1
|
RAG-Mediated DNA Breaks Attenuate PU.1 Activity in Early B Cells through Activation of a SPIC-BCLAF1 Complex. Cell Rep 2020; 29:829-843.e5. [PMID: 31644907 PMCID: PMC6870970 DOI: 10.1016/j.celrep.2019.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/10/2019] [Accepted: 09/09/2019] [Indexed: 11/22/2022] Open
Abstract
Early B cell development is regulated by stage-specific transcription
factors. PU.1, an ETS-family transcription factor, is essential for coordination
of early B cell maturation and immunoglobulin gene (Ig)
rearrangement. Here we show that RAG DNA double-strand breaks (DSBs) generated
during Ig light chain gene (Igl) rearrangement
in pre-B cells induce global changes in PU.1 chromatin binding. RAG DSBs
activate a SPIC/BCLAF1 transcription factor complex that displaces PU.1
throughout the genome and regulates broad transcriptional changes. SPIC recruits
BCLAF1 to gene-regulatory elements that control expression of key B cell
developmental genes. The SPIC/BCLAF1 complex suppresses expression of the SYK
tyrosine kinase and enforces the transition from large to small pre-B cells.
These studies reveal that RAG DSBs direct genome-wide changes in ETS
transcription factor activity to promote early B cell development. ETS-family transcription factors are key regulators of early B cell
development. Soodgupta et al. show that RAG-induced DNA breaks generated during
antigen receptor gene recombination activate a SPIC/BCLAF1 transcription factor
complex that counters PU.1 activity and regulates gene expression changes to
promote transition from large to small pre-B cells.
Collapse
|
2
|
Abstract
DNA damage occurs on exposure to genotoxic agents and during physiological DNA transactions. DNA double-strand breaks (DSBs) are particularly dangerous lesions that activate DNA damage response (DDR) kinases, leading to initiation of a canonical DDR (cDDR). This response includes activation of cell cycle checkpoints and engagement of pathways that repair the DNA DSBs to maintain genomic integrity. In adaptive immune cells, programmed DNA DSBs are generated at precise genomic locations during the assembly and diversification of lymphocyte antigen receptor genes. In innate immune cells, the production of genotoxic agents, such as reactive nitrogen molecules, in response to pathogens can also cause genomic DNA DSBs. These DSBs in adaptive and innate immune cells activate the cDDR. However, recent studies have demonstrated that they also activate non-canonical DDRs (ncDDRs) that regulate cell type-specific processes that are important for innate and adaptive immune responses. Here, we review these ncDDRs and discuss how they integrate with other signals during immune system development and function.
Collapse
Affiliation(s)
- Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry P Sleckman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Arya R, Bassing CH. V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends Genet 2017; 33:479-489. [PMID: 28532625 PMCID: PMC5499712 DOI: 10.1016/j.tig.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.
Collapse
Affiliation(s)
- Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Batista CR, Li SKH, Xu LS, Solomon LA, DeKoter RP. PU.1 Regulates Ig Light Chain Transcription and Rearrangement in Pre-B Cells during B Cell Development. THE JOURNAL OF IMMUNOLOGY 2017; 198:1565-1574. [PMID: 28062693 DOI: 10.4049/jimmunol.1601709] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022]
Abstract
B cell development and Ig rearrangement are governed by cell type- and developmental stage-specific transcription factors. PU.1 and Spi-B are E26-transformation-specific transcription factors that are critical for B cell differentiation. To determine whether PU.1 and Spi-B are required for B cell development in the bone marrow, Spi1 (encoding PU.1) was conditionally deleted in B cells by Cre recombinase under control of the Mb1 gene in Spib (encoding Spi-B)-deficient mice. Combined deletion of Spi1 and Spib resulted in a lack of mature B cells in the spleen and a block in B cell development in the bone marrow at the small pre-B cell stage. To determine target genes of PU.1 that could explain this block, we applied a gain-of-function approach using a PU.1/Spi-B-deficient pro-B cell line in which PU.1 can be induced by doxycycline. PU.1-induced genes were identified by integration of chromatin immunoprecipitation-sequencing and RNA-sequencing data. We found that PU.1 interacted with multiple sites in the Igκ locus, including Vκ promoters and regions located downstream of Vκ second exons. Induction of PU.1 induced Igκ transcription and rearrangement. Upregulation of Igκ transcription was impaired in small pre-B cells from PU.1/Spi-B-deficient bone marrow. These studies reveal an important role for PU.1 in the regulation of Igκ transcription and rearrangement and a requirement for PU.1 and Spi-B in B cell development.
