1
|
Perrella G, Vellutini E, Beveridge A, Hamilton G, Herzyk P, Kaiserli E. TANDEM ZINC-FINGER/PLUS3 integrates light signaling and flowering regulatory pathways at the chromatin level. THE NEW PHYTOLOGIST 2025. [PMID: 40356194 DOI: 10.1111/nph.70213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Environmental and endogenous stimuli determine plant developmental transitions including flowering through multiple signaling cascades. Although the key activators and repressors of flowering initiation are defined, the components and mechanisms integrating light signaling and flowering pathways are not fully established. This study investigates the role of TANDEM ZINC-FINGER/PLUS3 (TZP), a light-integrating transcriptional regulator, to elucidate how light cues influence the epigenetic regulation of flowering in Arabidopsis thaliana. To dissect the molecular function of TZP, this study employed a combination of genetics, RNA sequencing, chromatin immunoprecipitation sequencing and phenotypic assays. These approaches were used to determine TZP's genomic binding sites, its downstream gene targets and its influence on flowering time and chromatin modifications. TANDEM ZINC-FINGER/PLUS3 was found to directly associate with the promoter regions of chromatin-modifying genes, including FLOWERING LOCUS D (a histone H3K4 demethylase) and histone deacetylase 6 (a histone deacetylase). This regulation promotes a chromatin environment that represses FLOWERING LOCUS C (FLC) transcription, thereby accelerating flowering. TANDEM ZINC-FINGER/PLUS3 thus functions upstream of multiple pathways integrating photoperiodic and autonomous floral cues. TANDEM ZINC-FINGER/PLUS3 mediates crosstalk between light signaling and flowering pathways by modulating chromatin structure at the FLC locus. This provides a mechanistic framework for understanding how environmental signals dynamically influence epigenetic regulation of developmental transitions.
Collapse
Affiliation(s)
- Giorgio Perrella
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
- Department of Biosciences, University of Milan, Via Giovanni Celoria 26, 20133, Milan, Italy
| | - Elisa Vellutini
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Allan Beveridge
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Graham Hamilton
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Pawel Herzyk
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
2
|
Paeng SK, Wi SD, Chae HB, Bae SB, Phan KAT, Kim MG, Yun DJ, Kim WY, McClung CR, Lee SY. NTRC mediates the coupling of chloroplast redox rhythm with nuclear circadian clock in plant cells. MOLECULAR PLANT 2025; 18:468-484. [PMID: 39834079 DOI: 10.1016/j.molp.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/29/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. In this study, we reveal that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose. In NTRC-deficient ntrc mutants, the perturbed temporal dynamics of cytosolic metabolite pools substantially attenuate the amplitude of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) mRNA oscillation while maintaining its inherent periodicity. In contrast, these fluctuations extend the period and greatly reduced the amplitude of GIGANTEA (GI). In alignment with its regulatory role, the chloroplast redox rhythm and TTFL-driven nuclear oscillators are severely disrupted in ntrc plants. The impairements are rescued by NTRC expression but not by the expression of catalytically inactive NTRC(C/S) mutant, indicating that NTRC's redox activity is essential for synchronizing intracellular circadian rhythms. In return, the canonical nuclear clock component, TIMING OF CAB EXPRESSION 1 (TOC1), regulates the diel chloroplast redox rhythm by controlling NTRC expression, as evidenced by the redox cycle of chloroplast 2-Cys peroxiredoxins. This reciprocal regulation suggests a tight coupling between chloroplast redox rhythms and nuclear oscillators. Collectively, our study has identified NTRC as a key circadian modulator, elucidating the intricate connection between the metabolite-dependent chloroplast redox rhythm and the temporal dynamics of nuclear canonical clocks.
Collapse
Affiliation(s)
- Seol Ki Paeng
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - Seong Dong Wi
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - Ho Byoung Chae
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - Su Bin Bae
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - Kieu Anh Thi Phan
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - Min Gab Kim
- College of Pharmacy, Gyeongsang National University, Jinju 52828, South Korea
| | - Dae-Jin Yun
- Department of Biomedical Science & Engineering, Konkuk University, Seoul, South Korea
| | - Woe-Yeon Kim
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Sang Yeol Lee
- Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju 52828, South Korea.
| |
Collapse
|
3
|
Hajdu A, Nyári D, Terecskei K, Gyula P, Ádám É, Dobos O, Mérai Z, Kozma-Bognár L. LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA. Cells 2024; 13:1503. [PMID: 39273073 PMCID: PMC11394198 DOI: 10.3390/cells13171503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian clocks are biochemical timers regulating many physiological and molecular processes according to the day/night cycles. The function of the oscillator relies on negative transcriptional/translational feedback loops operated by the so-called clock genes and the encoded clock proteins. Previously, we identified the small GTPase LIGHT INSENSITIVE PERIOD 1 (LIP1) as a circadian-clock-associated protein that regulates light input to the clock in the model plant Arabidopsis thaliana. We showed that LIP1 is also required for suppressing red and blue light-mediated photomorphogenesis, pavement cell shape determination and tolerance to salt stress. Here, we demonstrate that LIP1 is present in a complex of clock proteins GIGANTEA (GI), ZEITLUPE (ZTL) and TIMING OF CAB 1 (TOC1). LIP1 participates in this complex via GUANINE EX-CHANGE FACTOR 7. Analysis of genetic interactions proved that LIP1 affects the oscillator via modulating the function of GI. We show that LIP1 and GI independently and additively regulate photomorphogenesis and salt stress responses, whereas controlling cell shape and photoperiodic flowering are not shared functions of LIP1 and GI. Collectively, our results suggest that LIP1 affects a specific function of GI, possibly by altering binding of GI to downstream signalling components.
Collapse
Affiliation(s)
- Anita Hajdu
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Nyári
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Kata Terecskei
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Péter Gyula
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary;
| | - Éva Ádám
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
- Department of Medical Genetics, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary
| | - Orsolya Dobos
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| | - Zsuzsanna Mérai
- Gregor Mendel Institute of Molecular Plant Biology GmbH, 1030 Vienna, Austria;
| | - László Kozma-Bognár
- Department of Genetics, Faculty of Sciences and Informatics, University of Szeged, H-6726 Szeged, Hungary; (A.H.); (D.N.)
- Institute of Plant Biology, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary; (K.T.); (É.Á.); (O.D.)
| |
Collapse
|
4
|
Du SX, Wang LL, Yu WP, Xu SX, Chen L, Huang W. Appropriate induction of TOC1 ensures optimal MYB44 expression in ABA signaling and stress response in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024; 47:3046-3062. [PMID: 38654596 DOI: 10.1111/pce.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Plants possess the remarkable ability to integrate the circadian clock with various signalling pathways, enabling them to quickly detect and react to both external and internal stress signals. However, the interplay between the circadian clock and biological processes in orchestrating responses to environmental stresses remains poorly understood. TOC1, a core component of the plant circadian clock, plays a vital role in maintaining circadian rhythmicity and participating in plant defences. Here, our study reveals a direct interaction between TOC1 and the promoter region of MYB44, a key gene involved in plant defence. TOC1 rhythmically represses MYB44 expression, thereby ensuring elevated MYB44 expression at dawn to help the plant in coping with lowest temperatures during diurnal cycles. Additionally, both TOC1 and MYB44 can be induced by cold stress in an Abscisic acid (ABA)-dependent and independent manner. TOC1 demonstrates a rapid induction in response to lower temperatures compared to ABA treatment, suggesting timely flexible regulation of TOC1-MYB44 regulatory module by the circadian clock in ensuring a proper response to diverse stresses and maintaining a balance between normal physiological processes and energy-consuming stress responses. Our study elucidates the role of TOC1 in effectively modulating expression of MYB44, providing insights into the regulatory network connecting the circadian clock, ABA signalling, and stress-responsive genes.
Collapse
Affiliation(s)
- Shen-Xiu Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lu-Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Peng Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shu-Xuan Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Liang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Liang T, Yu S, Pan Y, Wang J, Kay SA. The interplay between the circadian clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. Proc Natl Acad Sci U S A 2024; 121:e2316825121. [PMID: 38319968 PMCID: PMC10873597 DOI: 10.1073/pnas.2316825121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.
Collapse
Affiliation(s)
- Tong Liang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Shi Yu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jiarui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
6
|
Yan Y, Luo H, Qin Y, Yan T, Jia J, Hou Y, Liu Z, Zhai J, Long Y, Deng X, Cao X. Light controls mesophyll-specific post-transcriptional splicing of photoregulatory genes by AtPRMT5. Proc Natl Acad Sci U S A 2024; 121:e2317408121. [PMID: 38285953 PMCID: PMC10861865 DOI: 10.1073/pnas.2317408121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Light plays a central role in plant growth and development, providing an energy source and governing various aspects of plant morphology. Previous study showed that many polyadenylated full-length RNA molecules within the nucleus contain unspliced introns (post-transcriptionally spliced introns, PTS introns), which may play a role in rapidly responding to changes in environmental signals. However, the mechanism underlying post-transcriptional regulation during initial light exposure of young, etiolated seedlings remains elusive. In this study, we used FLEP-seq2, a Nanopore-based sequencing technique, to analyze nuclear RNAs in Arabidopsis (Arabidopsis thaliana) seedlings under different light conditions and found numerous light-responsive PTS introns. We also used single-nucleus RNA sequencing (snRNA-seq) to profile transcripts in single nucleus and investigate the distribution of light-responsive PTS introns across distinct cell types. We established that light-induced PTS introns are predominant in mesophyll cells during seedling de-etiolation following exposure of etiolated seedlings to light. We further demonstrated the involvement of the splicing-related factor A. thaliana PROTEIN ARGININE METHYLTRANSFERASE 5 (AtPRMT5), working in concert with the E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a critical repressor of light signaling pathways. We showed that these two proteins orchestrate light-induced PTS events in mesophyll cells and facilitate chloroplast development, photosynthesis, and morphogenesis in response to ever-changing light conditions. These findings provide crucial insights into the intricate mechanisms underlying plant acclimation to light at the cell-type level.
