1
|
Yao H, Zhang M, Wang D. The next decade of SET: from an oncoprotein to beyond. J Mol Cell Biol 2024; 16:mjad082. [PMID: 38157418 PMCID: PMC11267991 DOI: 10.1093/jmcb/mjad082] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/22/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024] Open
Abstract
This year marks the fourth decade of research into the protein SET, which was discovered in 1992. SET was initially identified as an oncoprotein but later shown to be a multifaceted protein involved in regulating numerous biological processes under both physiological and pathophysiological conditions. SET dysfunction is closely associated with diseases, such as cancer and Alzheimer's disease. With the increasing understanding of how SET works and how it is regulated in cells, targeting aberrant SET has emerged as a potential strategy for disease intervention. In this review, we present a comprehensive overview of the advancements in SET studies, encompassing its biological functions, regulatory networks, clinical implications, and pharmacological inhibitors. Furthermore, we provide insights into the future prospects of SET research, with a particular emphasis on its promising potential in the realm of immune modulation.
Collapse
Affiliation(s)
- Han Yao
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Meng Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
2
|
Xu H, Wu D, Xiao M, Lei Y, Lei Y, Yu X, Shi S. PP2A complex disruptor SET prompts widespread hypertranscription of growth-essential genes in the pancreatic cancer cells. SCIENCE ADVANCES 2024; 10:eadk6633. [PMID: 38277454 PMCID: PMC10816699 DOI: 10.1126/sciadv.adk6633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
Hyperactivation of the oncogenic transcription reflects the epigenetic plasticity of the cancer cells. Su(var)3-9, enhancer of zeste, Trithorax (SET) was described as a nuclear factor that stimulated transcription from the chromatin template. However, the mechanisms of SET-dependent transcription are unknown. Here, we found that overexpression of SET and CDK9 induced very similar transcriptome signatures in multiple cancer cell lines. SET localized in the transcription start site (TSS)-proximal regions and supported the RNA transcription. SET specifically bound the PP2A-C subunit and induced PP2A-A subunit repulsion from the C subunit, which indicated the role of SET as a PP2A-A/C complex disruptor in the TSS-proximal regions. Through blocking PP2A activity, SET assisted CDK9 to maintain Pol II CTD phosphorylation and activated mRNA transcription. Our findings position SET as a key factor that modulates chromatin PP2A activity, promoting the oncogenic transcription in the pancreatic cancer.
Collapse
Affiliation(s)
- He Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Di Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yubin Lei
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Yalan Lei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Schwartz U, Komatsu T, Huber C, Lagadec F, Baumgartl C, Silberhorn E, Nuetzel M, Rayne F, Basyuk E, Bertrand E, Rehli M, Wodrich H, Laengst G. Changes in adenoviral chromatin organization precede early gene activation upon infection. EMBO J 2023; 42:e114162. [PMID: 37641864 PMCID: PMC10548178 DOI: 10.15252/embj.2023114162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.
Collapse
Affiliation(s)
- Uwe Schwartz
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular RegulationGunma UniversityGunmaJapan
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Claudia Huber
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| | - Floriane Lagadec
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
- Department of Molecular Biology, Faculty of Medicine, Göttingen Center of Biosciences (GZMB)Georg‐August‐University GöttingenGöttingenGermany
| | | | | | - Margit Nuetzel
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
| | - Fabienne Rayne
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Eugenia Basyuk
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Edouard Bertrand
- CNRS UMR 5355Institut de Généthique Moléculaire de MontpellierMontpellierFrance
| | - Michael Rehli
- Department of Internal Medicine IIIUniversity Hospital RegensburgRegensburgGermany
- Leibniz Institute for ImmunotherapyRegensburgGermany
- University Hospital RegensburgRegensburgGermany
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et PathogénicitéUniversité de BordeauxBordeauxFrance
| | - Gernot Laengst
- Biochemie Zentrum RegensburgUniversity of RegensburgRegensburgGermany
| |
Collapse
|
4
|
Dickherber ML, Garnett-Benson C. NAD-linked mechanisms of gene de-repression and a novel role for CtBP in persistent adenovirus infection of lymphocytes. Virol J 2019; 16:161. [PMID: 31864392 PMCID: PMC6925507 DOI: 10.1186/s12985-019-1265-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/03/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Adenovirus (AdV) infection is ubiquitous in the human population and causes acute infection in the respiratory and gastrointestinal tracts. In addition to lytic infections in epithelial cells, AdV can persist in a latent form in mucosal lymphocytes, and nearly 80% of children contain viral DNA in the lymphocytes of their tonsils and adenoids. Reactivation of latent AdV is thought to be the source of deadly viremia in pediatric transplant patients. Adenovirus latency and reactivation in lymphocytes is not well studied, though immune cell activation has been reported to promote productive infection from latency. Lymphocyte activation induces global changes in cellular gene expression along with robust changes in metabolic state. The ratio of free cytosolic NAD+/NADH can impact gene expression via modulation of transcriptional repressor complexes. The NAD-dependent transcriptional co-repressor C-terminal Binding Protein (CtBP) was discovered 25 years ago due to its high affinity binding to AdV E1A proteins, however, the role of this interaction in the viral life cycle remains unclear. METHODS The dynamics of persistently- and lytically-infected cells are evaluated. RT-qPCR is used to evaluate AdV gene expression following lymphocyte activation, treatment with nicotinamide, or disruption of CtBP-E1A binding. RESULTS PMA and ionomycin stimulation shifts the NAD+/NADH ratio in lymphocytic cell lines and upregulates viral gene expression. Direct modulation of NAD+/NADH by nicotinamide treatment also upregulates early and late viral transcripts in persistently-infected cells. We found differential expression of the NAD-dependent CtBP protein homologs between lymphocytes and epithelial cells, and inhibition of CtBP complexes upregulates AdV E1A expression in T lymphocyte cell lines but not in lytically-infected epithelial cells. CONCLUSIONS Our data provide novel insight into factors that can regulate AdV infections in activated human lymphocytes and reveal that modulation of cellular NAD+/NADH can de-repress adenovirus gene expression in persistently-infected lymphocytes. In contrast, disrupting the NAD-dependent CtBP repressor complex interaction with PxDLS-containing binding partners paradoxically alters AdV gene expression. Our findings also indicate that CtBP activities on viral gene expression may be distinct from those occurring upon metabolic alterations in cellular NAD+/NADH ratios or those occurring after lymphocyte activation.
Collapse
Affiliation(s)
- Megan L Dickherber
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Charlie Garnett-Benson, Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
5
|
Human Adenovirus Infection Causes Cellular E3 Ubiquitin Ligase MKRN1 Degradation Involving the Viral Core Protein pVII. J Virol 2018; 92:JVI.01154-17. [PMID: 29142133 DOI: 10.1128/jvi.01154-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/12/2017] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) are common human pathogens encoding a highly abundant histone-like core protein, VII, which is involved in nuclear delivery and protection of viral DNA as well as in sequestering immune danger signals in infected cells. The molecular details of how protein VII acts as a multifunctional protein have remained to a large extent enigmatic. Here we report the identification of several cellular proteins interacting with the precursor pVII protein. We show that the cellular E3 ubiquitin ligase MKRN1 is a novel precursor pVII-interacting protein in HAdV-C5-infected cells. Surprisingly, the endogenous MKRN1 protein underwent proteasomal degradation during the late phase of HAdV-C5 infection in various human cell lines. MKRN1 protein degradation occurred independently of the HAdV E1B55K and E4orf6 proteins. We provide experimental evidence that the precursor pVII protein binding enhances MKRN1 self-ubiquitination, whereas the processed mature VII protein is deficient in this function. Based on these data, we propose that the pVII protein binding promotes MKRN1 self-ubiquitination, followed by proteasomal degradation of the MKRN1 protein, in HAdV-C5-infected cells. In addition, we show that measles virus and vesicular stomatitis virus infections reduce the MKRN1 protein accumulation in the recipient cells. Taken together, our results expand the functional repertoire of the HAdV-C5 precursor pVII protein in lytic virus infection and highlight MKRN1 as a potential common target during different virus infections.IMPORTANCE Human adenoviruses (HAdVs) are common pathogens causing a wide range of diseases. To achieve pathogenicity, HAdVs have to counteract a variety of host cell antiviral defense systems, which would otherwise hamper virus replication. In this study, we show that the HAdV-C5 histone-like core protein pVII binds to and promotes self-ubiquitination of a cellular E3 ubiquitin ligase named MKRN1. This mutual interaction between the pVII and MKRN1 proteins may prime MKRN1 for proteasomal degradation, because the MKRN1 protein is efficiently degraded during the late phase of HAdV-C5 infection. Since MKRN1 protein accumulation is also reduced in measles virus- and vesicular stomatitis virus-infected cells, our results signify the general strategy of viruses to target MKRN1.