Collapse
Affiliation(s)
- Carolina R Batista
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Stephen K H Li
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and
| | - Li S Xu
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Lauren A Solomon
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| | - Rodney P DeKoter
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; .,The Centre for Human Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada; and.,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
5
|
Solomon LA, Li SKH, Piskorz J, Xu LS, DeKoter RP. Genome-wide comparison of PU.1 and Spi-B binding sites in a mouse B lymphoma cell line. BMC Genomics 2015; 16:76. [PMID: 25765478 PMCID: PMC4334403 DOI: 10.1186/s12864-015-1303-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
Background Spi-B and PU.1 are highly related members of the E26-transformation-specific (ETS) family of transcription factors that have similar, but not identical, roles in B cell development. PU.1 and Spi-B are both expressed in B cells, and have been demonstrated to redundantly activate transcription of genes required for B cell differentiation and function. It was hypothesized that Spi-B and PU.1 occupy a similar set of regions within the genome of a B lymphoma cell line. Results To compare binding regions of Spi-B and PU.1, murine WEHI-279 lymphoma cells were infected with retroviral vectors encoding 3XFLAG-tagged PU.1 or Spi-B. Anti-FLAG chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) was performed. Analysis for high-stringency enriched genomic regions demonstrated that PU.1 occupied 4528 regions and Spi-B occupied 3360 regions. The majority of regions occupied by Spi-B were also occupied by PU.1. Regions bound by Spi-B and PU.1 were frequently located immediately upstream of genes associated with immune response and activation of B cells. Motif-finding revealed that both transcription factors were predominantly located at the ETS core domain (GGAA), however, other unique motifs were identified when examining regions associated with only one of the two factors. Motifs associated with unique PU.1 binding included POU2F2, while unique motifs in the Spi-B regions contained a combined ETS-IRF motif. Conclusions Our results suggest that complementary biological functions of PU.1 and Spi-B may be explained by their interaction with a similar set of regions in the genome of B cells. However, sites uniquely occupied by PU.1 or Spi-B provide insight into their unique functions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1303-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lauren A Solomon
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Stephen K H Li
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Jan Piskorz
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Li S Xu
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada.
| | - Rodney P DeKoter
- Department of Microbiology & Immunology and the Centre for Human Immunology, The University of Western Ontario, London, Canada. .,Division of Genetics and Development, Children's Health Research Institute, Lawson Research Institute, London, Canada. .,Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
6
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Duan Z, Zheng H, Xu S, Jiang Y, Liu H, Li M, Hu D, Li W, Bode AM, Dong Z, Cao Y. Activation of the Ig Iα1 promoter by the transcription factor Ets-1 triggers Ig Iα1-Cα1 germline transcription in epithelial cancer cells. Cell Mol Immunol 2013; 11:197-205. [PMID: 24185710 DOI: 10.1038/cmi.2013.52] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022] Open
Abstract
Immunoglobulins (Igs) are known to be synthesized and secreted only by B lymphocytes. Class switch recombination (CSR) is a key event that enables B cells to express Igs, and one of the crucial steps for CSR initiation is the germline transcription of Ig genes. Surprisingly, recent studies have demonstrated that the Ig genes are also expressed in some epithelial cancer cells; however, the mechanisms underlying how cancer cells initiate CSR and express Igs are still unknown. In this study, we confirmed that the Ig Iα1 promoter in cancer cell lines was activated by the Ets-1 transcription factor, and the activity of the Ig Iα1 promoter and Ig Iα1-Cα1 germline transcription were attenuated after knockdown of Ets-1 by specific small interfering RNAs (siRNA). Furthermore, the expression of Ets-1 and Igα heavy chain in cancer cells was dose dependently upregulated by TGF-β1. These results indicate that activation of the Ig Iα1 promoter by the transcription factor Ets-1 is a critical pathway and provides a novel mechanism for Ig expression in non-B cell cancers.