Collapse
Affiliation(s)
- Yan Yan
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Yuwei Qin
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Tingting Yan
- Key Laboratory of Tropical Fruit Tree Biology of Hainan Province, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou571100, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yifeng Hou
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Zhijian Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Yanping Long
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Xian Deng
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
7
|
Wang X, Hao Y, Altaf MA, Shu H, Cheng S, Wang Z, Zhu G. Evolution and Dynamic Transcriptome of Key Genes of Photoperiodic Flowering Pathway in Water Spinach ( Ipomoea aquatica). Int J Mol Sci 2024; 25:1420. [PMID: 38338699 PMCID: PMC10855745 DOI: 10.3390/ijms25031420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The photoperiod is a major environmental factor in flowering control. Water spinach flowering under the inductive short-day condition decreases the yield of vegetative tissues and the eating quality. To obtain an insight into the molecular mechanism of the photoperiod-dependent regulation of the flowering time in water spinach, we performed transcriptome sequencing on water spinach under long- and short-day conditions with eight time points. Our results indicated that there were 6615 circadian-rhythm-related genes under the long-day condition and 8691 under the short-day condition. The three key circadian-rhythm genes, IaCCA1, IaLHY, and IaTOC1, still maintained single copies and similar IaCCA1, IaLHY, and IaTOC1 feedback expression patterns, indicating the conservation of reverse feedback. In the photoperiod pathway, highly conserved GI genes were amplified into two copies (IaGI1 and IaGI2) in water spinach. The significant difference in the expression of the two genes indicates functional diversity. Although the photoperiod core gene FT was duplicated to three copies in water spinach, only IaFT1 was highly expressed and strongly responsive to the photoperiod and circadian rhythms, and the almost complete inhibition of IaFT1 in water spinach may be the reason why water spinach does not bloom, no matter how long it lasts under the long-day condition. Differing from other species (I. nil, I. triloba, I. trifida) of the Ipomoea genus that have three CO members, water spinach lacks one of them, and the other two CO genes (IaCO1 and IaCO2) encode only one CCT domain. In addition, through weighted correlation network analysis (WGCNA), some transcription factors closely related to the photoperiod pathway were obtained. This work provides valuable data for further in-depth analyses of the molecular regulation of the flowering time in water spinach and the Ipomoea genus.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (X.W.); (Y.H.); (M.A.A.); (H.S.); (S.C.)
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
8
|
James AB, Sharples C, Laird J, Armstrong EM, Guo W, Tzioutziou N, Zhang R, Brown JWS, Nimmo HG, Jones MA. REVEILLE2 thermosensitive splicing: a molecular basis for the integration of nocturnal temperature information by the Arabidopsis circadian clock. THE NEW PHYTOLOGIST 2024; 241:283-297. [PMID: 37897048 DOI: 10.1111/nph.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.
Collapse
Affiliation(s)
- Allan B James
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chantal Sharples
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Janet Laird
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily May Armstrong
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Nikoleta Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Hugh G Nimmo
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew A Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
9
|
Kim SC, Edgeworth KN, Nusinow DA, Wang X. Circadian clock factors regulate the first condensation reaction of fatty acid synthesis in Arabidopsis. Cell Rep 2023; 42:113483. [PMID: 37995186 PMCID: PMC10842715 DOI: 10.1016/j.celrep.2023.113483] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/16/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
The circadian clock regulates temporal metabolic activities, but how it affects lipid metabolism is poorly understood. Here, we show that the central clock regulators LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) regulate the initial step of fatty acid (FA) biosynthesis in Arabidopsis. Triacylglycerol (TAG) accumulation in seeds was increased in LHY-overexpressing (LHY-OE) and decreased in lhycca1 plants. Metabolic tracking of lipids in developing seeds indicated that LHY enhanced FA synthesis. Transcript analysis revealed that the expression of genes involved in FA synthesis, including the one encoding β-ketoacyl-ACP synthase III (KASIII), was oppositely changed in developing seeds of LHY/CCA1-OEs and lhycca1. Chromatin immunoprecipitation, electrophoretic mobility shift, and transactivation assays indicated that LHY bound and activated the promoter of KASIII. Furthermore, phosphatidic acid, a metabolic precursor to TAG, inhibited LHY binding to KASIII promoter elements. Our data show a regulatory mechanism for plant lipid biosynthesis by the molecular clock.
Collapse
Affiliation(s)
- Sang-Chul Kim
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Kristen N Edgeworth
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA; Department of Biological and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Xuemin Wang
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
10
|
Zhao JX, Wang S, Liu J, Jiang XD, Wen J, Suo ZQ, Liu J, Zhong MC, Wang Q, Gu Z, Liu C, Deng Y, Hu JY, Li DZ. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1842-1855. [PMID: 37665679 DOI: 10.1111/tpj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiazhi Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Wen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Quan Suo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhirong Gu
- Administration of National Nature Reserve of Badagongshan, Sangzhi, 427000, Hunan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
11
|
Wei Z, Zhang H, Fang M, Lin S, Zhu M, Li Y, Jiang L, Cui T, Cui Y, Kui H, Peng L, Gou X, Li J. The Dof transcription factor COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. MOLECULAR PLANT 2023; 16:1759-1772. [PMID: 37742075 DOI: 10.1016/j.molp.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Photosynthetic efficiency is the primary determinant of crop yield, including vegetative biomass and grain yield. Manipulation of key transcription factors known to directly control photosynthetic machinery can be an effective strategy to improve photosynthetic traits. In this study, we identified an Arabidopsis gain-of-function mutant, cogwheel1-3D, that shows a significantly enlarged rosette and increased biomass compared with wild-type plants. Overexpression of COG1, a Dof transcription factor, recapitulated the phenotype of cogwheel1-3D, whereas knocking out COG1 and its six paralogs resulted in a reduced rosette size and decreased biomass. Transcriptomic and quantitative reverse transcription polymerase chain reaction analyses demonstrated that COG1 and its paralogs were required for light-induced expression of genes involved in photosynthesis. Further chromatin immunoprecipitation and electrophoretic mobility shift assays indicated that COG1 can directly bind to the promoter regions of multiple genes encoding light-harvesting antenna proteins. Physiological, biochemical, and microscopy analyses revealed that COG1 enhances photosynthetic capacity and starch accumulation in Arabidopsis rosette leaves. Furthermore, combined results of bioinformatic, genetic, and molecular experiments suggested that the functions of COG1 in increasing biomass are conserved in different plant species. These results collectively demonstrated that COG1 acts as a key regulator of plant biomass by promoting photosynthesis and starch accumulation. Manipulating COG1 to optimize photosynthetic capacity would create new strategies for future crop yield improvement.
Collapse
Affiliation(s)
- Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haoyong Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meng Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shuyuan Lin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuxiu Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Limin Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianliang Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanwei Cui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hong Kui
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
12
|
Hughes CL, Harmer SL. Myb-like transcription factors have epistatic effects on circadian clock function but additive effects on plant growth. PLANT DIRECT 2023; 7:e533. [PMID: 37811362 PMCID: PMC10557472 DOI: 10.1002/pld3.533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The functions of closely related Myb-like repressor and Myb-like activator proteins within the plant circadian oscillator have been well-studied as separate groups, but the genetic interactions between them are less clear. We hypothesized that these repressors and activators would interact additively to regulate both circadian and growth phenotypes. We used CRISPR-Cas9 to generate new mutant alleles and performed physiological and molecular characterization of plant mutants for five of these core Myb-like clock factors compared with a repressor mutant and an activator mutant. We first examined circadian clock function in plants likely null for both the repressor proteins, CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY), and the activator proteins, REVEILLE 4 (RVE4), REVEILLE (RVE6), and REVEILLE (RVE8). The rve468 triple mutant has a long period and flowers late, while cca1 lhy rve468 quintuple mutants, similarly to cca1 lhy mutants, have poor circadian rhythms and flower early. This suggests that CCA1 and LHY are epistatic to RVE4, RVE6, and RVE8 for circadian clock and flowering time function. We next examined hypocotyl elongation and rosette leaf size in these mutants. The cca1 lhy rve468 mutants have growth phenotypes intermediate between cca1 lhy and rve468 mutants, suggesting that CCA1, LHY, RVE4, RVE6, and RVE8 interact additively to regulate growth. Together, our data suggest that these five Myb-like factors interact differently in regulation of the circadian clock versus growth. More generally, the near-norm al seedling phenotypes observed in the largely arrhythmic quintuple mutant demonstrate that circadian-regulated output processes, like control of hypocotyl elongation, do not always depend upon rhythmic oscillator function.
Collapse
Affiliation(s)
| | - Stacey L. Harmer
- Department of Plant BiologyUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
13
|
Huang T, Liu H, Tao JP, Zhang JQ, Zhao TM, Hou XL, Xiong AS, You X. Low light intensity elongates period and defers peak time of photosynthesis: a computational approach to circadian-clock-controlled photosynthesis in tomato. HORTICULTURE RESEARCH 2023; 10:uhad077. [PMID: 37323229 PMCID: PMC10261901 DOI: 10.1093/hr/uhad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/09/2023] [Indexed: 06/17/2023]
Abstract
Photosynthesis is involved in the essential process of transforming light energy into chemical energy. Although the interaction between photosynthesis and the circadian clock has been confirmed, the mechanism of how light intensity affects photosynthesis through the circadian clock remains unclear. Here, we propose a first computational model for circadian-clock-controlled photosynthesis, which consists of the light-sensitive protein P, the core oscillator, photosynthetic genes, and parameters involved in the process of photosynthesis. The model parameters were determined by minimizing the cost function ( [Formula: see text]), which is defined by the errors of expression levels, periods, and phases of the clock genes (CCA1, PRR9, TOC1, ELF4, GI, and RVE8). The model recapitulates the expression pattern of the core oscillator under moderate light intensity (100 μmol m -2 s-1). Further simulation validated the dynamic behaviors of the circadian clock and photosynthetic outputs under low (62.5 μmol m-2 s-1) and normal (187.5 μmol m-2 s-1) intensities. When exposed to low light intensity, the peak times of clock and photosynthetic genes were shifted backward by 1-2 hours, the period was elongated by approximately the same length, and the photosynthetic parameters attained low values and showed delayed peak times, which confirmed our model predictions. Our study reveals a potential mechanism underlying the circadian regulation of photosynthesis by the clock under different light intensities in tomato.
