casseb J, Lopes LR. Reflection About the Ancient Emergence of HTLV-2 Infection. AIDS Res Hum Retroviruses 2022; 38:933-938. [PMID: 35833459 DOI: 10.1089/aid.2022.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
During millions of years, viruses have emerged and reemerged, with imbalance of photogenicity and transmissivity overtime. This letter describes that sometimes the nomenclature is uncertain what may actually happen during retrovirus evolution nowadays. This article discusses a possibility that human T-lymphotropic virus type 2 (HTLV-2) has been processed to incorporate the human genome in the last millions of years. Persistent viruses such as human immunodeficiency virus type 1 (HIV-1), HIV-2, and human T cell lymphotropic type 2 may also have potential of endogenization instead of a cytolytic process in a long time.
Collapse
Affiliation(s)
- Jorge Casseb
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, University of São Paulo Medical School, Brazil/Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Luciano Rodrigo Lopes
- Bioinformatics and Biomedical Data Science Division, Health Informatics Department, Federal University of Sao Paulo-Unifesp, São Paulo, Brazil
| |
Collapse
|
5
|
Kim G, Shin HM, Kim HR, Kim Y. Effects of Host and Pathogenicity on Mutation Rates in Avian Influenza A Viruses. Virus Evol 2022; 8:veac013. [PMID: 35295747 PMCID: PMC8922178 DOI: 10.1093/ve/veac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Mutation is the primary determinant of genetic diversity in influenza viruses. The rate of mutation, measured in an absolute time-scale, is likely to be dependent on the rate of errors in copying RNA sequences per replication and the number of replications per unit time. Conditions for viral replication are probably different among host taxa, potentially generating the host-specificity of the viral mutation rate, and possibly between highly and low pathogenic viruses. This study investigated whether mutation rates per year in avian influenza A viruses depend on host taxa and pathogenicity. We inferred mutation rates from the rates of synonymous substitutions, which are assumed to be neutral and thus equal to mutation rates, at four segments that code internal viral proteins (PB2, PB1, PA, NP). On the phylogeny of all avian viral sequences for each segment, multiple distinct subtrees (clades) were identified that represent viral subpopulations, which are likely to have evolved within particular host taxa. Using simple regression analysis, we found that mutation rates were significantly higher in viruses infecting chickens than domestic ducks, and in those infecting wild shorebirds than wild ducks. Host-dependency of the substitution rate was also confirmed by Bayesian phylogenetic analysis. However, we did not find evidence that the mutation rate is higher in highly pathogenic than in low pathogenic viruses. We discuss these results considering viral replication rate as the major determinant of mutation rate per unit time.
Collapse
Affiliation(s)
- Gwanghun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Hang-Rae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Medical Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Hongcheon 25159, Republic of Korea
| | - Yuseob Kim
- Division of EcoScience and Department of Life Science, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
6
|
Ebranati E, Mancon A, Airoldi M, Renica S, Shkjezi R, Dragusha P, Della Ventura C, Ciccaglione AR, Ciccozzi M, Bino S, Tanzi E, Micheli V, Riva E, Galli M, Zehender G. Time and Mode of Epidemic HCV-2 Subtypes Spreading in Europe: Phylodynamics in Italy and Albania. Diagnostics (Basel) 2021; 11:diagnostics11020327. [PMID: 33671355 PMCID: PMC7922790 DOI: 10.3390/diagnostics11020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatitis C virus (HCV) genotype 2 causes about 10% of global infections and has the most variable circulation profile in Europe. The history of “endemic” HCV-2 subtypes has been satisfactorily reconstructed, instead there is little information about the recent spread of the “epidemic” subtypes, including HCV-2c. To investigate the origin and dispersion pathways of HCV-2c, 245 newly characterized Italian and Albanian HCV-2 NS5B sequences were aligned with 247 publicly available sequences and included in phylogeographic and phylodynamic analyses using the Bayesian framework. Our findings show that HCV-2c was the most prevalent subtype in Italy and Albania. The phylogeographic analysis suggested an African origin of HCV-2c before it reached Italy about in the 1940s. Phylodynamic analysis revealed an exponential increase in the effective number of infections and Re in Italy between the 1940s and 1960s, and in Albania between the 1990s and the early 2000s. It seems very likely that HCV-2c reached Italy from Africa at the time of the second Italian colonization but did not reach Albania until the period of dramatic migration to Italy in the 1990s. This study contributes to reconstructing the history of the spread of epidemic HCV-2 subtypes to Europe.
Collapse
Affiliation(s)
- Erika Ebranati
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Alessandro Mancon
- Unit of Microbiology, Hospital Sacco of Milan, 20157 Milan, Italy; (A.M.); (V.M.)
| | - Martina Airoldi
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Silvia Renica
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Renata Shkjezi
- Faculty of Medicine and Surgery, Catholic University “Our Lady of the Good Counsel”, 1001 Tirana, Albania; (R.S.); (P.D.)
| | - Pranvera Dragusha
- Faculty of Medicine and Surgery, Catholic University “Our Lady of the Good Counsel”, 1001 Tirana, Albania; (R.S.); (P.D.)
| | - Carla Della Ventura
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
| | - Anna Rita Ciccaglione
- Viral Hepatitis Unit, Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Roma, Italy;
| | - Silvia Bino
- National Institute of Health, 1001 Tirana, Albania;
| | - Elisabetta Tanzi
- Department of Biomedical Sciences for the Health, University of Milan, 20133 Milan, Italy;
| | - Valeria Micheli
- Unit of Microbiology, Hospital Sacco of Milan, 20157 Milan, Italy; (A.M.); (V.M.)
| | - Elisabetta Riva
- Laboratory of Virology, Campus Bio-Medico University, 00128 Rome, Italy;
| | - Massimo Galli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
| | - Gianguglielmo Zehender
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, 20157 Milan, Italy; (E.E.); (M.A.); (S.R.); (C.D.V.); (M.G.)
- CRC-Coordinated Research Center “EpiSoMI”, University of Milan, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-503-19770
| |
Collapse
|
7
|
Patiño-Galindo JÁ, Domínguez F, Cuevas MT, Delgado E, Sánchez M, Pérez-Álvarez L, Thomson MM, Sanjuán R, González-Candelas F, Cuevas JM. Genome-scale analysis of evolutionary rate and selection in a fast-expanding Spanish cluster of HIV-1 subtype F1. INFECTION GENETICS AND EVOLUTION 2018; 66:43-47. [PMID: 30219320 DOI: 10.1016/j.meegid.2018.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022]
Abstract
This work is aimed at assessing the presence of positive selection and/or shifts of the evolutionary rate in a fast-expanding HIV-1 subtype F1 transmission cluster affecting men who have sex with men in Spain. We applied Bayesian coalescent phylogenetics and selection analyses to 23 full-coding region sequences from patients belonging to that cluster, along with other 19 F1 epidemiologically-unrelated sequences. A shift in the overall evolutionary rate of the virus, explained by positively selected sites in the cluster, was detected. We also found one substitution in Nef (H89F) that was specific to the cluster and experienced positive selection. These results suggest that fast transmission could have been facilitated by some inherent genetic properties of this HIV-1 variant.
Collapse
Affiliation(s)
- Juan Á Patiño-Galindo
- Joint Research Unit "Infection and Public Health" FISABIO-Universitat de València, València, Spain; CIBER in Epidemiology and Public Health, Madrid, Spain
| | - Francisco Domínguez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - María T Cuevas
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Lucía Pérez-Álvarez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Michael M Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain
| | - Fernando González-Candelas
- Joint Research Unit "Infection and Public Health" FISABIO-Universitat de València, València, Spain; CIBER in Epidemiology and Public Health, Madrid, Spain; Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain
| | - José M Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain.; Department of Genetics, Universitat de València, València, Spain.
| |
Collapse
|
8
|
Greenwood AD, Ishida Y, O'Brien SP, Roca AL, Eiden MV. Transmission, Evolution, and Endogenization: Lessons Learned from Recent Retroviral Invasions. Microbiol Mol Biol Rev 2018; 82:e00044-17. [PMID: 29237726 PMCID: PMC5813887 DOI: 10.1128/mmbr.00044-17] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Viruses of the subfamily Orthoretrovirinae are defined by the ability to reverse transcribe an RNA genome into DNA that integrates into the host cell genome during the intracellular virus life cycle. Exogenous retroviruses (XRVs) are horizontally transmitted between host individuals, with disease outcome depending on interactions between the retrovirus and the host organism. When retroviruses infect germ line cells of the host, they may become endogenous retroviruses (ERVs), which are permanent elements in the host germ line that are subject to vertical transmission. These ERVs sometimes remain infectious and can themselves give rise to XRVs. This review integrates recent developments in the phylogenetic classification of retroviruses and the identification of retroviral receptors to elucidate the origins and evolution of XRVs and ERVs. We consider whether ERVs may recurrently pressure XRVs to shift receptor usage to sidestep ERV interference. We discuss how related retroviruses undergo alternative fates in different host lineages after endogenization, with koala retrovirus (KoRV) receiving notable interest as a recent invader of its host germ line. KoRV is heritable but also infectious, which provides insights into the early stages of germ line invasions as well as XRV generation from ERVs. The relationship of KoRV to primate and other retroviruses is placed in the context of host biogeography and the potential role of bats and rodents as vectors for interspecies viral transmission. Combining studies of extant XRVs and "fossil" endogenous retroviruses in koalas and other Australasian species has broadened our understanding of the evolution of retroviruses and host-retrovirus interactions.