Collapse
Affiliation(s)
- Zhi Duan
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| | - Hui Zheng
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| | - San Xu
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| | - Yiqun Jiang
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| | - Haidan Liu
- Center of Clinical Gene Diagnosis and Therapy, Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Li
- Department of Immunology, Xiangya Medical College, Central South University, Changsha, China
| | - Duosha Hu
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| | - Wei Li
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China [4] The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Ya Cao
- 1] Laboratory of Tumor Molecular Biology, Cancer Research Institute, Central South University, Changsha, China [2] Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China [3] Key Laboratory of Carcinogenesis, Ministry of Health, Changsha, China
| |
Collapse
|
8
|
The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Arch Immunol Ther Exp (Warsz) 2011; 59:431-40. [DOI: 10.1007/s00005-011-0147-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/25/2011] [Indexed: 12/22/2022]
|
9
|
Beuten J, Gelfond JA, Piwkham D, Pollock BH, Winick NJ, Collier AB, Tomlinson GE. Candidate gene association analysis of acute lymphoblastic leukemia identifies new susceptibility locus at 11p15 ( LMO1 ). Carcinogenesis 2011; 32:1349-53. [DOI: 10.1093/carcin/bgr091] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
10
|
Wischnewski F, Friese O, Pantel K, Schwarzenbach H. Methyl-CpG binding domain proteins and their involvement in the regulation of the MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 gene promoters. Mol Cancer Res 2007; 5:749-59. [PMID: 17634428 DOI: 10.1158/1541-7786.mcr-06-0364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Promoter hypermethylation is responsible for the restricted expression of the tumor-associated MAGE antigens. In order to elucidate the mechanism underlying methylation-dependent repression, we examined the involvement of methyl-CpG binding proteins, MBD1, MBD2a, and MeCP2, in silencing of MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 genes. Electrophoretic mobility shift assays displayed binding of MBD1 to the methylated and unmethylated MAGE-A promoters. Using chromatin immunoprecipitation assays, in vivo binding of MBD1 and MeCP2 to the promoters could be observed in MCF-7 and T47D cells. Transient transfection assays of MCF-7 cells were done with the transcriptional repression domains (TRD) of MBD1, MBD2a, and MeCP2, and MAGE-A1, MAGE-A2, MAGE-A3, and MAGE-A12 promoters. Whereas the TRD of MBD1 and MeCP2 repressed the MAGE-A promoters, the TRD of MBD2 had no inhibiting effect on the promoter activity. Furthermore, cotransfections of Mbd1-deficient mouse fibroblasts and MCF-7 cells with MBD2a, MeCP2, and the MBD1 splice variants, 1v1 and 1v3, showed that strong methylation-dependent repression of the MAGE-A promoters could not be further down-regulated by these proteins. However, the two MBD1 splice variants, 1v1 and 1v3, were able to repress the basal activity of unmethylated MAGE-A promoters. Additional cotransfection experiments with both isoforms of MBD1 and the transcription factor Ets-1 showed that Ets-1 could not abrogate the MBD1-mediated suppression. In contrast with the repressive effect mediated by MBD1, MBD2a was found to up-regulate the basal activity of the promoters. In conclusion, these data show, for the first time, the involvement of methyl-CpG binding domain proteins in the regulation of the MAGE-A genes.
Collapse
Affiliation(s)
- Frank Wischnewski
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinstrasse 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
11
|
Schweitzer BL, Huang KJ, Kamath MB, Emelyanov AV, Birshtein BK, DeKoter RP. Spi-C has opposing effects to PU.1 on gene expression in progenitor B cells. THE JOURNAL OF IMMUNOLOGY 2006; 177:2195-207. [PMID: 16887979 DOI: 10.4049/jimmunol.177.4.2195] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Ets transcription factor Spi-C, expressed in B cells and macrophages, is closely related to PU.1 and has the ability to recognize the same DNA consensus sequence. However, the function of Spi-C has yet to be determined. The purpose of this study is to further examine Spi-C activity in B cell development. First, using retroviral vectors to infect PU.1(-/-) fetal liver progenitors, Spi-C was found to be inefficient at inducing cytokine-dependent proliferation and differentiation of progenitor B (pro-B) cells or macrophages relative to PU.1 or Spi-B. Next, Spi-C was ectopically expressed in fetal liver-derived, IL-7-dependent pro-B cell lines. Wild-type (WT) pro-B cells ectopically expressing Spi-C (WT-Spi-C) have several phenotypic characteristics of pre-B cells such as increased CD25 and decreased c-Kit surface expression. In addition, WT-Spi-C pro-B cells express increased levels of IgH sterile transcripts and reduced levels of expression and transcription of the FcgammaRIIb gene. Gel-shift analysis suggests that Spi-C, ectopically expressed in pro-B cells, can bind PU.1 consensus sites in the IgH intronic enhancer and FcgammaRIIb promoter. Transient transfection analysis demonstrated that PU.1 functions to repress the IgH intronic enhancer and activate the FcgammaRIIb promoter, while Spi-C opposes these activities. WT-Spi-C pro-B cells have reduced levels of dimethylation on lysine 9 of histone H3 within the IgH 3' regulatory region, indicating that Spi-C can contribute to removal of repressive features in the IgH locus. Overall, these studies suggest that Spi-C may promote B cell differentiation by modulating the activity of PU.1-dependent genes.