Collapse
|
6
|
Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. mBio 2017; 8:mBio.00713-17. [PMID: 28559488 PMCID: PMC5449659 DOI: 10.1128/mbio.00713-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to keratinocyte differentiation. Although expression of viral early genes is initiated immediately upon virus infection of undifferentiated basal cells, viral DNA amplification and late gene expression occur only in the mid to upper strata of the keratinocytes undergoing terminal differentiation. In this report, we show that the relative activity of HPV18 TATA-less late promoter P811 depends on its orientation relative to that of the origin (Ori) of viral DNA replication and is sensitive to the eukaryotic DNA polymerase inhibitor aphidicolin. Additionally, transfected 70-nucleotide (nt)-long single-strand DNA oligonucleotides that are homologous to the region near Ori induce late promoter activity. We also found that promoter activation in raft cultures leads to production of the late promoter-associated, sense-strand transcription initiation RNAs (tiRNAs) and splice-site small RNAs (spliRNAs). Finally, a cis-acting AAGTATGCA core element that functions as a repressor to the promoter was identified. This element interacts with hnRNP D0B and hnRNP A/B factors. Point mutations in the core prevented binding of hnRNPs and increased the promoter activity. Confirming this result, knocking down the expression of both hnRNPs in keratinocytes led to increased promoter activity. Taking the data together, our study revealed the mechanism of how the HPV18 late promoter is regulated by DNA replication and host factors. It has been known for decades that the activity of viral late promoters is associated with viral DNA replication among almost all DNA viruses. However, the mechanism of how DNA replication activates the viral late promoter and what components of the replication machinery are involved remain largely unknown. In this study, we characterized the P811 promoter region of HPV18 and demonstrated that its activation depends on the orientation of DNA replication. Using single-stranded oligonucleotides targeting the replication fork on either leading or lagging strands, we showed that viral lagging-strand replication activates the promoter. We also identified a transcriptional repressor element located upstream of the promoter transcription start site which interacts with cellular proteins hnRNP D0B and hnRNP A/B and modulates the late promoter activity. This is the first report on how DNA replication activates a viral late promoter.
Collapse
|
7
|
Inturi R, Thaduri S, Punga T. Adenovirus precursor pVII protein stability is regulated by its propeptide sequence. PLoS One 2013; 8:e80617. [PMID: 24260437 PMCID: PMC3829898 DOI: 10.1371/journal.pone.0080617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Adenovirus encodes for the pVII protein, which interacts and modulates virus DNA structure in the infected cells. The pVII protein is synthesized as the precursor protein and undergoes proteolytic processing by viral proteinase Avp, leading to release of a propeptide sequence and accumulation of the mature VII protein. Here we elucidate the molecular functions of the propeptide sequence present in the precursor pVII protein. The results show that the propeptide is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. Our data further indicate that the propeptide sequence and the lysine residues K26 and K27 regulate the precursor pVII protein stability in a co-dependent manner. We also provide evidence that the Cullin-3 E3 ubiquitin ligase complex alters the precursor pVII protein stability by association with the propeptide sequence. In addition, we show that inactivation of the Cullin-3 protein activity reduces adenovirus E1A gene expression during early phase of virus infection. Collectively, our results indicate a novel function of the adenovirus propeptide sequence and involvement of Cullin-3 in adenovirus gene expression.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
8
|
Gao LL, Liu XQ, Xu BQ, Jiang SW, Cui YG, Liu JY. SET/PP2A system regulates androgen production in ovarian follicles in vitro. Mol Cell Endocrinol 2013; 374:108-16. [PMID: 23628604 DOI: 10.1016/j.mce.2013.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/15/2013] [Accepted: 04/19/2013] [Indexed: 01/31/2023]
Abstract
SET has multiple cell functions including nucleosome assembly, histone binding, transcription control, and cell apoptosis. In ovaries SET is predominantly expressed in theca cells and oocytes. In our study, SET overexpression in theca cells stimulated testosterone production whereas SET knockdown decreased testosterone production. Moreover, SET negatively regulated PP2A activity. Treatment with PP2A inhibitor okadaic acid (OA) led to increased testosterone synthesis, while treatment with PP2A activators resulted in the decreased testosterone synthesis. Furthermore, PP2A knockdown confirmed the key role of PP2A in the testosterone synthesis, and OA was able to block the AdH1-SiRNA/SET-mediated inhibition of testosterone production. The central role of PP2A in SET-mediated regulation of testosterone production was confirmed by the finding that SET promoted the lyase activity of P450c17 and that PP2A inhibited its lyase activity. Taken together, these results reveal a specific, SET-initiated, PP2A-mediated, pathway that leads to the increased lyase activity of P450c17 and testosterone biosynthesis.
Collapse
Affiliation(s)
- Ling-Ling Gao
- The State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China.
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
In infected cells, the chromatin structure of the adenovirus genome DNA plays critical roles in its genome functions. Previously, we reported that in early phases of infection, incoming viral DNA is associated with both viral core protein VII and cellular histones. Here we show that in late phases of infection, newly synthesized viral DNA is also associated with histones. We also found that the knockdown of CAF-1, a histone chaperone that functions in the replication-coupled deposition of histones, does not affect the level of histone H3 bound on viral chromatin, although CAF-1 is accumulated at viral DNA replication foci together with PCNA. Chromatin immunoprecipitation assays using epitope-tagged histone H3 demonstrated that histone variant H3.3, which is deposited onto the cellular genome in a replication-independent manner, is selectively associated with both incoming and newly synthesized viral DNAs. Microscopic analyses indicated that histones but not USF1, a transcription factor that regulates viral late gene expression, are excluded from viral DNA replication foci and that this is achieved by the oligomerization of the DNA binding protein (DBP). Taken together, these results suggest that histone deposition onto newly synthesized viral DNA is most likely uncoupled with viral DNA replication, and a possible role of DBP oligomerization in this replication-uncoupled histone deposition is discussed.
Collapse
|
10
|
Samad MA, Komatsu T, Okuwaki M, Nagata K. B23/nucleophosmin is involved in regulation of adenovirus chromatin structure at late infection stages, but not in virus replication and transcription. J Gen Virol 2012; 93:1328-1338. [PMID: 22337638 DOI: 10.1099/vir.0.036665-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
B23/nucleophosmin has been identified in vitro as a stimulatory factor for replication of adenovirus DNA complexed with viral basic core proteins. In the present study, the in vivo function of B23 in the adenovirus life cycle was studied. It was found that both the expression of a decoy mutant derived from adenovirus core protein V that tightly associates with B23 and small interfering RNA-mediated depletion of B23 impeded the production of progeny virions. However, B23 depletion did not significantly affect the replication and transcription of the virus genome. Chromatin immunoprecipitation analyses revealed that B23 depletion significantly increased the association of viral DNA with viral core proteins and cellular histones. These results suggest that B23 is involved in the regulation of association and/or dissociation of core proteins and cellular histones with the virus genome. In addition, these results suggest that proper viral chromatin assembly, regulated in part by B23, is crucial for the maturation of infectious virus particles.