Collapse
Affiliation(s)
- Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sean P O'Brien
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Maribeth V Eiden
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research (IZW) in the Forschungsverbund Berlin e.V., Berlin, Germany
| |
Collapse
|
9
|
Pagán I, Rojas P, Ramos JT, Holguín Á. Clinical Determinants of HIV-1B Between-Host Evolution and their Association with Drug Resistance in Pediatric Patients. PLoS One 2016; 11:e0167383. [PMID: 27907076 PMCID: PMC5132210 DOI: 10.1371/journal.pone.0167383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding the factors that modulate the evolution of virus populations is essential to design efficient control strategies. Mathematical models predict that factors affecting viral within-host evolution may also determine that at the between-host level. Although HIV-1 within-host evolution has been associated with clinical factors used to monitor AIDS progression, such as patient age, CD4 cells count, viral load, and antiretroviral experience, little is known about the role of these clinical factors in determining between-host HIV-1 evolution. Moreover, whether the relative importance of such factors in HIV-1 evolution vary in adult and children patients, in which the course of infection is different, has seldom been analysed. To address these questions, HIV-1 subtype B (HIV-1B) pol sequences of 163 infected children and 450 adults of Madrid, Spain, were used to estimate genetic diversity, rates of synonymous and non-synonymous mutations, selection pressures and frequency of drug-resistance mutations (DRMs). The role and relative importance of patient age, %CD4, CD4/mm3, viral load, and antiretroviral experience in HIV-1B evolution was analysed. In the pediatric HIV-1B population, three clinical factors were primary predictors of virus evolution: Higher HIV-1B genetic diversity was observed with increasing children age, decreasing CD4/mm3 and upon antiretroviral experience. This was mostly due to higher rates of non-synonymous mutations, which were associated with higher frequency of DRMs. Using this data, we have also constructed a simple multivariate model explaining between 55% and 66% of the variance in HIV-1B evolutionary parameters in pediatric populations. On the other hand, the analysed clinical factors had little effect in adult-infecting HIV-1B evolution. These findings highlight the different evolutionary dynamics of HIV-1B in children and adults, and contribute to understand the factors shaping HIV-1B evolution and the appearance of drug-resistance mutation in pediatric patients.
Collapse
Affiliation(s)
- Israel Pagán
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Patricia Rojas
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, Spain
| | - José Tomás Ramos
- Hospital Clínico San Carlos and Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - África Holguín
- HIV-1 Molecular Epidemiology Laboratory, Microbiology Department, Hospital Ramón y Cajal-IRYCIS and CIBER-ESP, Madrid, Spain
| |
Collapse
|
10
|
Levasseur A, Andreani J, Delerce J, Bou Khalil J, Robert C, La Scola B, Raoult D. Comparison of a Modern and Fossil Pithovirus Reveals Its Genetic Conservation and Evolution. Genome Biol Evol 2016; 8:2333-9. [PMID: 27389688 PMCID: PMC5010891 DOI: 10.1093/gbe/evw153] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Most theories on viral evolution are speculative and lack fossil comparison. Here, we isolated a modern Pithovirus-like virus from sewage samples. This giant virus, named Pithovirus massiliensis, was compared with its prehistoric counterpart, Pithovirus sibericum, found in Siberian permafrost. Our analysis revealed near-complete gene repertoire conservation, including horizontal gene transfer and ORFans. Furthermore, all orthologous genes evolved under strong purifying selection with a non-synonymous and synonymous ratio in the same range as the ratio found in the prokaryotic world. The comparison between fossil and modern Pithovirus species provided an estimation of the cadence of the molecular clock, reaching up to 3 × 10−6 mutations/site/year. In addition, the strict conservation of HGTs and ORFans in P. massiliensis revealed the stable genetic mosaicism in giant viruses and excludes the concept of a bag of genes. The genetic stability for 30,000 years of P. massiliensis demonstrates that giant viruses evolve similarly to prokaryotes by classical mechanisms of evolution, including selection and fixation of genes, followed by selective constraints.
Collapse
Affiliation(s)
- Anthony Levasseur
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Julien Andreani
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Jeremy Delerce
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Jacques Bou Khalil
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Catherine Robert
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Bernard La Scola
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| | - Didier Raoult
- Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM U1095, IHU Méditerranée Infection, Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille, Faculté de Médecine, Marseille 13005, France
| |
Collapse
|
11
|
Molecular Evolution and Phylodynamics of Acute Hepatitis B Virus in Japan. PLoS One 2016; 11:e0157103. [PMID: 27280441 PMCID: PMC4900519 DOI: 10.1371/journal.pone.0157103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 05/24/2016] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) is prevalent worldwide and causes liver diseases, including acute and chronic hepatitis. Ten HBV genotypes (A–J) with distinct geographic distributions have been reported. Cases of acute HBV infection with genotype A have increased in Japan nationwide since the 1990s, mainly through sexual transmission. To investigate the molecular evolution and phylodynamics of HBV genotypes, we collected acute HBV isolates acquired in Japan from 1992–2002. Full genomes were obtained for comprehensive phylogenetic and phylodynamic analysis, with other Japanese HBV sequences from GenBank that were isolated during 1991–2010. HBV genotypes were classified using the maximum-likelihood and Bayesian methods. The GMRF Bayesian Skyride was used to estimate the evolution and population dynamics of HBV. Four HBV genotypes (A, B, C, and H) were identified, of which C was the major genotype. The phylodynamic results indicated an exponential growth between the 1960s and early 1990s; this was followed by a population bottleneck after 1995, possibly linked with successful implementation of a nationwide vaccination program. However, HBV/A increased from 1990 to 2003–2004, and then started to decrease. The prevalence of genotype A has increased over the past 10 years. Phylodynamic inference clearly demonstrates a steady population growth compatible with an ongoing subepidemic; this might be due to the loss of immunity to HBV in adolescents and people being born before the vaccination program. This is the first phylodynamic study of HBV infection in Japan and will facilitate understanding the molecular epidemiology and long-term evolutionary dynamics of this virus in Japan.
Collapse
|
12
|
Peck KM, Chan CHS, Tanaka MM. Connecting within-host dynamics to the rate of viral molecular evolution. Virus Evol 2015; 1:vev013. [PMID: 27774285 PMCID: PMC5014490 DOI: 10.1093/ve/vev013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses evolve rapidly, providing a unique system for understanding the processes that influence rates of molecular evolution. Neutral theory posits that the evolutionary rate increases linearly with the mutation rate. The occurrence of deleterious mutations causes this relationship to break down at high mutation rates. Previous studies have identified this as an important phenomenon, particularly for RNA viruses which can mutate at rates near the extinction threshold. We propose that in addition to mutation dynamics, viral within-host dynamics can also affect the between-host evolutionary rate. We present an analytical model that predicts the neutral evolution rate for viruses as a function of both within-host parameters and deleterious mutations. To examine the effect of more detailed aspects of the virus life cycle, we also present a computational model that simulates acute virus evolution using target cell-limited dynamics. Using influenza A virus as a case study, we find that our simulation model can predict empirical rates of evolution better than a model lacking within-host details. The analytical model does not perform as well as the simulation model but shows how the within-host basic reproductive number influences evolutionary rates. These findings lend support to the idea that the mutation rate alone is not sufficient to predict the evolutionary rate in viruses, instead calling for improved models that account for viral within-host dynamics.
