1
|
Uryash A, Mijares A, Adams JA, Lopez JR. Impairment of Glucose Uptake Induced by Elevated Intracellular Ca 2+ in Hippocampal Neurons of Malignant Hyperthermia-Susceptible Mice. Cells 2024; 13:1888. [PMID: 39594636 PMCID: PMC11592500 DOI: 10.3390/cells13221888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/04/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Malignant hyperthermia (MH) is a genetic disorder triggered by depolarizing muscle relaxants or halogenated inhalational anesthetics in genetically predisposed individuals who have a chronic elevated intracellular Ca2+ concentration ([Ca2+]i) in their muscle cells. We have reported that the muscle dysregulation of [Ca2+]i impairs glucose uptake, leading to the development of insulin resistance in two rodent experimental models. In this study, we simultaneously measured the [Ca2+]i and glucose uptake in single enzymatically isolated hippocampal pyramidal neurons from wild-type (WT) and MH-R163C mice. The [Ca2+]i was recorded using a Ca2+-selective microelectrode, and the glucose uptake was assessed utilizing the fluorescent glucose analog 2-NBDG. The MH-R163C hippocampal neurons exhibited elevated [Ca2+]i and impaired insulin-dependent glucose uptake compared with the WT neurons. Additionally, exposure to isoflurane exacerbated these deficiencies in the MH-R163C neurons, while the WT neurons remained unaffected. Lowering [Ca2+]i using a Ca2+-free solution, SAR7334, or dantrolene increased the glucose uptake in the MH-R163C neurons without significantly affecting the WT neurons. However, further reduction of the [Ca2+]i below the physiological level using BAPTA decreased the insulin-dependent glucose uptake in both genotypes. Furthermore, the homogenates of the MH-R163C hippocampal neurons showed an altered protein expression of the PI3K/Akt signaling pathway and GLUT4 compared with the WT mice. Our study demonstrated that the chronic elevation of [Ca2+]i was sufficient to compromise the insulin-dependent glucose uptake in the MH-R163C hippocampal neurons. Moreover, reducing the [Ca2+]i within a specific range (100-130 nM) could reverse insulin resistance, a hallmark of type 2 diabetes mellitus (T2D).
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA; (A.U.); (J.A.A.)
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas 1020-A, Venezuela;
| | - Jose A. Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami, FL 33140, USA; (A.U.); (J.A.A.)
| | - Jose R. Lopez
- Department of Research, Mount Sinai Medical Center, Miami, FL 33140, USA
| |
Collapse
|
2
|
Uryash A, Mijares A, Lopez CE, Adams JA, Lopez JR. Chronic Elevation of Skeletal Muscle [Ca 2+] i Impairs Glucose Uptake. An in Vivo and in Vitro Study. Front Physiol 2022; 13:872624. [PMID: 35547584 PMCID: PMC9083325 DOI: 10.3389/fphys.2022.872624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle is the primary site of insulin-mediated glucose uptake through the body and, therefore, an essential contributor to glucose homeostasis maintenance. We have recently provided evidence that chronic elevated intracellular Ca2+ concentration at rest [(Ca2+)i] compromises glucose homeostasis in malignant hyperthermia muscle cells. To further investigate how chronic elevated muscle [Ca2+]i modifies insulin-mediated glucose homeostasis, we measured [Ca2+]i and glucose uptake in vivo and in vitro in intact polarized muscle cells from glucose-intolerant RYR1-p.R163C and db/db mice. Glucose-intolerant RYR1-p.R163C and db/db mice have significantly elevated muscle [Ca2+]i and reduced muscle glucose uptake compared to WT muscle cells. Dantrolene treatment (1.5 mg/kg IP injection for 2 weeks) caused a significant reduction in fasting blood glucose levels and muscle [Ca2+]i and increased muscle glucose uptake compared to untreated RYR1-p.R163C and db/db mice. Furthermore, RYR1-p.R163C and db/db mice had abnormal basal insulin levels and response to glucose-stimulated insulin secretion. In vitro experiments conducted on single muscle fibers, dantrolene improved insulin-mediated glucose uptake in RYR1-p.R163C and db/db muscle fibers without affecting WT muscle fibers. In muscle cells with chronic elevated [Ca2+]i, GLUT4 expression was significantly lower, and the subcellular fraction (plasma membrane/cytoplasmic) was abnormal compared to WT. The results of this study suggest that i) Chronic elevated muscle [Ca2+]i decreases insulin-stimulated glucose uptake and consequently causes hyperglycemia; ii) Reduced muscle [Ca2+]i by dantrolene improves muscle glucose uptake and subsequent hyperglycemia; iii) The mechanism by which chronic high levels of [Ca2+]i interfere with insulin action appears to involve the expression of GLUT4 and its subcellular fractionation.
Collapse
Affiliation(s)
- Arkady Uryash
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Alfredo Mijares
- Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | - Carlos E Lopez
- Department of Physiotherapy, Wellmax Medical Center, Miami, FL, United States
| | - Jose A Adams
- Division of Neonatology, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Jose R Lopez
- Department of Research, Mount Sinai Medical Center, Miami Beach, FL, United States
| |
Collapse
|
3
|
Henríquez-Olguín C, Boronat S, Cabello-Verrugio C, Jaimovich E, Hidalgo E, Jensen TE. The Emerging Roles of Nicotinamide Adenine Dinucleotide Phosphate Oxidase 2 in Skeletal Muscle Redox Signaling and Metabolism. Antioxid Redox Signal 2019; 31:1371-1410. [PMID: 31588777 PMCID: PMC6859696 DOI: 10.1089/ars.2018.7678] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Skeletal muscle is a crucial tissue to whole-body locomotion and metabolic health. Reactive oxygen species (ROS) have emerged as intracellular messengers participating in both physiological and pathological adaptations in skeletal muscle. A complex interplay between ROS-producing enzymes and antioxidant networks exists in different subcellular compartments of mature skeletal muscle. Recent evidence suggests that nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major source of contraction- and insulin-stimulated oxidants production, but they may paradoxically also contribute to muscle insulin resistance and atrophy. Recent Advances: Pharmacological and molecular biological tools, including redox-sensitive probes and transgenic mouse models, have generated novel insights into compartmentalized redox signaling and suggested that NOX2 contributes to redox control of skeletal muscle metabolism. Critical Issues: Major outstanding questions in skeletal muscle include where NOX2 activation occurs under different conditions in health and disease, how NOX2 activation is regulated, how superoxide/hydrogen peroxide generated by NOX2 reaches the cytosol, what the signaling mediators are downstream of NOX2, and the role of NOX2 for different physiological and pathophysiological processes. Future Directions: Future research should utilize and expand the current redox-signaling toolbox to clarify the NOX2-dependent mechanisms in skeletal muscle and determine whether the proposed functions of NOX2 in cells and animal models are conserved into humans.
Collapse
Affiliation(s)
- Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Enrique Jaimovich
- Muscle Cell Physiology Laboratory, Center for Exercise, Metabolism, and Cancer, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports (NEXS), Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
da Silva-Gomes RN, Gabriel Kuniyoshi ML, Oliveira da Silva Duran B, Thomazini Zanella BT, Paccielli Freire P, Gutierrez de Paula T, de Almeida Fantinatti BE, Simões Salomão RA, Carvalho RF, Delazari Santos L, Dal-Pai-Silva M. Prolonged fasting followed by refeeding modifies proteome profile and parvalbumin expression in the fast-twitch muscle of pacu (Piaractus mesopotamicus). PLoS One 2019; 14:e0225864. [PMID: 31856193 PMCID: PMC6922423 DOI: 10.1371/journal.pone.0225864] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Here, we analyzed the fast-twitch muscle of juvenile Piaractus mesopotamicus (pacu) submitted to prolonged fasting (30d) and refeeding (6h, 24h, 48h and 30d). We measured the relative rate of weight and length increase (RRIlength and RRIweight), performed shotgun proteomic analysis and did Western blotting for PVALB after 30d of fasting and 30d of refeeding. We assessed the gene expression of igf-1, mafbx and pvalb after 30d of fasting and after 6h, 24h, 48h and 30d of refeeding. We performed a bioinformatic analysis to predict miRNAs that possibly control parvalbumin expression. After fasting, RRIlength, RRIweight and igf-1 expression decreased, while the mafbx expression increased, which suggest that prolonged fasting caused muscle atrophy. After 6h and 24h of refeeding, mafbx was not changed and igf-1 was downregulated, while after 48h of refeeding mafbx was downregulated and igf-1 was not changed. After 30d of refeeding, RRIlength and RRIweight were increased and igf-1 and mafbx expression were not changed. Proteomic analysis identified 99 proteins after 30d of fasting and 71 proteins after 30d of refeeding, of which 23 and 17, respectively, were differentially expressed. Most of these differentially expressed proteins were related to cytoskeleton, muscle contraction, and metabolism. Among these, parvalbumin (PVALB) was selected for further validation. The analysis showed that pvalb mRNA was downregulated after 6h and 24h of refeeding, but was not changed after 30d of fasting or 48h and 30d of refeeding. The Western blotting confirmed that PVALB protein was downregulated after 30d of fasting and 30d of refeeding. The downregulation of the protein and the unchanged expression of the mRNA after 30d of fasting and 30d of refeeding suggest a post-transcriptional regulation of PVALB. Our miRNA analysis predicted 444 unique miRNAs that may target pvalb. In conclusion, muscle atrophy and partial compensatory growth caused by prolonged fasting followed by refeeding affected the muscle proteome and PVALB expression.
Collapse
Affiliation(s)
- Rafaela Nunes da Silva-Gomes
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maria Laura Gabriel Kuniyoshi
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruno Oliveira da Silva Duran
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Bruna Tereza Thomazini Zanella
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Tassiana Gutierrez de Paula
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | | | - Robson Francisco Carvalho
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucilene Delazari Santos
- Center for the Studies of Venoms and Venomous Animals (CEVAP)/ Graduate Program in Tropical Diseases (FMB), São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maeli Dal-Pai-Silva
- Department of Morphology, Institute of Bioscience of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
5
|
Tu MK, Levin JB, Hamilton AM, Borodinsky LN. Calcium signaling in skeletal muscle development, maintenance and regeneration. Cell Calcium 2016; 59:91-7. [PMID: 26944205 DOI: 10.1016/j.ceca.2016.02.005] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/06/2016] [Accepted: 02/10/2016] [Indexed: 12/28/2022]
Abstract
Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle. Elucidating these signaling mechanisms may contribute to devising therapies for muscular injury or disease. Here we review the studies that have contributed to our understanding of how calcium signaling regulates skeletal muscle development, homeostasis and regeneration, with a focus on the calcium dynamics and calcium-dependent effectors that participate in these processes.