Collapse
Affiliation(s)
- Mohammad Abdus Samad
- Department of Applied Nutrition and Food Technology, Faculty of Applied Science and Technology, Islamic University, Kushtia, Bangladesh.,Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Tetsuro Komatsu
- Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Mitsuru Okuwaki
- Initiatives for the Promotion of Young Scientists' Independent Research, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8577, Japan.,Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| | - Kyosuke Nagata
- Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba 305-8575, Japan
| |
Collapse
|
11
|
Daniel Lam B, Anthony EC, Hordijk PL. Analysis of nucleo-cytoplasmic shuttling of the proto-oncogene SET/I2PP2A. Cytometry A 2011; 81:81-9. [DOI: 10.1002/cyto.a.21153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/26/2011] [Accepted: 09/16/2011] [Indexed: 02/03/2023]
|
12
|
Shi H, Hood KA, Hayes MT, Stubbs RS. Proteomic analysis of advanced colorectal cancer by laser capture microdissection and two-dimensional difference gel electrophoresis. J Proteomics 2011; 75:339-51. [PMID: 21843667 DOI: 10.1016/j.jprot.2011.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 01/26/2023]
Abstract
The emergence of laser capture microdissection (LCM) and two-dimensional difference gel electrophoresis (2D-DIGE) has been shown to greatly improve the accuracy and sensitivity of global protein expression analysis. However, their combined use in profiling tumour proteome has rarely been reported. In this study, we applied these techniques to profile the protein expression changes of the late stage colorectal cancer (CRC) and its liver metastases. The study revealed that both the primary and secondary tumours showed a distinct protein expression profile compared to normal tissues, but were indistinguishable from each other. Differential analysis between the primary tumour and patient-matched normal colon mucosa identified a total of 71 proteins to be altered in CRC. Over 40% of these proteins have been previously reported as CRC-related proteins, validating the accuracy of the current analysis. We have also identified many previously unknown changes including overexpression of ACY1, HSC70, HnRNP I, HnRNP A3, SET, ANP32A and TUFM in CRC, which have been further verified by western blotting and immunohistochemistry. This study demonstrated that LCM in combination with 2D-DIGE is a powerful tool to analyse the proteome of tumour tissues and may lead to the identification of potential novel protein markers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Hongjun Shi
- Wakefield Biomedical Research Unit, University of Otago (Wellington), New Zealand.
| | | | | | | |
Collapse
|
13
|
Komatsu T, Haruki H, Nagata K. Cellular and viral chromatin proteins are positive factors in the regulation of adenovirus gene expression. Nucleic Acids Res 2010; 39:889-901. [PMID: 20926393 PMCID: PMC3035442 DOI: 10.1093/nar/gkq783] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The adenovirus genome forms chromatin-like structure with viral core proteins. This complex supports only a low level of transcription in a cell-free system, and thus core proteins have been thought to be negative factors for transcription. The mechanism how the transcription from the viral DNA complexed with core proteins is activated in infected cells remains unclear. Here, we found that both core proteins and histones are bound with the viral DNA in early phases of infection. We also found that acetylation of histone H3 occurs at the promoter regions of viral active genes in a transcription-independent manner. In addition, when a plasmid DNA complexed with core proteins was introduced into cells, core proteins enhanced transcription. Knockdown of TAF-I, a remodeling factor for viral core protein-DNA complexes, reduces the enhancement effect by core proteins, indicating that core proteins positively regulate viral transcription through the interaction with TAF-I. We would propose a possible mechanism that core proteins ensure transcription by regulating viral chromatin structure through the interaction with TAF-I.
Collapse
Affiliation(s)
- Tetsuro Komatsu
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | |
Collapse
|
14
|
Xu Z, Yang W, Shi N, Gao Y, Teng M, Niu L. Cloning, purification, crystallization and preliminary X-ray crystallographic analysis of SET/TAF-Iß δN from Homo sapiens. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:926-8. [PMID: 20693670 PMCID: PMC2917293 DOI: 10.1107/s1744309110021779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 06/07/2010] [Indexed: 11/10/2022]
Abstract
The histone chaperone SET encoded by the SET gene, which is also known as template-activating factor Iß (TAF-Iß), is a multifunctional molecule that is involved in many biological phenomena such as histone binding, nucleosome assembly, chromatin remodelling, replication, transcription and apoptosis. A truncated SET/TAF-Iß ΔN protein that lacked the first 22 residues of the N-terminus but contained the C-terminal acidic domain and an additional His6 tag at the C-terminus was overexpressed in Escherichia coli and crystallized by the hanging-drop vapour-diffusion method using sodium acetate as precipitant at 283 K. The crystals diffracted to 2.7 A resolution and belonged to space group P4(3)2(1)2.
Collapse
Affiliation(s)
- Zhen Xu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Weili Yang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Nuo Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Yongxiang Gao
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Maikun Teng
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| | - Liwen Niu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
- Key Laboratory of Structural Biology, Chinese Academy of Sciences, 96 Jinzhai Road, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
15
|
Hansen JC, Nyborg JK, Luger K, Stargell LA. Histone chaperones, histone acetylation, and the fluidity of the chromogenome. J Cell Physiol 2010; 224:289-99. [PMID: 20432449 DOI: 10.1002/jcp.22150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The "chromogenome" is defined as the structural and functional status of the genome at any given moment within a eukaryotic cell. This article focuses on recently uncovered relationships between histone chaperones, post-translational acetylation of histones, and modulation of the chromogenome. We emphasize those chaperones that function in a replication-independent manner, and for which three-dimensional structural information has been obtained. The emerging links between histone acetylation and chaperone function in both yeast and higher metazoans are discussed, including the importance of nucleosome-free regions. We close by posing many questions pertaining to how the coupled action of histone chaperones and acetylation influences chromogenome structure and function.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | |
Collapse
|
16
|
Karetsou Z, Emmanouilidou A, Sanidas I, Liokatis S, Nikolakaki E, Politou AS, Papamarcaki T. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction. BMC BIOCHEMISTRY 2009; 10:10. [PMID: 19358706 PMCID: PMC2676315 DOI: 10.1186/1471-2091-10-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 04/09/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. RESULTS Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. CONCLUSION This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 451 10 Ioannina, Greece.
| | | | | | | | | | | | | |
Collapse
|
17
|
Asaka MN, Murano K, Nagata K. Sp1-mediated transcription regulation of TAF-Ialpha gene encoding a histone chaperone. Biochem Biophys Res Commun 2008; 376:665-70. [PMID: 18809386 DOI: 10.1016/j.bbrc.2008.09.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/24/2022]
Abstract
TAF-I, one of histone chaperones, consists of two subtypes, TAF-Ialpha and TAF-Ibeta. The histone chaperone activity of TAF-I is regulated by dimer patterns of these subtypes. TAF-Ibeta is expressed ubiquitously, while the expression level of TAF-Ialpha with less activity than TAF-Ibeta differs among cell types. It is, therefore, assumed that the expression level of TAF-Ialpha in a cell is important for the TAF-I activity level. Here, we found that TAF-Ialpha and TAF-Ibeta genes are under the control of distinct promoters. Reporter assays and gel shift assays demonstrated that Sp1 binds to three regions in the TAF-Ialpha promoter and two or all mutaions of the three Sp1 binding regions reduced the TAF-Ialpha promoter activity. ChIP assays demonstrated that Sp1 binds to the TAF-Ialpha promoter in vivo. Furthermore, the expression level of TAF-Ialpha mRNA was reduced by knockdown of Sp1 using siRNA method. These studies indicated that the TAF-Ialpha promoter is under the control of Sp1.
Collapse
Affiliation(s)
- Masamitsu N Asaka
- Department of Infection Biology, Graduate School of Comprehensive Human Science and Institute of Basic Medical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | |
Collapse
|
18
|
Transcription regulation of the rRNA gene by a multifunctional nucleolar protein, B23/nucleophosmin, through its histone chaperone activity. Mol Cell Biol 2008; 28:3114-26. [PMID: 18332108 DOI: 10.1128/mcb.02078-07] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is well established that the transcription rate of the rRNA gene is closely associated with profound alterations in the cell growth rate. Regulation of rRNA gene transcription is likely to be dependent on the dynamic conversion of the chromatin structure. Previously, we identified B23/nucleophosmin, a multifunctional nucleolar phosphoprotein, as a component of template activating factor III that remodels the chromatin-like structure of the adenovirus genome complexed with viral basic proteins. It has also been shown that B23 has histone chaperone activity. Here, we examined the effect of B23 on rRNA gene transcription. B23 was found to be associated with the rRNA gene chromatin. Small-interfering-RNA-mediated down-regulation of the B23 expression level resulted in reduction of the transcription rate of the rRNA gene. We constructed a B23 mutant termed B23DeltaC, which lacks the domain essential for the histone chaperone activity and inhibited the histone binding activity of B23 in a dominant-negative manner. Expression of B23DeltaC decreased rRNA gene transcription and the rate of cell proliferation. These results suggest that B23 is involved in the transcription regulation of the rRNA gene as a nucleolar histone chaperone.