Collapse
Affiliation(s)
- Kayla M Peck
- Department of Biology, University of North Carolina - Chapel Hill
| | - Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia and; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Aiewsakun P, Katzourakis A. Time dependency of foamy virus evolutionary rate estimates. BMC Evol Biol 2015; 15:119. [PMID: 26111824 PMCID: PMC4480597 DOI: 10.1186/s12862-015-0408-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/02/2015] [Indexed: 12/19/2022] Open
Abstract
Background It appears that substitution rate estimates co-vary very strongly with their timescale of measurement; the shorter the timescale, the higher the estimated value. Foamy viruses have a long history of co-speciation with their hosts, and one of the lowest estimated rates of evolution among viruses. However, when their rate of evolution is estimated over short timescales, it is more reminiscent of the rapid rates seen in other RNA viruses. This discrepancy between their short-term and long-term rates could be explained by the time-dependency of substitution rate estimates. Several empirical models have been proposed and used to correct for the time-dependent rate phenomenon (TDRP), such as a vertically-translated exponential rate decay model and a power-law rate decay model. Nevertheless, at present, it is still unclear which model best describes the rate dynamics. Here, we use foamy viruses as a case study to empirically describe the phenomenon and to determine how to correct rate estimates for its effects. Four empirical models were investigated: (i) a vertically-translated exponential rate decay model, (ii) a simple exponential rate decay model, (iii) a vertically-translated power-law rate decay model, and (iv) a simple power-law rate decay model. Results Our results suggest that the TDRP is likely responsible for the large discrepancy observed in foamy virus short-term and long-term rate estimates, and the simple power-law rate decay model is the best model for inferring evolutionary timescales. Furthermore, we demonstrated that, within the Bayesian phylogenetic framework, currently available molecular clocks can severely bias evolutionary date estimates, indicating that they are inadequate for correcting for the TDRP. Our analyses also suggest that different viral lineages may have different TDRP dynamics, and this may bias date estimates if it is unaccounted for. Conclusions As evolutionary rate estimates are dependent on their measurement timescales, their values must be used and interpreted under the context of the timescale of rate estimation. Extrapolating rate estimates across large timescales for evolutionary inferences can severely bias the outcomes. Given that the TDRP is widespread in nature but has been noted only recently the estimated timescales of many viruses may need to be reconsidered and re-estimated. Our models could be used as a guideline to further improve current phylogenetic inference tools. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0408-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|
14
|
Aiewsakun P, Katzourakis A. Endogenous viruses: Connecting recent and ancient viral evolution. Virology 2015; 479-480:26-37. [PMID: 25771486 DOI: 10.1016/j.virol.2015.02.011] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 12/15/2014] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
Abstract
The rapid rates of viral evolution allow us to reconstruct the recent history of viruses in great detail. This feature, however, also results in rapid erosion of evolutionary signal within viral molecular data, impeding studies of their deep history. Thus, the further back in time, the less accurate the inference becomes. Furthermore, reconstructing complex histories of transmission can be challenging, especially where extinct viral lineages are concerned. This problem has been partially solved by the discovery of viruses embedded in host genomes, known as endogenous viral elements (EVEs). Some of these endogenous viruses are derived from ancient relatives of extant viruses, allowing us to better examine ancient viral host range, geographical distribution and transmission routes. Moreover, our knowledge of viral evolutionary timescales and rate dynamics has also been greatly improved by their discovery, thereby bridging the gap between recent and ancient viral evolution.
Collapse
Affiliation(s)
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
15
|
Kadkhoda K, Smart G, Bacon D, Casselman A, Malloch L, Kim J. Seroprevalence of human T-cell lymphotropic viruses types 1 and 2 antibodies in hepatitis C virus-positive patients: manitoba, Canada, 2012-2014. Open Forum Infect Dis 2015; 2:ofu122. [PMID: 25884009 PMCID: PMC4396433 DOI: 10.1093/ofid/ofu122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/19/2014] [Indexed: 11/21/2022] Open
Abstract
Human T-cell lymphotropic viruses types 1 and 2 are probably among the most neglected blood-borne pathogens that have experienced significant changes in their epidemiology since discovery, which could be attributed to globalization and intravenous drug use practices as well as enhanced screening recommendations; however, systematic prevalence studies, especially in high-risk populations in North America, are not updated.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Serology Section , Cadham Provincial Public Health Laboratory ; Departments of Medical Microbiology and Infectious Diseases ; Immunology, College of Medicine, Faculty of Health Sciences , University of Manitoba
| | - Gerry Smart
- Serology Section , Cadham Provincial Public Health Laboratory
| | - Diane Bacon
- Serology Section , Cadham Provincial Public Health Laboratory
| | - Adara Casselman
- Serology Section , Cadham Provincial Public Health Laboratory
| | - Laurie Malloch
- National Laboratory for HIV/HTLV Reference Services in Winnipeg , Canada
| | - John Kim
- National Laboratory for HIV/HTLV Reference Services in Winnipeg , Canada
| |
Collapse
|
16
|
|
17
|
Cell tropism predicts long-term nucleotide substitution rates of mammalian RNA viruses. PLoS Pathog 2014; 10:e1003838. [PMID: 24415935 PMCID: PMC3887100 DOI: 10.1371/journal.ppat.1003838] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023] Open
Abstract
The high rates of RNA virus evolution are generally attributed to replication with error-prone RNA-dependent RNA polymerases. However, these long-term nucleotide substitution rates span three orders of magnitude and do not correlate well with mutation rates or selection pressures. This substitution rate variation may be explained by differences in virus ecology or intrinsic genomic properties. We generated nucleotide substitution rate estimates for mammalian RNA viruses and compiled comparable published rates, yielding a dataset of 118 substitution rates of structural genes from 51 different species, as well as 40 rates of non-structural genes from 28 species. Through ANCOVA analyses, we evaluated the relationships between these rates and four ecological factors: target cell, transmission route, host range, infection duration; and three genomic properties: genome length, genome sense, genome segmentation. Of these seven factors, we found target cells to be the only significant predictors of viral substitution rates, with tropisms for epithelial cells or neurons (P<0.0001) as the most significant predictors. Further, one-tailed t-tests showed that viruses primarily infecting epithelial cells evolve significantly faster than neurotropic viruses (P<0.0001 and P<0.001 for the structural genes and non-structural genes, respectively). These results provide strong evidence that the fastest evolving mammalian RNA viruses infect cells with the highest turnover rates: the highly proliferative epithelial cells. Estimated viral generation times suggest that epithelial-infecting viruses replicate more quickly than viruses with different cell tropisms. Our results indicate that cell tropism is a key factor in viral evolvability. RNA viruses are the fastest evolving human pathogens, making their treatment and control difficult. Compared to DNA viruses, RNA viruses replicate with much lower fidelity, which can explain why RNA viruses evolve significantly faster than most DNA viruses. However, there is tremendous variation among the evolutionary rates of different RNA viruses, which is not explained by variation in mutation rates. Here we present a survey of mammalian RNA virus rates of evolution, and a comprehensive comparison of these rates to different properties of virus genomic architecture and ecology. We found that cell tropism is the most significant predictor of long-term rates of mammalian RNA virus evolution. For instance, viruses targeting epithelial cells evolve significantly faster than viruses that target neurons. Our results provide mechanistic insight into why viruses that infect respiratory and gastrointestinal epithelia have been difficult to control.
Collapse
|
18
|
Scholle SO, Ypma RJF, Lloyd AL, Koelle K. Viral substitution rate variation can arise from the interplay between within-host and epidemiological dynamics. Am Nat 2013; 182:494-513. [PMID: 24021402 DOI: 10.1086/672000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The evolutionary rates of RNA viruses can differ from one another by several orders of magnitude. Much of this variation has been explained by differences in viral mutation rates and selective environments. However, substitution rates also vary considerably across viral populations belonging to the same species. In particular, viral lineages from epidemic regions tend to have higher substitution rates than those from endemic regions, and lineages from populations with higher contact rates tend to have higher substitution rates than those from populations with lower contact rates. We address the mechanism behind these patterns by using a nested modeling approach, whereby we integrate within-host viral replication dynamics with a population-level epidemiological model. Through numerical simulations and analytical approximations, we show that variation in viral substitution rates over the course of an infection, coupled with differences in age of infection of transmitting hosts under different epidemiological scenarios, can explain these evolutionary patterns. We further derive analytical estimates of expected substitution rate differences under epidemic versus endemic epidemiological conditions. By comparing these estimates to empirical data for four viral species, we show that these factors are sufficient to explain observed variation in substitution rates in three of four cases. This work shows that even in neutrally evolving viral populations, epidemiological dynamics can alter substitution rates via the interplay between within-host replication dynamics and population-level disease dynamics.
Collapse
Affiliation(s)
- Stacy O Scholle
- Department of Biology, Duke University, Durham, North Carolina 27708
| | | | | | | |
Collapse
|
19
|
Magri MC, Brigido LFDM, Morimoto HK, Caterino-de-Araujo A. Human T cell lymphotropic virus type 2a strains among HIV type 1-coinfected patients from Brazil have originated mostly from Brazilian Amerindians. AIDS Res Hum Retroviruses 2013; 29:1010-8. [PMID: 23484539 DOI: 10.1089/aid.2013.0014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human T cell lymphotropic virus type 2 (HTLV-2) is found mainly in Amerindians and in intravenous drug users (IDUs) from urban areas of the United States, Europe, and Latin America. Worldwide, HTLV-2a and HTLV-2b subtypes are the most prevalent. Phylogenetic analysis of HTLV-2 isolates from Brazil showed the HTLV-2a subtype, variant -2c, which spread from Indians to the general population and IDUs. The present study searched for the types of HTLV-2 that predominate among HIV-1-coinfected patients from southern and southeastern Brazil. Molecular characterization of the LTR, env, and tax regions of 38 isolates confirmed the HTLV-2c variant in 37 patients, and one HTLV-2b in a patient from Paraguay. Phylogenetic analysis of sequences showed different clades of HTLV-2 associated with risk factors and geographic region. These clades could represent different routes of virus transmission and/or little diverse evolutionary rates of virus. Taking into account the results obtained in the present study and the lack of the prototypic North American HTLV-2a strain and HTLV-2b subtypes commonly detected among HIV-coinfected individuals worldwide, we could speculate on the introduction of Brazilian HTLV-2 strains in such populations before the introduction of HIV.