Collapse
Affiliation(s)
- Michelle K Tu
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Jacqueline B Levin
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Andrew M Hamilton
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States
| | - Laura N Borodinsky
- Department of Physiology and Membrane Biology and Shriners Hospital for Children Northern California, University of California Davis, Sacramento, CA 95817, United States.
| |
Collapse
|
6
|
Llanos P, Contreras-Ferrat A, Georgiev T, Osorio-Fuentealba C, Espinosa A, Hidalgo J, Hidalgo C, Jaimovich E. The cholesterol-lowering agent methyl-β-cyclodextrin promotes glucose uptake via GLUT4 in adult muscle fibers and reduces insulin resistance in obese mice. Am J Physiol Endocrinol Metab 2015; 308:E294-305. [PMID: 25491723 DOI: 10.1152/ajpendo.00189.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Insulin stimulates glucose uptake in adult skeletal muscle by promoting the translocation of GLUT4 glucose transporters to the transverse tubule (T-tubule) membranes, which have particularly high cholesterol levels. We investigated whether T-tubule cholesterol content affects insulin-induced glucose transport. Feeding mice a high-fat diet (HFD) for 8 wk increased by 30% the T-tubule cholesterol content of triad-enriched vesicular fractions from muscle tissue compared with triads from control mice. Additionally, isolated muscle fibers (flexor digitorum brevis) from HFD-fed mice showed a 40% decrease in insulin-stimulated glucose uptake rates compared with fibers from control mice. In HFD-fed mice, four subcutaneous injections of MβCD, an agent reported to extract membrane cholesterol, improved their defective glucose tolerance test and normalized their high fasting glucose levels. The preincubation of isolated muscle fibers with relatively low concentrations of MβCD increased both basal and insulin-induced glucose uptake in fibers from controls or HFD-fed mice and decreased Akt phosphorylation without altering AMPK-mediated signaling. In fibers from HFD-fed mice, MβCD improved insulin sensitivity even after Akt or CaMK II inhibition and increased membrane GLUT4 content. Indinavir, a GLUT4 antagonist, prevented the stimulatory effects of MβCD on glucose uptake. Addition of MβCD elicited ryanodine receptor-mediated calcium signals in isolated fibers, which were essential for glucose uptake. Our findings suggest that T-tubule cholesterol content exerts a critical regulatory role on insulin-stimulated GLUT4 translocation and glucose transport and that partial cholesterol removal from muscle fibers may represent a useful strategy to counteract insulin resistance.
Collapse
Affiliation(s)
- Paola Llanos
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile;
| | - Ariel Contreras-Ferrat
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Tihomir Georgiev
- Medical Biophysics, Institute of Physiology und Pathophysiology, Ruprecht Karls Universität, Heidelberg, Germany
| | | | - Alejandra Espinosa
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cecilia Hidalgo
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Physiology and Biophysics Program, Institute of Biomedical Sciences (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Santiago, Chile; and
| | - Enrique Jaimovich
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile; Cell and Molecular Biology Program, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
7
|
Castro AJG, Frederico MJS, Cazarolli LH, Mendes CP, Bretanha LC, Schmidt ÉC, Bouzon ZL, de Medeiros Pinto VA, da Fonte Ramos C, Pizzolatti MG, Silva FRMB. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:51-61. [PMID: 25312987 DOI: 10.1016/j.bbagen.2014.10.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/23/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND The effect of in vivo treatment with ursolic acid (UA) on glycemia in hyperglycemic rats and its mechanism of action on muscle were studied. METHODS The UA effects on glycemia, glycogen, LDH, calcium and on insulin levels were evaluated after glucose tolerance curve. The β-cells were evaluated through the transmission electron microscopy. UA mechanism of action was studied on muscles through the glucose uptake with/without specific insulin signaling inhibitors. The nuclear effect of UA and the GLUT4 expression on muscle were studied using thymidine, GLUT4 immunocontent, immunofluorescence and RT-PCR. RESULTS UA presented a potent antihyperglycemic effect, increased insulin vesicle translocation, insulin secretion and augmented glycogen content. Also, UA stimulates the glucose uptake through the involvement of the classical insulin signaling related to the GLUT4 translocation to the plasma membrane as well as the GLUT4 synthesis. These were characterized by increasing the GLUT4 mRNA expression, the activation of DNA transcription, the expression of GLUT4 and its presence at plasma membrane. Also, the modulation of calcium, phospholipase C, protein kinase C and PKCaM II is mandatory for the full stimulatory effect of UA on glucose uptake. UA did not change the serum LDH and serum calcium balance. CONCLUSIONS The antihyperglycemic role of UA is mediated through insulin secretion and insulinomimetic effect on glucose uptake, synthesis and translocation of GLUT4 by a mechanism of cross-talk between calcium and protein kinases. GENERAL SIGNIFICANCE UA is a potential anti-diabetic agent with pharmacological properties for insulin resistance and diabetes therapy.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Marisa Jádna Silva Frederico
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Luisa Helena Cazarolli
- Universidade Federal da Fronteira Sul, Campus Universitário Laranjeiras do Sul, Laranjeiras do Sul, PR, Brazil
| | - Camila Pires Mendes
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Lizandra Czermainski Bretanha
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Éder Carlos Schmidt
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Zenilda Laurita Bouzon
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | | | - Moacir Geraldo Pizzolatti
- Departamento de Química, Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | |
Collapse
|
8
|
Li J, Cantley J, Burchfield JG, Meoli CC, Stöckli J, Whitworth PT, Pant H, Chaudhuri R, Groffen AJA, Verhage M, James DE. DOC2 isoforms play dual roles in insulin secretion and insulin-stimulated glucose uptake. Diabetologia 2014; 57:2173-82. [PMID: 25005332 DOI: 10.1007/s00125-014-3312-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/28/2014] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Glucose-stimulated insulin secretion (GSIS) and insulin-stimulated glucose uptake are processes that rely on regulated intracellular vesicle transport and vesicle fusion with the plasma membrane. DOC2A and DOC2B are calcium-sensitive proteins that were identified as key components of vesicle exocytosis in neurons. Our aim was to investigate the role of DOC2 isoforms in glucose homeostasis, insulin secretion and insulin action. METHODS DOC2 expression was measured by RT-PCR and western blotting. Body weight, glucose tolerance, insulin action and GSIS were assessed in wild-type (WT), Doc2a (-/-) (Doc2aKO), Doc2b (-/-) (Doc2bKO) and Doc2a (-/-)/Doc2b (-/-) (Doc2a/Doc2bKO) mice in vivo. In vitro GSIS and glucose uptake were assessed in isolated tissues, and exocytotic proteins measured by western blotting. GLUT4 translocation was assessed by epifluorescence microscopy. RESULTS Doc2b mRNA was detected in all tissues tested, whereas Doc2a was only detected in islets and the brain. Doc2aKO and Doc2bKO mice had minor glucose intolerance, while Doc2a/Doc2bKO mice showed pronounced glucose intolerance. GSIS was markedly impaired in Doc2a/Doc2bKO mice in vivo, and in isolated Doc2a/Doc2bKO islets in vitro. In contrast, Doc2bKO mice had only subtle defects in insulin secretion in vivo. Insulin action was impaired to a similar degree in both Doc2bKO and Doc2a/Doc2bKO mice. In vitro insulin-stimulated glucose transport and GLUT4 vesicle fusion were defective in adipocytes derived from Doc2bKO mice. Surprisingly, insulin action was not altered in muscle isolated from DOC2-null mice. CONCLUSIONS/INTERPRETATION Our study identifies a critical role for DOC2B in insulin-stimulated glucose uptake in adipocytes, and for the synergistic regulation of GSIS by DOC2A and DOC2B in beta cells.
Collapse
Affiliation(s)
- Jia Li
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Contreras-Ferrat A, Lavandero S, Jaimovich E, Klip A. Calcium signaling in insulin action on striated muscle. Cell Calcium 2014; 56:390-6. [PMID: 25224502 DOI: 10.1016/j.ceca.2014.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023]
Abstract
Striated muscles (skeletal and cardiac) are major physiological targets of insulin and this hormone triggers complex signaling pathways regulating cell growth and energy metabolism. Insulin increases glucose uptake into muscle cells by stimulating glucose transporter (GLUT4) translocation from intracellular compartments to the cell surface. The canonical insulin-triggered signaling cascade controlling this process is constituted by well-mapped tyrosine, lipid and serine/threonine phosphorylation reactions. In parallel to these signals, recent findings reveal insulin-dependent Ca(2+) mobilization in skeletal muscle cells and cardiomyocytes. Specifically, insulin activates the sarco-endoplasmic reticulum (SER) channels that release Ca(2+) into the cytosol i.e., the Ryanodine Receptor (RyR) and the inositol 1,4,5-triphosphate receptor (IP3R). In skeletal muscle cells, a rapid, insulin-triggered Ca(2+) release occurs through RyR, that is brought about upon S-glutathionylation of cysteine residues in the channel by reactive oxygen species (ROS) produced by the early activation of the NADPH oxidase (NOX2). In cardiomyocytes insulin induces a fast and transient increase in cytoplasmic [Ca(2+)]i trough L-type Ca(2+) channels activation. In both cell types, a relatively slower Ca(2+) release also occurs through IP3R activation, and is required for GLUT4 translocation and glucose uptake. The insulin-dependent Ca(2+) released from IP3R of skeletal muscle also promotes mitochondrial Ca(2+) uptake. We review here these actions of insulin on intracellular Ca(2+) channel activation and their impact on GLUT4 traffic in muscle cells, as well as other implications of insulin-dependent Ca(2+) release from the SER.
Collapse
Affiliation(s)
- A Contreras-Ferrat
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile; Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile, Santiago 8380492, Chile.
| | - S Lavandero
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile; Advanced Center for Chronic Disease (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Chile
| | - E Jaimovich
- Center for Molecular Studies of the Cell (CEMC), Faculty of Medicine, Chile
| | - A Klip
- The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8
| |
Collapse
|
10
|
Dutta Roy R, Stefan MI, Rosenmund C. Biophysical properties of presynaptic short-term plasticity in hippocampal neurons: insights from electrophysiology, imaging and mechanistic models. Front Cell Neurosci 2014; 8:141. [PMID: 24904286 PMCID: PMC4033079 DOI: 10.3389/fncel.2014.00141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/01/2014] [Indexed: 11/16/2022] Open
Abstract
Hippocampal neurons show different types of short-term plasticity (STP). Some exhibit facilitation of their synaptic responses and others depression. In this review we discuss presynaptic biophysical properties behind heterogeneity in STP in hippocampal neurons such as alterations in vesicle priming and docking, fusion, neurotransmitter filling and vesicle replenishment. We look into what types of information electrophysiology, imaging and mechanistic models have given about the time scales and relative impact of the different properties on STP with an emphasis on the use of mechanistic models as complementary tools to experimental procedures. Taken together this tells us that it is possible for a multitude of different mechanisms to underlie the same STP pattern, even though some are more important in specific cases, and that mechanistic models can be used to integrate the biophysical properties to see which mechanisms are more important in specific cases of STP.