Collapse
|
19
|
Muto S, Senda M, Akai Y, Sato L, Suzuki T, Nagai R, Senda T, Horikoshi M. Relationship between the structure of SET/TAF-Ibeta/INHAT and its histone chaperone activity. Proc Natl Acad Sci U S A 2007; 104:4285-90. [PMID: 17360516 PMCID: PMC1810507 DOI: 10.1073/pnas.0603762104] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Indexed: 11/18/2022] Open
Abstract
Histone chaperones assemble and disassemble nucleosomes in an ATP-independent manner and thus regulate the most fundamental step in the alteration of chromatin structure. The molecular mechanisms underlying histone chaperone activity remain unclear. To gain insights into these mechanisms, we solved the crystal structure of the functional domain of SET/TAF-Ibeta/INHAT at a resolution of 2.3 A. We found that SET/TAF-Ibeta/INHAT formed a dimer that assumed a "headphone"-like structure. Each subunit of the SET/TAF-Ibeta/INHAT dimer consisted of an N terminus, a backbone helix, and an "earmuff" domain. It resembles the structure of the related protein NAP-1. Comparison of the crystal structures of SET/TAF-Ibeta/INHAT and NAP-1 revealed that the two proteins were folded similarly except for an inserted helix. However, their backbone helices were shaped differently, and the relative dispositions of the backbone helix and the earmuff domain between the two proteins differed by approximately 40 degrees . Our biochemical analyses of mutants revealed that the region of SET/TAF-Ibeta/INHAT that is engaged in histone chaperone activity is the bottom surface of the earmuff domain, because this surface bound both core histones and double-stranded DNA. This overlap or closeness of the activity surface and the binding surfaces suggests that the specific association among SET/TAF-Ibeta/INHAT, core histones, and double-stranded DNA is requisite for histone chaperone activity. These findings provide insights into the possible mechanisms by which histone chaperones assemble and disassemble nucleosome structures.
Collapse
Affiliation(s)
- Shinsuke Muto
- *Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
- Departments of Cardiovascular Medicine and
| | - Miki Senda
- Japan Biological Information Research Center, Japan Biological Informatics Consortium, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan; and
| | - Yusuke Akai
- Japan Biological Information Research Center, Japan Biological Informatics Consortium, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan; and
| | - Lui Sato
- *Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Toru Suzuki
- Departments of Cardiovascular Medicine and
- Clinical Bioinformatics, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | - Toshiya Senda
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Masami Horikoshi
- *Laboratory of Developmental Biology, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
20
|
Spector DJ. Default assembly of early adenovirus chromatin. Virology 2007; 359:116-25. [PMID: 17034827 DOI: 10.1016/j.virol.2006.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/23/2006] [Accepted: 09/06/2006] [Indexed: 11/17/2022]
Abstract
In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Ibeta and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Ibeta and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Ibeta or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1beta and the release of protein VII.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, Pennsylvania State University College of Hershey, PA 17033, USA.
| |
Collapse
|
21
|
Kato K, Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Histone acetylation-independent transcription stimulation by a histone chaperone. Nucleic Acids Res 2006; 35:705-15. [PMID: 17179179 PMCID: PMC1807960 DOI: 10.1093/nar/gkl1077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Histone chaperones are thought to be important for maintaining the physiological activity of histones; however, their exact roles are not fully understood. The physiological function of template activating factor (TAF)-I, one of the histone chaperones, also remains unclear; however, its biochemical properties have been well studied. By performing microarray analyses, we found that TAF-I stimulates the transcription of a sub-set of genes. The transcription of endogenous genes that was up-regulated by TAF-I was found to be additively stimulated by histone acetylation. On performing an experiment with a cell line containing a model gene integrated into the chromosome, TAF-I was found to stimulate the model gene transcription in a histone chaperone activity-dependent manner additively with histone acetylation. TAF-I bound to the core histones and remodeled the chromatin structure independent of the N-terminal histone tail and its acetylation level in vitro. These results suggest that TAF-I remodel the chromatin structure through its interaction with the core domain of the histones, including the histone fold, and this mechanism is independent of the histone acetylation status.
Collapse
Affiliation(s)
| | | | | | - Kyosuke Nagata
- To whom correspondence should be addressed. Tel: +81 29 853 3233; Fax: +81 29 853 3233;
| |
Collapse
|
22
|
Bevington JM, Needham PG, Verrill KC, Collaco RF, Basrur V, Trempe JP. Adeno-associated virus interactions with B23/Nucleophosmin: identification of sub-nucleolar virion regions. Virology 2006; 357:102-13. [PMID: 16959286 PMCID: PMC1829415 DOI: 10.1016/j.virol.2006.07.050] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 07/18/2006] [Accepted: 07/24/2006] [Indexed: 11/28/2022]
Abstract
Adeno-associated virus (AAV) is a human parvovirus that normally requires a helper virus such as adenovirus (Ad) for replication. The four replication proteins (Rep78, 68, 52 and 40) encoded by AAV are pleiotropic effectors of virus integration, replication, transcription and virion assembly. Using Rep68 column chromatography and mass spectrometry, we have identified the nucleolar, B23/Nucleophosmin (NPM) protein as an Rep-interacting partner. Rep-NPM interactions were verified by co-immunofluorescence and chemical cross-linking studies. We have found that there is demonstrable, but limited co-localization between Rep and NPM in co-infected cells. In contrast, there was significant co-localization between NPM and AAV Cap proteins. In vitro experiments using purified MBPRep78 and NPM show that NPM stimulates MBPRep78 interactions with the AAV ITR as well as endonuclease activity. These studies suggest that NPM plays a role in AAV amplification affecting Rep function and virion assembly.
Collapse
Affiliation(s)
- Joyce M Bevington
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, 3035 Arlington Ave., Toledo, OH 43614-5804, USA
| | | | | | | | | | | |
Collapse
|
23
|
Pegoraro G, Marcello A, Myers MP, Giacca M. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex. J Virol 2006; 80:6855-64. [PMID: 16809291 PMCID: PMC1489034 DOI: 10.1128/jvi.00383-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.
Collapse
Affiliation(s)
- Gianluca Pegoraro
- Molecular Medicine Laboratory, International Center for Genetic Engineering and Biotechnology, Triste, Italy
| | | | | | | |
Collapse
|
24
|
Chohan MO, Khatoon S, Iqbal IG, Iqbal K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 2006; 580:3973-9. [PMID: 16806196 DOI: 10.1016/j.febslet.2006.06.021] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/22/2022]
Abstract
The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | | | | | | |
Collapse
|
25
|
Akita H, Tanimoto M, Masuda T, Kogure K, Hama S, Ninomiya K, Futaki S, Harashima H. Evaluation of the nuclear delivery and intra-nuclear transcription of plasmid DNA condensed with µ (mu) and NLS-µ by cytoplasmic and nuclear microinjection: a comparative study with poly-L-lysine. J Gene Med 2006; 8:198-206. [PMID: 16285003 DOI: 10.1002/jgm.839] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The efficient nuclear delivery of plasmid DNA (pDNA) is essential for the development of a promising non-viral gene vector. In an attempt to achieve nuclear delivery, NLS-mu, a novel pDNA condenser, was prepared. This consists of mu, a highly potent polypeptide for condensing the pDNA, and a SV40 T antigen-derived nuclear localization signal (NLS(SV40)). METHODS The utility of NLS-mu was assessed in terms of green fluorescent protein (GFP) expression after cytoplasmic and nuclear microinjection of GFP-encoding pDNA along with the transfection, and compared with mu and poly-L-lysine (PLL). Trans-gene expression after cytoplasmic microinjection was affected by the efficiencies of nuclear transfer and following intra-nuclear transcription. To evaluate the nuclear transfer process separately, we introduced a parameter, a nuclear transfer score (NT score), which was calculated as the trans-gene expression after cytoplasmic microinjection divided by that after nuclear microinjection. RESULTS As expected, the rank order of trans-gene expression after the transfection and cytoplasmic microinjection was NLS-mu > mu > PLL. However, the calculated NT scores were unexpectedly ranked as mu = NLS-mu > PLL, suggesting that mu, and not NLS(SV40), is responsible for the nuclear delivery of pDNA. In addition, confocal images of rhodamine-labeled pDNA indicated that pDNA condensed with mu and NLS-mu was delivered as a condensed form. In comparing the nuclear transcription, the rank order of trans-gene expression after nuclear microinjection was PLL = NLS-mu > mu, suggesting that intra-nuclear transcription is inhibited by efficient condensation by mu, and is avoided by the attachment of NLS(SV40). CONCLUSIONS Collectively, NLS-mu, which consists of chimeric functions, is an excellent DNA condenser, and the process is based on mu-derived nuclear transfer and NLS(SV40)-derived efficient intra-nuclear transcription.