Collapse
Affiliation(s)
- Mariana Cavalheiro Magri
- Laboratório de Investigaçõe Médica em Hepatologia por Vírus (LIM-47), Faculdade de Medicina, Universidade de São Paulo, São Paulo, S.P., Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, S.P., Brazil
| | - Luis Fernando de Macedo Brigido
- Laboratório de Retrovirus, Centro de Virologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, São Paulo, S.P., Brazil
| | - Helena Kaminami Morimoto
- Departmento de Patologia, Análises Clínicas e Toxicológicas, Universidade Estadual de Londrina, Londrina, P.R., Brazil
| | - Adele Caterino-de-Araujo
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, S.P., Brazil
- Centro de Imunologia, Instituto Adolfo Lutz, Secretaria de Estado da Saúde de São Paulo, São Paulo, S.P., Brazil
| |
Collapse
|
20
|
Streicker DG, Lemey P, Velasco-Villa A, Rupprecht CE. Rates of viral evolution are linked to host geography in bat rabies. PLoS Pathog 2012; 8:e1002720. [PMID: 22615575 PMCID: PMC3355098 DOI: 10.1371/journal.ppat.1002720] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/10/2012] [Indexed: 02/03/2023] Open
Abstract
Rates of evolution span orders of magnitude among RNA viruses with important implications for viral transmission and emergence. Although the tempo of viral evolution is often ascribed to viral features such as mutation rates and transmission mode, these factors alone cannot explain variation among closely related viruses, where host biology might operate more strongly on viral evolution. Here, we analyzed sequence data from hundreds of rabies viruses collected from bats throughout the Americas to describe dramatic variation in the speed of rabies virus evolution when circulating in ecologically distinct reservoir species. Integration of ecological and genetic data through a comparative bayesian analysis revealed that viral evolutionary rates were labile following historical jumps between bat species and nearly four times faster in tropical and subtropical bats compared to temperate species. The association between geography and viral evolution could not be explained by host metabolism, phylogeny or variable selection pressures, and instead appeared to be a consequence of reduced seasonality in bat activity and virus transmission associated with climate. Our results demonstrate a key role for host ecology in shaping the tempo of evolution in multi-host viruses and highlight the power of comparative phylogenetic methods to identify the host and environmental features that influence transmission dynamics.
Collapse
Affiliation(s)
- Daniel G Streicker
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
21
|
Sanjuán R. From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLoS Pathog 2012; 8:e1002685. [PMID: 22570614 PMCID: PMC3342999 DOI: 10.1371/journal.ppat.1002685] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/22/2012] [Indexed: 12/27/2022] Open
Abstract
Although evolution is a multifactorial process, theory posits that the speed of molecular evolution should be directly determined by the rate at which spontaneous mutations appear. To what extent these two biochemical and population-scale processes are related in nature, however, is largely unknown. Viruses are an ideal system for addressing this question because their evolution is fast enough to be observed in real time, and experimentally-determined mutation rates are abundant. This article provides statistically supported evidence that the mutation rate determines molecular evolution across all types of viruses. Properties of the viral genome such as its size and chemical composition are identified as major determinants of these rates. Furthermore, a quantitative analysis reveals that, as expected, evolution rates increase linearly with mutation rates for slowly mutating viruses. However, this relationship plateaus for fast mutating viruses. A model is proposed in which deleterious mutations impose an evolutionary speed limit and set an extinction threshold in nature. The model is consistent with data from replication kinetics, selection strength and chemical mutagenesis studies.
Collapse
Affiliation(s)
- Rafael Sanjuán
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, Paterna, Spain.
| |
Collapse
|
22
|
Belshaw R, Sanjuán R, Pybus OG. Viral mutation and substitution: units and levels. Curr Opin Virol 2011; 1:430-5. [PMID: 22440847 DOI: 10.1016/j.coviro.2011.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 08/11/2011] [Indexed: 01/11/2023]
Abstract
Viruses evolve within a hierarchy of organisational levels, from cells to host species. We discuss how these nested population structures complicate the meaning and interpretation of two apparently simple evolutionary concepts: mutation rate and substitution rate. We discuss the units in which these fundamental processes should be measured, and explore why, even for the same virus, mutation and substitution can occur at very different tempos at different biological levels. In addition, we explore the ability of whole genome evolutionary analyses to distinguish between natural selection and other population genetic processes. A better understanding of the complexities underlying the molecular evolution of viruses in natural populations is needed before accurate predictions of viral evolution can be made.
Collapse
Affiliation(s)
- Robert Belshaw
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
23
|
Mauclère P, Afonso PV, Meertens L, Plancoulaine S, Calattini S, Froment A, Van Beveren M, de Thé G, Quintana-Murci L, Mahieux R, Gessain A. HTLV-2B strains, similar to those found in several Amerindian tribes, are endemic in central African Bakola Pygmies. J Infect Dis 2011; 203:1316-23. [PMID: 21459818 DOI: 10.1093/infdis/jir031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The presence and origin of endemic foci of human T-lymphotropic virus type 2 (HTLV2) infection in Africa remain a matter of debate. METHODS To better appreciate such determinants, we performed a survey of 1918 inhabitants from Cameroon forest areas, including 1051 Bakola Pygmies and 867 Bantus. RESULTS The overall HTLV-1/2 seroprevalence was 4% (49 cases of HTLV-1 and 27 cases of HTLV-2 infection). Both infections were mainly restricted to the Bakola Pygmies, with surprisingly no HTLV-2 infections in the Bantu population. Both HTLV-1 and HTLV-2 seroprevalences increased with age. There was evidence of ongoing HTLV-2 transmission in this population. Lymphoid T cell lines producing HTLV-2 were established. HTLV-2 long terminal repeat sequences (672 base pairs) obtained from 7 infected Bakola were highly similar to each other (<1% nucleotide divergence), as well as to Amerindian HTLV-2B strains. Analyses on a complete sequence (8954 base pairs) confirmed that it was a typical HTLV-2 subtype B strain. Along with molecular clock analysis, these data strongly suggest that HTLV-2 has been endemic in the Bakola Pygmy population for a long time. CONCLUSIONS This study demonstrates clearly an HTLV-2 endemicity with ongoing transmission in an African population. Furthermore, it give insights into central questions regarding the origins and evolution rate of HTLV-2 and the migrations of infected populations.
Collapse
Affiliation(s)
- Philippe Mauclère
- Unité d'Epidémiologie et Physiopathologie des Virus Oncogènes, Institut National de la Santéet de la Recherche Médicale, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A novel methodology for large-scale phylogeny partition. Nat Commun 2011; 2:321. [PMID: 21610724 PMCID: PMC6045912 DOI: 10.1038/ncomms1325] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/21/2011] [Indexed: 01/24/2023] Open
Abstract
Understanding the determinants of virus transmission is a fundamental step for effective design of screening and intervention strategies to control viral epidemics. Phylogenetic analysis can be a valid approach for the identification of transmission chains, and very-large data sets can be analysed through parallel computation. Here we propose and validate a new methodology for the partition of large-scale phylogenies and the inference of transmission clusters. This approach, on the basis of a depth-first search algorithm, conjugates the evaluation of node reliability, tree topology and patristic distance analysis. The method has been applied to identify transmission clusters of a phylogeny of 11,541 human immunodeficiency virus-1 subtype B pol gene sequences from a large Italian cohort. Molecular transmission chains were characterized by means of different clinical/demographic factors, such as the interaction between male homosexuals and male heterosexuals. Our method takes an advantage of a flexible notion of transmission cluster and can become a general framework to analyse other epidemics.
Collapse
|
25
|
Gray RR, Parker J, Lemey P, Salemi M, Katzourakis A, Pybus OG. The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evol Biol 2011; 11:131. [PMID: 21595904 PMCID: PMC3112090 DOI: 10.1186/1471-2148-11-131] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 05/19/2011] [Indexed: 01/11/2023] Open
Abstract
Background Hepatitis C virus (HCV) is a rapidly-evolving RNA virus that establishes chronic infections in humans. Despite the virus' public health importance and a wealth of sequence data, basic aspects of HCV molecular evolution remain poorly understood. Here we investigate three sets of whole HCV genomes in order to directly compare the evolution of whole HCV genomes at different biological levels: within- and among-hosts. We use a powerful Bayesian inference framework that incorporates both among-lineage rate heterogeneity and phylogenetic uncertainty into estimates of evolutionary parameters. Results Most of the HCV genome evolves at ~0.001 substitutions/site/year, a rate typical of RNA viruses. The antigenically-important E1/E2 genome region evolves particularly quickly, with correspondingly high rates of positive selection, as inferred using two related measures. Crucially, in this region an exceptionally higher rate was observed for within-host evolution compared to among-host evolution. Conversely, higher rates of evolution were seen among-hosts for functionally relevant parts of the NS5A gene. There was also evidence for slightly higher evolutionary rate for HCV subtype 1a compared to subtype 1b. Conclusions Using new statistical methods and comparable whole genome datasets we have quantified, for the first time, the variation in HCV evolutionary dynamics at different scales of organisation. This confirms that differences in molecular evolution between biological scales are not restricted to HIV and may represent a common feature of chronic RNA viral infection. We conclude that the elevated rate observed in the E1/E2 region during within-host evolution more likely results from the reversion of host-specific adaptations (resulting in slower long-term among-host evolution) than from the preferential transmission of slowly-evolving lineages.
