1
|
Ventx Family and Its Functional Similarities with Nanog: Involvement in Embryonic Development and Cancer Progression. Int J Mol Sci 2022; 23:ijms23052741. [PMID: 35269883 PMCID: PMC8911082 DOI: 10.3390/ijms23052741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 12/27/2022] Open
Abstract
The Ventx family is one of the subfamilies of the ANTP (antennapedia) superfamily and belongs to the NK-like (NKL) subclass. Ventx is a homeobox transcription factor and has a DNA-interacting domain that is evolutionarily conserved throughout vertebrates. It has been extensively studied in Xenopus, zebrafish, and humans. The Ventx family contains transcriptional repressors widely involved in embryonic development and tumorigenesis in vertebrates. Several studies have documented that the Ventx family inhibited dorsal mesodermal formation, neural induction, and head formation in Xenopus and zebrafish. Moreover, Ventx2.2 showed functional similarities to Nanog and Barx1, leading to pluripotency and neural-crest migration in vertebrates. Among them, Ventx protein is an orthologue of the Ventx family in humans. Studies have demonstrated that human Ventx was strongly associated with myeloid-cell differentiation and acute myeloid leukemia. The therapeutic potential of Ventx family inhibition in combating cancer progression in humans is discussed. Additionally, we briefly discuss genome evolution, gene duplication, pseudo-allotetraploidy, and the homeobox family in Xenopus.
Collapse
|
2
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
3
|
He M, Zhang R, Jiao S, Zhang F, Ye D, Wang H, Sun Y. Nanog safeguards early embryogenesis against global activation of maternal β-catenin activity by interfering with TCF factors. PLoS Biol 2020; 18:e3000561. [PMID: 32702011 PMCID: PMC7402524 DOI: 10.1371/journal.pbio.3000561] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 08/04/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal β-catenin activity is essential and critical for dorsal induction and its dorsal activation has been thoroughly studied. However, how the maternal β-catenin activity is suppressed in the nondorsal cells remains poorly understood. Nanog is known to play a central role for maintenance of the pluripotency and maternal -zygotic transition (MZT). Here, we reveal a novel role of Nanog as a strong repressor of maternal β-catenin signaling to safeguard the embryo against hyperactivation of maternal β-catenin activity and hyperdorsalization. In zebrafish, knockdown of nanog at different levels led to either posteriorization or dorsalization, mimicking zygotic or maternal activation of Wnt/β-catenin activities, and the maternal zygotic mutant of nanog (MZnanog) showed strong activation of maternal β-catenin activity and hyperdorsalization. Although a constitutive activator-type Nanog (Vp16-Nanog, lacking the N terminal) perfectly rescued the MZT defects of MZnanog, it did not rescue the phenotypes resulting from β-catenin signaling activation. Mechanistically, the N terminal of Nanog directly interacts with T-cell factor (TCF) and interferes with the binding of β-catenin to TCF, thereby attenuating the transcriptional activity of β-catenin. Therefore, our study establishes a novel role for Nanog in repressing maternal β-catenin activity and demonstrates a transcriptional switch between β-catenin/TCF and Nanog/TCF complexes, which safeguards the embryo from global activation of maternal β-catenin activity. Maternal β-catenin activity induces the primary dorsal axis during early development, but how the activity is suppressed in the non-dorsal cells remains poorly understood. This study reveals Nanog as a strong repressor of nuclear β-catenin to safeguard embryogenesis against global activation of maternal β-catenin activity and hyper-dorsalization in zebrafish.
Collapse
Affiliation(s)
- Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ru Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
4
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
5
|
Pshennikova ES, Voronina AS. The ved protein patterning in zebrafish embryos. Stem Cell Investig 2018; 5:17. [PMID: 29984226 DOI: 10.21037/sci.2018.05.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/09/2018] [Indexed: 11/06/2022]
Abstract
Homeobox transcription factors play an essential role in cells differentiation. The function is realized by the proteins (not by the mRNA) and it is necessary to pay more attention to the protein patterns. In this study we were the first to obtain antibodies against the ved protein, tested their specificity by Western-blot analysis and performed a whole mount immunostaining of zebrafish embryos. It was shown that the spatial-temporal ved protein pattern did not differ from that of other vent-family factors. And moreover, its synthesis like that of vox and vent did not depend on pou5f3.
Collapse
Affiliation(s)
- Elena S Pshennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| | - Anna S Voronina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
6
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
7
|
Genthe JR, Min J, Farmer DM, Shelat AA, Grenet JA, Lin W, Finkelstein D, Vrijens K, Chen T, Guy RK, Clements WK, Roussel MF. Ventromorphins: A New Class of Small Molecule Activators of the Canonical BMP Signaling Pathway. ACS Chem Biol 2017; 12:2436-2447. [PMID: 28787124 DOI: 10.1021/acschembio.7b00527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Here, we describe three new small-molecule activators of BMP signaling found by high throughput screening of a library of ∼600 000 small molecules. Using a cell-based luciferase assay in the BMP4-responsive human cervical carcinoma clonal cell line, C33A-2D2, we identified three compounds with similar chemotypes that each ventralize zebrafish embryos and stimulate increased expression of the BMP target genes, bmp2b and szl. Because these compounds ventralize zebrafish embryos, we have termed them "ventromorphins." As expected for a BMP pathway activator, they induce the differentiation of C2C12 myoblasts to osteoblasts. Affymetrix RNA analysis confirmed the differentiation results and showed that ventromorphins treatment elicits a genetic response similar to BMP4 treatment. Unlike isoliquiritigenin (SJ000286237), a flavone that maximally activates the pathway after 24 h of treatment, all three ventromorphins induced SMAD1/5/8 phosphorylation within 30 min of treatment and achieved peak activity within 1 h, indicating that their responses are consistent with directly activating BMP signaling.
Collapse
Affiliation(s)
- Jamie R. Genthe
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jaeki Min
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Dana M. Farmer
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Anang A. Shelat
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Jose A. Grenet
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wenwei Lin
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - David Finkelstein
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Karen Vrijens
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Taosheng Chen
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - R. Kiplin Guy
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Wilson K. Clements
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Martine F. Roussel
- Departments
of Hematology, ‡Chemical Biology and Therapeutics, §Tumor Cell Biology,
and ∥Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
8
|
Pshennikova ES, Tereshina MB, Voronina AS. Expression of vox and vent mRNAs and encoded proteins in zebrafish embryos. Stem Cell Investig 2017; 4:60. [PMID: 28725656 DOI: 10.21037/sci.2017.06.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/24/2017] [Indexed: 01/06/2023]
Abstract
In Danio rerio (zebrafish), members of the vent gene-family (vox/vega1, vent/vega2) are considered as ventralizing factors. We investigated not only the expression of their mRNAs by in situ hybridization at different stages of embryonic development, but also the spatial distribution of the encoded proteins by whole-mount immunostaining. We showed vox mRNA to be available in embryos since early cleavage and later on. Vent mRNA appeared after zygotic genome activation only. The vox and vent proteins were revealed at stage of eight blastomeres. At blastula and gastrula the vox and vent protein staining areas completely overlapped those of the mRNAs. They were expressed uniformly throughout the embryo except for a small region of clearing on the dorsal side. From the bud stage throughout somitogenesis, the vox and vent proteins staining progressively covered the embryos except for dorsal side: at the bud stage it resembled that of mRNA and at the beginning of somitogenesis it was clearly seen along the axis structures. At the pharyngula period stages the proteins were located in neural crest zone, but their mRNAs appeared to be in the tail tips. Thus during embryogenesis, the spatial distributions of a protein and its mRNA may not always quite coincide. We observed such mismatches in embryos at the cleavage stage and in the pharyngula period.