Collapse
Affiliation(s)
- Hidetaka Akita
- Laboratory for Molecular Design of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Haruki H, Okuwaki M, Miyagishi M, Taira K, Nagata K. Involvement of template-activating factor I/SET in transcription of adenovirus early genes as a positive-acting factor. J Virol 2006; 80:794-801. [PMID: 16378981 PMCID: PMC1346848 DOI: 10.1128/jvi.80.2.794-801.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 10/21/2005] [Indexed: 02/04/2023] Open
Abstract
The adenovirus genome complexed with viral core protein VII (adenovirus DNA-protein VII complex) at least is the bona fide template for transcription of adenovirus early genes. It is believed that the highly basic protein VII, like cellular histones, is a negative regulator for genome functions. Analyses with in vitro replication and transcription systems using the adenovirus DNA-protein VII complex have revealed that remodeling of the complex is crucial for efficient DNA replication and transcription. We identified host acidic proteins, template-activating factor I (TAF-I), TAF-II, and TAF-III as stimulatory factors for replication from the adenovirus DNA-protein VII complex. Recently, it was reported that the adenovirus DNA interacts with TAF-I and pp32, another host acidic protein (Y. Xue, J. S. Johnson, D. A. Ornelles, J. Lieberman, and D. A. Engel, J. Virol. 79:2474-2483, 2005). We found that TAF-I interacts and colocalizes with protein VII in adenovirus-infected cells during the early phases of infection, but pp32 does not. Although pp32 had the potential ability to interact with protein VII, pp32 did not remodel the adenovirus DNA-protein VII complex in vitro. Small interfering RNA-mediated knockdown of TAF-I expression leads to the delay of the transcription timing of early genes. These results provide evidence that TAF-I plays an important role in the early stages of the adenovirus infection cycle.
Collapse
Affiliation(s)
- Hirohito Haruki
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | |
Collapse
|
27
|
Karetsou Z, Martic G, Sflomos G, Papamarcaki T. The histone chaperone SET/TAF-Iβ interacts functionally with the CREB-binding protein. Biochem Biophys Res Commun 2005; 335:322-7. [PMID: 16061203 DOI: 10.1016/j.bbrc.2005.06.210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Accepted: 06/24/2005] [Indexed: 12/22/2022]
Abstract
The oncoprotein SET/TAF-Ibeta is a histone chaperone which is involved in cell-cycle control and chromatin remodeling. Confocal laser scanning microscopy reveals that SET is localized in distinct foci of variable size throughout the nucleoplasm of interphase cells. We report here that SET interacts directly with the acetyltransferase CREB-binding protein (CBP) and enhances the transactivation potential of the transcription coactivator. Our data suggest that the histone chaperone SET regulates the CBP-mediated transcription and may indicate a general principle by which transcriptional regulators cooperate with histone chaperones for gene activation.
Collapse
Affiliation(s)
- Zoe Karetsou
- Laboratory of Biological Chemistry, Medical School, University of Ioannina, 451 10 Ioannina, Greece
| | | | | | | |
Collapse
|
28
|
Nagai R, Suzuki T, Aizawa K, Shindo T, Manabe I. Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost 2005; 3:1569-76. [PMID: 16102021 DOI: 10.1111/j.1538-7836.2005.01366.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Structural remodeling of the heart and blood vessels is an important pathologic process in the development of many cardiovascular diseases. However, transcriptional regulation of altered gene expression during cardiovascular remodeling is not well understood. We previously isolated KLF5/basic transcription element-binding (BTEB)2, a Krüppel-like factor, as a transcription factor that binds the promoter of the embryonic smooth muscle myosin heavy chain gene (SMemb). KLF5 activates many genes inducible during cardiovascular remodeling, such as platelet-derived growth factor (PDGF)-A/B, Egr-1, plasminogen activator inhibitor-1 (PAI-1), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor (VEGF) receptors. KLF5 is abundantly expressed in embryonic smooth muscles and is down-regulated with vascular development, but reinduced in proliferative neointimal smooth muscles in response to vascular injury. In KLF5 gene-targeted mice, homozygotes die at an early embryonic stage whereas heterozygotes are apparently normal. However, in response to external stress, arteries of heterozygotes exhibit diminished levels of smooth muscle and adventitial cell activation. Furthermore, angiotensin II-induced cardiac hypertrophy and fibrosis are attenuated in heterozygotes. KLF5 activities are regulated by many transcriptional regulators and nuclear receptors, such as retinoic acid receptor-alpha (RAR alpha), NF-kappaB, PPAR gamma, p300, and SET. Interestingly, RAR alpha agonist suppresses KLF5 and cardiovascular remodeling, whereas RAR alpha antagonist activates KLF5 and induces angiogenesis. These results indicate that KLF5 is an essential transcription factor in cardiovascular remodeling and a potential therapeutic target for cardiovascular disease.
Collapse
Affiliation(s)
- R Nagai
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
29
|
Haruki H, Gyurcsik B, Okuwaki M, Nagata K. Ternary complex formation between DNA-adenovirus core protein VII and TAF-Ibeta/SET, an acidic molecular chaperone. FEBS Lett 2004; 555:521-7. [PMID: 14675767 DOI: 10.1016/s0014-5793(03)01336-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The adenovirus (Ad) genome complexed with viral core proteins designated Ad core is the template for transcription of early genes and the first round of replication in Ad-infected cells. A cellular protein designated template-activating factor-I (TAF-I) is found to be involved in remodeling of the Ad core in vitro. Here we found that TAF-I interacts with the Ad DNA through core protein VII in infected cells in early phases of infection. In vitro binding assays using recombinant proteins showed that TAF-I forms ternary complexes with DNA-protein VII complexes.
Collapse
Affiliation(s)
- Hirohito Haruki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
30
|
Miyamoto S, Suzuki T, Muto S, Aizawa K, Kimura A, Mizuno Y, Nagino T, Imai Y, Adachi N, Horikoshi M, Nagai R. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol 2003; 23:8528-41. [PMID: 14612398 PMCID: PMC262669 DOI: 10.1128/mcb.23.23.8528-8541.2003] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Here we show a novel pathway of transcriptional regulation of a DNA-binding transcription factor by coupled interaction and modification (e.g., acetylation) through the DNA-binding domain (DBD). The oncogenic regulator SET was isolated by affinity purification of factors interacting with the DBD of the cardiovascular transcription factor KLF5. SET negatively regulated KLF5 DNA binding, transactivation, and cell-proliferative activities. Down-regulation of the negative regulator SET was seen in response to KLF5-mediated gene activation. The coactivator/acetylase p300, on the other hand, interacted with and acetylated KLF5 DBD, and activated its transcription. Interestingly, SET inhibited KLF5 acetylation, and a nonacetylated mutant of KLF5 showed reduced transcriptional activation and cell growth complementary to the actions of SET. These findings suggest a new pathway for regulation of a DNA-binding transcription factor on the DBD through interaction and coupled acetylation by two opposing regulatory factors of a coactivator/acetylase and a negative cofactor harboring activity to inhibit acetylation.
Collapse
Affiliation(s)
- Saku Miyamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Granzyme A, a serine protease in the cytotoxic granules of natural killer cells and cytotoxic T lymphocytes, induces caspase-independent cell death when introduced into target cells by perforin. Granzyme A induces single-stranded DNA damage as well as rapid loss of cell membrane integrity and mitochondrial transmembrane potential through unknown mechanisms. Granzyme A destroys the nuclear envelope by targeting lamins and opens up DNA for degradation by targeting histones. A special target of the granzyme A cell death pathway is an endoplasmic reticulum-associated complex, called the SET complex, which contains three granzyme A substrates, the nucleosome assembly protein SET, the DNA bending protein HMG-2, and the base excision repair endonuclease Ape1. The SET complex also contains the tumor suppressor protein pp32 and the granzyme A-activated DNase NM23-H1, which is inhibited by SET. Granzyme A cleavage of SET releases the inhibition and unleashes NM23-H1. Cleavage of Ape1 by granzyme A interferes with the ability of the target cell to repair itself. The novel cell death pathway initiated by granzyme A provides a parallel pathway for apoptosis, important in destroying targets that overexpress bcl-2 or are otherwise invulnerable to the caspases.