Collapse
Affiliation(s)
- Ting Huang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Jian-Ping Tao
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
- The Institute of Agricultural Information, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Jia-Qi Zhang
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Tong-Min Zhao
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Institute of Vegetable Crop, Jiangsu Province Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Xi-Lin Hou
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Ai-Sheng Xiong
- College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Horticultural Crop Biology and Germplasm Creation in East China of Ministry of Agriculture and Rural Affairs Nanjing 210095, Jiangsu, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu China
| |
Collapse
|
14
|
Sorkin ML, Tzeng SC, King S, Romanowski A, Kahle N, Bindbeutel R, Hiltbrunner A, Yanovsky MJ, Evans BS, Nusinow DA. COLD REGULATED GENE 27 and 28 Antagonize the Transcriptional Activity of the RVE8/LNK1/LNK2 Circadian Complex. PLANT PHYSIOLOGY 2023:kiad210. [PMID: 37017001 DOI: 10.1093/plphys/kiad210] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 03/01/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Many molecular and physiological processes in plants occur at a specific time of day. These daily rhythms are coordinated in part by the circadian clock, a timekeeper that uses daylength and temperature to maintain rhythms of approximately 24 hours in various clock-regulated phenotypes. The circadian MYB-like transcription factor REVEILLE 8 (RVE8) interacts with its transcriptional coactivators NIGHT LIGHT INDUCIBLE AND CLOCK REGULATED 1 (LNK1) and LNK2 to promote the expression of evening-phased clock genes and cold tolerance factors. While genetic approaches have commonly been used to discover connections within the clock and between clock elements and other pathways, here we used affinity purification coupled with mass spectrometry to identify time-of-day-specific protein interactors of the RVE8-LNK1/LNK2 complex in Arabidopsis (Arabidopsis thaliana). Among the interactors of RVE8/LNK1/LNK2 were COLD REGULATED GENE 27 (COR27) and COR28, which coprecipitated in an evening-specific manner. In addition to COR27 and COR28, we found an enrichment of temperature-related interactors that led us to establish a previously uncharacterized role for LNK1 and LNK2 in temperature entrainment of the clock. We established that RVE8, LNK1, and either COR27 or COR28 form a tripartite complex in yeast (Saccharomyces cerevisiae) and that the effect of this interaction in planta serves to antagonize transcriptional activation of RVE8 target genes, potentially through mediating RVE8 protein degradation in the evening. Together, these results illustrate how a proteomic approach can be used to identify time-of-day-specific protein interactions. Discovery of the RVE8-LNK-COR protein complex indicates a previously unknown regulatory mechanism for circadian and temperature signaling pathways.
Collapse
Affiliation(s)
- Maria L Sorkin
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Stefanie King
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Andrés Romanowski
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nikolai Kahle
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | |
Collapse
|
15
|
Petersen J, Rredhi A, Szyttenholm J, Mittag M. Evolution of circadian clocks along the green lineage. PLANT PHYSIOLOGY 2022; 190:924-937. [PMID: 35325228 PMCID: PMC9516769 DOI: 10.1093/plphys/kiac141] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 05/10/2023]
Abstract
Circadian clocks govern temporal programs in the green lineage (Chloroplastida) as they do in other photosynthetic pro- and eukaryotes, bacteria, fungi, animals, and humans. Their physiological properties, including entrainment, phase responses, and temperature compensation, are well conserved. The involvement of transcriptional/translational feedback loops in the oscillatory machinery and reversible phosphorylation events are also maintained. Circadian clocks control a large variety of output rhythms in green algae and terrestrial plants, adjusting their metabolism and behavior to the day-night cycle. The angiosperm Arabidopsis (Arabidopsis thaliana) represents a well-studied circadian clock model. Several molecular components of its oscillatory machinery are conserved in other Chloroplastida, but their functions may differ. Conserved clock components include at least one member of the CIRCADIAN CLOCK ASSOCIATED1/REVEILLE and one of the PSEUDO RESPONSE REGULATOR family. The Arabidopsis evening complex members EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO are found in the moss Physcomitrium patens and in the liverwort Marchantia polymorpha. In the flagellate chlorophyte alga Chlamydomonas reinhardtii, only homologs of ELF4 and LUX (named RHYTHM OF CHLOROPLAST ROC75) are present. Temporal ROC75 expression in C. reinhardtii is opposite to that of the angiosperm LUX, suggesting different clock mechanisms. In the picoalga Ostreococcus tauri, both ELF genes are missing, suggesting that it has a progenitor circadian "green" clock. Clock-relevant photoreceptors and thermosensors vary within the green lineage, except for the CRYPTOCHROMEs, whose variety and functions may differ. More genetically tractable models of Chloroplastida are needed to draw final conclusions about the gradual evolution of circadian clocks within the green lineage.
Collapse
Affiliation(s)
- Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julie Szyttenholm
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, Jena 07743, Germany
| |
Collapse
|
16
|
Michael TP. Core circadian clock and light signaling genes brought into genetic linkage across the green lineage. PLANT PHYSIOLOGY 2022; 190:1037-1056. [PMID: 35674369 PMCID: PMC9516744 DOI: 10.1093/plphys/kiac276] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The circadian clock is conserved at both the level of transcriptional networks as well as core genes in plants, ensuring that biological processes are phased to the correct time of day. In the model plant Arabidopsis (Arabidopsis thaliana), the core circadian SHAQKYF-type-MYB (sMYB) genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and REVEILLE (RVE4) show genetic linkage with PSEUDO-RESPONSE REGULATOR 9 (PRR9) and PRR7, respectively. Leveraging chromosome-resolved plant genomes and syntenic ortholog analysis enabled tracing this genetic linkage back to Amborella trichopoda, a sister lineage to the angiosperm, and identifying an additional evolutionarily conserved genetic linkage in light signaling genes. The LHY/CCA1-PRR5/9, RVE4/8-PRR3/7, and PIF3-PHYA genetic linkages emerged in the bryophyte lineage and progressively moved within several genes of each other across an array of angiosperm families representing distinct whole-genome duplication and fractionation events. Soybean (Glycine max) maintained all but two genetic linkages, and expression analysis revealed the PIF3-PHYA linkage overlapping with the E4 maturity group locus was the only pair to robustly cycle with an evening phase, in contrast to the sMYB-PRR morning and midday phase. While most monocots maintain the genetic linkages, they have been lost in the economically important grasses (Poaceae), such as maize (Zea mays), where the genes have been fractionated to separate chromosomes and presence/absence variation results in the segregation of PRR7 paralogs across heterotic groups. The environmental robustness model is put forward, suggesting that evolutionarily conserved genetic linkages ensure superior microhabitat pollinator synchrony, while wide-hybrids or unlinking the genes, as seen in the grasses, result in heterosis, adaptation, and colonization of new ecological niches.
Collapse
Affiliation(s)
- Todd P Michael
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
17
|
Liu Y, Sun Y, Yao H, Zheng Y, Cao S, Wang H. Arabidopsis Circadian Clock Repress Phytochrome a Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:809563. [PMID: 35645991 PMCID: PMC9131076 DOI: 10.3389/fpls.2022.809563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The plants' internal circadian clock can strongly influence phytochrome signaling in response to the changes in the external light environment. Phytochrome A (phyA) is the photoreceptor that mediates various far-red (FR) light responses. phyA signaling is modulated by FHY3 and FAR1, which directly activate the transcription of FHY1 and FHL, whose products are essential for light-induced phyA nuclear accumulation and subsequent light responses. However, the mechanisms by which the clock regulates phyA signaling are poorly understood. Here, we discovered that FHY1 expression is diurnally regulated, peaking in the middle of the day. Two Arabidopsis core clock components, CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and TIMING OF CAB EXPRESSION1 (TOC1), repress FHY3/FAR1-mediated FHY1/FHL activation. Consistently, the specific expression pattern of FHY1 under diurnal conditions is altered in cca1-1, toc1-101, CCA1, and TOC1 overexpression plants. Furthermore, far-red induced gene expression and particularly nuclear accumulation of phyA are compromised in TOC1 and CCA1 overexpression seedlings. Our results therefore revealed a previously unidentified FHY1 expression pattern in diurnal cycles, which is negatively regulated by CCA1 and TOC1.
Collapse
Affiliation(s)
- Yang Liu
- College of Horticulture, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Yanzhao Sun
- College of Horticulture, China Agricultural University, Beijing, China
| | - Heng Yao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Yanyan Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Shuyuan Cao
- College of Horticulture, China Agricultural University, Beijing, China
| | - Haiyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Li C, Liu XJ, Yan Y, Alam MS, Liu Z, Yang ZK, Tao RF, Yue EK, Duan MH, Xu JH. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111145. [PMID: 35067308 DOI: 10.1016/j.plantsci.2021.111145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Flowering time (or heading date in crops) is a critical agronomic trait for rice reproduction and adaptation. The circadian clock is an endogenous oscillator that is involved in controlling photoperiodic flowering. The rice LATE ELONGATED HYPOCOTYL (OsLHY), the core oscillator component of circadian clock, is a homolog of the LHY/CCA1 in Arabidopsis. Here we showed that CRISPR/Cas9-engineered mutations in OsLHY caused late flowering in rice only under natural long-day (nLD) and short-day (nSD) conditions, but not artificial SD (10 h light/14 h dark) conditions. In the oslhy mutant, the diurnal expression of circadian clock-related genes was seriously affected under both LD and SD conditions. Furthermore, the expression of the flowering activators Ehd1, Hd3a and RFT1 was down-regulated and flowering repressors Hd1 and Ghd7 was up-regulated in the oslhy mutant under LD conditions. While the transcripts of flowering-related genes were not dramatically influenced under SD conditions. Dual-luciferase assays showed that OsLHY repressed the transcription of OsGI, Hd1, Ghd7, Hd3a, RFT1 and OsELF3, and activated the transcription of Ehd1. Moreover, the yeast one hybrid assay and electrophoretic mobility shift assay confirmed that OsLHY directly repressed OsGI, RFT1 and OsELF3 by binding to their promoters, which is consistent with that in Arabidopsis. These results suggested that the OsLHY can promote rice flowering mainly through regulating Hd1 and Ehd1.