Collapse
Affiliation(s)
- Ranjita Dutta Roy
- Department of Medicine Solna, Karolinska Insitutet Stockholm, Sweden ; Neuroscience Research Center (NWFZ), Charite Universitatsmedizin Berlin, Germany
| | - Melanie I Stefan
- Department of Neurobiology, Harvard Medical School Boston, MA, USA
| | - Christian Rosenmund
- Neuroscience Research Center (NWFZ), Charite Universitatsmedizin Berlin, Germany
| |
Collapse
|
11
|
Contreras-Ferrat A, Llanos P, Vásquez C, Espinosa A, Osorio-Fuentealba C, Arias-Calderon M, Lavandero S, Klip A, Hidalgo C, Jaimovich E. Insulin elicits a ROS-activated and an IP₃-dependent Ca²⁺ release, which both impinge on GLUT4 translocation. J Cell Sci 2014; 127:1911-23. [PMID: 24569874 DOI: 10.1242/jcs.138982] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Insulin signaling includes generation of low levels of H2O2; however, its origin and contribution to insulin-stimulated glucose transport are unknown. We tested the impact of H2O2 on insulin-dependent glucose transport and GLUT4 translocation in skeletal muscle cells. H2O2 increased the translocation of GLUT4 with an exofacial Myc-epitope tag between the first and second transmembrane domains (GLUT4myc), an effect additive to that of insulin. The anti-oxidants N-acetyl L-cysteine and Trolox, the p47(phox)-NOX2 NADPH oxidase inhibitory peptide gp91-ds-tat or p47(phox) knockdown each reduced insulin-dependent GLUT4myc translocation. Importantly, gp91-ds-tat suppressed insulin-dependent H2O2 production. A ryanodine receptor (RyR) channel agonist stimulated GLUT4myc translocation and insulin stimulated RyR1-mediated Ca(2+) release by promoting RyR1 S-glutathionylation. This pathway acts in parallel to insulin-mediated stimulation of inositol-1,4,5-trisphosphate (IP3)-activated Ca(2+) channels, in response to activation of phosphatidylinositol 3-kinase and its downstream target phospholipase C, resulting in Ca(2+) transfer to the mitochondria. An inhibitor of IP3 receptors, Xestospongin B, reduced both insulin-dependent IP3 production and GLUT4myc translocation. We propose that, in addition to the canonical α,β phosphatidylinositol 3-kinase to Akt pathway, insulin engages both RyR-mediated Ca(2+) release and IP3-receptor-mediated mitochondrial Ca(2+) uptake, and that these signals jointly stimulate glucose uptake.
Collapse
Affiliation(s)
- Ariel Contreras-Ferrat
- Centro de estudios Moleculares de la Célula, Facultad de Medicina; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Acute exposure of L6 myotubes to cis-9, trans-11 and trans-10, cis-12 conjugated linoleic acid isomers stimulates glucose uptake by modulating Ca2+/calmodulin-dependent protein kinase II. Int J Biochem Cell Biol 2012; 44:1321-30. [DOI: 10.1016/j.biocel.2012.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/02/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023]
|
13
|
Abstract
GLUT4 is an insulin-regulated glucose transporter that is responsible for insulin-regulated glucose uptake into fat and muscle cells. In the absence of insulin, GLUT4 is mainly found in intracellular vesicles referred to as GLUT4 storage vesicles (GSVs). Here, we summarise evidence for the existence of these specific vesicles, how they are sequestered inside the cell and how they undergo exocytosis in the presence of insulin. In response to insulin stimulation, GSVs fuse with the plasma membrane in a rapid burst and in the continued presence of insulin GLUT4 molecules are internalised and recycled back to the plasma membrane in vesicles that are distinct from GSVs and probably of endosomal origin. In this Commentary we discuss evidence that this delivery process is tightly regulated and involves numerous molecules. Key components include the actin cytoskeleton, myosin motors, several Rab GTPases, the exocyst, SNARE proteins and SNARE regulators. Each step in this process is carefully orchestrated in a sequential and coupled manner and we are beginning to dissect key nodes within this network that determine vesicle-membrane fusion in response to insulin. This regulatory process clearly involves the Ser/Thr kinase AKT and the exquisite manner in which this single metabolic process is regulated makes it a likely target for lesions that might contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | |
Collapse
|
14
|
Cross JL, Boulos S, Shepherd KL, Craig AJ, Lee S, Bakker AJ, Knuckey NW, Meloni BP. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation. Neurosci Res 2012; 73:191-8. [PMID: 22561287 DOI: 10.1016/j.neures.2012.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 03/21/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
Abstract
In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury.
Collapse
Affiliation(s)
- Jane L Cross
- Centre for Neuromuscular and Neurological Disorders, University of Western Australia and Australian Neuromuscular Research Institute, Western Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Mohankumar SK, Taylor CG, Zahradka P. Domain-dependent modulation of insulin-induced AS160 phosphorylation and glucose uptake by Ca2+/calmodulin-dependent protein kinase II in L6 myotubes. Cell Signal 2012; 24:302-8. [DOI: 10.1016/j.cellsig.2011.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
|
16
|
Öberg AI, Yassin K, Csikasz RI, Dehvari N, Shabalina IG, Hutchinson DS, Wilcke M, Östenson CG, Bengtsson T. Shikonin increases glucose uptake in skeletal muscle cells and improves plasma glucose levels in diabetic Goto-Kakizaki rats. PLoS One 2011; 6:e22510. [PMID: 21818330 PMCID: PMC3144218 DOI: 10.1371/journal.pone.0022510] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is considerable interest in identifying compounds that can improve glucose homeostasis. Skeletal muscle, due to its large mass, is the principal organ for glucose disposal in the body and we have investigated here if shikonin, a naphthoquinone derived from the Chinese plant Lithospermum erythrorhizon, increases glucose uptake in skeletal muscle cells. METHODOLOGY/PRINCIPAL FINDINGS Shikonin increases glucose uptake in L6 skeletal muscle myotubes, but does not phosphorylate Akt, indicating that in skeletal muscle cells its effect is medaited via a pathway distinct from that used for insulin-stimulated uptake. Furthermore we find no evidence for the involvement of AMP-activated protein kinase in shikonin induced glucose uptake. Shikonin increases the intracellular levels of calcium in these cells and this increase is necessary for shikonin-mediated glucose uptake. Furthermore, we found that shikonin stimulated the translocation of GLUT4 from intracellular vesicles to the cell surface in L6 myoblasts. The beneficial effect of shikonin on glucose uptake was investigated in vivo by measuring plasma glucose levels and insulin sensitivity in spontaneously diabetic Goto-Kakizaki rats. Treatment with shikonin (10 mg/kg intraperitoneally) once daily for 4 days significantly decreased plasma glucose levels. In an insulin sensitivity test (s.c. injection of 0.5 U/kg insulin), plasma glucose levels were significantly lower in the shikonin-treated rats. In conclusion, shikonin increases glucose uptake in muscle cells via an insulin-independent pathway dependent on calcium. CONCLUSIONS/SIGNIFICANCE Shikonin increases glucose uptake in skeletal muscle cells via an insulin-independent pathway dependent on calcium. The beneficial effects of shikonin on glucose metabolism, both in vitro and in vivo, show that the compound possesses properties that make it of considerable interest for developing novel treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Anette I. Öberg
- Department of Physiology, Arrhenius Laboratories F3, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kamal Yassin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Robert I. Csikasz
- Department of Physiology, Arrhenius Laboratories F3, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nodi Dehvari
- Department of Physiology, Arrhenius Laboratories F3, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Irina G. Shabalina
- Department of Physiology, Arrhenius Laboratories F3, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Dana S. Hutchinson
- Department of Pharmacology, Monash University, Parkville, Victoria, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tore Bengtsson
- Department of Physiology, Arrhenius Laboratories F3, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
17
|
Mohl MC, Iismaa SE, Xiao XH, Friedrich O, Wagner S, Nikolova-Krstevski V, Wu J, Yu ZY, Feneley M, Fatkin D, Allen DG, Graham RM. Regulation of murine cardiac contractility by activation of α1A-adrenergic receptor-operated Ca2+ entry. Cardiovasc Res 2011; 91:310-9. [DOI: 10.1093/cvr/cvr081] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Giulivi C, Ross-Inta C, Omanska-Klusek A, Napoli E, Sakaguchi D, Barrientos G, Allen PD, Pessah IN. Basal bioenergetic abnormalities in skeletal muscle from ryanodine receptor malignant hyperthermia-susceptible R163C knock-in mice. J Biol Chem 2011; 286:99-113. [PMID: 20978128 PMCID: PMC3013050 DOI: 10.1074/jbc.m110.153247] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/13/2010] [Indexed: 12/25/2022] Open
Abstract
Malignant hyperthermia (MH) and central core disease in humans have been associated with mutations in the skeletal ryanodine receptor (RyR1). Heterozygous mice expressing the human MH/central core disease RyR1 R163C mutation exhibit MH when exposed to halothane or heat stress. Considering that many MH symptoms resemble those that could ensue from a mitochondrial dysfunction (e.g. metabolic acidosis and hyperthermia) and that MH-susceptible mice or humans have a higher than normal cytoplasmic Ca(2+) concentration at rest, we evaluated the role of mitochondria in skeletal muscle from R163C compared with wild type mice under basal (untriggered) conditions. R163C skeletal muscle exhibited a significant increase in matrix Ca(2+), increased reactive oxygen species production, lower expression of mitochondrial proteins, and higher mtDNA copy number. These changes, in conjunction with lower myoglobin and glycogen contents, Myh4 and GAPDH transcript levels, GAPDH activity, and lower glucose utilization suggested a switch to a compromised bioenergetic state characterized by both low oxidative phosphorylation and glycolysis. The shift in bioenergetic state was accompanied by a dysregulation of Ca(2+)-responsive signaling pathways regulated by calcineurin and ERK1/2. Chronically elevated resting Ca(2+) in R163C skeletal muscle elicited the maintenance of a fast-twitch fiber program and the development of insulin resistance-like phenotype as part of a metabolic adaptation to the R163C RyR1 mutation.
Collapse
Affiliation(s)
- Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu A, Yang J, Gonzalez FJ, Cheng GQ, Dai R. Biphasic regulation of intracellular calcium by gemfibrozil contributes to inhibiting L6 myoblast differentiation: implications for clinical myotoxicity. Chem Res Toxicol 2010; 24:229-37. [PMID: 21175127 DOI: 10.1021/tx100312h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gemfibrozil is the most myotoxic fibrate drug commonly used for dyslipidemia, but the mechanism is poorly understood. The current study revealed that gemfibrozil inhibits myoblast differentiation through the regulation of intracellular calcium ([Ca(2+)]i) as revealed in L6 myoblasts by use of laser scan confocal microscopy and flow cytometry using Fluo-4 AM as a probe. Gemfibrozil at 20-400 μM, could regulate [Ca(2+)]i in L6 cells in a biphasic manner, and sustained reduction was observed when the concentration reached 200 μM. Inhibition of L6 differentiation by gemfibrozil was concentration-dependent with maximal effect noted between 200 and 400 μM, as indicated by creatine kinase activities and the differentiation index, respectively. In differentiating L6 myoblasts, gemfibrozil at concentrations below 400 μM led to no significant signs of apoptosis or cytotoxicity, whereas differentiation, inhibited by 200 μM gemfibrozil, was only partially recovered. A good correlation was noted between gemfibrozil concentrations that regulate [Ca(2+)]i and inhibit L6 myoblasts differentiation, and both are within the range of total serum concentrations found in the clinic. These data suggest a potential pharmacodynamic effect of gemfibrozil on myogenesis as a warning sign, in addition to the complex pharmacokinetic interactions. It is also noteworthy that mobilization of [Ca(2+)]i by gemfibrozil may trigger complex biological responses besides myocyte differentiation. Information revealed in this study explores the mechanism of gemfibrozil-induced myotoxicity through the regulation of intracellular calcium.