Collapse
Affiliation(s)
- Elena S Pshennikova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| | - Maria B Tereshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Anna S Voronina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
9
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
10
|
The proteins of Vent-family and their mRNAs are located in different areas of the tails of Zebrafish and Xenopus embryos. Int J Biochem Cell Biol 2016; 79:388-392. [DOI: 10.1016/j.biocel.2016.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
|
11
|
Langdon YG, Fuentes R, Zhang H, Abrams EW, Marlow FL, Mullins MC. Split top: a maternal cathepsin B that regulates dorsoventral patterning and morphogenesis. Development 2016; 143:1016-28. [PMID: 26893345 PMCID: PMC4813285 DOI: 10.1242/dev.128900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022]
Abstract
The vertebrate embryonic dorsoventral axis is established and patterned by Wnt and bone morphogenetic protein (BMP) signaling pathways, respectively. Whereas Wnt signaling establishes the dorsal side of the embryo and induces the dorsal organizer, a BMP signaling gradient patterns tissues along the dorsoventral axis. Early Wnt signaling is provided maternally, whereas BMP ligand expression in the zebrafish is zygotic, but regulated by maternal factors. Concomitant with BMP activity patterning dorsoventral axial tissues, the embryo also undergoes dramatic morphogenetic processes, including the cell movements of gastrulation, epiboly and dorsal convergence. Although the zygotic regulation of these cell migration processes is increasingly understood, far less is known of the maternal regulators of these processes. Similarly, the maternal regulation of dorsoventral patterning, and in particular the maternal control of ventral tissue specification, is poorly understood. We identified split top, a recessive maternal-effect zebrafish mutant that disrupts embryonic patterning upstream of endogenous BMP signaling. Embryos from split top mutant females exhibit a dorsalized embryonic axis, which can be rescued by BMP misexpression or by derepressing endogenous BMP signaling. In addition to dorsoventral patterning defects, split top mutants display morphogenesis defects that are both BMP dependent and independent. These morphogenesis defects include incomplete dorsal convergence, delayed epiboly progression and an early lysis phenotype during gastrula stages. The latter two morphogenesis defects are associated with disruption of the actin and microtubule cytoskeleton within the yolk cell and defects in the outer enveloping cell layer, which are both known mediators of epiboly movements. Through chromosomal mapping and RNA sequencing analysis, we identified the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene deficient in split top embryos. Our results identify a novel role for Ctsba in morphogenesis and expand our understanding of the maternal regulation of dorsoventral patterning.
Collapse
Affiliation(s)
- Yvette G Langdon
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA Millsaps College, Department of Biology, Jackson, MS 39210, USA
| | - Ricardo Fuentes
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Hong Zhang
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Elliott W Abrams
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Florence L Marlow
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, 421 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Fabian P, Pantzartzi CN, Kozmikova I, Kozmik Z. vox homeobox gene: a novel regulator of midbrain-hindbrain boundary development in medaka fish? Dev Genes Evol 2016; 226:99-107. [PMID: 26965282 DOI: 10.1007/s00427-016-0533-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/17/2016] [Indexed: 11/27/2022]
Abstract
The midbrain-hindbrain boundary (MHB) is one of the key organizing centers of the vertebrate central nervous system (CNS). Its patterning is governed by a well-described gene regulatory network (GRN) involving several transcription factors, namely, pax, gbx, en, and otx, together with signaling molecules of the Wnt and Fgf families. Here, we describe the onset of these markers in Oryzias latipes (medaka) early brain development in comparison to previously known zebrafish expression patterns. Moreover, we show for the first time that vox, a member of the vent gene family, is expressed in the developing neural tube similarly to CNS markers. Overexpression of vox leads to profound changes in the gene expression patterns of individual components of MHB-specific GRN, most notably of fgf8, a crucial organizer molecule of MHB. Our data suggest that genes from the vent family, in addition to their crucial role in body axis formation, may play a role in regionalization of vertebrate CNS.
Collapse
Affiliation(s)
- Peter Fabian
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Chrysoula N Pantzartzi
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Iryna Kozmikova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic
| | - Zbynek Kozmik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, Czech Republic.
| |
Collapse
|
13
|
Tuazon FB, Mullins MC. Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. Semin Cell Dev Biol 2015; 42:118-33. [PMID: 26123688 PMCID: PMC4562868 DOI: 10.1016/j.semcdb.2015.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The vertebrate body plan is established through the precise spatiotemporal coordination of morphogen signaling pathways that pattern the anteroposterior (AP) and dorsoventral (DV) axes. Patterning along the AP axis is directed by posteriorizing signals Wnt, fibroblast growth factor (FGF), Nodal, and retinoic acid (RA), while patterning along the DV axis is directed by bone morphogenetic proteins (BMP) ventralizing signals. This review addresses the current understanding of how Wnt, FGF, RA and BMP pattern distinct AP and DV cell fates during early development and how their signaling mechanisms are coordinated to concomitantly pattern AP and DV tissues.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, 1152 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States.
| |
Collapse
|
14
|
Moreno-Ayala R, Schnabel D, Salas-Vidal E, Lomelí H. PIAS-like protein Zimp7 is required for the restriction of the zebrafish organizer and mesoderm development. Dev Biol 2015; 403:89-100. [PMID: 25912688 DOI: 10.1016/j.ydbio.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 12/16/2022]
Abstract
The Zmiz2 (Zimp7) protein and its homolog Zmiz1 (Zimp10) were initially identified in humans as androgen receptor co-activators. Sequence analysis revealed the presence of an SP-RING/Miz domain, which is highly conserved in members of the PIAS family and confers SUMO-conjugating activity. Zimp7 has been shown to interact with components of the Wnt/β-Catenin signaling pathway and with Brg1 and BAF57, components of the ATP-dependent mammalian SWI/SNF-like BAF chromatin-remodeling complexes. In this work, we analyze the role of zygotic Zimp7 in zebrafish development. We describe evidence indicating that Zimp7 is required for mesoderm development and dorsoventral patterning. Morpholino-mediated reduction of zygotic Zimp7 produced axial mesodermal defects that were preceded by up-regulation of organizer genes such as bozozok, goosecoid and floating head at the onset of gastrulation and by down-regulation of the ventral markers vox, vent and eve1 indicating loss of the ventrolateral mesoderm. Consistently, embryos overexpressing zimp7 RNA exhibited midline defects such as loss of forebrain and cyclopia accompanied by transcriptional changes directly opposite of those found in the morphants. In addition, the patterning of ventralized embryos produced by the overexpression of vox and vent was restored by a reduction of Zimp7 activity. Altogether, our findings indicate that Zimp7 is involved in transcriptional regulation of factors that are essential for patterning in the dorsoventral axis.
Collapse
Affiliation(s)
- Roberto Moreno-Ayala
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Denhí Schnabel
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Enrique Salas-Vidal
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico
| | - Hilda Lomelí
- Departamento de Genética del Desarrollo y Fisiología Molecular Instituto de Biotecnología, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
15
|
Ro H, Hur TL, Rhee M. Ubiquitin conjugation system for body axes specification in vertebrates. Anim Cells Syst (Seoul) 2015. [DOI: 10.1080/19768354.2015.1026399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 2015; 33:495-502. [PMID: 25867923 PMCID: PMC4430369 DOI: 10.1038/nbt.3192] [Citation(s) in RCA: 4001] [Impact Index Per Article: 400.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
Spatial localization is a key determinant of cellular fate and behavior, but spatial RNA assays traditionally rely on staining for a limited number of RNA species. In contrast, single-cell RNA-seq allows for deep profiling of cellular gene expression, but established methods separate cells from their native spatial context. Here we present Seurat, a computational strategy to infer cellular localization by integrating single-cell RNA-seq data with in situ RNA patterns. We applied Seurat to spatially map 851 single cells from dissociated zebrafish (Danio rerio) embryos, inferring a transcriptome-wide map of spatial patterning. We confirmed Seurat’s accuracy using several experimental approaches, and used it to identify a set of archetypal expression patterns and spatial markers. Additionally, Seurat correctly localizes rare subpopulations, accurately mapping both spatially restricted and scattered groups. Seurat will be applicable to mapping cellular localization within complex patterned tissues in diverse systems.