Collapse
Affiliation(s)
- Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China
| | - Xue-Jiao Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Mohammad Shah Alam
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Zhen-Kun Yang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ruo-Fu Tao
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Er-Kui Yue
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Hua Duan
- Zhejiang Zhengjingyuan Pharmacy Chain Co., Ltd. & Hangzhou Zhengcaiyuan Pharmaceutical Co., Ltd., Hangzhou, 310021, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Shandong, 276034, China.
| |
Collapse
|
19
|
Yuan L, Yu Y, Liu M, Song Y, Li H, Sun J, Wang Q, Xie Q, Wang L, Xu X. BBX19 fine-tunes the circadian rhythm by interacting with PSEUDO-RESPONSE REGULATOR proteins to facilitate their repressive effect on morning-phased clock genes. THE PLANT CELL 2021; 33:2602-2617. [PMID: 34164694 PMCID: PMC8408442 DOI: 10.1093/plcell/koab133] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/11/2021] [Indexed: 05/19/2023]
Abstract
The core plant circadian oscillator is composed of multiple interlocked transcriptional-translational feedback loops, which synchronize endogenous diel physiological rhythms to the cyclic changes of environmental cues. PSEUDO-RESPONSE REGULATORS (PRRs) have been identified as negative components in the circadian clock, though their underlying molecular mechanisms remain largely unknown. Here, we found that a subfamily of zinc finger transcription factors, B-box (BBX)-containing proteins, have a critical role in fine-tuning circadian rhythm. We demonstrated that overexpressing Arabidopsis thaliana BBX19 and BBX18 significantly lengthened the circadian period, while the null mutation of BBX19 accelerated the circadian speed. Moreover, BBX19 and BBX18, which are expressed during the day, physically interacted with PRR9, PRR7, and PRR5 in the nucleus in precise temporal ordering from dawn to dusk, consistent with the respective protein accumulation pattern of PRRs. Our transcriptomic and genetic analysis indicated that BBX19 and PRR9, PRR7, and PRR5 cooperatively inhibited the expression of morning-phased clock genes. PRR proteins affected BBX19 recruitment to the CCA1, LHY, and RVE8 promoters. Collectively, our findings show that BBX19 interacts with PRRs to orchestrate circadian rhythms, and suggest the indispensable role of transcriptional regulators in fine-tuning the circadian clock.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hongmin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junqiu Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiao Wang
- College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiguang Xie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| | - Xiaodong Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Authors for correspondence: (X.X.), (L.W.), (Q.X.)
| |
Collapse
|
20
|
Kong Y, Han L, Liu X, Wang H, Wen L, Yu X, Xu X, Kong F, Fu C, Mysore KS, Wen J, Zhou C. The nodulation and nyctinastic leaf movement is orchestrated by clock gene LHY in Medicago truncatula. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1880-1895. [PMID: 33405366 DOI: 10.1111/jipb.12999] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/27/2020] [Indexed: 05/27/2023]
Abstract
As sessile organisms, plants perceive, respond, and adapt to the environmental changes for optimal growth and survival. The plant growth and fitness are enhanced by circadian clocks through coordination of numerous biological events. In legume species, nitrogen-fixing root nodules were developed as the plant organs specialized for symbiotic transfer of nitrogen between microsymbiont and host. Here, we report that the endogenous circadian rhythm in nodules is regulated by MtLHY in legume species Medicago truncatula. Loss of function of MtLHY leads to a reduction in the number of nodules formed, resulting in a diminished ability to assimilate nitrogen. The operation of the 24-h rhythm in shoot is further influenced by the availability of nitrogen produced by the nodules, leading to the irregulated nyctinastic leaf movement and reduced biomass in mtlhy mutants. These data shed new light on the roles of MtLHY in the orchestration of circadian oscillator in nodules and shoots, which provides a mechanistic link between nodulation, nitrogen assimilation, and clock function.
Collapse
Affiliation(s)
- Yiming Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiu Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Lizhu Wen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaolin Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | | | - Jiangqi Wen
- Noble Research Institute, LLC, Ardmore, Oklahoma, USA
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
21
|
Peng H, Phung J, Zhai Y, Neff MM. Self-transcriptional repression of the Arabidopsis NAC transcription factor ATAF2 and its genetic interaction with phytochrome A in modulating seedling photomorphogenesis. PLANTA 2020; 252:48. [PMID: 32892254 DOI: 10.1007/s00425-020-03456-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The NAC transcription factor ATAF2 suppresses its own transcription via self-promoter binding. ATAF2 genetically interacts with the circadian regulator CCA1 and phytochrome A to modulate seedling photomorphogenesis in Arabidopsis thaliana. ATAF2 (ANAC081) is a NAC (NAM, ATAF and CUC) transcription factor (TF) that participates in the regulation of disease resistance, stress tolerance and hormone metabolism in Arabidopsis thaliana. We previously reported that ATAF2 promotes Arabidopsis hypocotyl growth in a light-dependent manner via transcriptionally suppressing the brassinosteroid (BR)-inactivating cytochrome P450 genes BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1). Assays using low light intensities suggest that the photoreceptor phytochrome A (PHYA) may play a more critical role in ATAF2-regulated photomorphogenesis than phytochrome B (PHYB) and cryptochrome 1 (CRY1). In addition, ATAF2 is also regulated by the circadian clock. The core circadian TF CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) physically interacts with ATAF2 at the DNA-protein and protein-protein levels, and both differentially suppress BAS1- and SOB7-mediated BR catabolism. In this research, we show that ATAF2 can bind its own promoter as a transcriptional self-repressor. This self-feedback-suppression loop is a typical feature of multiple circadian-regulated genes. Additionally, ATAF2 and CCA1 synergistically suppress seedling photomorphogenesis as reflected by the light-dependent hypocotyl growth analysis of their single and double gene knock-out mutants. Similar fluence-rate response assays using ATAF2 and photoreceptor (PHYB, CRY1 and PHYA) knock-out mutants demonstrate that PHYA is required for ATAF2-regulated photomorphogenesis in a wide range of light intensities. Furthermore, disruption of PHYA can suppress the BR-insensitive hypocotyl-growth phenotype of ATAF2 loss-of-function seedlings in the light, but not in darkness. Collectively, our results provide a genetic interaction synopsis of the circadian-clock-photomorphogenesis-BR integration node involving ATAF2, CCA1 and PHYA.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jessica Phung
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, 99164, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
22
|
Liu T, Duan W, Chen Z, Yuan J, Xiao D, Hou X, Li Y. Enhanced photosynthetic activity in pak choi hybrids is associated with increased grana thylakoids in chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2211-2224. [PMID: 32573878 DOI: 10.1111/tpj.14893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
Increased photosynthetic activity is closely linked to heterosis in plants, but the underlying molecular mechanisms remain elusive. Pak choi (Brassica rapa ssp. chinensis) is a widely grown vegetable in Asia, and the most commercial cultivars are F1 hybrids. Here, the inbred pak choi lines WTC and 2Q, and their reciprocal F1 hybrids WQ and QW, were used to characterize the increased photosynthetic activity in these hybrids at the physiological, cellular and molecular levels. We found that the hybrids had larger leaves, with more grana thylakoids. Additionally, these hybrids had significantly increased net photosynthetic rates (Pn ) under both saturating and low irradiance conditions. These data indicate that the increased photosynthetic activity in pak choi hybrids was associated with an improved photosynthetic mechanism and larger leaves. Next, we obtained genome-wide data using transcriptome and bisulfite sequencing. Gene ontology (GO) analysis showed that the differentially expressed genes among the parents and hybrids were mostly enriched in the 'photosynthesis', 'thylakoid', and 'chloroplast' categories, indicating that the increased number of grana thylakoids contributes to the enhanced photosynthetic capacity in hybrids. Furthermore, we found that the increased number of grana thylakoids was associated with the upregulation of light-harvesting complex of photosystem II 1 (BrLhcb1). Yeast one-hybrid and transient assay showed that the BrLhcb1 promoter was directly bound by CIRCADIAN CLOCK ASSOCIATED 1 (BrCCA1), resulting in increased BrLhcb1 expression and enhanced carbon fixation in hybrids. Finally, our findings provide new insight into molecular mechanisms underlying enhanced photosynthesis in pak choi hybrids.