Collapse
Affiliation(s)
- Rebecca R Gray
- Department of Zoology, Oxford University, South Parks Road, UK
| | | | | | | | | | | |
Collapse
|
26
|
Magri MC, Morimoto HK, de Macedo Brígido LF, Rodrigues R, Caterino–de–Araujo A. Long terminal repeat sequence analysis of HTLV-2 molecular variants identified in Southern Brazil. AIDS Res Hum Retroviruses 2010; 26:1327-31. [PMID: 20939687 DOI: 10.1089/aid.2010.0121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
In Brazil, human T-lymphotropic virus type 2 (HTLV-2) is endemic in Amerindians and epidemic in intravenous drug users (IDUs). The long terminal repeat (LTR) is the most divergent genomic region of HTLV-2, therefore useful to characterize subtypes. Nucleotide sequence and restriction fragment length polymorphism (RFLP) analysis of LTR genomic segments of fourteen HTLV-2 strains isolated from HIV-infected patients of Londrina, Southern Brazil, were carried out. Molecular analysis disclosed that all HTLV-2 strains belonged to 2a subtype, and RFLP detected the presence of the a4, a5, and a6 subgroups according to Switzer's nomenclature. RFLP correlated with nucleotide sequence, and phylogenetic analysis clustered HTLV-2 sequences of IDUs into subgroups a5 and a6. HTLV-2 sequences from individuals of sexual risk factor clustered into the a4 subgroup. These results extend the knowledge of the genetic diversity of HTLV-2 circulating in Brazil and provide insights into HTLV-2 transmission and virus movement in this geographic area.
Collapse
Affiliation(s)
- Mariana Cavalheiro Magri
- Retrovirus Laboratory, Virology Department, Instituto Adolfo Lutz, Secretary of Health of São Paulo, São Paulo, S.P., Brazil
- Faculdade de Ciências Farmacêuticas—Universidade de São Paulo, São Paulo, S.P., Brazil
| | - Helena Kaminami Morimoto
- Pathology, Clinical Analysis and Toxicology Department—Universidade Estadual de Londrina, Londrina, PR., Brazil
| | - Luis Fernando de Macedo Brígido
- Retrovirus Laboratory, Virology Department, Instituto Adolfo Lutz, Secretary of Health of São Paulo, São Paulo, S.P., Brazil
| | - Rosangela Rodrigues
- Retrovirus Laboratory, Virology Department, Instituto Adolfo Lutz, Secretary of Health of São Paulo, São Paulo, S.P., Brazil
| | - Adele Caterino–de–Araujo
- Faculdade de Ciências Farmacêuticas—Universidade de São Paulo, São Paulo, S.P., Brazil
- Immunology Department, Instituto Adolfo Lutz, Secretary of Health of São Paulo, São Paulo, S.P., Brazil
| |
Collapse
|
27
|
Treviño A, García J, de Mendoza C, Benito R, Aguilera A, Ortíz de Lejarazu R, Ramos JM, Trigo M, Eirós JM, Rodríguez-Iglesias M, Torres A, Calderón E, Hernandez A, Gomez C, Marcaida G, Soriano V. Prevalence of HTLV-1/2 infections in Spain: A cross-sectional hospital-based survey. AIDS Res Hum Retroviruses 2010; 26:861-4. [PMID: 20672999 DOI: 10.1089/aid.2009.0234] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The presence of antibodies to human T-lymphotropic virus (HTLV) types 1 and 2 was examined in 5742 sera belonging to consecutive adult outpatients attended during June 2008 at 13 different hospitals across Spain. Overall, 58.8% were female. Foreigners represented 8% of the study population. Seven individuals were seropositive for HTLV-2 (overall prevalence 0.12%). No cases of HTLV-1 infection were found. All HTLV-2(+) subjects were Spanish natives, of whom six were coinfected with HIV-1 and five with hepatitis C virus (HCV). Moreover, all but one of the HTLV-2(+) subjects had been intravenous drug users. In summary, this cross-sectional survey suggests that the rate of HTLV infection in Spain is low, and is mostly represented by HTLV-2. Infected individuals are generally Spanish natives with a prior history of intravenous drug use and are coinfected with HIV-1 and/or HCV.
Collapse
Affiliation(s)
- Ana Treviño
- Infectious Diseases Department, Hospital Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Many organisms that cause infectious diseases, particularly RNA viruses, mutate so rapidly that their evolutionary and ecological behaviours are inextricably linked. Consequently, aspects of the transmission and epidemiology of these pathogens are imprinted on the genetic diversity of their genomes. Large-scale empirical analyses of the evolutionary dynamics of important pathogens are now feasible owing to the increasing availability of pathogen sequence data and the development of new computational and statistical methods of analysis. In this Review, we outline the questions that can be answered using viral evolutionary analysis across a wide range of biological scales.
Collapse
Affiliation(s)
- Oliver G. Pybus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS Oxford UK
| | - Andrew Rambaut
- Institute for Evolutionary Biology, University of Edinburgh, Kings Buildings, Ashworth Laboratories, West Mains Road, EH9 3JT Edinburgh UK
| |
Collapse
|
29
|
Quispe NCS, Feria EB, Santos-Fortuna EDL, Caterino-de-Araujo A. Confirming the presence of HTLV-1 infection and the absence of HTLV-2 in blood donors from Arequipa, Peru. Rev Inst Med Trop Sao Paulo 2009; 51:25-9. [PMID: 19229387 DOI: 10.1590/s0036-46652009000100005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 11/27/2008] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies conducted in Peru disclosed HTLV-1 to be prevalent in different ethnic groups, and found HTLV-2 in some Amazonian Indians and in men who have sex with men. No data concerning HTLV-1/2 infection in blood donors from Arequipa, a highlands region in southern Peru, is available. We searched for the presence of HTLV-1 and HTLV-2 antibodies in 2,732 serum samples obtained from blood donors from this geographic area. HTLV-1/2-specific antibodies were detected using an enzyme-linked immunosorbent assay (ELISA) and were confirmed by Western blot (WB). Reactive sera had their blood bags discarded from donation, and the demographic characteristics of the donors were analyzed. Thirty-five sera (1.2%) were HTLV seroreactive by ELISA, and 25 were confirmed HTLV-1-positive by WB. One serum disclosed HTLV-positivity, and the remaining nine serum samples showed indeterminate results by WB; three of which had an HTLV-1 indeterminate Gag profile. The median age of HTLV-positive individuals was 34.6 years; 27 were male and eight were female. All individuals were from southern Peru: 27 from Arequipa, five from Puno, and three from Cuzco. HTLV co-positivity with hepatitis B (five sera) and syphilis (one serum) were detected. Previous transfusion and tattooing were observed in two and one individuals, respectively. No serum was positive for HTLV/HIV co-infection. This study confirmed, for the first time, HTLV-1 infection and the absence of HTLV-2 infection in blood donors from Arequipa, Peru and suggests vertical transmission as the major route of HTLV-1 transmission and acquisition in this geographic region.
Collapse
|
30
|
Switzer WM, Salemi M, Qari SH, Jia H, Gray RR, Katzourakis A, Marriott SJ, Pryor KN, Wolfe ND, Burke DS, Folks TM, Heneine W. Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4. Retrovirology 2009; 6:9. [PMID: 19187529 PMCID: PMC2647524 DOI: 10.1186/1742-4690-6-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 02/02/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Human T-lymphotropic virus type 4 (HTLV-4) is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses. RESULTS We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE) genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62-71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP) region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of Homo sapiens sapiens during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4. CONCLUSION The inferred ancient origin of HTLV-4 coinciding with the appearance of Homo sapiens, the propensity of STLVs to cross-species into humans, the fact that HTLV-1 and -2 spread globally following migrations of ancient populations, all suggest that HTLV-4 may be prevalent. Expanded surveillance and clinical studies are needed to better define the epidemiology and public health importance of HTLV-4 infection.