Collapse
Affiliation(s)
- Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Jeffrey A Farrell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - David Gennert
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alexander F Schier
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA. [3] Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA. [4] Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA. [5] Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Aviv Regev
- 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA. [2] Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
17
|
Kapp LD, Abrams EW, Marlow FL, Mullins MC. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in vertebrate embryogenesis. PLoS Genet 2013; 9:e1003822. [PMID: 24204286 PMCID: PMC3814294 DOI: 10.1371/journal.pgen.1003822] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
Dorsoventral patterning of the embryonic axis relies upon the mutual antagonism of competing signaling pathways to establish a balance between ventralizing BMP signaling and dorsal cell fate specification mediated by the organizer. In zebrafish, the initial embryo-wide domain of BMP signaling is refined into a morphogenetic gradient following activation dorsally of a maternal Wnt pathway. The accumulation of β-catenin in nuclei on the dorsal side of the embryo then leads to repression of BMP signaling dorsally and the induction of dorsal cell fates mediated by Nodal and FGF signaling. A separate Wnt pathway operates zygotically via Wnt8a to limit dorsal cell fate specification and maintain the expression of ventralizing genes in ventrolateral domains. We have isolated a recessive dorsalizing maternal-effect mutation disrupting the gene encoding Integrator Complex Subunit 6 (Ints6). Due to widespread de-repression of dorsal organizer genes, embryos from mutant mothers fail to maintain expression of BMP ligands, fail to fully express vox and ved, two mediators of Wnt8a, display delayed cell movements during gastrulation, and severe dorsalization. Consistent with radial dorsalization, affected embryos display multiple independent axial domains along with ectopic dorsal forerunner cells. Limiting Nodal signaling or restoring BMP signaling restores wild-type patterning to affected embryos. Our results are consistent with a novel role for Ints6 in restricting the vertebrate organizer to a dorsal domain in embryonic patterning.
Collapse
Affiliation(s)
- Lee D. Kapp
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Elliott W. Abrams
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Florence L. Marlow
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
| | - Mary C. Mullins
- Perelman School of Medicine at the University of Pennsylvania, Department of Cell and Developmental Biology, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
18
|
Zhao J, Lambert G, Meijer AH, Rosa FM. The transcription factor Vox represses endoderm development by interacting with Casanova and Pou2. Development 2013; 140:1090-9. [DOI: 10.1242/dev.082008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Endoderm and mesoderm are both formed upon activation of Nodal signaling but how endoderm differentiates from mesoderm is still poorly explored. The sox-related gene casanova (sox32) acts downstream of the Nodal signal, is essential for endoderm development and requires the co-factor Pou2 (Pou5f1, Oct3, Oct4) in this process. Conversely, BMP signals have been shown to inhibit endoderm development by an as yet unexplained mechanism. In a search for Casanova regulators in zebrafish, we identified two of its binding partners as the transcription factors Pou2 and Vox, a member of the Vent group of proteins also involved in the patterning of the gastrula. In overexpression studies we show that vox and/or Vent group genes inhibit the capacity of Casanova to induce endoderm, even in the presence of its co-factor Pou2, and that Vox acts as a repressor in this process. We further show that vox, but not other members of the Vent group, is essential for defining the proper endodermal domain size at gastrulation. In this process, vox acts downstream of BMPs. Cell fate analysis further shows that Vox plays a key role downstream of BMP signals in regulating the capacity of Nodal to induce endoderm versus mesoderm by modulating the activity of the Casanova/Pou2 regulatory system.
Collapse
Affiliation(s)
- Jue Zhao
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
- College of Life Sciences, Peking University, Beijing 100871, P. R. China
| | - Guillaume Lambert
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| | | | - Frederic M. Rosa
- INSERM U1024, F-75005 Paris, France
- CNRS UMR 8197, F-75005 Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, F-75230 Paris, France
| |
Collapse
|
19
|
Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 2011; 362:94-103. [PMID: 22178155 DOI: 10.1016/j.ydbio.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1 (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1 expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region. Significantly, we found that intact EVX1 binding sites were required for BMP4-mediated repression of GSC reporter constructs. We conclude that BMP4-induced EVX1 repress GSC directly and the two genes form the core of a gene regulatory network (GRN) controlling cell fates in streak-like human ES cell progeny.
Collapse
Affiliation(s)
- Mark Kalisz
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | |
Collapse
|
20
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
21
|
Xie XW, Liu JX, Hu B, Xiao W. Zebrafish foxo3b negatively regulates canonical Wnt signaling to affect early embryogenesis. PLoS One 2011; 6:e24469. [PMID: 21915332 PMCID: PMC3168510 DOI: 10.1371/journal.pone.0024469] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/10/2011] [Indexed: 01/31/2023] Open
Abstract
FOXO genes are involved in many aspects of development and vascular homeostasis by regulating cell apoptosis, proliferation, and the control of oxidative stress. In addition, FOXO genes have been showed to inhibit Wnt/β-catenin signaling by competing with T cell factor to bind to β-catenin. However, how important of this inhibition in vivo, particularly in embryogenesis is still unknown. To demonstrate the roles of FOXO genes in embryogenesis will help us to further understand their relevant physiological functions. Zebrafish foxo3b gene, an orthologue of mammalian FOXO3, was expressed maternally and distributed ubiquitously during early embryogenesis and later restricted to brain. After morpholino-mediated knockdown of foxo3b, the zebrafish embryos exhibited defects in axis and neuroectoderm formation, suggesting its critical role in early embryogenesis. The embryo-developmental marker gene staining at different stages, phenotype analysis and rescue assays revealed that foxo3b acted its role through negatively regulating both maternal and zygotic Wnt/β-catenin signaling. Moreover, we found that foxo3b could interact with zebrafish β-catenin1 and β-catenin2 to suppress their transactivation in vitro and in vivo, further confirming its role relevant to the inhibition of Wnt/β-catenin signaling. Taken together, we revealed that foxo3b played a very important role in embryogenesis and negatively regulated maternal and zygotic Wnt/β-catenin signaling by directly interacting with both β-catenin1 and β-catenin2. Our studies provide an in vivo model for illustrating function of FOXO transcription factors in embryogenesis.
Collapse
Affiliation(s)
- Xun-wei Xie
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jing-Xia Liu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Bo Hu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Wuhan Xiao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
22
|
Belting HG, Wendik B, Lunde K, Leichsenring M, Mössner R, Driever W, Onichtchouk D. Pou5f1 contributes to dorsoventral patterning by positive regulation of vox and modulation of fgf8a expression. Dev Biol 2011; 356:323-36. [PMID: 21621531 DOI: 10.1016/j.ydbio.2011.05.660] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 12/18/2022]
Abstract
Pou5f1/Oct-4 in mice is required for maintenance of embryonic pluripotent cell populations. Zebrafish pou5f1 maternal-zygotic mutant embryos (spiel ohne grenzen; MZspg) lack endoderm and have gastrulation and dorsoventral patterning defects. A contribution of Pou5f1 to the control of bmp2b, bmp4 and vox expression has been suggested, however the mechanisms remained unclear and are investigated in detail here. Low-level overexpression of a Pou5f1-VP16 activator fusion protein can rescue dorsalization in MZspg mutants, indicating that Pou5f1 acts as a transcriptional activator during dorsoventral patterning. Overexpression of larger quantities of Pou5f1-VP16 can ventralize wild-type embryos, while overexpression of a Pou5f1-En repressor fusion protein can dorsalize embryos. Lack of Pou5f1 causes a transient upregulation of fgf8a expression after mid-blastula transition, providing a mechanism for delayed activation of bmp2b in MZspg embryos. Overexpression of the Pou5f1-En repressor induces fgf8, suggesting an indirect mechanism of Pou5f1 control of fgf8a expression. Transcription of vox is strongly activated by Pou5f1-VP16 even when translation of zygotically expressed transcripts is experimentally inhibited by cycloheximide. In contrast, bmp2b and bmp4 are not activated under these conditions. We show that Pou5f1 binds to phylogenetically conserved Oct/Pou5f1 sites in the vox promoter, both in vivo (ChIP) and in vitro. Our data reveals a set of direct and indirect interactions of Pou5f1 with the BMP dorsoventral patterning network that serve to fine-tune dorsoventral patterning mechanisms and coordinate patterning with developmental timing.
Collapse
Affiliation(s)
- Heinz-Georg Belting
- Developmental Biology, Faculty of Biology, University of Freiburg, Hauptstrasse 1, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Seebald JL, Szeto DP. Zebrafish eve1 regulates the lateral and ventral fates of mesodermal progenitor cells at the onset of gastrulation. Dev Biol 2011; 349:78-89. [DOI: 10.1016/j.ydbio.2010.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/01/2010] [Accepted: 10/05/2010] [Indexed: 12/13/2022]
|
24
|
Ro H, Dawid IB. Lnx-2b restricts gsc expression to the dorsal mesoderm by limiting Nodal and Bozozok activity. Biochem Biophys Res Commun 2010; 402:626-30. [PMID: 20971071 DOI: 10.1016/j.bbrc.2010.10.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 11/18/2022]
Abstract
Coordinated Nodal-related signals and Bozozok (Boz) activity are critical for the initial specification of dorsal mesoderm and anterior neuroectoderm during zebrafish embryogenesis. Overexpression of Boz expands gsc expression into the ventro-lateral marginal blastomeres where Nodal signaling is active, but is insufficient to induce ectopic gsc expression in the animal region. We found that overexpression of Boz together with depletion of Lnx-2b (previously named Lnx-like, Lnx-l), but not each manipulation alone, causes robust gsc expression in all blastomeres. Furthermore, nodal-related signals are required for gsc expression in embryos with elevated Boz activity. Through targeted injection into single cells at the 128-cell stage we illustrate the role of maternally deposited Lnx-2b to restrict the expansion of gsc expression into the presumptive ectodermal region. This report provides a novel mechanism for limiting dorsal organizer specification to a defined region of the early zebrafish embryo.