Collapse
Affiliation(s)
- Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Life science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zhongwen Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingping Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
23
|
Amosova AV, Samatadze TE, Mozgova GV, Kipen VN, Dubovskaya AG, Artemyeva AM, Yurkevich OY, Zoshchuk SA, Lemesh VA, Muravenko OV. Genomic Markers Associated with Cold-Hardiness in Brassica rapa L. Mol Biol 2020. [DOI: 10.1134/s0026893320040032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Liu Y, Ma M, Li G, Yuan L, Xie Y, Wei H, Ma X, Li Q, Devlin PF, Xu X, Wang H. Transcription Factors FHY3 and FAR1 Regulate Light-Induced CIRCADIAN CLOCK ASSOCIATED1 Gene Expression in Arabidopsis. THE PLANT CELL 2020; 32:1464-1478. [PMID: 32152179 PMCID: PMC7203938 DOI: 10.1105/tpc.19.00981] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
The circadian clock provides a time-keeping mechanism that synchronizes various biological activities with the surrounding environment. Arabidopsis (Arabidopsis thaliana) CIRCADIAN CLOCK ASSOCIATED1 (CCA1), encoding a MYB-related transcription factor, is a key component of the core oscillator of the circadian clock, with peak expression in the morning. The molecular mechanisms regulating the light induction and rhythmic expression of CCA1 remain elusive. In this study, we show that two phytochrome signaling proteins, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its paralog FAR-RED IMPAIRED RESPONSE1 (FAR1), are essential for the light-induced expression of CCA1 FHY3 and FAR1 directly bind to the CCA1 promoter and activate its expression, whereas PHYTOCHROME INTERACTING FACTOR5 (PIF5) directly binds to its promoter and represses its expression. Furthermore, PIF5 and TIMING OF CAB EXPRESSION1 physically interact with FHY3 and FAR1 to repress their transcriptional activation activity on CCA1 expression. These findings demonstrate that the photosensory-signaling pathway integrates with circadian oscillators to orchestrate clock gene expression. This mechanism might form the molecular basis of the regulation of the clock system by light in response to daily changes in the light environment, thus increasing plant fitness.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengdi Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Li Yuan
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanquan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, United Kingdom
| | - Xiaodong Xu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
25
|
Benevenuto RF, Seldal T, Polashock J, Moe SR, Rodriguez‐Saona C, Gillespie MAK, Hegland SJ. Molecular and ecological plant defense responses along an elevational gradient in a boreal ecosystem. Ecol Evol 2020; 10:2478-2491. [PMID: 32184995 PMCID: PMC7069305 DOI: 10.1002/ece3.6074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/28/2019] [Accepted: 01/15/2020] [Indexed: 11/06/2022] Open
Abstract
Plants have the capacity to alter their phenotype in response to environmental factors, such as herbivory, a phenomenon called phenotypic plasticity. However, little is known on how plant responses to herbivory are modulated by environmental variation along ecological gradients. To investigate this question, we used bilberry (Vaccinium myrtillus L.) plants and an experimental treatment to induce plant defenses (i.e., application of methyl jasmonate; MeJA), to observe ecological responses and gene expression changes along an elevational gradient in a boreal system in western Norway. The gradient included optimal growing conditions for bilberry in this region (ca. 500 m a.s.l.), and the plant's range limits at high (ca. 900 m a.s.l.) and low (100 m a.s.l.) elevations. Across all altitudinal sites, MeJA-treated plants allocated more resources to herbivory resistance while reducing growth and reproduction than control plants, but this response was more pronounced at the lowest elevation. High-elevation plants growing under less herbivory pressure but more resource-limiting conditions exhibited consistently high expression levels of defense genes in both MeJA-treated and untreated plants at all times, suggesting a constant state of "alert." These results suggest that plant defense responses at both the molecular and ecological levels are modulated by the combination of climate and herbivory pressure, such that plants under different environmental conditions differentially direct the resources available to specific antiherbivore strategies. Our findings are important for understanding the complex impact of future climate changes on plant-herbivore interactions, as this is a major driver of ecosystem functioning and biodiversity.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Tarald Seldal
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| | - James Polashock
- Genetic Improvement of Fruits and Vegetables LabPhilip E. Marucci Center for Blueberry and Cranberry ResearchUnited States Department of Agriculture‐Agricultural Research ServiceChatsworthNJUSA
| | - Stein R. Moe
- Faculty of Environmental Sciences and Natural Resource ManagementNorwegian University of Life SciencesÅsNorway
| | - Cesar Rodriguez‐Saona
- Department of EntomologyPhilip E. Marucci Center for Blueberry and Cranberry ResearchRutgersThe State University of New JerseyChatsworthNJUSA
| | - Mark A. K. Gillespie
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| | - Stein Joar Hegland
- Faculty of Engineering and ScienceWestern Norway University of Applied SciencesSogndalNorway
| |
Collapse
|
26
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Peng H, Neff MM. CIRCADIAN CLOCK ASSOCIATED 1 and ATAF2 differentially suppress cytochrome P450-mediated brassinosteroid inactivation. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:970-985. [PMID: 31639820 PMCID: PMC6977193 DOI: 10.1093/jxb/erz468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 10/15/2019] [Indexed: 05/20/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid hormones regulating plant growth and development. Since BRs do not undergo transport among plant tissues, their metabolism is tightly regulated by transcription factors (TFs) and feedback loops. BAS1 (CYP734A1, formerly CYP72B1) and SOB7 (CYP72C1) are two BR-inactivating cytochrome P450s identified in Arabidopsis thaliana. We previously found that a TF ATAF2 (ANAC081) suppresses BAS1 and SOB7 expression by binding to the Evening Element (EE) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)-binding site (CBS) on their promoters. Both the EE and CBS are known binding targets of the circadian regulatory protein CCA1. Here, we confirm that CCA1 binds the EE and CBS motifs on BAS1 and SOB7 promoters, respectively. Elevated accumulations of BAS1 and SOB7 transcripts in the CCA1 null mutant cca1-1 indicate that CCA1 is a repressor of their expression. When compared with either cca1-1 or the ATAF2 null mutant ataf2-2, the cca1-1 ataf2-2 double mutant shows higher SOB7 transcript accumulations and a stronger BR-insensitive phenotype of hypocotyl elongation in white light. CCA1 interacts with ATAF2 at both DNA-protein and protein-protein levels. ATAF2, BAS1, and SOB7 are all circadian regulated with distinct expression patterns. These results demonstrate that CCA1 and ATAF2 differentially suppress BAS1- and SOB7-mediated BR inactivation.
Collapse
Affiliation(s)
- Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Michael M Neff
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| |
Collapse
|
28
|
Lei J, Jayaprakasha GK, Singh J, Uckoo R, Borrego EJ, Finlayson S, Kolomiets M, Patil BS, Braam J, Zhu-Salzman K. CIRCADIAN CLOCK-ASSOCIATED1 Controls Resistance to Aphids by Altering Indole Glucosinolate Production. PLANT PHYSIOLOGY 2019; 181:1344-1359. [PMID: 31527087 PMCID: PMC6836836 DOI: 10.1104/pp.19.00676] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/04/2019] [Indexed: 05/07/2023]
Abstract
CIRCADIAN CLOCK-ASSOCIATED1 (CCA1), a well-known central circadian clock regulator, coordinates plant responses to environmental challenges. Its daily rhythmic expression in Arabidopsis (Arabidopsis thaliana) confers host resistance to the caterpillar Trichoplusia ni However, it is unclear whether CCA1 plays a role in defense against phloem sap-feeding aphids. In this study, we showed that green peach aphid (Myzus persicae) displayed an intrinsic circadian feeding rhythm. Under constant light, wild-type Columbia-0 (Col-0) Arabidopsis plants coentrained with aphids in the same light/dark cycles exhibited greater antixenotic activity than plants preentrained in the opposite cycle from the aphids. Consistently, circadian mutants cca1-1, cca1-11, lhy-21, ztl-1, ztl-4, and lux-2 suffered more severe damage than Col-0 plants when infested by aphids, suggesting that the Arabidopsis circadian clock plays a defensive role. However, the arrhythmic CCA1 overexpression line (CCA1-OX) displayed strong antixenotic and antibiotic activities despite its loss of circadian regulation. Aphids feeding on CCA1-OX plants exhibited lower reproduction and smaller body size and weight than those on Col-0. Apparently, CCA1 regulates both clock-dependent and -independent defense responses. Systematic investigation based on bioinformatics analyses indicated that resistance to aphids in CCA1-OX plants was due primarily to heightened basal indole glucosinolate levels. Interestingly, aphid feeding induced alternatively spliced intron-retaining CCA1a/b transcripts, which are normally expressed at low levels, whereas expression of the major fully spliced CCA1 transcript remained largely unchanged. We hypothesize that posttranscriptional modulation of CCA1 expression upon aphid infestation maximizes the potential of circadian-mediated defense and stress tolerance while ensuring normal plant development.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| | | | - Jashbir Singh
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Rammohan Uckoo
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Scott Finlayson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843
| | - Mike Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
| | - Janet Braam
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas 77843
- Vegetable and Fruit Improvement Center, Texas A&M University, College Station, Texas 77843
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
29
|
Yamaura S, Yamauchi Y, Makihara M, Yamashino T, Ishikawa A. CCA1 and LHY contribute to nonhost resistance to Pyricularia oryzae (syn. Magnaporthe oryzae) in Arabidopsis thaliana. Biosci Biotechnol Biochem 2019; 84:76-84. [PMID: 31478783 DOI: 10.1080/09168451.2019.1660612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The circadian clock enables plants to adapt to their environment and control numerous physiological processes, including plant-pathogen interactions. However, it is unknown if the circadian clock controls nonhost resistance (NHR) in plants. To find out, we analyzed microarray data with the web-based tool DIURNAL to reveal that NHR-related genes show rhythmic expression patterns in the absence of a pathogen challenge. Our clock mutant analyses found that cca1-1 lhy-11 double mutant showed compromised NHR to Pyricularia oryzae, suggesting that two components of the circadian clock, CCA1 and LHY, are involved in regulating penetration resistance in Arabidopsis thaliana. By analyzing pen2 double mutants, we revealed that CCA1 contributes to time-of-day-dependent penetration resistance as a positive regulator and that LHY regulates post-penetration resistance as a positive regulator. Taken together, our results suggest that the circadian clock regulates the time-of-day-dependent NHR to P. oryzae and thus enables A. thaliana to counteract pathogen attacks.Abbreviations: EE: evening element; ETI: effector-triggered immunity; NHR: nonhost resistance; PAMP: pathogen-associated molecular pattern; PTI: PAMP-triggered immunity; SAR: systemic acquired resistance.
Collapse
Affiliation(s)
- Saaya Yamaura
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Yuri Yamauchi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Motoi Makihara
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Atsushi Ishikawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan
| |
Collapse
|
30
|
Srivastava D, Shamim M, Kumar M, Mishra A, Maurya R, Sharma D, Pandey P, Singh K. Role of circadian rhythm in plant system: An update from development to stress response. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2019; 162:256-271. [DOI: 10.1016/j.envexpbot.2019.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
31
|
Contribution of time of day and the circadian clock to the heat stress responsive transcriptome in Arabidopsis. Sci Rep 2019; 9:4814. [PMID: 30886204 PMCID: PMC6423321 DOI: 10.1038/s41598-019-41234-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
In Arabidopsis, a large subset of heat responsive genes exhibits diurnal or circadian oscillations. However, to what extent the dimension of time and/or the circadian clock contribute to heat stress responses remains largely unknown. To determine the direct contribution of time of day and/or the clock to differential heat stress responses, we probed wild-type and mutants of the circadian clock genes CCA1, LHY, PRR7, and PRR9 following exposure to heat (37 °C) and moderate cold (10 °C) in the early morning (ZT1) and afternoon (ZT6). Thousands of genes were differentially expressed in response to temperature, time of day, and/or the clock mutation. Approximately 30% more genes were differentially expressed in the afternoon compared to the morning, and heat stress significantly perturbed the transcriptome. Of the DEGs (~3000) specifically responsive to heat stress, ~70% showed time of day (ZT1 or ZT6) occurrence of the transcriptional response. For the DEGs (~1400) that are shared between ZT1 and ZT6, we observed changes to the magnitude of the transcriptional response. In addition, ~2% of all DEGs showed differential responses to temperature stress in the clock mutants. The findings in this study highlight a significant role for time of day in the heat stress responsive transcriptome, and the clock through CCA1 and LHY, appears to have a more profound role than PRR7 and PRR9 in modulating heat stress responses during the day. Our results emphasize the importance of considering the dimension of time in studies on abiotic stress responses in Arabidopsis.