Collapse
Affiliation(s)
- Aiming Liu
- South China University of Technology, Guangzhou 510641, China
| | | | | | | | | |
Collapse
|
20
|
Contreras-Ferrat AE, Toro B, Bravo R, Parra V, Vásquez C, Ibarra C, Mears D, Chiong M, Jaimovich E, Klip A, Lavandero S. An inositol 1,4,5-triphosphate (IP3)-IP3 receptor pathway is required for insulin-stimulated glucose transporter 4 translocation and glucose uptake in cardiomyocytes. Endocrinology 2010; 151:4665-77. [PMID: 20685879 DOI: 10.1210/en.2010-0116] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular calcium levels ([Ca2+]i) and glucose uptake are central to cardiomyocyte physiology, yet connections between them have not been studied. We investigated whether insulin regulates [Ca2+]i in cultured cardiomyocytes, the participating mechanisms, and their influence on glucose uptake via SLC2 family of facilitative glucose transporter 4 (GLUT4). Primary neonatal rat cardiomyocytes were preloaded with the Ca2+ fluorescent dye fluo3-acetoxymethyl ester compound (AM) and visualized by confocal microscopy. Ca2+ transport pathways were selectively targeted by chemical and molecular inhibition. Glucose uptake was assessed using [3H]2-deoxyglucose, and surface GLUT4 levels were quantified in nonpermeabilized cardiomyocytes transfected with GLUT4-myc-enhanced green fluorescent protein. Insulin elicited a fast, two-component, transient increase in [Ca2+]i. Nifedipine and ryanodine prevented only the first component. The second one was reduced by inositol-1,4,5-trisphosphate (IP3)-receptor-selective inhibitors (xestospongin C, 2 amino-ethoxydiphenylborate), by type 2 IP3 receptor knockdown via small interfering RNA or by transfected Gβγ peptidic inhibitor βARKct. Insulin-stimulated glucose uptake was prevented by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM, 2-amino-ethoxydiphenylborate, and βARK-ct but not by nifedipine or ryanodine. Similarly, insulin-dependent exofacial exposure of GLUT4-myc-enhanced green fluorescent protein was inhibited by bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid-AM and xestospongin C but not by nifedipine. Phosphatidylinositol 3-kinase and Akt were also required for the second phase of Ca2+ release and GLUT4 translocation. Transfected dominant-negative phosphatidylinositol 3-kinase γ inhibited the latter. In conclusion, in primary neonatal cardiomyocytes, insulin induces an important component of Ca2+ release via IP3 receptor. This component signals to glucose uptake via GLUT4, revealing a so-far unrealized contribution of IP3-sensitive Ca2+ stores to insulin action. This pathway may influence cardiac metabolism in conditions yet to be explored in adult myocardium.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcium/metabolism
- Cells, Cultured
- Glucose/metabolism
- Glucose/pharmacokinetics
- Glucose Transporter Type 4/metabolism
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate/physiology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Insulin/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Protein Transport/drug effects
- Rats
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- A E Contreras-Ferrat
- Centro Estudios Moleculares de la Célula, Facultad de Medicina, and Departamento de Bioquímica y Biología Molecular, Universidad de Chile, Olivos 1007, Santiago 838-0492, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Illario M, Monaco S, Cavallo AL, Esposito I, Formisano P, D'Andrea L, Cipolletta E, Trimarco B, Fenzi G, Rossi G, Vitale M. Calcium-calmodulin-dependent kinase II (CaMKII) mediates insulin-stimulated proliferation and glucose uptake. Cell Signal 2009; 21:786-92. [DOI: 10.1016/j.cellsig.2009.01.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/31/2008] [Accepted: 01/05/2009] [Indexed: 11/15/2022]
|
22
|
Chappell DS, Patel NA, Jiang K, Li P, Watson JE, Byers DM, Cooper DR. Functional involvement of protein kinase C-betaII and its substrate, myristoylated alanine-rich C-kinase substrate (MARCKS), in insulin-stimulated glucose transport in L6 rat skeletal muscle cells. Diabetologia 2009; 52:901-11. [PMID: 19252893 PMCID: PMC2677811 DOI: 10.1007/s00125-009-1298-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 01/19/2009] [Indexed: 12/17/2022]
Abstract
AIMS/HYPOTHESIS Insulin stimulates phosphorylation cascades, including phosphatidylinositol-3-kinase (PI3K), phosphatidylinositol-dependent kinase (PDK1), Akt, and protein kinase C (PKC). Myristoylated alanine-rich C-kinase substrate (MARCKS), a PKCbetaII substrate, could link the effects of insulin to insulin-stimulated glucose transport (ISGT) via phosphorylation of its effector domain since MARCKS has a role in cytoskeletal rearrangements. METHODS We examined phosphoPKCbetaII after insulin treatment of L6 myocytes, and cytosolic and membrane phosphoMARCKS, MARCKS and phospholipase D1 in cells pretreated with LY294002 (PI3K inhibitor), CG53353 (PKCbetaII inhibitor) or W13 (calmodulin inhibitor), PI3K, PKCbetaII and calmodulin inhibitors, respectively, before insulin treatment, using western blots. ISGT was examined after cells had been treated with inhibitors, small inhibitory RNA (siRNA) for MARCKS, or transfection with MARCKS mutated at a PKC site. MARCKS, PKCbetaII, GLUT4 and insulin receptor were immunoblotted in subcellular fractions with F-actin antibody immunoprecipitates to demonstrate changes following insulin treatment. GLUT4 membrane insertion was followed after insulin with or without CG53353. RESULTS Insulin increased phosphoPKCbetaII(Ser660 and Thr641); LY294002 blocked this, indicating its activation by PI3K. Insulin treatment increased cytosolic phosphoMARCKS, decreased membrane MARCKS and increased membrane phospholipase D1 (PLD1), a protein regulating glucose transporter vesicle fusion resulted. PhosphoMARCKS was attenuated by CG53353 or MARCKS siRNA. MARCKS siRNA blocked ISGT. Association of PKCbetaII and GLUT4 with membrane F-actin was enhanced by insulin, as was that of cytosolic and membrane MARCKS. ISGT was attenuated in myocytes transfected with mutated MARCKS (Ser152Ala), whereas overproduction of wild-type MARCKS enhanced ISGT. CG53353 blocked insertion of GLUT4 into membranes of insulin treated cells. CONCLUSIONS/INTERPRETATION The results suggest that PKCbetaII is involved in mediating downstream steps of ISGT through MARCKS phosphorylation and cytoskeletal remodelling.
Collapse
Affiliation(s)
- D. S. Chappell
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - N. A. Patel
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| | - K. Jiang
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - P. Li
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - J. E. Watson
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| | - D. M. Byers
- Atlantic Research Centre, Departments of Pediatrics and Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| | - D. R. Cooper
- Department of Molecular Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA, e-mail:
- The Research Service, James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
23
|
Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H. Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin‐mediated glucose uptake in adult skeletal muscle cells. FASEB J 2009; 23:1728-38. [DOI: 10.1096/fj.08-116814] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna T. Lanner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Joseph D. Bruton
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Yohannes Assefaw-Redda
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | | | - Shi-Jin Zhang
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Denise Severa
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Zhi-Bin Zhang
- School of Information and Communication TechnologyRoyal Institute of TechnologyStockholmSweden
| | - Werner Melzer
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Shi-Li Zhang
- Institut fÜr Angewandte PhysiologieUniversität UlmUlmGermany
| | - Abram Katz
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Håkan Westerblad
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
24
|
Yip MF, Ramm G, Larance M, Hoehn KL, Wagner MC, Guilhaus M, James DE. CaMKII-mediated phosphorylation of the myosin motor Myo1c is required for insulin-stimulated GLUT4 translocation in adipocytes. Cell Metab 2008; 8:384-98. [PMID: 19046570 DOI: 10.1016/j.cmet.2008.09.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/02/2008] [Accepted: 09/19/2008] [Indexed: 11/26/2022]
Abstract
The unconventional myosin Myo1c has been implicated in insulin-regulated GLUT4 translocation to the plasma membrane in adipocytes. We show that Myo1c undergoes insulin-dependent phosphorylation at S701. Phosphorylation was accompanied by enhanced 14-3-3 binding and reduced calmodulin binding. Recombinant CaMKII phosphorylated Myo1c in vitro and siRNA knockdown of CaMKIIdelta abolished insulin-dependent Myo1c phosphorylation in vivo. CaMKII activity was increased upon insulin treatment and the CaMKII inhibitors CN21 and KN-62 or the Ca(2+) chelator BAPTA-AM blocked insulin-dependent Myo1c phosphorylation and insulin-stimulated glucose transport in adipocytes. Myo1c ATPase activity was increased after CaMKII phosphorylation in vitro and after insulin stimulation of CHO/IR/IRS-1 cells. Expression of wild-type Myo1c, but not S701A or ATPase dead mutant K111A, rescued the inhibition of GLUT4 translocation by siRNA-mediated Myo1c knockdown. These data suggest that insulin regulates Myo1c function via CaMKII-dependent phosphorylation, and these events play a role in insulin-regulated GLUT4 trafficking in adipocytes likely involving Myo1c motor activity.
Collapse
Affiliation(s)
- Ming Fai Yip
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | | | | | | | | | | | | |
Collapse
|
25
|
Iwata M, Hayakawa K, Murakami T, Naruse K, Kawakami K, Inoue-Miyazu M, Yuge L, Suzuki S. Uniaxial cyclic stretch-stimulated glucose transport is mediated by a ca-dependent mechanism in cultured skeletal muscle cells. Pathobiology 2007; 74:159-68. [PMID: 17643061 DOI: 10.1159/000103375] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 12/29/2006] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Mechanical stimuli such as stretch increase glucose transport and glycogen metabolism in skeletal muscle. However, the molecular mechanisms involved in the mechanotransduction events are poorly understood. The present study was conducted in order to determine whether the signaling mechanism leading to mechanical stretch-stimulated glucose transport is similar to, or distinct from, the signaling mechanisms leading to insulin- and contraction-stimulated glucose transport in cultured muscle cells. METHODS Cultured C2C12 myotubes were stretched, after which the 2-deoxy-D-glucose (2-DG) uptake was measured. RESULTS Following cyclic stretch, C2C12 myotubes showed a significant increase in 2-DG uptake, and this effect was not prevented by inhibiting phosphatidylinositol 3-kinase or 5'-AMP-activated protein kinase and by extracellular Ca(2+) chelation. Conversely, the stretch-stimulated 2-DG uptake was completely prevented by dantrolene (an inhibitor of Ca(2+) release from sarcoplasmic reticulum). Furthermore, the stretch-stimulated 2-DG uptake was prevented by the Ca(2+)/calmodulin-dependent kinase inhibitor KN93 which did not prevent the insulin-stimulated 2-DG uptake. CONCLUSIONS These results suggest that the effects of stretch-stimulated glucose transport are independent of the insulin-signaling pathway. By contrast, following mechanical stretch in skeletal muscle, the signal transduction pathway leading to glucose transport may require the participation of cytosolic Ca(2+) and Ca(2+)/calmodulin kinase, but not 5'-AMP-activated protein kinase.