Collapse
Affiliation(s)
- William M Switzer
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Shoukat H Qari
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Hongwei Jia
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Rebecca R Gray
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Susan J Marriott
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kendle N Pryor
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Nathan D Wolfe
- Stanford University, Program in Human Biology, Stanford, CA 94305, USA
- Global Viral Forecasting Initiative, San Francisco, CA 94105, USA
| | - Donald S Burke
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thomas M Folks
- Southwest National Primate Research Center, San Antonio, TX 78227, USA
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| |
Collapse
|
31
|
Ramsden C, Melo FL, Figueiredo LM, Holmes EC, Zanotto PM. High Rates of Molecular Evolution in Hantaviruses. Mol Biol Evol 2008; 25:1488-92. [DOI: 10.1093/molbev/msn093] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 2008; 9:267-76. [PMID: 18319742 DOI: 10.1038/nrg2323] [Citation(s) in RCA: 1058] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Understanding the factors that determine the rate at which genomes generate and fix mutations provides important insights into key evolutionary mechanisms. We review our current knowledge of the rates of mutation and substitution, as well as their determinants, in RNA viruses, DNA viruses and retroviruses. We show that the high rate of nucleotide substitution in RNA viruses is matched by some DNA viruses, suggesting that evolutionary rates in viruses are explained by diverse aspects of viral biology, such as genomic architecture and replication speed, and not simply by polymerase fidelity.
Collapse
Affiliation(s)
- Siobain Duffy
- Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | |
Collapse
|
33
|
Morimoto HK, Morimoto AA, Reiche EMV, Ueda LT, Matsuo T, Reiche FV, Caterino-de-Araujo A. Difficulties in the diagnosis of HTLV-2 infection in HIV/AIDS patients from Brazil: comparative performances of serologic and molecular assays, and detection of HTLV-2b subtype. Rev Inst Med Trop Sao Paulo 2008; 49:225-30. [PMID: 17823751 DOI: 10.1590/s0036-46652007000400006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Accepted: 11/28/2006] [Indexed: 11/21/2022] Open
Abstract
The current diagnosis of human T-lymphotropic virus type-2 (HTLV-2) infection is based on the search of specific antibodies; nevertheless, several studies conducted in Brazil pointed deficiencies of the commercially available kits in detecting HTLV-2, mostly in HIV/AIDS patients. This study searched for the presence of HTLV-1 and -2 in 758 HIV/AIDS patients from Londrina, Paraná, Brazil. Serum samples were screened for HTLV-1/2 antibodies using two EIA kits (Vironostika and Murex), and confirmed by WB (HTLV Blot 2.4, Genelabs). The results obtained by EIA disclosed 49 (6.5%) reactive sera: 43 positive by both EIA kits, and six with discordant results. WB confirmed HTLV-1 infection in seven samples (0.9%) and HTLV-2 in 21 sera (2.8%). Negative and indeterminate results were detected in four (0.5%) and 16 (2.1%) sera, respectively. Blood from 47 out of 49 HTLV seroreactive patients were collected and analyzed for the presence of env, LTR and tax genomic segments of HTLVs by PCR. PCR confirmed six cases of HTLV-1 and 37 cases of HTLV-2 infection (14 out of 16 that were found to be WB indeterminate). Restriction analysis of the env PCR products of HTLV-2 disclosed 36 isolates of HTLV-2a/c subtype, and one of HTLV-2b subtype. These results emphasize the need of improving serologic tests for detecting truly HTLV-2 infected patients from Brazil, and confirm the presence of HTLV-2b subtype in the South of this country.
Collapse
Affiliation(s)
- Helena Kaminami Morimoto
- Departamento de Patologia, Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Estadual de Londrina, Paraná, Brasil
| | | | | | | | | | | | | |
Collapse
|
34
|
Barros Kanzaki LI, Casseb J. Unusual finding of HTLV-I infection among Amazonian Amerindians. Arch Med Res 2007; 38:897-900. [PMID: 17923274 DOI: 10.1016/j.arcmed.2007.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Human T-cell lymphotropic virus type II is a retrovirus endemic in Amerindian communities throughout the American continent, although some Amerindian groups that apparently emerged from the same ethnic root as HTLV-II carriers do not secrete antibodies against the virus and show very low prevalence for human T-cell lymphotropic virus type I. In this study, sera from 487 Amazonian amerinds were screened for HTLV type I and II antibody by the gelatin particle agglutination assay and ELISA and confirmed by Western blot and indirect immunofluorescence assay. None was positive for HTLV type II. One young healthy male of Waiãpi ethnicity was reactive with HTLV-I and was confirmed by Western blot assay and indirect immunofluorescence test. The absence of HTLV type II infection among these Amerindian communities would suggest a behavior pattern distinct from other groups in the American continent. Also, the very low prevalence of HTLV type I infection among these ethnic groups probably indicates contamination by blood transfusion (external transmission route).
Collapse
Affiliation(s)
- Luis Isamu Barros Kanzaki
- Laboratory of Molecular Pharmacology, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| | | |
Collapse
|
35
|
Renner JDP, Laurino JP, Menna-Barreto M, Schmitt VM. Molecular evidence of HTLV-II subtype B among an urban population living in South Brazil. AIDS Res Hum Retroviruses 2006; 22:301-6. [PMID: 16623631 DOI: 10.1089/aid.2006.22.301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human T cell lymphotropic virus type II (HTLV-II) is a deltaretrovirus endemic in Indian populations living in Central and South America, among Pygmies tribes from Central Africa, and epidemic among injecting drug users (IDUs) in the United States, Europe, Southeast Asia, and South America. To date only the HTLV-IIa subtype has been demonstrated among Brazilians (Amazon basin Indians, blood donors, and IDUs). We analyzed HTLV-II isolates from 12 individuals living in the urban area of Porto Alegre, Southern Brazil, identified as seropositive for HTLVI/II in a blood donation. The HTLV-II long terminal repeat (LTR) region was sequenced and compared with nucleotide sequences of isolates HTLV-IIa (Mo), HTLV-IIb (NRA) prototypes. Phylogenetic analysis of the LTR region demonstrated that seven new isolates clustered together with American Indians HTLV-IIb isolates, and five new HTLV-IIa isolates clustered within the HTLV-IIa Brazilian subgroup, named the HTLV-IIc subtype. Both HTLV-IIa and IIb seem to be endemic in the urban area of Porto Alegre, South of Brazil, and could have reached this region via the Amazon basin and the Pacific Coast ancient human migratory pathways. To our knowledge this is the first study demonstrating the presence of HTLV-IIb among the urban population in Brazil.
Collapse
Affiliation(s)
- Jane Dagmar Pollo Renner
- Instituto de Pesquisas Biomédicas, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | | | | | | |
Collapse
|
36
|
Abstract
The study of RNA virus evolution has developed rapidly during the past 30 years. This review outlines some important recent findings, as well as a number of the remaining major challenges, particularly those that might explain why RNA viruses are the most important class of emerging diseases, yet often have difficulties adapting to sustained transmission cycles in new hosts. The author emphasizes the relevance of research on the underlying dynamics of mutation, fitness landscapes and the constraints to viral adaptation, as well as the evolution of recombination and reassortment. It is also suggested that a combination of theoretical, experimental and comparative approaches is essential for future studies of viral evolution, coupled with new genome sequence data on intrahost genetic variation.
Collapse
Affiliation(s)
- Edward C Holmes
- The Pennsylvania State University, Center for Infectious Disease Dynamics, Department of Biology, Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
37
|
Gabet AS, Moulés V, Sibon D, Nass CC, Mortreux F, Mauclère P, Gessain A, Murphy EL, Wattel E. Endemic versus epidemic viral spreads display distinct patterns of HTLV-2b replication. Virology 2006; 345:13-21. [PMID: 16256162 DOI: 10.1016/j.virol.2005.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 03/29/2005] [Accepted: 08/18/2005] [Indexed: 11/23/2022]
Abstract
As the replication pattern of leukemogenic PTLVs possesses a strong pathogenic impact, we investigated HTLV-2 replication in vivo in asymptomatic carriers belonging into 2 distinct populations infected by the same HTLV-2b subtype. They include epidemically infected American blood donors, in whom HTLV-2b has been present for only 30 years, and endemically infected Bakola Pygmies from Cameroon, characterized by a long viral endemicity (at least few generations). In blood donors, both the circulating proviral loads and the degree of infected cell proliferation were largely lower than those characterizing asymptomatic carriers infected with leukemogenic PTLVs (HTLV-1, STLV-1). This might contribute to explain the lack of known link between HTLV-2b infection and the development of malignancies in this population. In contrast, endemically infected individuals displayed high proviral loads resulting from the extensive proliferation of infected cells. The route and/or the duration of infection, viral genetic drift, host immune response, genetic background, co-infections or a combination thereof might have contributed to these differences between endemically and epidemically infected subjects. As the clonality pattern observed in endemically infected individuals is very reminiscent of that of leukemogenic PTLVs at the pre-leukemic stage, our results highlight the possible oncogenic effect of HTLV-2b infection in such population.