Collapse
|
32
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
33
|
Benevenuto RF, Seldal T, Hegland SJ, Rodriguez-Saona C, Kawash J, Polashock J. Transcriptional profiling of methyl jasmonate-induced defense responses in bilberry (Vaccinium myrtillus L.). BMC PLANT BIOLOGY 2019; 19:70. [PMID: 30755189 PMCID: PMC6373060 DOI: 10.1186/s12870-019-1650-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/14/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Bilberry (Vaccinium myrtillus L.) is one of the most abundant wild berries in the Northern European ecosystems. This species plays an important ecological role as a food source for many vertebrate and invertebrate herbivores. It is also well-recognized for its bioactive compounds, particularly substances involved in natural defenses against herbivory. These defenses are known to be initiated by leaf damage (e.g. chewing by insects) and mediated by activation of the jasmonic acid (JA) signaling pathway. This pathway can be activated by exogenous application of methyl jasmonate (MeJA), the volatile derivative of JA, which is often used to stimulate plant defense responses in studies of plant-herbivore interactions at ecological, biochemical, and molecular organismal levels. As a proxy for herbivore damage, wild V. myrtillus plants were treated in the field with MeJA and changes in gene expression were compared to untreated plants. RESULTS The de novo transcriptome assembly consisted of 231,887 unigenes. Nearly 71% of the unigenes were annotated in at least one of the databases interrogated. Differentially expressed genes (DEGs), between MeJA-treated and untreated control bilberry plants were identified using DESeq. A total of 3590 DEGs were identified between the treated and control plants, with 2013 DEGs upregulated and 1577 downregulated. The majority of the DEGs identified were associated with primary and secondary metabolism pathways in plants. DEGs associated with growth (e.g. those encoding photosynthesis-related components) and reproduction (e.g. flowering control genes) were frequently down-regulated while those associated with defense (e.g. encoding enzymes involved in biosynthesis of flavonoids, lignin compounds, and deterrent/repellent volatile organic compounds) were up-regulated in the MeJA treated plants. CONCLUSIONS Ecological studies are often limited by controlled conditions to reduce the impact of environmental effects. The results from this study support the hypothesis that bilberry plants, growing in natural conditions, shift resources from growth and reproduction to defenses while in a MeJA-induced state, as when under insect attack. This study highlights the occurrence of this trade-off at the transcriptional level in a realistic field scenario and supports published field observations wherein plant growth is retarded and defenses are upregulated.
Collapse
Affiliation(s)
- Rafael Fonseca Benevenuto
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Tarald Seldal
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Stein Joar Hegland
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway
| | - Cesar Rodriguez-Saona
- Rutgers, Department of Entomology, Philip E. Marucci Center for Blueberry and Cranberry Research, The State University of New Jersey, Chatsworth, NJ USA
| | - Joseph Kawash
- Genetic Improvement of Fruits and Vegetables Lab, Philip E. Marucci Center for Blueberry and Cranberry Research, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ USA
| | - James Polashock
- Genetic Improvement of Fruits and Vegetables Lab, Philip E. Marucci Center for Blueberry and Cranberry Research, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ USA
| |
Collapse
|
34
|
PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent. Genes (Basel) 2018; 9:genes9120628. [PMID: 30551669 PMCID: PMC6316277 DOI: 10.3390/genes9120628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 11/17/2022] Open
Abstract
Studies are increasingly showing that metabolic and circadian (~24 h) pathways are strongly interconnected, with the circadian system regulating the metabolic state of the cell, and metabolic products feeding back to entrain the oscillator. In plants, probably the most significant impact of the circadian system on metabolism is in its reciprocal regulation of photosynthesis; however, the pathways by which this occurs are still poorly understood. We have previously shown that members of the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR (PIF) family are involved in the photosynthate entrainment of the circadian oscillator. In this paper, using Arabidopsis mutants and overexpression lines, we examine how temperature and light quality affect PIF-mediated sucrose signaling to the oscillator and examine the contributions of individual PIF members. Our results also show that the quality of light is important for PIF signaling, with red and blue lights having the opposite effects, and that temperature affects PIF-mediated sucrose signaling. We propose the light sensitivity of PIF-mediated sucrose entrainment of the oscillator may be important in enabling plants to distinguish between sucrose produced de novo from photosynthesis during the day and the sucrose products of starch degradation at the end of the night.
Collapse
|
35
|
Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proc Natl Acad Sci U S A 2018; 115:7147-7152. [PMID: 29915068 DOI: 10.1073/pnas.1805524115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although circadian oscillators in diverse eukaryotes all depend on interlinked transcriptional feedback loops, specific components are not conserved across higher taxa. Moreover, the circadian network in the model plant Arabidopsis thaliana is notably more complex than those found in animals and fungi. Here, we combine mathematical modeling and experimental approaches to investigate the functions of two classes of Myb-like transcription factors that antagonistically regulate common target genes. Both CCA1/LHY- and RVE8-clade factors bind directly to the same cis-element, but the former proteins act primarily as repressors, while the latter act primarily as activators of gene expression. We find that simulation of either type of loss-of-function mutant recapitulates clock phenotypes previously reported in mutant plants, while simulated simultaneous loss of both type of factors largely rescues circadian phase at the expense of rhythmic amplitude. In accord with this prediction, we find that plants mutant for both activator- and repressor-type Mybs have near-normal circadian phase and period but reduced rhythmic amplitude. Although these mutants exhibit robust rhythms when grown at mild temperatures, they are largely arrhythmic at physiologically relevant but nonoptimal temperatures. LHY- and RVE8-type Mybs are found in separate clades across the land plant lineage and even in some unicellular green algae, suggesting that they both may have functioned in even the earliest arising plant circadian oscillators. Our data suggest that the complexity of the plant circadian network may have arisen to provide rhythmic robustness across the range of environmental extremes to which plants, as sessile organisms, are regularly subjected.
Collapse
|
36
|
Song Y, Jiang Y, Kuai B, Li L. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:280. [PMID: 29559987 PMCID: PMC5845730 DOI: 10.3389/fpls.2018.00280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 05/20/2023]
Abstract
Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.
Collapse
|
37
|
Hassidim M, Dakhiya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. CIRCADIAN CLOCK ASSOCIATED1 ( CCA1) and the Circadian Control of Stomatal Aperture. PLANT PHYSIOLOGY 2017; 175:1864-1877. [PMID: 29084902 PMCID: PMC5717738 DOI: 10.1104/pp.17.01214] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/23/2017] [Indexed: 05/18/2023]
Abstract
The endogenous circadian (∼24 h) system allows plants to anticipate and adapt to daily environmental changes. Stomatal aperture is one of the many processes under circadian control; stomatal opening and closing occurs under constant conditions, even in the absence of environmental cues. To understand the significance of circadian-mediated anticipation in stomatal opening, we have generated SGC (specifically guard cell) Arabidopsis (Arabidopsis thaliana) plants in which the oscillator gene CIRCADIAN CLOCK ASSOCIATED1 (CCA1) was overexpressed under the control of the guard-cell-specific promoter, GC1. The SGC plants showed a loss of ability to open stomata in anticipation of daily dark-to-light changes and of circadian-mediated stomatal opening in constant light. We observed that under fully watered and mild drought conditions, SGC plants outperform wild type with larger leaf area and biomass. To investigate the molecular basis for circadian control of guard cell aperture, we used large-scale qRT-PCR to compare circadian oscillator gene expression in guard cells compared with the "average" whole-leaf oscillator and examined gene expression and stomatal aperture in several lines of plants with misexpressed CCA1 Our results show that the guard cell oscillator is different from the average plant oscillator. Moreover, the differences in guard cell oscillator function may be important for the correct regulation of photoperiod pathway genes that have previously been reported to control stomatal aperture. We conclude by showing that CONSTANS and FLOWERING LOCUS T, components of the photoperiod pathway that regulate flowering time, also control stomatal aperture in a daylength-dependent manner.
Collapse
Affiliation(s)
- Miriam Hassidim
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Yuri Dakhiya
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Adi Turjeman
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ekaterina Shor
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Ariane Anidjar
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Keren Goldberg
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| | - Rachel M Green
- Department of Plant and Environmental Sciences, The Silberman Institute for Life Sciences, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
38
|
RNA-Seq Analysis of Plant Maturity in Crested Wheatgrass (Agropyron cristatum L.). Genes (Basel) 2017; 8:genes8110291. [PMID: 29068370 PMCID: PMC5704204 DOI: 10.3390/genes8110291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023] Open
Abstract
Crested wheatgrass (Agropyron cristatum L.) breeding programs aim to develop later maturing cultivars for extending early spring grazing in Western Canada. Plant maturity is a complex genetic trait, and little is known about genes associated with late maturity in this species. An attempt was made using RNA-Seq to profile the transcriptome of crested wheatgrass maturity and to analyze differentially expressed genes (DEGs) between early and late maturing lines. Three cDNA libraries for each line were generated by sampling leaves at the stem elongation stage, spikes at the boot and anthesis stages. A total of 75,218,230 and 74,015,092 clean sequence reads were obtained for early and late maturing lines, respectively. De novo assembly of all sequence reads generated 401,587 transcripts with a mean length of 546 bp and N50 length of 691 bp. Out of 13,133 DEGs detected, 22, 17, and eight flowering related DEGs were identified for the three stages, respectively. Twelve DEGs, including nine flowering related DEGs at the stem elongation stage were further confirmed by qRT-PCR. The analysis of homologous genes of the photoperiod pathway revealed their lower expression in the late maturing line at the stem elongation stage, suggesting that their differential expression contributed to late maturity in crested wheatgrass.
Collapse
|
39
|
Shor E, Paik I, Kangisser S, Green R, Huq E. PHYTOCHROME INTERACTING FACTORS mediate metabolic control of the circadian system in Arabidopsis. THE NEW PHYTOLOGIST 2017; 215:217-228. [PMID: 28440582 PMCID: PMC5458605 DOI: 10.1111/nph.14579] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/15/2017] [Indexed: 05/18/2023]
Abstract
The circadian (c. 24 h) system has a central role in regulating the timing and coordination of photosynthesis, and in turn photosynthesis and photosynthetic products which are controlled by the circadian clock feedback to affect the circadian oscillator that generates rhythms. However, little is known about the mechanism(s) by which this feedback occurs. One group of likely candidates for signal transduction to the circadian clock are the PHYTOCHROME INTERACTING FACTOR (PIF) family of transcription factors which have been shown to be involved in numerous signaling pathways in Arabidopsis. Yet despite evidence that some PIF genes are under circadian control and bind promoter motifs present in circadian genes, until now PIFs have not been shown to affect the circadian system. Using a range of techniques, we have examined how circadian rhythms are affected in higher order pif mutants and the mechanisms by which PIFs regulate signaling to the circadian clock. We show that PIFs mediate metabolic signals to the circadian oscillator and that sucrose directly affects PIF binding to the promoters of key circadian oscillator genes in vivo that may entrain the oscillator. Our results provide a basis for understanding the mechanism for metabolic signaling to the circadian system in Arabidopsis.