Collapse
Affiliation(s)
- Hyunju Ro
- Laboratory of Molecular Genetics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Baker KD, Ramel MC, Lekven AC. A direct role for Wnt8 in ventrolateral mesoderm patterning. Dev Dyn 2010; 239:2828-36. [DOI: 10.1002/dvdy.22419] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
26
|
Organizer restriction through modulation of Bozozok stability by the E3 ubiquitin ligase Lnx-like. Nat Cell Biol 2009; 11:1121-7. [PMID: 19668196 PMCID: PMC2759713 DOI: 10.1038/ncb1926] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 05/20/2009] [Indexed: 12/18/2022]
Abstract
The organizer anchors the primary embryonic axis, and balance between dorsal (organizer) and ventral domains is fundamental to body patterning. LNX (ligand of Numb protein-X) is a RING finger and four PDZ domain-containing E3 ubiquitin ligase. LNX serves as a binding platform and may have a role in cell fate determination, but its in vivo functions are unknown. Here we show that Lnx-l (Lnx-like) functions as a critical regulator of dorso-ventral axis formation in zebrafish. Depletion of Lnx-l using specific antisense morpholinos (MOs) caused strong embryonic dorsalization. We identified Bozozok (Boz, also known as Dharma or Nieuwkoid) as a binding partner and substrate of Lnx-l. Boz is a homeodomain-containing transcriptional repressor induced by canonical Wnt signalling that is critical for dorsal organizer formation. Lnx-l induced K48-linked polyubiquitylation of Boz, leading to its proteasomal degradation in human 293T cells and in zebrafish embryos. Dorsalization induced by Boz overexpression was suppressed by raising the level of Lnx-l, but Lnx-l failed to counteract dorsalization caused by mutant Boz lacking a critical motif for Lnx-l binding. Furthermore, dorsalization induced by depletion of Lnx-l was alleviated by attenuation of Boz expression. We conclude that Lnx-l modulates Boz activity to prevent the invasion of ventral regions of the embryo by organizer tissue. These studies introduce a ubiquitin ligase, Lnx-l, as a balancing modulator of axial patterning in the zebrafish embryo.
Collapse
|
27
|
Esterberg R, Delalande JM, Fritz A. Tailbud-derived Bmp4 drives proliferation and inhibits maturation of zebrafish chordamesoderm. Development 2008; 135:3891-901. [PMID: 18948415 DOI: 10.1242/dev.029264] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In zebrafish, BMP signaling establishes cell identity along the dorsoventral (DV) axis during gastrulation. Owing to the early requirements of BMP activity in DV patterning, it has been difficult to assign later roles in cell fate specification to specific BMP ligands. In this study, we have taken advantage of two follistatin-like genes (fstl1 and fstl2), as well as a transgenic zebrafish line carrying an inducible truncated form of the BMP-type 1 receptor to study the role of Bmp4 outside of the context of DV specification. Characterization of fstl1/2 suggests that they exert a redundant role as BMP antagonists during late gastrulation, regulating BMP activity in axial mesoderm. Maintenance of appropriate levels of BMP signaling is crucial for the proper development of chordamesoderm, a subset of axial mesoderm that gives rise to the notochord, but not prechordal mesoderm, which gives rise to the prechordal plate. Bmp4 activity in particular is required during a crucial window beginning at late gastrulation and lasting through early somitogenesis to promote chordamesoderm proliferation. In the absence of Bmp4, the notochord precursor pool is depleted, and the notochord differentiates prematurely. Our results illustrate a role for Bmp4 in the proliferation and timely differentiation of axial tissue after DV axis specification.
Collapse
|
28
|
Lv W, Zhang Y, Wu Z, Chu L, Koide SS, Chen Y, Yan Y, Li Y. Identification of WSB1 gene as an important regulator in the development of zebrafish embryo during midblastula transition. Acta Biochim Biophys Sin (Shanghai) 2008; 40:478-88. [PMID: 18535746 DOI: 10.1111/j.1745-7270.2008.00427.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
To uncover novel genes potentially involved in embryo development, especially at the midblastula transition (MBT) phase in the developing embryo of zebrafish, Affymetrix zebrafish GeneChip microarray analysis was carried out on the expression of 14,900 gene transcripts. The results of the analysis showed that 360 genes were clearly up-regulated and 119 genes were markedly down-regulated. Many of these genes were involved in transcription factor activity, nucleic acid binding, and cell growth. The present study showed that significant changes in transcript abundance occurred during the MBT phase. The expression of eight of these 479 genes was identified by reverse transcription-polymerase chain reaction analysis, confirming the microarray results. The WSB1 gene, found to be down-regulated by the microarray and reverse transcription-polymerase chain reaction analyses, was selected for further study. Sequence analysis of the WSB1 gene showed that it encodes a protein with 75% identity to the corresponding active human orthologs. In addition, WSB1 gene expression was detected at a higher level at 2 h post fertilization and at a lower level at 4 h post fertilization, consistent with the chip results. Overexpression of the WSB1 gene can result in the formation of abnormalities in embryos, as determined by fluorescence-activated cell sorting. The present study showed unequivocally that the occurrence of WSB1 expression is an important event during the MBT phase in the development of zebrafish embryos.
Collapse
Affiliation(s)
- Wenjian Lv
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Science, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Flores MVC, Lam EYN, Crosier KE, Crosier PS. Osteogenic transcription factor Runx2 is a maternal determinant of dorsoventral patterning in zebrafish. Nat Cell Biol 2008; 10:346-52. [DOI: 10.1038/ncb1697] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/04/2008] [Indexed: 12/12/2022]
|
30
|
Stickney HL, Imai Y, Draper B, Moens C, Talbot WS. Zebrafish bmp4 functions during late gastrulation to specify ventroposterior cell fates. Dev Biol 2007; 310:71-84. [PMID: 17727832 PMCID: PMC2683675 DOI: 10.1016/j.ydbio.2007.07.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 07/03/2007] [Accepted: 07/19/2007] [Indexed: 11/16/2022]
Abstract
Bone morphogenetic proteins (BMPs) are key mediators of dorsoventral patterning in vertebrates and are required for the induction of ventral fates in fish and frogs. A widely accepted model of dorsoventral patterning postulates that a morphogenetic BMP activity gradient patterns cell fates along the dorsoventral axis. Recent work in zebrafish suggests that the role of BMP signaling changes over time, with BMPs required for global dorsoventral patterning during early gastrulation and for tail patterning during late gastrulation and early somitogenesis. Key questions remain about the late phase, including which BMP ligands are required and how the functions of BMPs differ during the early and late gastrula stages. In a screen for dominant enhancers of mutations in the homeobox genes vox and vent, which function in parallel to bmp signaling, we identified an insertion mutation in bmp4. We then performed a reverse genetic screen to isolate a null allele of bmp4. We report the characterization of these two alleles and demonstrate that BMP4 is required during the later phase of BMP signaling for the specification of ventroposterior cell fates. Our results indicate that different bmp genes are essential at different stages. In addition, we present genetic evidence supporting a role for a morphogenetic BMP gradient in establishing mesodermal fates during the later phase of BMP signaling.