Collapse
Affiliation(s)
- Brock L Schweitzer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|
12
|
Kwon UK, Yen PH, Collins T, Wells RA. Differential lineage-specific regulation of murine CD45 transcription by Oct-1 and PU.1. Biochem Biophys Res Commun 2006; 344:146-54. [PMID: 16616894 DOI: 10.1016/j.bbrc.2006.03.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Accepted: 03/20/2006] [Indexed: 10/24/2022]
Abstract
Although it has been established that CD45 expression is regulated at the transcriptional level, neither the regulatory elements that are responsible for its unique expression pattern nor the relevance of its three distinct transcriptional start sites (P1a, P1b, and P2) has been fully characterized. We studied the contribution of the three start sites to CD45 mRNA production in haematopoietic cell lines and primary haematopoietic cells. In myeloid and lymphoid cells and cell lines most CD45 transcripts originate from P1b with the exception of the thymoma-derived T cell line EL4, in which approximately 90% of CD45 transcripts originate from P1a. The degree of contribution of P1a is highest in lymphoid cells and increases in T cells following mitogen stimulation. In vitro evaluation of sequence upstream of the start sites shows that the P2 start site is sufficient for CD45 expression in lymphoid but not in myeloid cells, confirms the presence of a PU.1-binding site essential for myeloid expression of CD45, and reveals an Octamer-binding site that interacts with both Oct-1 and Oct-2 and activates CD45 transcription in lymphoid and myeloid cells. These findings are the first evidence that Octamer-binding factors are involved in the control of CD45 expression.
Collapse
Affiliation(s)
- Un K Kwon
- Molecular and Cellular Biology, Sunnybrook and Women's Research Institute, Department of Medical Oncology, Toronto Sunnybrook Regional Cancer Centre, Toronto, Ont., Canada M4N 2M5
| | | | | | | |
Collapse
|
13
|
Johnston CM, Wood AL, Bolland DJ, Corcoran AE. Complete Sequence Assembly and Characterization of the C57BL/6 Mouse Ig Heavy Chain V Region. THE JOURNAL OF IMMUNOLOGY 2006; 176:4221-34. [PMID: 16547259 DOI: 10.4049/jimmunol.176.7.4221] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mechanisms that regulate variable (V) gene selection during the development of the mouse IgH repertoire are not fully understood, due in part to the absence of the complete locus sequence. To better understand these processes, we have assembled the entire 2.5-Mb mouse IgH (Igh) V region sequence of the C57BL/6 strain from public sequences and present the first complete annotated map of the region, including V genes, pseudogenes, repeats, and nonrepetitive intergenic sequences. In so doing, we have discovered a new V gene family, VH16. We have identified clusters of conserved region-specific intergenic sequences and have verified our assembly by genic and intergenic Southern blotting. We have observed that V pseudogenes are not evenly spread throughout the V region, but rather cluster together. The largest J558 family, which spans more than half of the locus, has two strikingly different domains, which suggest points of evolutionary divergence or duplication. The 5' end contains widely spaced J558 genes interspersed with 3609 genes and is pseudogene poor. The 3' end contains closely spaced J558 genes, no 3609 genes, and is pseudogene rich. Each occupies a different branch of the phylogenetic tree. Detailed analysis of 500-bp upstream of all functional genes has revealed several conserved binding sites, general and B cell-specific, as well as key differences between families. This complete and definitive assembly of the mouse Igh V region will facilitate detailed study of promoter function and large-scale mechanisms associated with V(D)J recombination including locus contraction and antisense intergenic transcription.