Collapse
Affiliation(s)
- Masahiro Iwata
- Program in Physical and Occupational Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lanner JT, Katz A, Tavi P, Sandström ME, Zhang SJ, Wretman C, James S, Fauconnier J, Lännergren J, Bruton JD, Westerblad H. The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 2006; 55:2077-83. [PMID: 16804078 DOI: 10.2337/db05-1613] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The involvement of Ca(2+) in insulin-mediated glucose uptake is uncertain. We measured Ca(2+) influx (as Mn(2+) quenching or Ba(2+) influx) and 2-deoxyglucose (2-DG) uptake in single muscle fibers isolated from limbs of adult mice; 2-DG uptake was also measured in isolated whole muscles. Exposure to insulin increased the Ca(2+) influx in single muscle cells. Ca(2+) influx in the presence of insulin was decreased by 2-aminoethoxydiphenyl borate (2-APB) and increased by the membrane-permeable diacylglycerol analog 1-oleyl-2-acetyl-sn-glycerol (OAG), agents frequently used to block and activate, respectively, nonselective cation channels. Maneuvers that decreased Ca(2+) influx in the presence of insulin also decreased 2-DG uptake, whereas increased Ca(2+) influx was associated with increased insulin-mediated glucose uptake in isolated single cells and whole muscles from both normal and insulin-resistant obese ob/ob mice. 2-APB and OAG affected neither basal nor hypoxia- or contraction-mediated 2-DG uptake. 2-APB did not inhibit the insulin-mediated activation of protein kinase B or extracellular signal-related kinase 1/2 in whole muscles. In conclusion, alterations in Ca(2+) influx specifically modulate insulin-mediated glucose uptake in both normal and insulin-resistant skeletal muscle. Moreover, the present results indicate that Ca(2+) acts late in the insulin signaling pathway, for instance, in the GLUT4 translocation to the plasma membrane.
Collapse
Affiliation(s)
- Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Han R, Grounds MD, Bakker AJ. Measurement of sub-membrane [Ca2+] in adult myofibers and cytosolic [Ca2+] in myotubes from normal and mdx mice using the Ca2+ indicator FFP-18. Cell Calcium 2006; 40:299-307. [PMID: 16765438 DOI: 10.1016/j.ceca.2006.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/04/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
The hypothesis that intracellular Ca(2+) is elevated in dystrophic (mdx) skeletal muscle due to increased Ca(2+) influx is controversial. As the sub-sarcolemmal Ca(2+) ([Ca(2+)](mem)) should be even higher than the global cytosolic Ca(2+) in the presence of increased Ca(2+) influx, we investigated [Ca(2+)](mem) levels in collagenase-isolated adult flexor digitorum brevis (FDB) myofibres and myotubes of mdx and normal mice with the near-membrane Ca(2+) indicator FFP-18. Confocal imaging showed strong localization of FFP-18 to the sarcolemma only. No significant difference in [Ca(2+)](mem) was found in FDB myofibres of normal (77.3+/-3.8 nM, n=68) and mdx (79.3+/-5.6 nM, n=21, p=0.89) mice using FFP-18. Increasing external Ca(2+) to 18 mM did not significantly affect [Ca(2+)](mem) in either the normal or mdx myofibres. In the myotubes, the FFP-18 was non-selectively incorporated, distributing throughout the cytoplasm, and FFP-18-derived [Ca(2+)] values were similar to values obtained with Fura-2. Nevertheless, in the mdx myotubes, the [Ca(2+)] measured with FFP-18 increased linearly to a level approximately 2.75 times that of controls as the time of culture was prolonged. In older mdx myotubes (>or=8 days in culture), 18 mM extracellular Ca(2+) increased the steady state cytosolic [Ca(2+)] to approximately 22 times greater level than controls. This study suggests that the sub-sarcolemmal Ca(2+) homeostasis is well maintained in isolated adult mdx myofibers and also further supports the hypothesis that cytosolic Ca(2+) handling is compromised in mdx myotubes.
Collapse
Affiliation(s)
- Renzhi Han
- School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
28
|
Wijesekara N, Tung A, Thong F, Klip A. Muscle cell depolarization induces a gain in surface GLUT4 via reduced endocytosis independently of AMPK. Am J Physiol Endocrinol Metab 2006; 290:E1276-86. [PMID: 16418206 DOI: 10.1152/ajpendo.00573.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contracting skeletal muscle increases glucose uptake to sustain energy demand. This is achieved through a gain in GLUT4 at the membrane, but the traffic mechanisms and regulatory signals involved are unknown. Muscle contraction is elicited by membrane depolarization followed by a rise in cytosolic Ca2+ and actomyosin activation, drawing on ATP stores. It is unknown whether one or more of these events triggers the rise in surface GLUT4. Here, we investigate the effect of membrane depolarization on GLUT4 cycling using GLUT4myc-expressing L6 myotubes devoid of sarcomeres and thus unable to contract. K+-induced membrane depolarization elevated surface GLUT4myc, and this effect was additive to that of insulin, was not prevented by inhibiting phosphatidylinositol 3-kinase (PI3K) or actin polymerization, and did not involve Akt activation. Instead, depolarization elevated cytosolic Ca2+, and the surface GLUT4myc elevation was prevented by dantrolene (an inhibitor of Ca2+ release from sarcoplasmic reticulum) and by extracellular Ca2+ chelation. Ca2+-calmodulin-dependent protein kinase-II (CaMKII) was not phosphorylated after 10 min of K+ depolarization, and the CaMK inhibitor KN62 did not prevent the gain in surface GLUT4myc. Interestingly, although 5'-AMP-activated protein kinase (AMPK) was phosphorylated upon depolarization, lowering AMPKalpha via siRNA did not alter the surface GLUT4myc gain. Conversely, the latter response was abolished by the PKC inhibitors bisindolylmaleimide I and calphostin C. Unlike insulin, K+ depolarization caused only a small increase in GLUT4myc exocytosis and a major reduction in its endocytosis. We propose that K+ depolarization reduces GLUT4 internalization through signals and mechanisms distinct from those engaged by insulin. Such a pathway(s) is largely independent of PI3K, Akt, AMPK, and CaMKII but may involve PKC.
Collapse
Affiliation(s)
- Nadeeja Wijesekara
- Programme in Cell Biology, The Hospital for Sick Children, 555 University Ave., Toronto, ON, Canada M5G 1X8
| | | | | | | |
Collapse
|
29
|
Huijing PA, Jaspers RT. Adaptation of muscle size and myofascial force transmission: a review and some new experimental results. Scand J Med Sci Sports 2005; 15:349-80. [PMID: 16293149 DOI: 10.1111/j.1600-0838.2005.00457.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This paper considers the literature and some new experimental results important for adaptation of muscle fiber cross-sectional area and serial sarcomere number. Two major points emerge: (1) general rules for the regulation of adaptation (for in vivo immobilization, low gravity conditions, synergist ablation, tenotomy and retinaculum trans-section experiments) cannot be derived. As a consequence, paradoxes are reported in the literature. Some paradoxes are resolved by considering the interaction between different levels of organization (e.g. muscle geometrical effects), but others cannot. (2) An inventory of signal transduction pathways affecting rates of muscle protein synthesis and/or degradation reveals controversy concerning the pathways and their relative contributions. A major explanation for the above is not only the inherently limited control of the experimental conditions in vivo, but also of in situ experiments. Culturing of mature single Xenopus muscle fibers at high and low lengths (allowing longitudinal study of adaptation for periods up to 3 months) did not yield major changes in the fiber cross-sectional area or the serial sarcomere number. This is very different from substantial effects (within days) of immobilization in vivo. It is concluded that overall strain does not uniquely regulate muscle fiber size. Force transmission, via pathways other than the myotendinous junctions, may contribute to the discrepancies reported: because of substantial serial heterogeneity of sarcomere lengths within muscle fibers creating local variations in the mechanical stimuli for adaptation. For the single muscle fiber, mechanical signalling is quite different from the in vivo or in vitro condition. Removal of tensile and shear effects of neighboring tissues (even of antagonistic muscle) modifies or removes mechanical stimuli for adaptation. It is concluded that the study of adaptation of muscle size requires an integrative approach taking into account fundamental mechanisms of adaptation, as well as effects of higher levels of organization. More attention should be paid to adaptation of connective tissues within and surrounding the muscle and their effects on muscular properties.
Collapse
Affiliation(s)
- P A Huijing
- Instituut voor Fundamentele en Klinische Bewegingswetenschappen, Faculteit Bewegingswetenschappen, Vrije Universiteit, Amsterdam, The Netherlands.
| | | |
Collapse
|
30
|
Zancan P, Sola-Penna M. Calcium influx: a possible role for insulin modulation of intracellular distribution and activity of 6-phosphofructo-1-kinase in human erythrocytes. Mol Genet Metab 2005; 86:392-400. [PMID: 16122962 DOI: 10.1016/j.ymgme.2005.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 11/22/2022]
Abstract
Human erythrocyte cells contain specific, active insulin receptor. However, the physiological relevance of this receptor is unclear. Here we show that Ca2+ influx is 4-fold higher in erythrocytes upon insulin stimulation. These effects are dose-dependent and are diminished by insulin concentrations of 150 nM and higher. The insulin-stimulated Ca2+ influx depends on a tyrosine-kinase activity and involves the verapamil-dependent Ca2+ channels. Elevated intracellular Ca2+, in association with the Ca2+-binding protein, calmodulin, stimulates erythrocytes 6-phosphofructo-1-kinase activity. This activation involves the detachment of the enzyme from erythrocyte membranes, which has been described as an important mechanism of glycolysis regulation on these cells. Altogether, these results support evidence that insulin may increases glucose consumption in human erythrocytes, through a mechanism involving Ca2+ influx, calmodulin and the detachment of 6-phosphofructo-1-kinase from the erythrocyte membrane.