Collapse
Affiliation(s)
- Heather L Stickney
- Stanford University School of Medicine, Department of Developmental Biology, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
31
|
Van Raay TJ, Coffey RJ, Solnica-Krezel L. Zebrafish Naked1 and Naked2 antagonize both canonical and non-canonical Wnt signaling. Dev Biol 2007; 309:151-68. [PMID: 17689523 PMCID: PMC2729589 DOI: 10.1016/j.ydbio.2007.04.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2006] [Revised: 04/04/2007] [Accepted: 04/17/2007] [Indexed: 01/18/2023]
Abstract
Wnt signaling controls a wide range of developmental processes and its aberrant regulation can lead to disease. To better understand the regulation of this pathway, we identified zebrafish homologues of Naked Cuticle (Nkd), Nkd1 and Nkd2, which have previously been shown to inhibit canonical Wnt/beta-catenin signaling. Zebrafish nkd1 expression increases substantially after the mid-blastula transition in a pattern mirroring that of activated canonical Wnt/beta-catenin signaling, being expressed in both the ventrolateral blastoderm margin and also in the axial mesendoderm. In contrast, zebrafish nkd2 is maternally and ubiquitously expressed. Overexpression of Nkd1 or Nkd2a suppressed canonical Wnt/beta-catenin signaling at multiple stages of early zebrafish development and also exacerbated the cyclopia and axial mesendoderm convergence and extension (C&E) defect in the non-canonical Wnt/PCP mutant silberblick (slb/wnt11). Thus, Nkds are sufficient to antagonize both canonical and non-canonical Wnt signaling. Reducing Nkd function using antisense morpholino oligonucleotides resulted in increased expression of canonical Wnt/beta-catenin target genes. Finally, reducing Nkd1 function in slb mutants suppressed the axial mesendoderm C&E defect. These data indicate that zebrafish Nkd1 and Nkd2 function to limit both canonical and non-canonical Wnt signaling.
Collapse
Affiliation(s)
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, USA
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, USA
- Department of Veterans Affairs Medical Center, Nashville, TN 37232-2279, USA
| | | |
Collapse
|
32
|
Varga M, Maegawa S, Bellipanni G, Weinberg ES. Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two beta-catenins in the zebrafish embryo. Mech Dev 2007; 124:775-91. [PMID: 17686615 PMCID: PMC2156153 DOI: 10.1016/j.mod.2007.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/30/2007] [Accepted: 05/31/2007] [Indexed: 12/13/2022]
Abstract
Using embryos transgenic for the TOP-GFP reporter, we show that the two zebrafish beta-catenins have different roles in the organizer and germ-ring regions of the embryo. beta-Catenin-activated transcription in the prospective organizer region specifically requires beta-catenin-2, whereas the ventrolateral domain of activated transcription is abolished only when both beta-catenins are inhibited. chordin expression during zebrafish gastrulation has been previously shown in both axial and paraxial domains, but is excluded from ventrolateral domains. We show that this gene is expressed in paraxial territories adjacent to the domain of ventrolateral beta-catenin-activated transcription, with only slight overlap, consistent with the now well-known inhibitory effects of Wnt8 on dorsal gene expression. Eliminating both Wnt8/beta-catenin signaling and organizer activity by inhibition of expression of the two beta-catenins results in massive ectopic circumferential expression of chordin and later, by formation of a distinctive embryonic phenotype ('ciuffo') that expresses trunk and anterior neural markers with correct relative anteroposterior patterning. We show that chordin expression is required for this neural gene expression. The Nodal gene squint has been shown to be necessary for optimal expression of chordin and is sufficient in some contexts for its expression. However, chordin is not normally expressed in the ventrolateral germ-ring despite robust expression of squint in this domain. We show the ectopic circumferential expression of chordin and other dorsal genes to be completely dependent on Nodal and FGF signaling, and to be independent of a functional organizer. We propose that whereas the axial domain of chordin expression is formed by cells that are derived from the organizer, the paraxial domain is the result of axial-derived anti-Wnt signals, which relieve the repression that otherwise is set by the Wnt8/beta-catenin/vox,vent pathway on latent germ-ring Nodal/FGF-activated expression.
Collapse
Affiliation(s)
| | - Shingo Maegawa
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Eric S. Weinberg
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Sander V, Reversade B, De Robertis EM. The opposing homeobox genes Goosecoid and Vent1/2 self-regulate Xenopus patterning. EMBO J 2007; 26:2955-65. [PMID: 17525737 PMCID: PMC1894760 DOI: 10.1038/sj.emboj.7601705] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 04/05/2007] [Indexed: 02/02/2023] Open
Abstract
We present a loss-of-function study using antisense morpholino (MO) reagents for the organizer-specific gene Goosecoid (Gsc) and the ventral genes Vent1 and Vent2. Unlike in the mouse Gsc is required in Xenopus for mesodermal patterning during gastrulation, causing phenotypes ranging from reduction of head structures-including cyclopia and holoprosencephaly-to expansion of ventral tissues in MO-injected embryos. The overexpression effects of Gsc mRNA require the expression of the BMP antagonist Chordin, a downstream target of Gsc. Combined Vent1 and Vent2 MOs strongly dorsalized the embryo. Unexpectedly, simultaneous depletion of all three genes led to a rescue of almost normal development in a variety of embryological assays. Thus, the phenotypic effects of depleting Gsc or Vent1/2 are caused by the transcriptional upregulation of their opposing counterparts. A principal function of Gsc and Vent1/2 homeobox genes might be to mediate a self-adjusting mechanism that restores the basic body plan when deviations from the norm occur, rather than generating individual cell types. The results may shed light on the molecular mechanisms of genetic redundancy.
Collapse
Affiliation(s)
- Veronika Sander
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Bruno Reversade
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - E M De Robertis
- Howard Hughes Medical Institute and Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
34
|
O'Boyle S, Bree RT, McLoughlin S, Grealy M, Byrnes L. Identification of zygotic genes expressed at the midblastula transition in zebrafish. Biochem Biophys Res Commun 2007; 358:462-8. [PMID: 17490614 DOI: 10.1016/j.bbrc.2007.04.116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/20/2007] [Indexed: 01/30/2023]
Abstract
Early development of the embryo is directed by maternal gene products and characterised by limited zygotic gene activity, cell division synchrony and no cell motility in several vertebrates including fish and frogs. At the midblastula transition (MBT), zygotic transcription is grossly activated, cells become motile and cell divisions become asynchronous. The aim of this study was to identify genes whose expression is up-regulated at the MBT in zebrafish. Suppression subtractive hybridisation (SSH) was employed to isolate 48 unique cDNAs, 28 of which show significant similarity to known genes and 20 represent novel cDNAs. Twenty one of these genes, with potential roles in transcriptional regulation, cell cycle control, and embryonic patterning showed increased expression at the MBT. Our results demonstrate the value of SSH as a tool to clone novel, zygotic, developmentally regulated genes that may be important in the progression of the MBT and embryonic patterning.
Collapse
Affiliation(s)
- Shaun O'Boyle
- Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
35
|
Reim G, Brand M. Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development 2006; 133:2757-70. [PMID: 16775002 DOI: 10.1242/dev.02391] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dorsoventral (DV) axis formation of the vertebrate embryo is controlled by the maternal genome and is subsequently refined zygotically. In the zygote, repression of ventralizing Bmp activity on the dorsal side through chordin and noggin is crucial for establishment of a dorsally located organizer. This interplay generates a zygotic Bmp activity gradient that defines distinct positional values along the DV axis. The maternal processes that control expression of the zygotic genes implicated in DV patterning are largely unknown. spiel-ohne-grenzen (spg/pou2) is a maternally and zygotically expressed zebrafish gene that encodes the POU domain transcription factor Pou2, an ortholog of mammalian Oct4/Pou5f1. We show that embryos that are genetically depleted of both maternal and zygotic pou2 function (MZspg) exhibit extreme DV patterning defects and, independently, a blastoderm-specific arrest of epiboly. Dorsal tissues expand to the ventral side at the expense of ventrolateral tissue in MZspg embryos. Dorsally expressed Bmp-antagonists, such as Chd and Nog1, and Gsc are ectopically activated at ventral levels in MZspg. Lack of ventral specification is apparent very early, suggesting that maternal processes are affected in MZspg. Indeed, maternal pou2 function is necessary to initiate zygotic expression of ventrally expressed genes such as bmp2b and bmp4, and for proper activation of bmp7, vox, vent and eve1. A constitutively active Alk8-TGFbeta-receptor can ectopically induce bmp2b and bmp4 and rescues the dorsalization of MZspg. This indicates that pou2 acts upstream of Alk8, a maternally provided receptor implicated in the activation of zygotic bmp2b and bmp4 transcription. Consistent with this possibility, Bmp gene misexpression can rescue MZspg embryos, indicating that TGFbeta-mediated signal transduction itself is intact in absence of Pou2. Inhibition of Fgf signaling, another pathway with early dorsalizing activity, can also restore and even ventralize MZspg embryos. The requirement for pou2 to initiate bmp2b expression can therefore be bypassed by releasing the repressive function of Fgf signaling upon bmp2b transcription. In transplantation experiments, we find that dorsalized cells from prospective ventrolateral regions of MZspg embryos are non cell-autonomously respecified to a ventral fate within wild-type host embryos. Analysis of pou2 mRNA injected MZspg embryos shows that pou2 is required on the ventral side of cleavage stage embryos. Based on the maternal requirement for pou2 in ventral specification, we propose that ventral specification employs an active, pou2-dependent maternal induction step, rather than a default ventralizing program.