Collapse
Affiliation(s)
- Judy Lieberman
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02115, USA.
| | | |
Collapse
|
32
|
Suzuki T, Muto S, Miyamoto S, Aizawa K, Horikoshi M, Nagai R. Functional interaction of the DNA-binding transcription factor Sp1 through its DNA-binding domain with the histone chaperone TAF-I. J Biol Chem 2003; 278:28758-64. [PMID: 12759364 DOI: 10.1074/jbc.m302228200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transcription involves molecular interactions between general and regulatory transcription factors with further regulation by protein-protein interactions (e.g. transcriptional cofactors). Here we describe functional interaction between DNA-binding transcription factor and histone chaperone. Affinity purification of factors interacting with the DNA-binding domain of the transcription factor Sp1 showed Sp1 to interact with the histone chaperone TAF-I, both alpha and beta isoforms. This interaction was specific as Sp1 did not interact with another histone chaperone CIA nor did other tested DNA-binding regulatory factors (MyoD, NFkappaB, p53) interact with TAF-I. Interaction of Sp1 and TAF-I occurs both in vitro and in vivo. Interaction with TAF-I results in inhibition of DNA-binding, and also likely as a result of such, inhibition of promoter activation by Sp1. Collectively, we describe interaction between DNA-binding transcription factor and histone chaperone which results in negative regulation of the former. This novel regulatory interaction advances our understanding of the mechanisms of eukaryotic transcription through DNA-binding regulatory transcription factors by protein-protein interactions, and also shows the DNA-binding domain to mediate important regulatory interactions.
Collapse
Affiliation(s)
- Toru Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Fan Z, Beresford PJ, Zhang D, Lieberman J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol Cell Biol 2002; 22:2810-20. [PMID: 11909973 PMCID: PMC133744 DOI: 10.1128/mcb.22.8.2810-2820.2002] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytotoxic T-lymphocyte protease granzyme A induces caspase-independent cell death in which DNA single-stranded nicking is observed instead of oligonucleosomal fragmentation. A 270- to 420-kDa endoplasmic reticulum-associated complex (SET complex) containing the nucleosome assembly protein SET, the tumor suppressor pp32, and the base excision repair enzyme APE can induce single-stranded DNA damage in isolated nuclei in a granzyme A-dependent manner. The normal functions of the SET complex are unknown, but the functions of its components suggest that it is involved in activating transcription and DNA repair. We now find that the SET complex contains DNA binding and bending activities mediated by the chromatin-associated protein HMG2. HMG2 facilitates assembly of nucleoprotein higher-order structures by bending and looping DNA or by stabilizing underwound DNA. HMG2 is in the SET complex and coprecipitates with SET. By confocal microscopy, it is observed that cytoplasmic HMG2 colocalizes with SET in association with the endoplasmic reticulum, but most nuclear HMG2 is unassociated with SET. This physical association suggests that HMG2 may facilitate the nucleosome assembly, transcriptional activation, and DNA repair functions of SET and/or APE. HMG2, like SET and APE, is a physiologically relevant granzyme A substrate in targeted cells. HMG1, however, is not a substrate. Granzyme A cleavage after Lys65 in the midst of HMG box A destroys HMG2-mediated DNA binding and bending functions. Granzyme A cleavage and functional disruption of key nuclear substrates, including HMG2, SET, APE, lamins, and histones, are likely to cripple the cellular repair response to promote cell death in this novel caspase-independent death pathway.
Collapse
Affiliation(s)
- Zusen Fan
- Center for Blood Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
34
|
Gallimore PH, Turnell AS. Adenovirus E1A: remodelling the host cell, a life or death experience. Oncogene 2001; 20:7824-35. [PMID: 11753665 DOI: 10.1038/sj.onc.1204913] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- P H Gallimore
- CRC Institute for Cancer Studies, The Medical School, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | |
Collapse
|
35
|
Beresford PJ, Zhang D, Oh DY, Fan Z, Greer EL, Russo ML, Jaju M, Lieberman J. Granzyme A activates an endoplasmic reticulum-associated caspase-independent nuclease to induce single-stranded DNA nicks. J Biol Chem 2001; 276:43285-93. [PMID: 11555662 DOI: 10.1074/jbc.m108137200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytotoxic T lymphocyte protease granzyme A (GzmA) initiates a novel caspase-independent cell death pathway characterized by single-stranded DNA nicking. The previously identified GzmA substrate SET is in a multimeric 270-420-kDa endoplasmic reticulum-associated complex that also contains the tumor suppressor protein pp32. GzmA cleaved the nucleosome assembly protein SET after Lys(176) and disrupted its nucleosome assembly activity. The purified SET complex required only GzmA to reconstitute single-stranded DNA nicking in isolated nuclei. DNA nicking occurred independently of caspase activation. The SET complex contains a 25-kDa Mg(2+)-dependent nuclease that degrades calf thymus DNA and plasmid DNA. Thus, GzmA activates a DNase (GzmA-activated DNase) within the SET complex to produce a novel form of DNA damage during cytotoxic T lymphocyte-mediated death.
Collapse
Affiliation(s)
- P J Beresford
- Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang P, Compagnone NA, Fiore C, Vigne JL, Culp P, Musci TJ, Mellon SH. Developmental gonadal expression of the transcription factor SET and its target gene, P450c17 (17alpha-hydroxylase/c17,20 lyase). DNA Cell Biol 2001; 20:613-24. [PMID: 11749720 DOI: 10.1089/104454901753340604] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase/17,20 lyase activity needed for sex steroid synthesis. We recently characterized the nuclear phosphoprotein SET as a novel transcriptional regulator that binds to the -447/-399 region of the rat P450c17 gene, along with the transcription factors COUP-TF II, NGF-IB, and SF-1. Gel shift studies localized SET binding to nucleotides -410/-402. We have shown that SET activates transcription of the rat P450c17 gene in neuronal precursor cells and now show that it also activates transcription from the -418/-399 region of the rat P450c17 gene in mouse Leydig MA-10 cells. Studying the ontogenic expression of SET and P450c17 in the rodent gonad, we found that SET expression preceded P450c17 expression in the embryonic genital ridge, suggesting that SET may be important for initiating P450c17 expression in this region. Expression of SET also preceded P450c17 expression in the testis and ovary, and its expression was much greater during embryogenesis than in the adult gonad. In the adult rat testis, P450c17 was expressed only in Leydig cells, while SET was expressed in Leydig cells and in spermatocytes. In the adult rat ovary, P450c17 was expressed only in theca cells, while SET was expressed in theca cells and also in oocytes. Because SET is expressed early in development in the genital ridge and in the testis and ovary, and because SET has many functions in addition to its activity as a transcription factor, we determined whether SET acts a transcription factor in oocytes. The SET protein was detected by Western blots in Xenopus oocytes from stages II through VI and in mature oocytes. Using extracts of Xenopus oocytes in gel shift assays, we detected a protein that bound to the -418/-399 region of the rat P450c17 gene, to which SET binds. Nuclear injection of either a -418/-399TK32LUC wildtype reporter construct or a construct containing a mutant SET site into Xenopus oocytes from stages III through VI resulted in activation of luciferase activity with the wildtype but not the mutant construct in all stages. These data suggest that Xenopus SET is able to bind to specific DNA sequences to activate transcription at all stages of Xenopus oogenesis. These data indicate that SET is an evolutionarily conserved transcription factor that participates in the early ontogenesis of the gonadal system, regulates P450c17 gene transcription in Leydig cells, and may also activate other genes expressed in immature oocytes, thus playing a role in oocyte development.
Collapse
Affiliation(s)
- P Zhang
- Department of Obstetrics & Gynecology & Reproductive Sciences, Center for Reproductive Sciences, and The Metabolic Research Unit, University of California, San Francisco 94143-0556, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 2001; 311:41-55. [PMID: 11469856 DOI: 10.1006/jmbi.2001.4812] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The processes governing chromatin remodeling and assembly, which occur prior to and/or after transcription and replication, are not completely understood. To understand the mechanisms of transcription and replication from chromatin templates, we have established in vitro replication and transcription systems using adenovirus (Ad) DNA complexed with viral basic core proteins, called Ad core, as a template. Using this system, we have previously identified, from HeLa cells, template activating factor-I as a stimulatory factor for the Ad core DNA replication. Here, using this system as a tool, we identified and purified a novel template activating factor activity that consists of two acidic polypeptides whose apparent molecular masses are 38 kDa and 37 kDa. These two polypeptides correspond to two splicing variants of nucleolar phosphoprotein, nucleophosmin/B23. Recombinant B23 proteins stimulate the Ad core DNA replication, and the acidic regions of B23 proteins are important for its activity. In addition, B23 proteins directly bind to core histones and transfer them to naked DNA. Furthermore, chromatin components such as histones and topoisomerase II are co-immunoprecipitated with B23 from cell extracts. These observations lead to a hypothesis that nucleophosmin/B23 is involved in structural changes of chromatin, thereby regulating transcription and replication within the ribosomal DNA region or maintaining the nucleolar structure.