Collapse
Affiliation(s)
- Anne-Sophie Gabet
- Oncovirologie et Biothérapies, UMR5537-CNRS-Université Claude Bernard, Centre Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Salemi M, Lamers SL, Yu S, de Oliveira T, Fitch WM, McGrath MS. Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J Virol 2005; 79:11343-52. [PMID: 16103186 PMCID: PMC1193641 DOI: 10.1128/jvi.79.17.11343-11352.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
"Phylodynamic" analysis combines various statistical procedures that can be used to correlate the epidemiological and evolutionary behavior of viral pathogens with the immune system of the host. We utilized this approach to examine human immunodeficiency virus type 1 (HIV-1) gp120 envelope DNA sequences (V1, V2, and V3) isolated from different brain compartments of a T-cell-depleted patient diagnosed with severe HIV-associated dementia at the time of death. In agreement with previous reports, phylogenetic analysis showed distinct virodemes but also revealed a significant amount of viral gene flow among different brain compartments. Local-molecular-clock analysis showed that HIV-1 meninges and temporal lobe subpopulations evolve about 30 and 100 times faster, respectively, than the other viral populations in the brain. However, maximum likelihood codon-based substitution models did not detect any site under significant positive selective pressure, and the main cause of HIV-1 genetic variation appeared to be random genetic drift. Therefore, the higher evolutionary rate in the meninges and temporal lobe could be due to an enhanced infection/expansion rate of macrophages as a consequence of the immune system failure. In conclusion, in this case study, viral infection in the brain progressed with a nonspecific genetic evolution, recurrent migration events, and an expansion of macrophage-tropic sequences. The data suggest that after immune failure newly produced viral variants, which would be rapidly cleared under normal conditions, begin to productively infect macrophages in a "self-amplifying" cycle of infection/inflammatory response that could be at the origin of HIV-associated dementia.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Ecology and Evolutionary Biology, University of California at Irvine, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Salemi M, de Oliveira T, Soares MA, Pybus O, Dumans AT, Vandamme AM, Tanuri A, Cassol S, Fitch WM. Different Epidemic Potentials of the HIV-1B and C Subtypes. J Mol Evol 2005; 60:598-605. [PMID: 15983869 DOI: 10.1007/s00239-004-0206-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2004] [Accepted: 10/11/2004] [Indexed: 01/01/2023]
Abstract
HIV, the cause of AIDS in humans, is characterized by great genetic heterogeneity. In particular, HIV-1 group M subtypes are responsible for most of the infections worldwide. We investigate the demographic history of HIV-1B and HIV-1C subtypes in South Africa and Brazil using both a parametric and a nonparametric approach based on coalescent theory. Our results show that although both subtypes are spreading exponentially in Brazil, the HIV-1C growth rate is about twice that of Brazilian HIV-1B or South African HIV-1C, providing evidence, for the first time, of a different epidemic potential between two HIV-1 subtypes. The present study not only may have important consequences for devising future vaccination and therapeutic strategies, but also offers additional evidence that skyline plots are indeed a simple and powerful tool for monitoring and predicting the behavior of viral epidemics.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Ecology and Evolutionary Biology, University of California at Irvine, 92664, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lemey P, Pybus OG, Van Dooren S, Vandamme AM. A Bayesian statistical analysis of human T-cell lymphotropic virus evolutionary rates. INFECTION GENETICS AND EVOLUTION 2005; 5:291-8. [PMID: 15737921 DOI: 10.1016/j.meegid.2004.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/29/2004] [Indexed: 10/26/2022]
Abstract
HTLV is a genetically-stable retrovirus that is considered to have evolved partly in concert with human migrations. Its rate of evolution is low and therefore, difficult to estimate reliably. In the first part of this study, we provide an improved estimate of HTLV evolutionary rate using anthropological calibration of phylogenetic nodes. We investigate two different anthropological calibrations using a Bayesian method that implements a relaxed molecular clock model and can combine data from multiple genes. The analysis shows that the two calibrations are compatible. In the second part, we develop a Bayesian statistical model to combine and compare the anthropology-based estimates of evolutionary rate with a rate recently calculated using pedigree data from vertically HTLV-infected families. We compare the statistical power of the two estimates and show that the current pedigree estimate, although resulting in considerably higher evolutionary rates, is too statistically weak to warrant a re-examination of the commonly used anthropology-based estimates. Statistical uncertainty burdens HTLV rate estimates based on both anthropological calibrations and on pedigree data; the former method rests on an untested assumption, whilst that latter is affected by small sample sizes.
Collapse
Affiliation(s)
- Philippe Lemey
- Rega Institute for Medical Research, Minderbroedersstraat 10, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
41
|
Verschoor EJ, Langenhuijzen S, Bontjer I, Fagrouch Z, Niphuis H, Warren KS, Eulenberger K, Heeney JL. The phylogeography of orangutan foamy viruses supports the theory of ancient repopulation of Sumatra. J Virol 2004; 78:12712-6. [PMID: 15507663 PMCID: PMC525050 DOI: 10.1128/jvi.78.22.12712-12716.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/24/2004] [Indexed: 11/20/2022] Open
Abstract
Phylogenetic analysis of foamy virus sequences obtained from Bornean and Sumatran orangutans showed a distinct clustering pattern. One subcluster was represented by both Bornean and Sumatran orangutan simian foamy viruses (SFV). Combined analysis of host mitochondrial DNA and SFV phylogeny provided evidence for the hypothesis of the repopulation of Sumatra by orangutans from Borneo.
Collapse
Affiliation(s)
- Ernst J Verschoor
- Biomedical Primate Research Centre (BPRC), Department of Virology, P.O. Box 3306, 2280 GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Moya A, Holmes EC, González-Candelas F. The population genetics and evolutionary epidemiology of RNA viruses. Nat Rev Microbiol 2004; 2:279-288. [PMID: 15031727 PMCID: PMC7096949 DOI: 10.1038/nrmicro863] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA viruses are ubiquitous intracellular parasites that are responsible for many emerging diseases, including AIDS and SARS. Here, we discuss the principal mechanisms of RNA virus evolution and highlight areas where future research is required. The rapidity of sequence change in RNA viruses means that they are useful experimental models for the study of evolution in general and it enables us to watch them change in 'real time', and retrace the spread through populations with molecular phylogenies. An understanding of the mechanisms of RNA virus sequence change is also crucial to predicting important aspects of their emergence and long-term evolution.
Collapse
Affiliation(s)
- Andrés Moya
- Institut Cavanilles de Biodiversitat i Biología Evolutiva, Universitat de València, Apartado Postal 22085, 46071 Valencia, Spain.
| | | | | |
Collapse
|
43
|
Hanada K, Suzuki Y, Gojobori T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol 2004; 21:1074-80. [PMID: 15014142 PMCID: PMC7107514 DOI: 10.1093/molbev/msh109] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RNA viruses successfully adapt to various environments by repeatedly producing new mutants, often through generating a number of nucleotide substitutions. To estimate the degree of variation in mutation rates of RNA viruses and to understand the source of such variation, we studied the synonymous substitution rate because synonymous substitution is exempt from functional constraints at the protein level, and its rate reflects the mutation rate to a great extent. We estimated the synonymous substitution rates for a total of 49 different species of RNA viruses, and we found that the rates had tremendous variation by 5 orders of magnitude (from 1.3 × 10−7 to 6.2 × 10−2 /synonymous site/year). Comparing the synonymous substitution rates with the replication frequencies and replication error rates for the RNA viruses, we found that the main source of the rate variation was differences in the replication frequency because the rates of replication error were roughly constant over different RNA viruses. Moreover, we examined a relationship between viral life strategies and synonymous substitution rates to understand which viral life strategies affect replication frequencies. The results show that the variation of synonymous substitution rates has been influenced most by either the difference in the infection modes or the differences in the transmission modes. In conclusion, the variation of mutation rates for RNA viruses is caused by different replication frequencies, which are affected strongly by the infection and transmission modes.
Collapse
Affiliation(s)
- Kousuke Hanada
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
- E-mail:
| | - Yoshiyuki Suzuki
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| | - Takashi Gojobori
- Center for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
44
|
Zehender G, Colasante C, De Maddalena C, Bernini F, Savasi V, Persico T, Merli S, Ridolfo A, Santambrogio S, Moroni M, Galli M. High prevalence of human T-lymphotropic virus type 1 (HTLV-1) in immigrant male-to-female transsexual sex workers with HIV-1 infection. J Med Virol 2004; 74:207-15. [PMID: 15332268 DOI: 10.1002/jmv.20165] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human T-lymphotropic virus type 1 and 2 (HTLV-1 and HTLV-2) infections in Europe are limited to intravenous drug users and migrants coming from areas in which they are endemic. A survey was undertaken of HTLV-1 and HTLV-2 infections in 393 recent immigrants: 167 HIV-1 positive subjects (including 52 male-to-female transsexual sex workers) and 226 pregnant HIV-1 negative women. The prevalence of HTLV-1 was 3.6% in the HIV-1 positive group and 0.9% in the HIV-1 negative group. The highest HTLV-1 prevalence in both groups was found in persons from Latin America, particularly those born in Peru (up to 26% in the HIV-1 positive group). All of the HIV-1/HTLV-1 co-infected individuals were male-to-female transsexual sex workers in whom the overall prevalence of HTLV-1 infection was 11.5%. HTLV-2 was only found in the HIV-1 positive group (prevalence 1.2%); all of the infected subjects were transsexual sex workers from Brazil (overall prevalence 6.4%). Phylogenetic analysis showed that all of the HTLV-1 isolates were of the cosmopolitan type, clustering with other strains circulating in the patients' birthplaces; the HTLV-2 isolates were of subtype 2a, and clustered significantly with other Brazilian strains. These results suggest the independent origin of each infection in the patient's birthplace. The data raise concerns about the further spread of HTLV infections mainly through the sexual route.