Collapse
Affiliation(s)
- Gerlinde Reim
- Biotechnology Center and Center for Regenerative Therapies, University of Technology (TU) Dresden, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | | |
Collapse
|
36
|
Pyati UJ, Cooper MS, Davidson AJ, Nechiporuk A, Kimelman D. Sustained Bmp signaling is essential for cloaca development in zebrafish. Development 2006; 133:2275-84. [PMID: 16672335 DOI: 10.1242/dev.02388] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic protein (Bmp) signaling has long been known to be important for the early development of the ventral mesoderm, including blood,vasculature and kidney cells. Although Bmp genes are continually expressed in the ventral cells throughout gastrulation and somitogenesis, previous studies in zebrafish have not addressed how the role of Bmp signaling changes over time to regulate ventral mesoderm development. Here, we describe the use of a transgenic inducible dominant-negative Bmp receptor line to examine the temporal roles of Bmp signaling in ventral mesoderm patterning. Surprisingly,we find that Bmp signaling from the mid-gastrula stage through early somitogenesis is important for excluding blood and vascular precursors from the extreme ventral mesoderm, and we show that this domain is normally required for development of the cloaca (the common gut and urogenital opening). Using a novel assay for cloacal function, we find that larvae with reduced mid-gastrula Bmp signaling cannot properly excrete waste. We show that the cloacal defects result from alterations in the morphogenesis of the cloaca and from changes in the expression of genes marking the excretory system. Finally, we show that HrT, a T-box transcription factor, is a Bmp-regulated gene that has an essential function in cloacal development. We conclude that sustained Bmp signaling plays an important role in specification of the zebrafish cloaca by maintaining the fate of extreme ventral cells during the course of gastrulation and early somitogenesis. Furthermore, our data suggest that alterations in Bmp signaling are one possible cause of anorectal malformations during human embryogenesis.
Collapse
Affiliation(s)
- Ujwal J Pyati
- University of Washington Department of Biochemistry, Seattle, 98195-7350, USA
| | | | | | | | | |
Collapse
|
37
|
Bellipanni G, Varga M, Maegawa S, Imai Y, Kelly C, Myers AP, Chu F, Talbot WS, Weinberg ES. Essential and opposing roles of zebrafish beta-catenins in the formation of dorsal axial structures and neurectoderm. Development 2006; 133:1299-309. [PMID: 16510506 DOI: 10.1242/dev.02295] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In Xenopus, Wnt signals and their transcriptional effector beta-catenin are required for the development of dorsal axial structures. In zebrafish, previous loss-of-function studies have not identified an essential role for beta-catenin in dorsal axis formation, but the maternal-effect mutation ichabod disrupts beta-catenin accumulation in dorsal nuclei and leads to a reduction of dorsoanterior derivatives. We have identified and characterized a second zebrafish beta-catenin gene, beta-catenin-2, located on a different linkage group from the previously studied beta-catenin-1, but situated close to the ichabod mutation on LG19. Although the ichabod mutation does not functionally alter the beta-catenin-2 reading frame, the level of maternal beta-catenin-2, but not beta-catenin-1, transcript is substantially lower in ichabod, compared with wild-type, embryos. Reduction of beta-catenin-2 function in wild-type embryos by injection of morpholino antisense oligonucleotides (MOs) specific for this gene (MO2) results in the same ventralized phenotypes as seen in ichabod embryos, and administration of MO2 to ichabod embryos increases the extent of ventralization. MOs directed against beta-catenin-1 (MO1), by contrast, had no ventralizing effect on wild-type embryos. beta-catenin-2 is thus specifically required for organizer formation and this function is apparently required maternally, because the ichabod mutation causes a reduction in maternal transcription of the gene and a reduced level of beta-catenin-2 protein in the early embryo. A redundant role of beta-catenins in suppressing formation of neurectoderm is revealed when both beta-catenin genes are inhibited. Using a combination of MO1 and MO2 in wild-type embryos, or by injecting solely MO1 in ichabod embryos, we obtain expression of a wide spectrum of neural markers in apparently appropriate anteroposterior pattern. We propose that the early, dorsal-promoting function of beta-catenin-2 is essential to counteract a later, dorsal- and neurectoderm-repressing function that is shared by both beta-catenin genes.
Collapse
|
38
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
39
|
Little SC, Mullins MC. Extracellular modulation of BMP activity in patterning the dorsoventral axis. ACTA ACUST UNITED AC 2006; 78:224-42. [PMID: 17061292 DOI: 10.1002/bdrc.20079] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling via bone morphogenetic proteins (BMPs) regulates a vast array of diverse biological processes in the developing embryo and in postembryonic life. Many insights into BMP signaling derive from studies of the BMP signaling gradients that pattern cell fates along the embryonic dorsal-ventral (DV) axis of both vertebrates and invertebrates. This review examines recent developments in the field of DV patterning by BMP signaling, focusing on extracellular modulation as a key mechanism in the formation of BMP signaling gradients in Drosophila, Xenopus, and zebrafish.
Collapse
Affiliation(s)
- Shawn C Little
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
40
|
Ramel MC, Buckles GR, Baker KD, Lekven AC. WNT8 and BMP2B co-regulate non-axial mesoderm patterning during zebrafish gastrulation. Dev Biol 2005; 287:237-48. [PMID: 16216234 DOI: 10.1016/j.ydbio.2005.08.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/03/2005] [Accepted: 08/09/2005] [Indexed: 02/04/2023]
Abstract
During vertebrate mesoderm formation, fates are established according to position in the dorsoventral (D/V) axis of the embryo. Initially, maternal signaling divides nascent mesoderm into axial (dorsal) and non-axial (ventral) domains. Although the subsequent subdivision of non-axial mesoderm into multiple D/V fate domains is known to involve zygotic Wnt8 and BMP signaling as well as the Vent/Vox/Ved family of transcriptional repressors, how levels of signaling activity are translated into differential regulation of fates is not well understood. To address this question, we have analyzed zebrafish embryos lacking Wnt8 and BMP2b. Zebrafish wnt8; swr (bmp2b) double mutants display a progressive loss of non-axial mesoderm and a concomitant expansion of axial mesoderm during gastrulation. Mesoderm induction and specification of the axial domain occur normally in wnt8; swr mutants, but dorsal mesoderm genes eventually come to be expressed throughout the mesoderm, suggesting that the establishment of non-axial mesoderm identity requires continual repression of dorsal mesoderm factors, including repressors of ventral genes. Loss-of-function for Vent, Vox, and Ved phenocopies the wnt8; swr mutant phenotype, consistent with Wnt8 and BMP2b maintaining non-axial mesoderm identity during gastrulation through the regulation of these three transcriptional repressors. We postulate that timely differentiation of the mesoderm requires the maintenance of non-axial mesoderm identity by Wnt8 and BMP2b at the onset of gastrulation followed by subdivision of the non-axial mesoderm into different functional domains during gastrulation.
Collapse
|
41
|
Bree RT, McLoughlin S, Jin SW, McMeel OM, Stainier DYR, Grealy M, Byrnes L. nanor, a novel zygotic gene, is expressed initially at the midblastula transition in zebrafish. Biochem Biophys Res Commun 2005; 333:722-8. [PMID: 15961062 DOI: 10.1016/j.bbrc.2005.05.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 05/23/2005] [Indexed: 02/02/2023]
Abstract
A novel, developmentally regulated gene, nanor, was identified by suppression subtractive hybridization. It is first expressed following the midblastula transition (MBT), a critical developmental stage in the early vertebrate embryo when the zygotic genome is activated. The nanor cDNA (626bp) includes a complete open reading frame but neither the gene nor the deduced amino acid sequence shows significant similarity to any known gene or protein. Nanor encodes a 175 amino acid putative protein with a protein kinase C and three casein kinase II phosphorylation sites, an N-myristoylation site and an NFX-type zinc-finger domain, indicating a potential role in transcriptional regulation. Semi-quantitative RT-PCR, Northern blot, and in situ hybridization analysis revealed that nanor expression is developmentally regulated. It is initially expressed after the MBT at the sphere stage and during epiboly it is expressed in the forerunner cells. At 24 h post-fertilization, expression is solely anterior.