Collapse
Affiliation(s)
- M Okuwaki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | | | | | | |
Collapse
|
38
|
Wen C, Levitan D, Li X, Greenwald I. spr-2, a suppressor of the egg-laying defect caused by loss of sel-12 presenilin in Caenorhabditis elegans, is a member of the SET protein subfamily. Proc Natl Acad Sci U S A 2000; 97:14524-9. [PMID: 11114162 PMCID: PMC18952 DOI: 10.1073/pnas.011446498] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Presenilin plays critical roles in the genesis of Alzheimer's disease and in LIN-12/Notch signaling during development. Here, we describe a screen for genes that influence presenilin level or activity in Caenorhabditis elegans. We identified four spr (suppressor of presenilin) genes by reverting the egg-laying defective phenotype caused by a null allele of the sel-12 presenilin gene. We analyzed the spr-2 gene in some detail. We show that loss of spr-2 activity suppresses the egg-laying defective phenotype of different sel-12 alleles and requires activity of the hop-1 presenilin gene, suggesting that suppression is accomplished by elevating presenilin activity rather than by bypassing the need for presenilin activity. We also show that SPR-2 is a nuclear protein and is a member of a protein subfamily that includes human SET, which has been identified in numerous different biochemical assays and at translocation breakpoints associated with a subtype of acute myeloid leukemia.
Collapse
Affiliation(s)
- C Wen
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
39
|
Fukukawa C, Shima H, Tanuma N, Ogawa K, Kikuchi K. Up-regulation of I-2(PP2A)/SET gene expression in rat primary hepatomas and regenerating livers. Cancer Lett 2000; 161:89-95. [PMID: 11078917 DOI: 10.1016/s0304-3835(00)00598-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
I-2(PP2A)/SET, an inhibitor of protein phosphatase 2A, is supposed to be one of the oncoproteins associated with human myeloid leukemia. The I-2(PP2A)/SET gene expression was observed ubiquitously among all the rat tissues examined, but low in liver. Of interest is that the expression in the rat primary hepatomas and hyperplastic nodules was significantly elevated. The experiments using regenerating livers after partial hepatectomy showed that the expression of I-2(PP2A)/SET mRNA was low at the quiescent hepatocytes, but up-regulated at 12-24 h after partial hepatectomy, which corresponds to the mid G1 to S transition in the cell cycle. These results suggested the importance of I-2(PP2A)/SET in the hepatocarcinogenesis and hepatic cell proliferation.
Collapse
Affiliation(s)
- C Fukukawa
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, 060-0815, Sapporo, Japan
| | | | | | | | | |
Collapse
|
40
|
Compagnone NA, Zhang P, Vigne JL, Mellon SH. Novel role for the nuclear phosphoprotein SET in transcriptional activation of P450c17 and initiation of neurosteroidogenesis. Mol Endocrinol 2000; 14:875-88. [PMID: 10847589 DOI: 10.1210/mend.14.6.0469] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurosteroids are important endogenous regulators of gamma-aminobutryic acid (GABA(A)) and N-methyl-D-aspartate (NMDA) receptors and also influence neuronal morphology and function. Neurosteroids are produced in the brain using many of the same enzymes found in the adrenal and gonad. The crucial enzyme for the synthesis of DHEA (dehydroepiandrosterone) in the brain is cytochrome P450c17. The transcriptional strategy for the expression of P450c17 is clearly different in the brain from that in the adrenal or gonad. We previously characterized a novel transcriptional regulator from Leydig MA-10 cells, termed StF-IT-1, that binds at bases -447/-399 of the rat P450c17 promoter, along with the known transcription factors COUP-TF (chicken ovalbumin upstream promoter transcription factor), NGF-IB (nerve growth factor inducible protein B), and SF-1 (steroidogenic factor-1). We have now purified and sequenced this protein from immature porcine testes, identifying it as the nuclear phosphoprotein SET; a role for SET in transcription was not established previously. Binding of bacterially expressed human and rat SET to the DNA site at -418/-399 of the rat P450c17 gene transactivates P450c17 in neuronal and in testicular Leydig cells. We also found SET expressed in human NT2 neuronal precursor cells, implicating a role in neurosteroidogenesis. Immunocytochemistry and in situ hybridization in the mouse fetus show that the ontogeny and distribution of SET in the developing nervous system are consistent with SET being crucial for initiating P450c17 transcription. SET's developmental pattern of expression suggests it may participate in the early ontogenesis of the nervous, as well as the skeletal and hematopoietic, systems. These studies delineate an important new factor in the transcriptional regulation of P450c17 and consequently, in the production of DHEA and sex steroids.
Collapse
Affiliation(s)
- N A Compagnone
- Center for Reproductive Sciences, Department of Obstetrics & Gynecology & Reproductive Sciences, University of California San Francisco 94143-0556, USA
| | | | | | | |
Collapse
|
41
|
Matsumoto K, Nagata K, Okuwaki M, Tsujimoto M. Histone- and chromatin-binding activity of template activating factor-I. FEBS Lett 1999; 463:285-8. [PMID: 10606739 DOI: 10.1016/s0014-5793(99)01632-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Template activating factor-I (TAF-I) is a histone-binding chromatin remodeling factor. We recently found that TAF-I is capable of mediating decondensation of Xenopus sperm chromatin by releasing sperm-specific basic proteins. Here we present evidence that TAF-I preferentially binds to histone H3 among four core histones. Immunofluorescent staining revealed that TAF-I binds to the decondensed sperm chromatin, of which protein components predominantly consist of histones H3 and H4.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Cellular Biochemistry, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama, Japan.
| | | | | | | |
Collapse
|
42
|
Matsumoto K, Nagata K, Miyaji-Yamaguchi M, Kikuchi A, Tsujimoto M. Sperm chromatin decondensation by template activating factor I through direct interaction with basic proteins. Mol Cell Biol 1999; 19:6940-52. [PMID: 10490631 PMCID: PMC84689 DOI: 10.1128/mcb.19.10.6940] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/1999] [Accepted: 07/25/1999] [Indexed: 11/20/2022] Open
Abstract
Template activating factor I (TAF-I) was originally identified as a host factor required for DNA replication and transcription of adenovirus genome complexed with viral basic proteins. Purified TAF-I was shown to bind to core histones and stimulate transcription from nucleosomal templates. Human TAF-I consists of two acidic proteins, TAF-Ialpha and TAF-Ibeta, which differ from each other only in their amino-terminal regions. Here, we report that TAF-I decondenses demembraned Xenopus sperm chromatin. Human TAF-Ibeta has a chromatin decondensation activity comparable to that of NAP-I, another histone binding protein, whereas TAF-Ialpha has only a weak activity. Analysis of molecular mechanisms underlying the chromatin decondensation by TAF-I revealed that TAF-I interacts directly with sperm basic proteins. Deletion of the TAF-I carboxyl-terminal acidic region abolishes the decondensation activity. Interestingly, the acidic region itself is not sufficient for decondensation, since an amino acid substitution mutant in the dimerization domain of TAF-I which has the intact acidic region does not support chromatin decondensation. We detected the beta form of TAF-I in Xenopus oocytes and eggs by immunoblotting, and the cloning of its cDNA led us to conclude that Xenopus TAF-Ibeta also decondenses sperm chromatin. These results suggest that TAF-I plays a role in remodeling higher-order chromatin structure as well as nucleosomal structure through direct interaction with chromatin basic proteins.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Cellular Biochemistry, The Institute of Physical and Chemical Research (RIKEN), Wako, Saitama 351-0198, Japan.
| | | | | | | | | |
Collapse
|
43
|
Miyaji-Yamaguchi M, Okuwaki M, Nagata K. Coiled-coil structure-mediated dimerization of template activating factor-I is critical for its chromatin remodeling activity. J Mol Biol 1999; 290:547-57. [PMID: 10390352 DOI: 10.1006/jmbi.1999.2898] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template activating factor-I (TAF-I)alpha and TAF-Ibeta have been identified as the host factors that activate DNA replication of the adenovirus genome complexed with viral basic core proteins (Ad core). TAF-I causes a structural change of the Ad core, thereby stimulating not only replication but also transcription from the Ad core DNA in vitro. TAF-I also activates transcription from the reconstituted chromatin consisting of DNA fragments and purified histones through chromatin remodeling. Although the carboxyl-terminal region, which is highly rich in acidic amino acids, is essential for the TAF-I activity, it remains unclear how other parts are involved in its activity. The native TAF-I isolated from HeLa cells exists as either hetero- or homo-oligomer. Here, we have demonstrated by cross-linking assays that most of TAF-I exists as a dimer. Analyses using deletion mutant TAF-I proteins revealed that the amino-terminal region of TAF-I common to both alpha and beta is essential for dimerization. This region is predicted to form a coiled-coil structure. Indeed, mutations disrupting this putative structure abolished the dimerization capability and reduced the TAF-I activity in the Ad core DNA replication assay. Furthermore, we found that TAF-I mutants lacking the acidic tail act in a dominant-negative manner in this assay. These observations strongly suggest that the dimerization of TAF-I is important for its activity.