Collapse
Affiliation(s)
- Ekaterina Shor
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
| | - Inyup Paik
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, U.S.A
| | - Shlomit Kangisser
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
| | - Rachel Green
- Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem, 91904, Israel
- Corresponding authors: Rachel Green, Department of Plant and Environmental Sciences, Hebrew University, Jerusalem, Israel, Tel: + 972 6585391, Fax: +972 6584425, . Enamul Huq, University of Texas at Austin, Biological Laboratories 404/A6700, 205 W. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-232-3402,
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, U.S.A
- Corresponding authors: Rachel Green, Department of Plant and Environmental Sciences, Hebrew University, Jerusalem, Israel, Tel: + 972 6585391, Fax: +972 6584425, . Enamul Huq, University of Texas at Austin, Biological Laboratories 404/A6700, 205 W. 24 St., Austin, TX 78712. Tel: 512-471-9848, Fax: 512-232-3402,
| |
Collapse
|
40
|
Dobisova T, Hrdinova V, Cuesta C, Michlickova S, Urbankova I, Hejatkova R, Zadnikova P, Pernisova M, Benkova E, Hejatko J. Light Controls Cytokinin Signaling via Transcriptional Regulation of Constitutively Active Sensor Histidine Kinase CKI1. PLANT PHYSIOLOGY 2017; 174:387-404. [PMID: 28292856 PMCID: PMC5411129 DOI: 10.1104/pp.16.01964] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/04/2017] [Indexed: 05/07/2023]
Abstract
In plants, the multistep phosphorelay (MSP) pathway mediates a range of regulatory processes, including those activated by cytokinins. The cross talk between cytokinin response and light has been known for a long time. However, the molecular mechanism underlying the interaction between light and cytokinin signaling remains elusive. In the screen for upstream regulators we identified a LONG PALE HYPOCOTYL (LPH) gene whose activity is indispensable for spatiotemporally correct expression of CYTOKININ INDEPENDENT1 (CKI1), encoding the constitutively active sensor His kinase that activates MSP signaling. lph is a new allele of HEME OXYGENASE1 (HY1) that encodes the key protein in the biosynthesis of phytochromobilin, a cofactor of photoconvertible phytochromes. Our analysis confirmed the light-dependent regulation of the CKI1 expression pattern. We show that CKI1 expression is under the control of phytochrome A (phyA), functioning as a dual (both positive and negative) regulator of CKI1 expression, presumably via the phyA-regulated transcription factors (TF) PHYTOCHROME INTERACTING FACTOR3 and CIRCADIAN CLOCK ASSOCIATED1. Changes in CKI1 expression observed in lph/hy1-7 and phy mutants correlate with misregulation of MSP signaling, changed cytokinin sensitivity, and developmental aberrations that were previously shown to be associated with cytokinin and/or CKI1 action. Besides that, we demonstrate a novel role of phyA-dependent CKI1 expression in the hypocotyl elongation and hook development during skotomorphogenesis. Based on these results, we propose that the light-dependent regulation of CKI1 provides a plausible mechanistic link underlying the well-known interaction between light- and cytokinin-controlled plant development.
Collapse
Affiliation(s)
- Tereza Dobisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Vendula Hrdinova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Candela Cuesta
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Sarka Michlickova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Ivana Urbankova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Romana Hejatkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Petra Zadnikova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Marketa Pernisova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Eva Benkova
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, CZ-62500, Brno, Czech Republic (T.D., V.H., S.M., I.U., R.H., P.Z., M.P., E.B., J.H.); and Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria (C.C., P.Z., E.B.)
| |
Collapse
|
41
|
Gray JA, Shalit-Kaneh A, Chu DN, Hsu PY, Harmer SL. The REVEILLE Clock Genes Inhibit Growth of Juvenile and Adult Plants by Control of Cell Size. PLANT PHYSIOLOGY 2017; 173:2308-2322. [PMID: 28254761 PMCID: PMC5373068 DOI: 10.1104/pp.17.00109] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 05/25/2023]
Abstract
The circadian clock is a complex regulatory network that enhances plant growth and fitness in a constantly changing environment. In Arabidopsis (Arabidopsis thaliana), the clock is composed of numerous regulatory feedback loops in which REVEILLE8 (RVE8) and its homologs RVE4 and RVE6 act in a partially redundant manner to promote clock pace. Here, we report that the remaining members of the RVE8 clade, RVE3 and RVE5, play only minor roles in the regulation of clock function. However, we find that RVE8 clade proteins have unexpected functions in the modulation of light input to the clock and the control of plant growth at multiple stages of development. In seedlings, these proteins repress hypocotyl elongation in a daylength- and sucrose-dependent manner. Strikingly, adult rve4 6 8 and rve3 4 5 6 8 mutants are much larger than wild-type plants, with both increased leaf area and biomass. This size phenotype is associated with a faster growth rate and larger cell size and is not simply due to a delay in the transition to flowering. Gene expression and epistasis analysis reveal that the growth phenotypes of rve mutants are due to the misregulation of PHYTOCHROME INTERACTING FACTOR4 (PIF4) and PIF5 expression. Our results show that even small changes in PIF gene expression caused by the perturbation of clock gene function can have large effects on the growth of adult plants.
Collapse
Affiliation(s)
- Jennifer A Gray
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Akiva Shalit-Kaneh
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Dalena Nhu Chu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Polly Yingshan Hsu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| | - Stacey L Harmer
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616
| |
Collapse
|
42
|
Munusamy P, Zolotarov Y, Meteignier LV, Moffett P, Strömvik MV. De novo computational identification of stress-related sequence motifs and microRNA target sites in untranslated regions of a plant translatome. Sci Rep 2017; 7:43861. [PMID: 28276452 PMCID: PMC5343461 DOI: 10.1038/srep43861] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/31/2017] [Indexed: 01/24/2023] Open
Abstract
Gene regulation at the transcriptional and translational level leads to diversity in phenotypes and function in organisms. Regulatory DNA or RNA sequence motifs adjacent to the gene coding sequence act as binding sites for proteins that in turn enable or disable expression of the gene. Whereas the known DNA and RNA binding proteins range in the thousands, only a few motifs have been examined. In this study, we have predicted putative regulatory motifs in groups of untranslated regions from genes regulated at the translational level in Arabidopsis thaliana under normal and stressed conditions. The test group of sequences was divided into random subgroups and subjected to three de novo motif finding algorithms (Seeder, Weeder and MEME). In addition to identifying sequence motifs, using an in silico tool we have predicted microRNA target sites in the 3′ UTRs of the translationally regulated genes, as well as identified upstream open reading frames located in the 5′ UTRs. Our bioinformatics strategy and the knowledge generated contribute to understanding gene regulation during stress, and can be applied to disease and stress resistant plant development.
Collapse
Affiliation(s)
- Prabhakaran Munusamy
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Yevgen Zolotarov
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | | | - Peter Moffett
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| |
Collapse
|
43
|
Dakhiya Y, Hussien D, Fridman E, Kiflawi M, Green R. Correlations between Circadian Rhythms and Growth in Challenging Environments. PLANT PHYSIOLOGY 2017; 173:1724-1734. [PMID: 28153924 PMCID: PMC5338651 DOI: 10.1104/pp.17.00057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/25/2017] [Indexed: 05/25/2023]
Abstract
In plants, the circadian system controls a plethora of processes, many with agronomic importance, such as photosynthesis, photoprotection, stomatal opening, and photoperiodic development, as well as molecular processes, such as gene expression. It has been suggested that modifying circadian rhythms may be a means to manipulate crops to develop improved plants for agriculture. However, there is very little information on how the clock influences the performance of crop plants. We used a noninvasive, high-throughput technique, based on prompt chlorophyll fluorescence, to measure circadian rhythms and demonstrated that the technique works in a range of plants. Using fluorescence, we analyzed circadian rhythms in populations of wild barley (Hordeum vulgare ssp. spontaneum) from widely different ecogeographical locations in the Southern Levant part of the Fertile Crescent, an area with a high proportion of the total genetic variation of wild barley. Our results show that there is variability for circadian traits in the wild barley lines. We observed that circadian period lengths were correlated with temperature and aspect at the sites of origin of the plants, while the amplitudes of the rhythms were correlated with soil composition. Thus, different environmental parameters may exert selection on circadian rhythms.
Collapse
Affiliation(s)
- Yuri Dakhiya
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Duaa Hussien
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Eyal Fridman
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Moshe Kiflawi
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.)
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| | - Rachel Green
- Department of Plant and Environmental Sciences, Silberman Institute for Life Sciences, Hebrew University, Givat Ram, Jerusalem 91904, Israel (D.H., Y.D., R.G.);
- Plant Sciences Institute, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel (E.F.); and
- Department of Life Sciences, Ben Gurion University, Beer Sheva, Interuniversity Institute for Marine Sciences, Eilat 8810, Israel (M.K.)
| |
Collapse
|
44
|
Kiełbowicz-Matuk A, Czarnecka J, Banachowicz E, Rey P, Rorat T. Solanum tuberosum ZPR1 encodes a light-regulated nuclear DNA-binding protein adjusting the circadian expression of StBBX24 to light cycle. PLANT, CELL & ENVIRONMENT 2017; 40:424-440. [PMID: 27928822 DOI: 10.1111/pce.12875] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
ZPR1 proteins belong to the C4-type of zinc finger coordinators known in animal cells to interact with other proteins and participate in cell growth and proliferation. In contrast, the current knowledge regarding plant ZPR1 proteins is very scarce. Here, we identify a novel potato nuclear factor belonging to this family and named StZPR1. StZPR1 is specifically expressed in photosynthetic organs during the light period, and the ZPR1 protein is located in the nuclear chromatin fraction. From modelling and experimental analyses, we reveal the StZPR1 ability to bind the circadian DNA cis motif 'CAACAGCATC', named CIRC and present in the promoter of the clock-controlled double B-box StBBX24 gene, the expression of which peaks in the middle of the day. We found that transgenic lines silenced for StZPR1 expression still display a 24 h period for the oscillation of StBBX24 expression but delayed by 4 h towards the night. Importantly, other BBX genes exhibit altered circadian regulation in these lines. Our data demonstrate that StZPR1 allows fitting of the StBBX24 circadian rhythm to the light period and provide evidence that ZPR1 is a novel clock-associated protein in plants necessary for the accurate rhythmic expression of specific circadian-regulated genes.