Collapse
Affiliation(s)
- Gianguglielmo Zehender
- Istituto di Malattie Infettive e Tropicali-Università di Milano, Centro Interdisciplinare per gli Studi Biomolecolari e le Applicazioni Industriali (CISI), Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Böni J, Bisset LR, Burckhardt JJ, Joller-Jemelka HI, Bürgisser P, Perrin L, Gorgievski M, Erb P, Fierz W, Piffaretti JC, Schüpbach J. Prevalence of human T-cell leukemia virus types I and II in Switzerland. J Med Virol 2003; 72:328-37. [PMID: 14695678 DOI: 10.1002/jmv.10541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The retroviruses human immunodeficiency virus (HIV)-1/2 and human T-cell leukemia virus (HTLV)-I/II share modes of transmission, suggesting that efforts to monitor the current HIV-1 epidemic in Switzerland should be complemented by assessment of HTLV-I/II prevalence. This study presents an updated evaluation of HTLV-I/II infection among groups within the Swiss population polarized towards either low or increased risk of infection. Archived serum and peripheral blood mononuclear cell (PBMC) samples were examined for evidence of HTLV-I/II infection by enzyme-linked immunosorbant assay (ELISA), type-specific Western blot, type-specific polymerase chain reaction (PCR), DNA sequence analysis, and virus culture. Among blood donations obtained from low-risk Swiss donors, we report a complete lack of HTLV-II infection and the occurrence of HTLV-I infection limited to a prevalence of 0.079 per 100,000 (1/1,266,466). Among high-risk HIV-positive persons and HIV-negative persons at increased risk of HIV-infection, we report a focus of HTLV-I and HTLV-II infection at prevalence rates of 62 per 100,000 (1/1,620) and 309 per 100,000 (5/1,620), respectively. The finding of low HTLV-I/II prevalence among Swiss blood donors and containment of HTLV-I/II infection within known risk-groups does not support initiation of HTLV-I/II screening for Swiss blood, tissue, and organ donations.
Collapse
Affiliation(s)
- Jürg Böni
- Swiss National Center for Retroviruses, University of Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Covas DT, Kashima S. Complete nucleotide sequences of the genomes of two Brazilian specimens of human T lymphotropic virus type 2 (HTLV-2). AIDS Res Hum Retroviruses 2003; 19:689-97. [PMID: 13678471 DOI: 10.1089/088922203322280919] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the complete nucleotide sequences of the genomes of two human T cell lymphotropic viruses type 2 (HTLV-2) isolated from a Kayapó Indian (K96 isolate) and from an inhabitant of an urban region in the south of Brazil (RP329 isolate). The general structure of the K96 and RP329 genomes did not differ from that of other HTLV-2 genomes described in the literature. The K96 genome consisted of 8955 bp and the RP329 genome consisted of 8964 bp. The general similarity between the nucleotide sequences of the K96 and RP329 genomes was 99.4%. Comparison between the nucleotide sequences of the K96 and RP329 genomes and the nucleotide sequences of isolates considered to be HTLV-2 prototypes of subtype 2a (Mo isolate), 2b (NRA isolate), and 2d (Efe2 isolate) showed a global similarity of 98.8, 95.6, and 93.3%, respectively, for the RP329 isolate, and of 99.1, 95.6, and 93.3%, respectively, for the K96 isolate. Phylogenetic analysis permitted the classification of the K96 and RP329 isolates as HTLV-2 subtype 2a. Detailed phylogenetic analyses of the LTR, env, and Tax regions showed that the Brazilian isolates tend to form a distinct phylogenetic subgroup within subtype 2a, previously called HTLV-2c, which differs from the subtype 2a isolates found in North America, Europe, and Africa. The K96 genome is the first HTLV-2 genome obtained from a Brazilian Indian that was completely sequenced, whereas the RP329 genome represents the first specimen derived from an inhabitant of a Brazilian urban region who was not coinfected with HIV-1.
Collapse
Affiliation(s)
- Dimas Tadeu Covas
- Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, 14051-140 Brazil.
| | | |
Collapse
|
47
|
Briones C, Domingo E, Molina-París C. Memory in retroviral quasispecies: experimental evidence and theoretical model for human immunodeficiency virus. J Mol Biol 2003; 331:213-29. [PMID: 12875847 PMCID: PMC7173031 DOI: 10.1016/s0022-2836(03)00661-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Viral quasispecies may possess a molecular memory of their past evolutionary history, imprinted on minority components of the mutant spectrum. Here we report experimental evidence and a theoretical model for memory in retroviral quasispecies in vivo. Apart from replicative memory associated with quasispecies dynamics, retroviruses may harbour a "cellular" or "anatomical" memory derived from their integrative cycle and the presence of viral reservoirs in body compartments. Three independent sets of data exemplify the two kinds of memory in human immunodeficiency virus type 1 (HIV-1). The data provide evidence of re-emergence of sequences that were hidden in cellular or anatomical compartments for extended periods of infection, and recovery of a quasispecies from pre-existing genomes. We develop a three-component model that incorporates the essential features of the quasispecies dynamics of retroviruses exposed to selective pressures. Significantly, a numerical study based on this model is in agreement with the experimental data, further supporting the existence of both replicative and reservoir memory in retroviral quasispecies.
Collapse
Key Words
- quasispecies
- memory
- viral reservoirs
- retroviruses
- human immunodeficiency virus
- hiv-1, human immunodeficiency virus type 1
- fmdv, foot-and-mouth disease virus
- rti, reverse transcriptase inhibitor
- pri, protease inhibitor
- haart, highly active antiretroviral therapy
- azt, zidovudine
- ddi, didanosine
- ddc, zalcitabine
- d4t, stavudine
- 3tc, lamivudine
- rtv, ritonavir
- sqv, saquinavir
- nfv, nelfinavir
- idv, indinavir
- nvp, nevirapine
- hu, hydroxyurea
Collapse
Affiliation(s)
- Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir, Km 4, Torrejón de Ardoz, 28850 Madrid, Spain
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Edward C Holmes
- Department of Zoology, University of Oxford, United Kingdom.
| |
Collapse
|
49
|
Abstract
The primate T-cell lymphoma/leukemia viruses belong to an oncogenic genus of complex retroviruses. Members of this genus have been shown to be pathogenic in man. The human T-cell lymphoma/leukemia virus (HTLV) type I has been linked in the etiology of T-cell malignancies and "autoimmune-like" neurologic and rheumatic disorders; a related virus, HTLV-II, is becoming increasingly associated with similar disorders. Cell transformation is thought to be caused predominantly by the effects of the viral regulatory protein, Tax. An additional induced host cell molecule, adult T-cell lymphoma-derived factor, may contribute to cell immortalization. Like the DNA tumor viruses, HTLV activates transcription of cellular proto-oncogenes and inhibits cellular mechanisms of tumor suppression, cell cycle arrest, and apoptosis. However, individuals who are able to mount a strong cell-mediated immune response and limit viral entry into uninfected cells do not develop associated malignancies. Unfortunately, HTLV-induced malignancies are difficult to treat with conventional chemotherapy, and disease progression is often rapid with a median survival of less than 2 years. There are, however, some novel approaches that have yet to be fully tested that may have greater efficacy in the treatment of HTLV-induced diseases. In the future, better screening and detection methods, along with new vaccines and therapies, may contribute to the increased prevention and control of HTLV infection and its associated diseases.
Collapse
Affiliation(s)
- Bernard J Poiesz
- Department of Medicine, Upstate Medical University, SUNY Syracuse, New York 13120, USA.
| | | | | |
Collapse
|
50
|
Abstract
A review was made in relation to the molecular variability present in North, Central, and South American Indian populations. It involved results from ancient DNA, mitochondrial DNA in extant populations, HLA and other autosomal markers, X and Y chromosome variation, as well as data from parasitic viruses which could show coevolutionary changes. The questions considered were their origin, ways in which the early colonization of the continent took place, types and levels of the variability which developed, peculiarities of the Amerindian evolutionary processes, and eventual genetic heterogeneity which evolved in different geographical areas. Although much information is already available, it is highly heterogeneous in relation to populations and types of genetic systems investigated. Unfortunately, the present trend of favoring essentially applied research suggest that the situation will not basically improve in the future.
Collapse
Affiliation(s)
- Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS.
| |
Collapse
|