Collapse
Affiliation(s)
- Colette M Johnston
- Laboratory of Chromatin and Gene Expression, Babraham Institute, Cambridge, UK
| | | | | | | |
Collapse
|
14
|
Tantin D, Schild-Poulter C, Wang V, Haché RJG, Sharp PA. The octamer binding transcription factor Oct-1 is a stress sensor. Cancer Res 2006; 65:10750-8. [PMID: 16322220 DOI: 10.1158/0008-5472.can-05-2399] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The POU-domain transcription factor Oct-1 is widely expressed in adult tissues and has been proposed to regulate a large group of target genes. Microarray expression profiling was used to evaluate gene expression changes in Oct-1-deficient mouse fibroblasts. A number of genes associated with cellular stress exhibited altered expression. Consistent with this finding, Oct-1-deficient fibroblasts were hypersensitive to gamma radiation, doxorubicin, and hydrogen peroxide and harbored elevated reactive oxygen species. Expression profiling identified a second group of genes dysregulated in Oct-1-deficient fibroblasts following irradiation, including many associated with oxidative and metabolic stress. A number of these genes contain octamer sequences in their immediate 5' regulatory regions, some of which are conserved in human. These results indicate that Oct-1 modulates the activity of genes important for the cellular response to stress.
Collapse
Affiliation(s)
- Dean Tantin
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | | | |
Collapse
|
15
|
Gangenahalli GU, Gupta P, Saluja D, Verma YK, Kishore V, Chandra R, Sharma RK, Ravindranath T. Stem Cell Fate Specification: Role of Master Regulatory Switch Transcription Factor PU.1 in Differential Hematopoiesis. Stem Cells Dev 2005; 14:140-52. [PMID: 15910240 DOI: 10.1089/scd.2005.14.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PU.1 is a versatile hematopoietic cell-specific ETS-family transcriptional regulator required for the development of both the inborn and the adaptive immunity, owing to its potential ability to regulate the expression of multiple genes specific for different lineages during normal hematopoiesis. It functions in a cell-autonomous manner to control the proliferation and differentiation, predominantly of lymphomyeloid progenitors, by binding to the promoters of many myeloid genes including the macrophage colony-stimulating factor (M-CSF) receptor, granulocyte-macrophage (GM)-CSF receptor alpha, and CD11b. In B cells, it regulates the immunoglobulin lambda 2-4 and kappa 3' enhancers, and J chain promoters. Besides lineage development, PU.1 also directs homing and long-term engraftment of hematopoietic progenitors to the bone marrow. PU.1 gene disruption causes a cell-intrinsic defect in hematopoietic progenitor cells, recognized by an aberrant myeloid and B lymphoid development. It also immortalizes erythroblasts when overexpressed in many cell lines. Although a number of reviews have been published on its functional significance, in the following review we attempted to consolidate information about the differential participation and role of transcription factor PU.1 at various stages of hematopoietic development beginning from stem cell proliferation, lineage commitment and terminal differentiation into distinct blood cell types, and leukemogenesis.
Collapse
Affiliation(s)
- Gurudutta U Gangenahalli
- Stem Cell Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Delhi-110054, India.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brekke KM, Garrard WT. Assembly and analysis of the mouse immunoglobulin kappa gene sequence. Immunogenetics 2004; 56:490-505. [PMID: 15378297 DOI: 10.1007/s00251-004-0659-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 02/12/2004] [Indexed: 11/30/2022]
Abstract
The mechanisms regulating V gene usage leading to the immunoglobulin (Ig) repertoire have been of interest for many years but are only partially defined. To gain insight into these processes, we have assembled the nucleotide sequence of the Mus musculus Igkappa locus using data recently made available from genome-wide sequencing efforts. We found the locus to be 3.21 Mb in length and mapped all known functional, pseudo- and relic V gene segments onto the sequence, along with known regulatory elements. We corrected errors in former gene assignments, positions and orientations and identified a novel Vkappa4 gene segment. This assembly allowed the establishment of a unified nomenclature for the V genes based on their relative positions similar to the nomenclature system adopted for the human Ig loci. The 5' boundary of the locus is defined by the presence of the tumor-associated calcium-signal transducer-2 gene located 19 kb upstream of Vkappa24-140, the most distal V gene. No non- Vkappa genes were found in the sequence of the locus. Detailed analysis of the sequences 0.5 kb upstream, within, and 0.5 kb downstream of each potentially functional V gene revealed interesting patterns of statistically significant clustering of transcription factor consensus binding sites, generally specific to a particular family. We found E boxes were clustered not only in promoter regions, but also nearby recombination signal sequences. Family members of Vkappa4/5 genes exhibit a conserved pattern of octamer sites in their downstream regions, as well as Ebf sites in their introns, and Lef-1 sites in their upstream regions. We discuss potential functional implications of these findings in the context of possible combinatorial mechanisms for targeting V genes for rearrangement. The assembled sequence and its analyses are available as a resource to the scientific community.