Collapse
Affiliation(s)
- Patricia Zancan
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM), Departamento de Fármacos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
Spangenburg EE, Bowles DK, Booth FW. Insulin-like growth factor-induced transcriptional activity of the skeletal alpha-actin gene is regulated by signaling mechanisms linked to voltage-gated calcium channels during myoblast differentiation. Endocrinology 2004; 145:2054-63. [PMID: 14684598 DOI: 10.1210/en.2003-1476] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IGF-I activates signaling pathways that increase the expression of muscle-specific genes in differentiating myoblasts. Induction of skeletal alpha-actin expression occurs during differentiation through unknown mechanisms. The purpose of this investigation was to examine the mechanisms that IGF-I uses to induce skeletal alpha-actin gene expression in C2C12 myoblasts. IGF-I increased skeletal alpha-actin promoter activity by 107% compared with the control condition. Ni(+) [T-type voltage-gated Ca(2+) channel (VGCC) inhibitor] reduced basal-induced activation of the skeletal alpha-actin promoter by approximately 84%, and nifedipine (L-type VGCC inhibitor) inhibited IGF-I-induced activation of the skeletal alpha-actin promoter by 29-48%. IGF-I failed to increase skeletal alpha-actin promoter activity in differentiating dysgenic (lack functional L-type VGCC) myoblasts; 30 mm K(+) and 30 mm K(+)+IGF-I increased skeletal alpha-actin promoter activity by 162% and 76% compared with non-IGF-I or IGF-I-only conditions, respectively. IGF-I increased calcineurin activity, which was inhibited by cyclosporine A. Further, cyclosporine A inhibited K(+)+IGF-I-induced activation of the skeletal alpha-actin promoter. Constitutively active calcineurin increased skeletal alpha-actin promoter activity by 154% and rescued the nifedipine-induced inhibition of L-type VGCC but failed to rescue the Ni(+)-inhibition of T-type VGCC. IGF-I-induced nuclear factor of activated T-cells transcriptional activity was not inhibited by nifedipine or Ni(+). IGF-I failed to increase serum response factor transcriptional activity; however, serum response factor activity was reduced in the presence of Ni(+). These data suggest that IGF-I-induced activation of the skeletal alpha-actin promoter is regulated by the L-type VGCC and calcineurin but independent of nuclear factor of activated T-cell transcriptional activity as C2C12 myoblasts differentiate into myotubes.
Collapse
Affiliation(s)
- Espen E Spangenburg
- Department of Biomedical Sciences, University of Missouri, Columbia 65211, USA.
| | | | | |
Collapse
|
32
|
Wright DC, Fick CA, Olesen JB, Lim K, Barnes BR, Craig BW. A role for calcium/calmodulin kinase in insulin stimulated glucose transport. Life Sci 2004; 74:815-25. [PMID: 14659970 DOI: 10.1016/j.lfs.2003.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Previous research has shown that the CAMK (calcium/calmodulin dependent protein kinase) inhibitor, KN62, can lead to reductions in insulin stimulated glucose transport. Although controversial, an L-type calcium channel mechanism has also been hypothesized to be involved in insulin stimulated glucose transport. The purpose of this report was to determine if 1) L-type calcium channels and CAMK are involved in a similar signaling pathway in the control of insulin stimulated glucose transport and 2) determine if insulin induces an increase in CAMKII phosphorylation through an L-type calcium channel dependent mechanism. Insulin stimulated glucose transport was significantly (p<0.05) inhibited to a similar extent ( approximately 30%) by both KN62 and nifedipine in rat soleus and epitrochelaris muscles. The new finding of these experiments was that the combined inhibitory effect of these two compounds was not greater than the effect of either inhibitor alone. To more accurately determine the interaction between CAMK and L-type calcium channels, we measured insulin induced changes in CAMKII phosphorylation using Western blot analysis. The novel finding of this set of experiments was that insulin induced an increase in phosphorylated CAMKII ( approximately 40%) in rat soleus muscle that was reversed in the presence of KN62 but not nifedipine. Taken together these results suggest that a CAMK signaling mechanism may be involved in insulin stimulated glucose transport in skeletal muscle through an L-type calcium channel independent mechanism.
Collapse
Affiliation(s)
- D C Wright
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Ju YK, Wu MJ, Chaulet H, Marciniec T, Graham RM, Allen DG. IGF-1 enhances a store-operated Ca2+ channel in skeletal muscle myoblasts: involvement of a CD20-like protein. J Cell Physiol 2003; 197:53-60. [PMID: 12942540 DOI: 10.1002/jcp.10347] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Overexpression of IGF-1 in C2C12 myoblasts causes hypertrophy when myoblasts fuse to form myotubes, a response that requires elevated intracellular calcium. We show that myoblasts contain a store-operated Ca2+ channel (SOCC) whose activity is enhanced with IGF-1 overexpression. A membrane protein, CD20, can cause Ca2+ entry, which is increased by IGF-1. We therefore tested whether CD20 mediates the SOCC activity in myoblasts. An antibody to the extracellular loop of CD20 detected a protein in myoblasts and this antibody also inhibited Ca2+ entry through SOCC. Overexpression of CD20 in myoblasts increased SOCC activity. However, we could not detect mRNA for CD20 in myoblasts and an antibody to the intracellular C-terminus of CD20 was unable to detect CD20 in these cells. These studies demonstrate that CD20 is a novel SOCC or modulates SOCC activity. However, the SOCC activity observed in C2C12 myoblasts is mediated not by CD20, but by a CD20-like protein. Activation of this SOCC may contribute to IGF-1-induced hypertrophy in these cells.
Collapse
Affiliation(s)
- Yue-Kun Ju
- Department of Physiology, University of Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
34
|
Huang CL, Huang NK, Shyue SK, Chern Y. Hydrogen peroxide induces loss of dopamine transporter activity: a calcium-dependent oxidative mechanism. J Neurochem 2003; 86:1247-59. [PMID: 12911632 DOI: 10.1046/j.1471-4159.2003.01936.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
H2O2 dose dependently inhibited dopamine uptake in PC12 cells and in striatal synaptosomes. Treatment with H2O2 resulted in a reversible reduction in Vmax, with no effect on its Km value. This suppressive effect of H2O2 could be relieved by reducing agents (dithiothreitol and cysteine). Furthermore, an oxidizer (dithiodipyridine) also markedly suppressed the dopamine transporter (DAT). Oxidative stress therefore might contribute to the action of H2O2. H2O2 appeared to modify DAT at both extracellular and intracellular sites because cumene-H2O2 (a radical generator mostly restricted to plasma membranes) at high concentrations also slightly suppressed DAT activity and the intracellular overexpression of catalase ameliorated the inhibitory effect of H2O2. Internalization was unlikely to be involved because concanavalin A, which blocked endocytosis, did not prevent the H2O2-evoked inhibition of DAT activity. Interestingly, H2O2 treatment evoked a Ca2+ influx in PC12 cells. Moreover, removal of external calcium by EGTA or reduction in the intracellular calcium level using BAPTA-AM reversed the inhibitory effect of H2O2. Conversely, depletion of intracellular calcium stores using thapsigargin did not affect the reduction in DAT activity by H2O2. Collectively, our results indicate that the DAT, one of the most important proteins controlling the dopaminergic system, is also a redox sensor. In addition, H2O2 might suppress the DAT by a Ca2+-dependent oxidative pathway.
Collapse
Affiliation(s)
- Chuen-Lin Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, Republic of China
| | | | | | | |
Collapse
|
35
|
Terada S, Muraoka I, Tabata I. Changes in [Ca2+]i induced by several glucose transport-enhancing stimuli in rat epitrochlearis muscle. J Appl Physiol (1985) 2003; 94:1813-20. [PMID: 12547839 DOI: 10.1152/japplphysiol.00780.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present investigation was to establish a method for estimating intracellular Ca(2+) concentrations ([Ca(2+)](i)) in isolated rat epitrochlearis muscles. Epitrochlearis muscles excised from 4-wk-old male Sprague-Dawley rats were loaded with a fluorescent Ca(2+) indicator, fura 2-AM, for 60-90 min at 35 degrees C in oxygenated Krebs-Henseleit buffer. After fura 2 loading and subsequent 20-min incubation, the intensities of 500-nm fluorescence, induced by 340- and 380-nm excitation lights (F(total)340 and F(total)380), were measured. The fluorescences specific to fura-2 (F(fura 2)340 and F(fura 2)380) were calculated by subtracting the non-fura 2-specific component from F(total)340 and F(total)380, respectively. The ratio of F(fura 2)340 to F(fura 2)380 was calculated as R, and the change in the ratio from the baseline value (DeltaR) was used as an index of the change in [Ca(2+)](i). In resting muscle, DeltaR was stable for 60 min. Incubation for 20 min with caffeine (3-10 mM) significantly increased DeltaR in a concentration-dependent manner. Incubation with hypoxic Krebs-Henseleit buffer for 10-60 min significantly elevated DeltaR, depending on the duration of the incubation. Incubation with 50 microM N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide for 20 min significantly elevated DeltaR (P < 0.05). No significant increases in DeltaR were observed during incubation for 20 min with 2 mM 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside or with 2 mU/ml insulin. These results demonstrated that, by using the fura 2-AM fluorescence method, the changes in [Ca(2+)](i) can be monitored in the rat epitrochlearis muscle and suggest that the method can be utilized to observe quantitative information regarding [Ca(2+)](i) that may be involved in contraction- and hypoxia-stimulated glucose transport activity in skeletal muscle.
Collapse
Affiliation(s)
- Shin Terada
- Laboratory of Exercise Physiology, Div. of Health Promotion and Exercise, National Inst. of Health & Nutrition, 1-23-1 Toyama, Shinjuku City, Tokyo 162-8636, Japan
| | | | | |
Collapse
|
36
|
Freymond D, Guignet R, Lhote P, Passaquin AC, Rüegg UT. Calcium homeostasis and glucose uptake of murine myotubes exposed to insulin, caffeine and 4-chloro-m-cresol. ACTA PHYSIOLOGICA SCANDINAVICA 2002; 176:283-92. [PMID: 12444934 DOI: 10.1046/j.1365-201x.2002.01039.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The modulation of glucose uptake by cytosolic calcium and the role of insulin on calcium homeostasis in insulin-target cells are incompletely understood and results are contradictory. To address this issue, we used the C2C12 murine skeletal muscle cell line model and examined the influence of caffeine and 4-chloro-m-cresol, two ryanodine receptor agonists known to mobilize intracellular calcium stores and increase cytosolic free calcium concentration. We followed 45calcium efflux, a validated indicator of cytosolic calcium concentration, and 3-O-methyl-[1-3H]-d-glucose uptake in parallel. We also determined if insulin incubation affected 45calcium influx rate. A 30-min treatment by 1 microm insulin highly significantly increased 45calcium efflux by 8.5% (P = 0.0014), despite a significant reduction of 45Ca2+ influx already measurable after 20 and 30 min of insulin stimulation (-16.6%, P = 0.0119 and -21.3%, P = 0.0047, respectively). Caffeine (1-20 mm) and 4-chloro-m-cresol (0.05-10 mm) concentration-dependently increased 45calcium efflux, the latter being more potent and efficacious. These agents, in a concentration-dependent manner, inhibited both basal and, more potently, insulin-stimulated glucose uptake. This resulted in a negative correlation of glucose uptake and 45calcium efflux (r > 0.95, P < 0.001). This effect was approximately 5 times greater for caffeine than for 4-chloro-m-cresol, suggesting a calcium-independent part of the glucose uptake inhibition by caffeine. In our in vitro model of cultured muscle cells, insulin appears to prevent calcium overload by both stimulating efflux and inhibiting cell storage. This effect, taken together with the observed inhibitory, inverse relationship between 45calcium efflux and glucose uptake, contributes to describing the complex insulin-calcium interplay involved in target cells.