Collapse
Affiliation(s)
| | - Jagoda Czarnecka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| | - Ewa Banachowicz
- Molecular Biophysics Department, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznań, Poland
| | - Pascal Rey
- CEA, DRF, BIAM, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, F-13108, France
- CNRS, UMR 7265 Biologie Végétale & Microbiologie Environnementale, Saint-Paul-lez-Durance, F-13108, France
- Aix-Marseille Université, Saint-Paul-lez-Durance, F-13108, France
| | - Tadeusz Rorat
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
45
|
Cantalapiedra CP, García-Pereira MJ, Gracia MP, Igartua E, Casas AM, Contreras-Moreira B. Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. FRONTIERS IN PLANT SCIENCE 2017; 8:647. [PMID: 28507554 PMCID: PMC5410667 DOI: 10.3389/fpls.2017.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Drought causes important losses in crop production every season. Improvement for drought tolerance could take advantage of the diversity held in germplasm collections, much of which has not been incorporated yet into modern breeding. Spanish landraces constitute a promising resource for barley breeding, as they were widely grown until last century and still show good yielding ability under stress. Here, we study the transcriptome expression landscape in two genotypes, an outstanding Spanish landrace-derived inbred line (SBCC073) and a modern cultivar (Scarlett). Gene expression of adult plants after prolonged stresses, either drought or drought combined with heat, was monitored. Transcriptome of mature leaves presented little changes under severe drought, whereas abundant gene expression changes were observed under combined mild drought and heat. Developing inflorescences of SBCC073 exhibited mostly unaltered gene expression, whereas numerous changes were found in the same tissues for Scarlett. Genotypic differences in physiological traits and gene expression patterns confirmed the different behavior of landrace SBCC073 and cultivar Scarlett under abiotic stress, suggesting that they responded to stress following different strategies. A comparison with related studies in barley, addressing gene expression responses to drought, revealed common biological processes, but moderate agreement regarding individual differentially expressed transcripts. Special emphasis was put in the search of co-expressed genes and underlying common regulatory motifs. Overall, 11 transcription factors were identified, and one of them matched cis-regulatory motifs discovered upstream of co-expressed genes involved in those responses.
Collapse
Affiliation(s)
- Carlos P. Cantalapiedra
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María J. García-Pereira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María P. Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Bruno Contreras-Moreira
| |
Collapse
|
46
|
Abstract
Plants have the ability to respond to seasonal environmental variations by monitoring day length to initiate flowering. The transition from vegetative to the reproductive stage is the critical developmental switch in flowering plants to ensure optimal fitness and/or yield. It has been previously reported that B-BOX32 (BBX32) has the potential to increase grain yield when ectopically expressed in soybean. In the present study, we performed a detailed molecular characterization of the Arabidopsis B-box domain gene BBX32 We showed that the circadian clock in Arabidopsis regulates BBX32 and expressed in the early morning. To understand the molecular mechanism of BBX32 regulation, we performed a large-scale yeast two-hybrid screen and identified CONSTANS-LIKE 3 (COL3)/BBX4 as one of its interacting protein partners. Using different genetic and biochemical assays, we have validated this interaction and shown that COL3 targets FT in the presence of BBX32 to regulate the flowering pathway. Based on these findings, we hypothesized that this BBX32-COL3 module could be an additional regulatory mechanism affecting the reproductive development in Arabidopsis that could be translated to crops for increased agricultural productivity.
Collapse
|
47
|
Li X, Ma D, Lu SX, Hu X, Huang R, Liang T, Xu T, Tobin EM, Liu H. Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. THE PLANT CELL 2016; 28:2755-2769. [PMID: 27837007 PMCID: PMC5155342 DOI: 10.1105/tpc.16.00354] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/18/2016] [Accepted: 11/11/2016] [Indexed: 05/18/2023]
Abstract
Light and temperature are two key environmental signals that profoundly affect plant growth and development, but underlying molecular mechanisms of how light and temperature signals affect the circadian clock are largely unknown. Here, we report that COR27 and COR28 are regulated not only by low temperatures but also by light signals. COR27 and COR28 are negative regulators of freezing tolerance but positive regulators of flowering, possibly representing a trade-off between freezing tolerance and flowering. Furthermore, loss-of-function mutations in COR27 and COR28 result in period lengthening of various circadian output rhythms and affect central clock gene expression. Also, the cor27 cor28 double mutation affects the pace of the circadian clock. Additionally, COR27 and COR28 are direct targets of CCA1, which represses their transcription via chromatin binding. Finally, we report that COR27 and COR28 bind to the chromatin of TOC1 and PRR5 to repress their transcription, suggesting that their effects on rhythms are in part due to their regulation of TOC1 and PRR5 These data demonstrate that blue light and low temperature-regulated COR27 and COR28 regulate the circadian clock as well as freezing tolerance and flowering time.
Collapse
Affiliation(s)
- Xu Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, P.R. China
| | - Dingbang Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, P.R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Sheen X Lu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Xinyi Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, P.R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Rongfeng Huang
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 201602 Shanghai, P.R. China
| | - Tong Liang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, P.R. China
- University of Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Tongda Xu
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai Center for Plant Stress Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 201602 Shanghai, P.R. China
| | - Elaine M Tobin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095
| | - Hongtao Liu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200032 Shanghai, P.R. China
| |
Collapse
|
48
|
Marshall CM, Tartaglio V, Duarte M, Harmon FG. The Arabidopsis sickle Mutant Exhibits Altered Circadian Clock Responses to Cool Temperatures and Temperature-Dependent Alternative Splicing. THE PLANT CELL 2016; 28:2560-2575. [PMID: 27624757 PMCID: PMC5134976 DOI: 10.1105/tpc.16.00223] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/29/2016] [Accepted: 09/08/2016] [Indexed: 05/20/2023]
Abstract
The circadian clock allows plants to anticipate and respond to daily changes in ambient temperature. Mechanisms establishing the timing of circadian rhythms in Arabidopsis thaliana through temperature entrainment remain unclear. Also incompletely understood is the temperature compensation mechanism that maintains consistent period length within a range of ambient temperatures. A genetic screen for Arabidopsis mutants affecting temperature regulation of the PSEUDO-RESPONSE REGULATOR7 promoter yielded a novel allele of the SICKLE (SIC) gene. This mutant, sic-3, and the existing sic-1 mutant both exhibit low-amplitude or arrhythmic expression of core circadian clock genes under cool ambient temperature cycles, but not under light-dark entrainment. sic mutants also lengthen free running period in a manner consistent with impaired temperature compensation. sic mutant alleles accumulate LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) splice variants, among other alternatively spliced transcripts, which is exacerbated by cool temperatures. The cca1-1 lhy-20 double mutant is epistatic to sic-3, indicating the LHY and CCA1 splice variants are needed for sic-3 circadian clock phenotypes. It is not expected that SIC is directly involved in the circadian clock mechanism; instead, SIC likely contributes to pre-mRNA metabolism, and the splice variants that accumulate in sic mutants likely affect the circadian clock response to cool ambient temperature.
Collapse
Affiliation(s)
- Carine M Marshall
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, California 94710
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Virginia Tartaglio
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, California 94710
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Maritza Duarte
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, California 94710
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Frank G Harmon
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service, Albany, California 94710
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
49
|
Zhang SF, Yuan CJ, Chen Y, Chen XH, Li DX, Liu JL, Lin L, Wang DZ. Comparative Transcriptomic Analysis Reveals Novel Insights into the Adaptive Response of Skeletonema costatum to Changing Ambient Phosphorus. Front Microbiol 2016; 7:1476. [PMID: 27703451 PMCID: PMC5028394 DOI: 10.3389/fmicb.2016.01476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Phosphorus (P) is a limiting macronutrient for diatom growth and productivity in the ocean. Much effort has been devoted to the physiological response of marine diatoms to ambient P change, however, the whole-genome molecular mechanisms are poorly understood. Here, we utilized RNA-Seq to compare the global gene expression patterns of a marine diatom Skeletonema costatum grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions. In total 34,942 unique genes were assembled and 20.8% of them altered significantly in abundance under different P conditions. Genes encoding key enzymes/proteins involved in P utilization, nucleotide metabolism, photosynthesis, glycolysis, and cell cycle regulation were significantly up-regulated in P-deficient cells. Genes participating in circadian rhythm regulation, such as circadian clock associated 1, were also up-regulated in P-deficient cells. The response of S. costatum to ambient P deficiency shows several similarities to the well-described responses of other marine diatom species, but also has its unique features. S. costatum has evolved the ability to re-program its circadian clock and intracellular biological processes in response to ambient P deficiency. This study provides new insights into the adaptive mechanisms to ambient P deficiency in marine diatoms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, Department of Environmental Science and Engineering, College of the Environment and Ecology, Xiamen UniversityXiamen, China
| |
Collapse
|
50
|
Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genet 2016; 12:e1006197. [PMID: 27467757 PMCID: PMC4965137 DOI: 10.1371/journal.pgen.1006197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. All corn in the USA is grown as hybrids, which grow more vigorously and produce higher yield than their parents, a phenomenon known as heterosis. The molecular basis for heterosis remains elusive. Heterosis is predicted to arise from allelic interactions between parental genomes, leading to altered regulatory networks that promote the growth and fitness of hybrids. One such regulator is the circadian clock, which is functionally conserved in Arabidopsis and maize. Disrupting corn CCA1 expression reduces growth vigor. In corn hybrids, CCA1 proteins target thousands of output genes early in the morning, as if the hybrids wake up early to promote photosynthesis, starch metabolism and biomass accumulation. This early acting mechanism could guide breeding and selection of high-yield hybrids.
Collapse
|