Collapse
Affiliation(s)
- Ronan T Bree
- Department of Biochemistry, National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
42
|
Waxman JS. Regulation of the early expression patterns of the zebrafish Dishevelled-interacting proteins Dapper1 and Dapper2. Dev Dyn 2005; 233:194-200. [PMID: 15765513 DOI: 10.1002/dvdy.20301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Dapper/Frodo family of proteins are Dishevelled-interacting regulators of Wnt signaling. In this study, I characterize the regulation of the early expression patterns of dpr1 and dpr2. Although both dpr1 and dpr2 are expressed on the prospective dorsal side, I find that their pregastrula expression patterns have differences that have not been reported previously. Early dpr1 expression is much more dynamic than dpr2 expression. I use gain and loss of function experiments to identify dorsal organizer genes that regulate dpr1 and dpr2 expression. The dorsalizing factors beta-catenin, Bozozok (Boz), Noggin (Nog), and the mesendoderm-inducing factor Squint (Sqt) are all able to induce ectopic expression of dpr1 and dpr2. In reciprocal loss of function experiments, loss of maternal beta-catenin signaling leads to loss of early dorsal dpr1 and dpr2 expression, whereas loss of Boz and/or Nodal signaling does not. Ectopic expression of the ventralizing molecule Bmp2b leads to reduction of dpr1 and dpr2 expression. These results suggest that, in early zebrafish development, dpr1 and dpr2 are targets of beta-catenin and/or an unknown downstream effector. Their expression from 30% epiboly through shield is maintained by Nodal signaling and likely refined by the mutually antagonistic effects of Boz and bone morphogenetic protein signaling.
Collapse
Affiliation(s)
- Joshua S Waxman
- Molecular and Cellular Biology Program, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
43
|
Marom K, Levy V, Pillemer G, Fainsod A. Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Dev Biol 2005; 282:442-54. [PMID: 15950609 DOI: 10.1016/j.ydbio.2005.03.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 01/30/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
BMP signaling performs multiple important roles during early embryogenesis. Signaling through the BMP pathway is mediated by different BMP ligands expressed in partially overlapping temporal and spatial patterns. Assignment of different BMP-dependent activities to the individual ligands has relied on the patterns of expression of the various BMP genes. Temporal analysis of BMP signaling prior to and during gastrulation was performed using glucocorticoid-controlled Smad proteins. Overexpression of the BMP-specific Smad1 and Smad5 revealed that suppression of Spemann's organizer formation in Xenopus embryos can only take place by activating the BMP pathway prior to the onset of gastrulation. Blocking BMP signaling with the inhibitory Smad, Smad6, results in dorsalized embryos or secondary axis induction, only when activated up to early gastrula stages. BMP2 efficiently represses organizer-specific transcription from the midblastula transition onwards while BMP4 is unable to prevent the early activation of organizer-specific genes. Manipulation of the BMP pathway during mid/late gastrula affects mesodermal patterning with no external phenotypic effects. These observations suggest that the malformations resulting from inhibition or promotion of organizer formation, ventralized or dorsalized, respectively, are the result of a very early BMP function, through its antagonism of organizer formation. This function is apparently fulfilled by BMP2 and only at its latest phase by BMP4. Subsequently, BMP functions in the patterning of the mesoderm with no apparent phenotypic effects.
Collapse
Affiliation(s)
- Karen Marom
- Department of Cellular Biochemistry and Human Genetics, Faculty of Medicine, Hebrew University, POB 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
44
|
Bischof J, Driever W. Regulation of hhex expression in the yolk syncytial layer, the potential Nieuwkoop center homolog in zebrafish. Dev Biol 2005; 276:552-62. [PMID: 15581885 DOI: 10.1016/j.ydbio.2004.09.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 09/13/2004] [Accepted: 09/28/2004] [Indexed: 01/19/2023]
Abstract
The Nieuwkoop center is the earliest signaling center during dorsal-ventral pattern formation in amphibian embryos and has been implied to function in induction of the Spemann-Mangold organizer. In zebrafish, Nieuwkoop-center-like activity resides in the dorsal yolk syncytial layer (YSL) at the interface of the vegetal yolk cell and the blastoderm. hex homologs are expressed in the anterior endomesoderm in frogs (Xhex), the anterior visceral endoderm in mice, and the dorsal YSL in zebrafish (hhex). Here, we investigate the control of hhex expression in the YSL. We demonstrate that bozozok (boz) is absolutely required for early hhex expression, while overexpression of boz causes ectopic hhex expression. Activation of Wnt/beta-catenin signaling by LiCl induces hhex expression in wild-type YSL but not in boz mutant embryos, revealing that boz activity is required downstream of Wnt/beta-catenin signaling for hhex expression. Further, we show that the boz-mediated induction of hhex is independent of the Boz-mediated repression of bmp2b. Our data reveal that repressive effects of both Vega1 and Vega2 may be responsible for the exclusion of hhex expression from the ventral and lateral parts of the YSL. In summary, zebrafish hhex appears to be activated by Wnt/beta-catenin in the dorsal YSL, where Boz acts in a permissive way to limit repression of hhex by Vega1 and Vega2.
Collapse
Affiliation(s)
- Johannes Bischof
- Developmental Biology, Institute of Biology 1, University of Freiburg, Haupstrasse 1, D-79104 Freiburg, Germany
| | | |
Collapse
|
45
|
Wilm TP, Solnica-Krezel L. Essential roles of a zebrafish prdm1/blimp1 homolog in embryo patterning and organogenesis. Development 2005; 132:393-404. [PMID: 15623803 DOI: 10.1242/dev.01572] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During vertebrate development the dorsal gastrula or Spemann-Mangold organizer orchestrates axis formation largely by limiting the ventralizing and posteriorizing activity of bone morphogenetic proteins (BMPs). In mouse and Xenopus laevis, genes encoding the zinc finger transcriptional repressor Prdm1/Blimp1 (PR domain containing 1, with ZNF domain; previously named B lymphocyte-induced maturation protein 1) were recently shown to be expressed in the visceral endoderm and anterior endomesoderm, respectively, and the prechordal plate of gastrula stage embryos. Later in development Prdm1/Blimp1 is expressed in many other tissues, including pharyngeal arches, limb buds, otic vesicles, photoreceptor cell layer, slow muscle and cloaca. Based on misexpression and dominant-negative studies, Prdm1/Blimp1 was proposed to promote anterior endomesoderm and head development in Xenopus laevis. Here we report the isolation and functional characterization of zebrafish prdm1 exhibiting a dynamic and evolutionarily conserved expression pattern. Misexpression of prdm1 inhibits the formation of dorsoanterior structures and reduces expression of chordin, which encodes a BMP antagonist. Conversely, interference with Prdm1 translation using antisense morpholino oligonucleotides, increases chordin expression, while reducing expression of Bmp genes, and consequently dorsalizing the embryo. At the end of the gastrula period, prdm1 morphant embryos have enlarged animal-vegetal and anteroposterior embryonic axes. This altered embryo morphology is associated with augmented extension movements of dorsal tissues and normal posterior migration of ventral tissues. Additionally, Prdm1 activity is essential for proper development of slow muscle, the photoreceptor cell layer, branchial arches and pectoral fins. Our studies reveal essential roles for prdm1 in limiting the function of the gastrula organizer and regulating cell fate specification and morphogenetic processes in precise correspondence with its intricate expression pattern.