Collapse
Affiliation(s)
- D Freymond
- Department of Anaesthesiology, University of Lausanne, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Porter GA, Makuck RF, Rivkees SA. Reduction in intracellular calcium levels inhibits myoblast differentiation. J Biol Chem 2002; 277:28942-7. [PMID: 12042317 DOI: 10.1074/jbc.m203961200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In myocytes, calcium plays an important role in intracellular signaling and contraction. However, the ability of calcium to modulate the differentiation of striated muscle cells is poorly understood. To examine this issue we studied C2C12 cells, which is a myoblast cell line that differentiates in vitro. First, we observed that the L-type calcium channel blockers nifedipine and verapamil effectively inhibited electrically induced calcium transients. Next, C2C12 cells were exposed to these agents during conditions that induce myocyte differentiation. In the presence of nifedipine and verapamil, myoblasts failed to form myotubes. Dantrolene and thapsigargin, which decrease intracellular calcium by different mechanisms, also inhibited differentiation. In addition, nifedipine and verapamil inhibited the expression of myosin heavy chain and myogenin, two markers of skeletal myoblast differentiation. In contrast, levels of the transcriptional factor Myf5, which is expressed in undifferentiated myoblasts, did not decline. Calcium channel blockade also prevented the expression of a reporter driven by the skeletal muscle alpha-actin promoter. These data demonstrate that lowering intracellular calcium levels inhibits the differentiation of skeletal myoblasts into mature myotubes.
Collapse
Affiliation(s)
- George A Porter
- Department of Pediatrics, Divisions of Cardiology and Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
38
|
Shashkin PN, Meckmongkol T, Wasner HK, Hansen BC, Ortmeyer HK. Prostaglandylinositol cyclic phosphate synthase activity in the liver of insulin-resistant rhesus monkeys before and after a euglycemic hyperinsulinemic clamp. J Basic Clin Physiol Pharmacol 2002; 12:1-18. [PMID: 11414504 DOI: 10.1515/jbcpp.2001.12.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prostaglandylinositol cyclic phosphate (cPIP), functionally a cAMP antagonist, is a novel, low-molecular weight mediator of insulin action. Both essential hypertension and type 2 diabetes may be associated with a reduction of cPIP synthesis. In intact cells and in plasma membranes, cPIP synthesis is stimulated by insulin, which activates cPIP synthase by tyrosine phosphorylation. We measured the activities of cPIP synthase in the homogenates of freeze-clamped and then lyophilized liver samples from five insulin-resistant, adult rhesus monkeys, obtained under basal fasting conditions and again under maximal insulin stimulation during a euglycemic hyperinsulinemic clamp. The mean cPIP synthase activity in basal samples (0.33 +/- 0.09 pmol/min/mg protein) was not significantly different at the end of the clamp (0.24 +/- 0.11 pmol/min/mg protein). Basal cPIP synthase activityVoL 12, No. 1, 2001 was directly related to both basal cAMP content and basal fractional activity of cAMP-dependent protein kinase (PKA): r=0.85, p<0.05 and r=0.86, p<0.05, respectively. In turn, insulin-stimulated cPIP synthase activity was inversely related to both the insulin-stimulated fractional activity of PKA (r=0.89, p<0.02) and the insulin-stimulated total PKA activity: r=0.94, p<0.005. The findings suggest that in the liver of insulin-resistant rhesus monkeys, cPIP synthase activity, which leads to the synthesis of the low-molecular weight mediator cPIP, may oppose cAMP synthesis and PKA activity.
Collapse
Affiliation(s)
- P N Shashkin
- Obesity and Diabetes Research Center, Department of Physiology, University of Maryland School of Medicine, Baltimore 21201, USA.
| | | | | | | | | |
Collapse
|
39
|
Shashkin PN, Wasner HK, Ortmeyer HK, Hansen BC. Prostaglandylinositol cyclic phosphate (cPIP): a novel second messenger of insulin action. Comparative analysis of two kinds of "insulin mediators". Diabetes Metab Res Rev 2001; 17:273-84. [PMID: 11544611 DOI: 10.1002/dmrr.218] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Insulin induces a broad spectrum of effects over a wide time interval. It also stimulates the phosphorylation of some cellular proteins, while decreasing the state of phosphorylation of others. These observations indicate the presence of different, but not necessarily mutually exclusive, pathways of insulin action. One well-known pathway represents a phosphorylation cascade initiated by the tyrosine kinase activity of the insulin receptor followed by involvement of different MAP-kinases. Another pathway suggests the existence of low molecular weight insulin mediators whose synthesis and/or release is initiated by insulin. Comparable analysis of two kinds of insulin mediators, namely inositolphosphoglycans and prostaglandylinositol cyclic phosphate (cPIP), has been carried out. It has been shown that the expression of a number of enzymes, such as phospholipase A(2), phospholipase C, cyclo-oxygenase and IRS-1-like enzyme, could regulate the biosynthesis of cPIP in both normal and diabetes-related conditions. Data on the activity of a key enzyme of cPIP biosynthesis termed cPIP synthase (IRS-1-like enzyme) in various monkey tissues before and twice during an euglycemic hyperinsulinemic clamp have been presented. It has been concluded that in vivo insulin increases cPIP synthase activity in both liver and subcutaneous adipose tissue of lean normal monkeys. It has been also suggested that abnormal production of cPIP could be related to several pathologies including glucocorticoid-induced insulin resistance and diabetic embryopathy. Further studies on cPIP and other types of insulin mediators are necessary to aid our understanding of insulin action.
Collapse
Affiliation(s)
- P N Shashkin
- Obesity and Diabetes Research Center, Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
40
|
Whitehead JP, Molero JC, Clark S, Martin S, Meneilly G, James DE. The Role of Ca2+ in Insulin-stimulated Glucose Transport in 3T3-L1 Cells. J Biol Chem 2001; 276:27816-24. [PMID: 11375387 DOI: 10.1074/jbc.m011590200] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the requirement for Ca2+ in the signaling and trafficking pathways involved in insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Chelation of intracellular Ca2+, using 1,2-bis (o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetra (acetoxy- methyl) ester (BAPTA-AM), resulted in >95% inhibition of insulin-stimulated glucose uptake. The calmodulin antagonist, W13, inhibited insulin-stimulated glucose uptake by 60%. Both BAPTA-AM and W13 inhibited Akt phosphorylation by 70-75%. However, analysis of insulin-dose response curves indicated that this inhibition was not sufficient to explain the effects of BAPTA-AM and W13 on glucose uptake. BAPTA-AM inhibited insulin-stimulated translocation of GLUT4 by 50%, as determined by plasma membrane lawn assay and subcellular fractionation. In contrast, the insulin-stimulated appearance of HA-tagged GLUT4 at the cell surface, as measured by surface binding, was blocked by BAPTA-AM. While the ionophores or ionomycin prevented the inhibition of Akt phosphorylation and GLUT4 translocation by BAPTA-AM, they did not overcome the inhibition of glucose transport. Moreover, glucose uptake of cells pretreated with insulin followed by rapid cooling to 4 degrees C, to promote cell surface expression of GLUT4 and prevent subsequent endocytosis, was inhibited specifically by BAPTA-AM. This indicates that inhibition of glucose uptake by BAPTA-AM is independent of both trafficking and signal transduction. These data indicate that Ca2+ is involved in at least two different steps of the insulin-dependent recruitment of GLUT4 to the plasma membrane. One involves the translocation step. The second involves the fusion of GLUT4 vesicles with the plasma membrane. These data are consistent with the hypothesis that Ca2+/calmodulin plays a fundamental role in eukaryotic vesicle docking and fusion. Finally, BAPTA-AM may inhibit the activity of the facilitative transporters by binding directly to the transporter itself.
Collapse
Affiliation(s)
- J P Whitehead
- Institute for Molecular Bioscience and the Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Queensland 4072, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Insulin inhibits the ERG b-wave and modulates L-type calcium currents (I(Ca)) in various preparations. We therefore examined insulin's effects on I(Ca) and depolarization-evoked [Ca2+]i increases in rod photoreceptors. Insulin inhibited I(Ca) and caused a dose-dependent reduction in the depolarization-evoked Ca2+ influx with an EC50 of 2.1 nM. Tyrosine kinase inhibitors, lavendustin A (100 nM) and genistein (10 microM), prevented insulin from reducing the depolarization-evoked Ca2+ increase in rods. Their less active analogues, lavendustin B and daidzein, had similar effects. An insulin receptor-specific tyrosine kinase inhibitor, HNMPA-(AM)3 (50 microM), prevented insulin (30 nM) from reducing the depolarization-evoked Ca2+ increase in rods. The results suggest that insulin inhibits Ca2+ influx through voltage-dependent I(Ca) in rod photoreceptors via tyrosine kinase activity.
Collapse
Affiliation(s)
- S L Stella
- Department of Pharmacology, University of Nebraska Medical Center, Omaha 68198-5540, USA
| | | | | |
Collapse
|
42
|
Bruton JD, Katz A, Westerblad H. The role of Ca2+ and calmodulin in insulin signalling in mammalian skeletal muscle. ACTA PHYSIOLOGICA SCANDINAVICA 2001; 171:259-65. [PMID: 11412138 DOI: 10.1046/j.1365-201x.2001.00828.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of Ca2+ in mediating effects of insulin on skeletal muscle has been widely debated. It is believed that in skeletal muscle Ca2+ has a permissive role, necessary but not of prime importance in mediating the stimulatory actions of insulin. In this review, we present evidence that insulin causes a localized increase in the concentration of Ca2+. Specifically, insulin induces a rise in near-membrane Ca2+ but not the bulk Ca2+ in the myoplasm. The rise in near-membrane Ca2+ is because of an influx through channels that can be blocked by L-type Ca2+ channel inhibitors. Calcium appears to exert some of its subsequent effects via calmodulin-dependent processes as calmodulin inhibitors block the translocation of glucose transporters and other enzymes as well as the insulin-stimulated increase in glucose transport.
Collapse
Affiliation(s)
- J D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
43
|
Gypakis A, Wasner HK. Phosphatidylinositol 3-kinase and prostaglandylinositol cyclic phosphate (cyclic PIP), a mediator of insulin action, in the signal transduction of insulin. Biol Chem 2000; 381:1139-41. [PMID: 11154073 DOI: 10.1515/bc.2000.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has been suggested that downstream signaling from the insulin receptor to the level of the protein kinases and protein phosphatases is accomplished by prosta-glandylinositol cyclic phosphate (cyclic PIP), a proposed second messenger of insulin. However, evidence points also to both phosphatidylinositol 3-kinase, which binds to the tyrosine phosphorylated insulin receptor substrate-1, and the Ras complex in insulin's downstream signaling. We have examined whether a correlation exists between these various observations. It was found that wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, prevented insulin-induced, as well as cyclic PIP-induced activation of glucose transport, indicating that PI 3-kinase action on glucose transport involves downstream signaling of both insulin and cyclic PIP. Wortmannin has no effect on cyclic PIP synthase activity nor on the substrate production for cyclic PIP synthesis either, indicating that the functional role of PI 3-kinase is exclusively downstream of cyclic PIP.