Collapse
Affiliation(s)
- M Miyaji-Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | |
Collapse
|
44
|
Saito S, Miyaji-Yamaguchi M, Shimoyama T, Nagata K. Functional domains of template-activating factor-I as a protein phosphatase 2A inhibitor. Biochem Biophys Res Commun 1999; 259:471-5. [PMID: 10362532 DOI: 10.1006/bbrc.1999.0790] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template-Activating Factor-I (TAF-I) alpha and beta, chromatin remodeling factors, were identified as the stimulatory factor for replication of the adenovirus DNA complexed with viral basic core proteins. Recently, two cellular inhibitors for protein phosphatase 2A (PP2A) have been isolated. One of these inhibitors, designated IPP2A2, is a truncated version of TAF-Ibeta. Here, it is shown using recombinant TAF-I proteins that both TAF-Ialpha and beta have the PP2A inhibitor activity. The N-terminal region but not the C-terminal acidic region, the latter of which is essential for the chromatin remodeling activity, is shown to be required for the PP2A inhibitor activity. Roles of TAF-Ialpha- and beta-specific regions, the C-terminal acidic region, and other regions of TAF-I for the PP2A inhibitor activity are also discussed.
Collapse
Affiliation(s)
- S Saito
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | | | | |
Collapse
|
45
|
Okuwaki M, Nagata K. Template activating factor-I remodels the chromatin structure and stimulates transcription from the chromatin template. J Biol Chem 1998; 273:34511-8. [PMID: 9852120 DOI: 10.1074/jbc.273.51.34511] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To study the mechanisms of replication and transcription on chromatin, we have been using the adenovirus DNA complexed with viral basic core proteins, called Ad core. We have identified template activating factor (TAF)-I from uninfected HeLa cells as the factor that stimulates replication and transcription from the Ad core. The nuclease sensitivity assays have revealed that TAF-I remodels the Ad core, thereby making transcription and replication apparatus accessible to the template DNA. To examine whether TAF-I remodels the chromatin consisting of histones, the chromatin structure was reconstituted on the DNA fragment with core histones by the salt dialysis method. The transcription from the reconstituted chromatin was completely repressed, while TAF-I remodeled the chromatin and stimulated the transcription. TAF-I was found to interact with histones. Furthermore, it was shown that TAF-I is capable not only of disrupting the chromatin structure but also of preventing the formation of DNA-histone aggregation and transferring histones to naked DNA. The possible function of TAF-I in conjunction with a histone chaperone activity is discussed.
Collapse
Affiliation(s)
- M Okuwaki
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
46
|
Nagata K, Saito S, Okuwaki M, Kawase H, Furuya A, Kusano A, Hanai N, Okuda A, Kikuchi A. Cellular localization and expression of template-activating factor I in different cell types. Exp Cell Res 1998; 240:274-81. [PMID: 9597000 DOI: 10.1006/excr.1997.3930] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Template-activating factors I (TAF-I) alpha and beta have been identified as chromatin remodeling factors from human HeLa cells. TAF-I beta corresponds to the protein encoded by the set gene, which was found in an acute undifferentiated leukemia as a fusion version with the can gene via chromosomal translocation. To determine the localization of TAF-I, we raised both polyclonal and monoclonal antibodies against TAF-I. The proteins that react to the antibodies are present not only in human cells but also in mouse, frog, insect, and yeast cells. The mouse TAF-I homologue is ubiquitous in a variety of tissue cells, including liver, kidney, spleen, lung, heart, and brain. It is of interest that the amounts of TAF-I alpha and beta vary among hemopoietic cells and some specific cell types do not contain TAF-I alpha. The level of the TAF-I proteins does not change significantly during the cell cycle progression in either HeLa cells synchronized with an excess concentration of thymidine or NIH 3T3 cells released from the serum-depleted state. TAF-I is predominantly located in nuclei, while TAF-I that is devoid of its acidic region, the region which is essential for the TAF-I activity, shows both nuclear and cytoplasmic localization. The localization of TAF-I in conjunction with the regulation of its activity is discussed.
Collapse
Affiliation(s)
- K Nagata
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Matsumoto K, Wassarman KM, Wolffe AP. Nuclear history of a pre-mRNA determines the translational activity of cytoplasmic mRNA. EMBO J 1998; 17:2107-21. [PMID: 9524132 PMCID: PMC1170555 DOI: 10.1093/emboj/17.7.2107] [Citation(s) in RCA: 171] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathways of synthesis and maturation of pre-messenger RNA in the nucleus have a direct effect on the translational efficiency of mRNA in the cytoplasm. The transcription of intron-less mRNA in vivo directs this mRNA towards translational silencing. The presence of an intron at the 5' end of the transcript relieves this silencing, whereas an intron at the 3' end further represses translation. These regulatory events are strongly dependent on the transcription of pre-mRNA in the nucleus. The impact of nuclear history on regulatory events in the cytoplasm provides a novel mechanism for the control of gene expression.
Collapse
Affiliation(s)
- K Matsumoto
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Building 18T, Room 106, Bethesda, MD 20892-5431, USA
| | | | | |
Collapse
|
48
|
Abstract
Recent advances highlight two important chromatin remodeling systems involved in the transcriptional process. One system includes several members of the evolutionarily conserved SWI2/SNF2 family found in distinct multiprotein complexes with ATP-dependent nucleosome destabilizing activity; the other is the enzymatic system that governs histone acetylation and deacetylation. Identification of the catalytic subunits of these opposing histone-modifying activities reveal conserved proteins defined genetically as transcriptional regulators.
Collapse
Affiliation(s)
- T Tsukiyama
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Building 37, Room 5E-26, Bethesda, Maryland, 20892-4255, USA
| | | |
Collapse
|
49
|
Lieber A, He CY, Kirillova I, Kay MA. Recombinant adenoviruses with large deletions generated by Cre-mediated excision exhibit different biological properties compared with first-generation vectors in vitro and in vivo. J Virol 1996; 70:8944-60. [PMID: 8971024 PMCID: PMC190992 DOI: 10.1128/jvi.70.12.8944-8960.1996] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In vivo gene transfer of recombinant E1-deficient adenoviruses results in early and late viral gene expression that elicits a host immune response, limiting the duration of transgene expression and the use of adenoviruses for gene therapy. The prokaryotic Cre-lox P recombination system was adapted to generate recombinant adenoviruses with extended deletions in the viral genome (referred to here as deleted viruses) in order to minimize expression of immunogenic and/or cytotoxic viral proteins. As an example, an adenovirus with a 25-kb deletion that lacked E1, E2, E3, and late gene expression with viral titers similar to those achieved with first-generation vectors and less than 0.5% contamination with E1-deficient virus was produced. Gene transfer was similar in HeLa cells, mouse hepatoma cells, and primary mouse hepatocytes in vitro and in vivo as determined by measuring reporter gene expression and DNA transfer. However, transgene expression and deleted viral DNA concentrations were not stable and declined to undetectable levels much more rapidly than those found for first-generation vectors. Intravenous administration of deleted vectors in mice resulted in no hepatocellular injury relative to that seen with first-generation vectors. The mechanism for stability of first-generation adenovirus vectors (E1a deleted) appeared to be linked in part to their ability to replicate in transduced cells in vivo and in vitro. Furthermore, the deleted vectors were stabilized in the presence of undeleted first-generation adenovirus vectors. These results have important consequences for the development of these and other nonintegrating vectors for gene therapy.
Collapse
Affiliation(s)
- A Lieber
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|