Collapse
Affiliation(s)
- Thomas P Wilm
- Vanderbilt University, Department of Biological Sciences, VU Station B 351634, Nashville, TN 37235-1634, USA
| | | |
Collapse
|
46
|
Shimizu T, Bae YK, Muraoka O, Hibi M. Interaction of Wnt and caudal-related genes in zebrafish posterior body formation. Dev Biol 2005; 279:125-41. [PMID: 15708563 DOI: 10.1016/j.ydbio.2004.12.007] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Revised: 12/02/2004] [Accepted: 12/07/2004] [Indexed: 12/12/2022]
Abstract
Although Wnt signaling plays an important role in body patterning during early vertebrate embryogenesis, the mechanisms by which Wnts control the individual processes of body patterning are largely unknown. In zebrafish, wnt3a and wnt8 are expressed in overlapping domains in the blastoderm margin and later in the tailbud. The combined inhibition of Wnt3a and Wnt8 by antisense morpholino oligonucleotides led to anteriorization of the neuroectoderm, expansion of the dorsal organizer, and loss of the posterior body structure-a more severe phenotype than with inhibition of each Wnt alone-indicating a redundant role for Wnt3a and Wnt8. The ventrally expressed homeobox genes vox, vent, and ved mediated Wnt3a/Wnt8 signaling to restrict the organizer domain. Of posterior body-formation genes, expression of the caudal-related cdx1a and cdx4/kugelig, but not bmps or cyclops, was strongly reduced in the wnt3a/wnt8 morphant embryos. Like the wnt3a/wnt8 morphant embryos, cdx1a/cdx4 morphant embryos displayed complete loss of the tail structure, suggesting that Cdx1a and Cdx4 mediate Wnt-dependent posterior body formation. We also found that cdx1a and cdx4 expression is dependent on Fgf signaling. hoxa9a and hoxb7a expression was down-regulated in the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos, and in embryos with defects in Fgf signaling. Fgf signaling was required for Cdx-mediated hoxa9a expression. Both the wnt3a/wnt8 and cdx1a/cdx4 morphant embryos failed to promote somitogenesis during mid-segmentation. These data indicate that the cdx genes mediate Wnt signaling and play essential roles in the morphogenesis of the posterior body in zebrafish.
Collapse
Affiliation(s)
- Takashi Shimizu
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | | | | | | |
Collapse
|
47
|
Kawahara A, Che YS, Hanaoka R, Takeda H, Dawid IB. Zebrafish GADD45beta genes are involved in somite segmentation. Proc Natl Acad Sci U S A 2005; 102:361-6. [PMID: 15623554 PMCID: PMC544321 DOI: 10.1073/pnas.0408726102] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Somites in vertebrates are periodic segmented structures that give rise to the vertebrae and muscles of body. Somites are generated from presomitic mesoderm (PSM), but it is not fully understood how cellular differentiation and segment formation are achieved in the anterior PSM. We report here that zebrafish gadd45beta1 and gadd45beta2 genes are periodically expressed as paired stripes adjacent to the neural tube in the anterior PSM region where presomitic cells mature. In mammals, it is known that GADD45 (growth arrest and DNA damage) family proteins play a role in cell-cycle control. We found that both knockdown and overexpression of gadd45beta genes caused somite defects with different consequences for marker gene expression. Knockdown of gadd45beta genes with antisense morpholino oligonucleotides caused a broad expansion of mesp-a in the PSM, and both cyclic expression of her1 and segmented expression of MyoD were disorganized. On the other hand, injection of gadd45beta1 or gadd45beta2 suppressed expression of mesp-a and her1 in anterior PSM and MyoD in paraxial mesoderm. These results indicate that regulated expression of gadd45beta genes in the anterior PSM is required for somite segmentation.
Collapse
Affiliation(s)
- Atsuo Kawahara
- Laboratory of Developmental Molecular Genetics, Horizontal Medical Research Organization, Kyoto University Faculty of Medicine, Yoshida, Sakyo-Ku, Kyoto 606-8501, Japan.
| | | | | | | | | |
Collapse
|
48
|
Gilardelli CN, Pozzoli O, Sordino P, Matassi G, Cotelli F. Functional and hierarchical interactions among zebrafish vox/vent homeobox genes. Dev Dyn 2004; 230:494-508. [PMID: 15188434 DOI: 10.1002/dvdy.20073] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The vertebrate Vox/Vent family of transcription factors plays a crucial role in the establishment of the dorsoventral (DV) axis, by repressing organizer genes such as bozozok/dharma, goosecoid, and chordino. In Danio rerio (zebrafish), members of the vox/vent gene family (vox/vega1, vent/vega2, and ved) are thought to share expression patterns and functional properties. Bringing novel insights in the differential activity of the zebrafish vox/vent genes, we propose a critical role for the ved gene in DV patterning of vertebrate embryos. ved is not only expressed as a maternal gene, but it also appears to function as a repressor of dorsal factors involved in organizer formation. At early- and mid-gastrula stage, ved appears to be finely controlled by antagonist crosstalks in a complex regulatory network, involving gradients of bone morphogenetic protein (BMP) activity, dorsal factors, and vox/vent family members. We show that ved transcripts are ventrally restricted by BMP factors such as bmp2b, bmp7, smad5, and alk8, and by dorsal factors (chd and gsc). Alteration of ved expression in both vox and vent deletion mutants and vox and vent mRNAs-injected embryos, suggests that vox and vent function downstream of BMP signaling to negatively regulate ved expression. This inhibitory role is emphasized by a vox and vent redundant activity, compared with single gene effects.
Collapse
|
49
|
Leung T, Söll I, Arnold SJ, Kemler R, Driever W. Direct binding of Lef1 to sites in the boz promoter may mediate pre-midblastula-transition activation of boz expression. Dev Dyn 2004; 228:424-32. [PMID: 14579381 DOI: 10.1002/dvdy.10408] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The Nieuwkoop center provides signals essential for the establishment of the dorsal gastrula organizer in vertebrates. Activation of beta-catenin is one of the events in the Nieuwkoop center that lead to activation of dorsal-specific genes during blastula and early gastrula stages. Zebrafish bozozok (boz) mutant embryos have severe defects in axial mesoderm and anterior neuroectoderm. The boz gene is activated in the organizer in response to beta-catenin signaling, and Boz protein has been demonstrated to contribute to organizer formation by repression of ventralizing genes, including bmp2b, vega1, and vega2. Here, we investigate the timing and molecular mechanism by which boz expression is activated in the organizer. We demonstrate that boz is already expressed before midblastula transition (MBT). We further identify high-affinity binding sites for Tcf/Lef1 within the boz promoter region. These sites, together with the finding that beta-catenin induces boz expression, indicate that transcription of boz may be activated directly by beta-catenin/Lef1. We hypothesize that pre-MBT activation of boz may be important to build up a sufficiently strong antagonizing activity against zygotic ventralizing genes activated immediately post-MBT. Thus, the early onset of boz expression may be crucial for organizer establishment in the presence of ubiquitous maternal activators of ventralizing genes.
Collapse
Affiliation(s)
- Tinchung Leung
- Developmental Biology, Institute Biology 1, University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Sadlon TJ, Lewis ID, D'Andrea RJ. BMP4: Its Role in Development of the Hematopoietic System and Potential as a Hematopoietic Growth Factor. Stem Cells 2004; 22:457-74. [PMID: 15277693 DOI: 10.1634/stemcells.22-4-457] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood formation occurs throughout the life of an individual in a process driven by hematopoietic stem cells (HSCs). The ability of bone marrow (BM) and cord blood (CB) HSC to undergo self-renewal and develop into multiple blood lineages has made these cells an important clinical resource. Transplantation with BM- and CB-derived HSCs is now used extensively for treatment of hematological disorders, malignancies, and immunodeficiencies. An understanding of the embryonic origin of HSC and the factors regulating their generation and expansion in vivo will provide important information for the manipulation of these cells ex vivo. This is critical for the further development of CB transplantation, the potential of which is limited by small numbers of HSC in the donor population. Although the origins of HSCs have become clearer and progress has been made in identifying genes that are critical for the formation and maintenance of HSCs, less is known about the signals that commit specific populations of mesodermal precursors to hematopoietic cell fate. Critical signals acting on these precursor cells are likely to be derived from visceral endoderm in yolk sac and from underlying stroma in the aorta-gonad-mesonephros region. Here we summarize briefly the origin of yolk sac and embryonic HSCs before detailing evidence that bone morphogenic protein-4 (BMP4) has a crucial role in Xenopus and mammalian HSC development. We discuss evidence that BMP4 acts as a hematopoietic growth factor and review its potential to modulate HSC in ex vivo expansion cultures from cord blood.
Collapse
Affiliation(s)
- Timothy J Sadlon
- Immunology Program, Child Health Research Institute, North Adelaide, South Australia
| | | | | |
Collapse
|