Collapse
Affiliation(s)
- A Gypakis
- Deutsches Diabetes-Forschungsinstitut, Abteilung für klinische Biochemie, Düsseldorf, Germany
| | | |
Collapse
|
44
|
Delling U, Tureckova J, Lim HW, De Windt LJ, Rotwein P, Molkentin JD. A calcineurin-NFATc3-dependent pathway regulates skeletal muscle differentiation and slow myosin heavy-chain expression. Mol Cell Biol 2000; 20:6600-11. [PMID: 10938134 PMCID: PMC86143 DOI: 10.1128/mcb.20.17.6600-6611.2000] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The differentiation and maturation of skeletal muscle cells into functional fibers is coordinated largely by inductive signals which act through discrete intracellular signal transduction pathways. Recently, the calcium-activated phosphatase calcineurin (PP2B) and the family of transcription factors known as NFAT have been implicated in the regulation of myocyte hypertrophy and fiber type specificity. Here we present an analysis of the intracellular mechanisms which underlie myocyte differentiation and fiber type specificity due to an insulinlike growth factor 1 (IGF-1)-calcineurin-NFAT signal transduction pathway. We demonstrate that calcineurin enzymatic activity is transiently increased during the initiation of myogenic differentiation in cultured C2C12 cells and that this increase is associated with NFATc3 nuclear translocation. Adenovirus-mediated gene transfer of an activated calcineurin protein (AdCnA) potentiates C2C12 and Sol8 myocyte differentiation, while adenovirus-mediated gene transfer of noncompetitive calcineurin-inhibitory peptides (cain or DeltaAKAP79) attenuates differentiation. AdCnA infection was also sufficient to rescue myocyte differentiation in an IGF-depleted myoblast cell line. Using 10T1/2 cells, we demonstrate that MyoD-directed myogenesis is dramatically enhanced by either calcineurin or NFATc3 cotransfection, while a calcineurin inhibitory peptide (cain) blocks differentiation. Enhanced myogenic differentiation directed by calcineurin, but not NFATc3, preferentially specifies slow myosin heavy-chain expression, while enhanced differentiation through mitogen-activated protein kinase kinase 6 (MKK6) promotes fast myosin heavy-chain expression. These data indicate that a signaling pathway involving IGF-calcineurin-NFATc3 enhances myogenic differentiation whereas calcineurin acts through other factors to promote the slow fiber type program.
Collapse
Affiliation(s)
- U Delling
- Department of Pediatrics, University of Cincinnati, and Division of Molecular Cardiovascular Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA
| | | | | | | | | | | |
Collapse
|
45
|
Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 2000; 6:233-44. [PMID: 10983972 DOI: 10.1016/s1097-2765(00)00025-3] [Citation(s) in RCA: 432] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skeletal muscle differentiation is controlled by associations between myogenic basic-helix-loop-helix and MEF2 transcription factors. We show that chromatin associated with muscle genes regulated by these transcription factors becomes acetylated during myogenesis and that class II histone deacetylases (HDACs), which interact with MEF2, specifically suppress myoblast differentiation. These HDACs do not interact directly with MyoD, yet they suppress its myogenic activity through association with MEF2. Elevating the level of MyoD can override the repression imposed by HDACs on muscle genes. HDAC-mediated repression of myogenesis also can be overcome by CaM kinase and insulin-like growth factor (IGF) signaling. These findings reveal central roles for HDACs in chromatin remodeling during myogenesis and as intranuclear targets for signaling pathways controlled by IGF and CaM kinase.
Collapse
Affiliation(s)
- J Lu
- Department of Molecular Biology, University of Texas, Southwestern Medical Center at Dallas, 75235, USA
| | | | | | | |
Collapse
|
46
|
Oz M, Tchugunova Y, Dinç M. Effects of (+) and (-) enantiomers of calcium channel agonist, Bay K 8644, on mechanical and electrical responses of frog skeletal muscle. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of (+) and (-) enantiomers of Bay K 8644, a Ca2+ channel agonist, on the mechanical and electrical properties of frog skeletal muscle fibers were investigated. In the concentration range of 10-6 to 10-5 M, both (+) and (-) enantiomers of Bay K 8644 significantly increased the maximum amplitudes of twitch responses. Both (+) and (-) enantiomers of Bay K 8644, at higher concentrations such as 10-4 M, greatly depressed the amplitudes of twitches. Potentiating and depressing effects of (-) enantiomer of Bay K 8644 on twitch responses were significantly greater than those of the (+) enantiomer. At all concentrations used, both (+) and (-) enantiomers of Bay K 8644 significantly decreased the area under the tetanic force × time curve. In intracellular recordings, it was found that the depressing effects of both (+) and (-)-Bay K 8644 on tetanic contractions and twitch responses were due to the inhibition of action potentials. The inhibitory effect of (-) enantiomer of Bay K 8644 on action potentials also was significantly greater than that of the (+) enantiomer. In conclusion, present results suggest that, in contrast with cardiac muscle fibers, (+) and (-) enantiomers of Bay K 8644 have similar inhibitory effects on the electrical and mechanical properties of frog skeletal muscle fibers.Key words: Bay K 8644, calcium channels, sodium channels, skeletal muscle.
Collapse
|
47
|
Abstract
Ca(2+) signaling plays a central role in hypertrophic growth of cardiac and skeletal muscle in response to mechanical load and a variety of signals. However, the mechanisms whereby alterations in Ca(2+) in the cytoplasm activate the hypertrophic response and result in longterm changes in muscle gene expression are unclear. The Ca(2+), calmodulin-dependent protein phosphatase calcineurin has been proposed to control cardiac and skeletal muscle hypertrophy by acting as a Ca(2+) sensor that couples prolonged changes in Ca(2+) levels to reprogramming of muscle gene expression. Calcineurin also controls the contractile and metabolic properties of skeletal muscle by activating the slow muscle fiber-specific gene program, which is dependent on Ca(2+) signaling. Transcription factors of the NFAT and MEF2 families serve as endpoints for the signaling pathways whereby calcineurin controls muscle hypertrophy and fiber-type. We consider these findings in the context of a model for Ca(2+)-regulated gene expression in muscle cells and discuss potential implications of these findings for pharmacologic modification of cardiac and skeletal muscle function. BioEssays 22:510-519, 2000.
Collapse
Affiliation(s)
- E N Olson
- Department of Molecular Biology, University of Texas, Southwestern Medical Center at Dallas, Texas.
| | | |
Collapse
|
48
|
Mallouk N, Jacquemond V, Allard B. Elevated subsarcolemmal Ca2+ in mdx mouse skeletal muscle fibers detected with Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 2000; 97:4950-5. [PMID: 10781103 PMCID: PMC18338 DOI: 10.1073/pnas.97.9.4950] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Duchenne muscular dystrophy results from the lack of dystrophin, a cytoskeletal protein associated with the inner surface membrane, in skeletal muscle. The cellular mechanisms responsible for the progressive skeletal muscle degeneration that characterizes the disease are still debated. One hypothesis suggests that the resting sarcolemmal permeability for Ca(2+) is increased in dystrophic muscle, leading to Ca(2+) accumulation in the cytosol and eventually to protein degradation. However, more recently, this hypothesis was challenged seriously by several groups that did not find any significant increase in the global intracellular Ca(2+) in muscle from mdx mice, an animal model of the human disease. In the present study, using plasma membrane Ca(2+)-activated K(+) channels as subsarcolemmal Ca(2+) probe, we tested the possibility of a Ca(2+) accumulation at the restricted subsarcolemmal level in mdx skeletal muscle fibers. Using the cell-attached configuration of the patch-clamp technique, we demonstrated that the voltage threshold for activation of high conductance Ca(2+)-activated K(+) channels is significantly lower in mdx than in control muscle, suggesting a higher subsarcolemmal [Ca(2+)]. In inside-out patches, we showed that this shift in the voltage threshold for high conductance Ca(2+)-activated K(+) channel activation could correspond to a approximately 3-fold increase in the subsarcolemmal Ca(2+) concentration in mdx muscle. These data favor the hypothesis according to which an increased calcium entry is associated with the absence of dystrophin in mdx skeletal muscle, leading to Ca(2+) overload at the subsarcolemmal level.
Collapse
Affiliation(s)
- N Mallouk
- Laboratoire de Physiologie des Eléments Excitables, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 5578, Université Claude Bernard Lyon I, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | | | | |
Collapse
|
49
|
Musarò A, McCullagh KJ, Naya FJ, Olson EN, Rosenthal N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 1999; 400:581-5. [PMID: 10448862 DOI: 10.1038/23060] [Citation(s) in RCA: 502] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Localized synthesis of insulin-like growth factors (IGFs) has been broadly implicated in skeletal muscle growth, hypertrophy and regeneration. Virally delivered IGF-1 genes induce local skeletal muscle hypertrophy and attenuate age-related skeletal muscle atrophy, restoring and improving muscle mass and strength in mice. Here we show that the molecular pathways underlying the hypertrophic action of IGF-1 in skeletal muscle are similar to those responsible for cardiac hypertrophy. Transfected IGF-1 gene expression in postmitotic skeletal myocytes activates calcineurin-mediated calcium signalling by inducing calcineurin transcripts and nuclear localization of calcineurin protein. Expression of activated calcineurin mimics the effects of IGF-1, whereas expression of a dominant-negative calcineurin mutant or addition of cyclosporin, a calcineurin inhibitor, represses myocyte differentiation and hypertrophy. Either IGF-1 or activated calcineurin induces expression of the transcription factor GATA-2, which accumulates in a subset of myocyte nuclei, where it associates with calcineurin and a specific dephosphorylated isoform of the transcription factor NF-ATc1. Thus, IGF-1 induces calcineurin-mediated signalling and activation of GATA-2, a marker of skeletal muscle hypertrophy, which cooperates with selected NF-ATc isoforms to activate gene expression programs.
Collapse
Affiliation(s)
- A Musarò
- Cardiovascular Research Center, Massachusetts General Hospital-East, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
50
|
Semsarian C, Wu MJ, Ju YK, Marciniec T, Yeoh T, Allen DG, Harvey RP, Graham RM. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 1999; 400:576-81. [PMID: 10448861 DOI: 10.1038/23054] [Citation(s) in RCA: 333] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle hypertrophy and regeneration are important adaptive responses to both physical activity and pathological stimuli. Failure to maintain these processes underlies the loss of skeletal muscle mass and strength that occurs with ageing and in myopathies. Here we show that stable expression of a gene encoding insulin-like growth factor 1 (IGF-1) in C2C12 skeletal muscle cells, or treatment of these cells with recombinant IGF-1 or with insulin and dexamethasone, results in hypertrophy of differentiated myotubes and a switch to glycolytic metabolism. Treatment with IGF-1 or insulin and dexamethasone mobilizes intracellular calcium, activates the Ca2+/calmodulin-dependent phosphatase calcineurin, and induces the nuclear translocation of the transcription factor NF-ATc1. Hypertrophy is suppressed by the calcineurin inhibitors cyclosporin A or FK506, but not by inhibitors of the MAP-kinase or phosphatidylinositol-3-OH kinase pathways. Injecting rat latissimus dorsi muscle with a plasmid encoding IGF-1 also activates calcineurin, mobilizes satellite cells and causes a switch to glycolytic metabolism. We propose that growth-factor-induced skeletal-muscle hypertrophy and changes in myofibre phenotype are mediated by calcium mobilization and are critically regulated by the calcineurin/NF-ATc1 signalling pathway.
Collapse
Affiliation(s)
- C Semsarian
- Victor Chang Cardiac Research Institute, St Vincent's Hospital, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|