Collapse
Affiliation(s)
- Katherine M Brekke
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | | |
Collapse
|
17
|
Wang VEH, Tantin D, Chen J, Sharp PA. B cell development and immunoglobulin transcription in Oct-1-deficient mice. Proc Natl Acad Sci U S A 2004; 101:2005-10. [PMID: 14762167 PMCID: PMC357042 DOI: 10.1073/pnas.0307304101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The POU domain transcription factors Oct-1 and Oct-2 interact with the octamer element, a motif conserved within Ig promoters and enhancers, and mediate transcription from the Ig loci. Inactivation of Oct-2 by gene targeting results in normal B cell development and Ig transcription. To study the role of Oct-1 in these processes, the lymphoid compartment of RAG-1(-/-) animals was reconstituted with Oct-1-deficient fetal liver hematopoietic cells. Recipient mice develop B cells with levels of surface Ig expression comparable with wild type, although at slightly reduced numbers. These B cells transcribe Ig normally, respond to antigenic stimulation, undergo class switching, and use a normal repertoire of light chain variable segments. However, recipient mice show slight reductions in serum IgM and IgA. Thus, the Oct-1 protein is dispensable for B cell development and Ig transcription.
Collapse
Affiliation(s)
- Victoria E H Wang
- Department of Biology and Center for Cancer Research and McGovern Institute, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
| | | | | | | |
Collapse
|
18
|
Schweitzer BL, DeKoter RP. Analysis of Gene Expression and Ig Transcription in PU.1/Spi-B-Deficient Progenitor B Cell Lines. THE JOURNAL OF IMMUNOLOGY 2003; 172:144-54. [PMID: 14688320 DOI: 10.4049/jimmunol.172.1.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A number of presumptive target genes for the Ets-family transcription factor PU.1 have been identified in the B cell lineage. However, the precise function of PU.1 in B cells has not been studied because targeted null mutation of the PU.1 gene results in a block to lymphomyeloid development at an early developmental stage. In this study, we take advantage of recently developed PU.1(-/-)Spi-B(-/-) IL-7 and stromal cell-dependent progenitor B (pro-B) cell lines to analyze the function of PU.1 and Spi-B in B cell development. We show that contrary to previously published expectations, PU.1 and/or Spi-B are not required for Ig H chain (IgH) gene transcription in pro-B cells. In fact, PU.1(-/-)Spi-B(-/-) pro-B cells have increased levels of IgH transcription compared with wild-type pro-B cells. In addition, high levels of Igkappa transcription are induced after IL-7 withdrawal of wild-type or PU.1(-/-)Spi-B(-/-) pro-B cells. In contrast, we found that Iglambda transcription is reduced in PU.1(-/-)Spi-B(-/-) pro-B cells relative to wild-type pro-B cells after IL-7 withdrawal. These results suggest that Iglambda, but not IgH or Igkappa, transcription, is dependent on PU.1 and/or Spi-B. The PU.1(-/-)Spi-B(-/-) pro-B cells have other phenotypic changes relative to wild-type pro-B cells including increased proliferation, increased CD25 expression, decreased c-Kit expression, and decreased RAG-1 expression. Taken together, our observations suggest that reduction of PU.1 and/or Spi-B activity in pro-B cells promotes their differentiation to a stage intermediate between late pro-B cells and large pre-B cells.
Collapse
Affiliation(s)
- Brock L Schweitzer
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, Medical Sciences Building 3006, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | |
Collapse
|
19
|
Pileri SA, Gaidano G, Zinzani PL, Falini B, Gaulard P, Zucca E, Pieri F, Berra E, Sabattini E, Ascani S, Piccioli M, Johnson PWM, Giardini R, Pescarmona E, Novero D, Piccaluga PP, Marafioti T, Alonso MA, Cavalli F. Primary mediastinal B-cell lymphoma: high frequency of BCL-6 mutations and consistent expression of the transcription factors OCT-2, BOB.1, and PU.1 in the absence of immunoglobulins. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 162:243-253. [PMID: 12507907 PMCID: PMC1851125 DOI: 10.1016/s0002-9440(10)63815-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/03/2002] [Indexed: 11/29/2022]
Abstract
Although primary mediastinal (thymic) large B-cell lymphoma has been primarily studied, its precise phenotype, molecular characteristics, and histogenesis are still a matter of debate. The International Extranodal Lymphoma Study Group collected 137 such cases for extensive pathological review. Histologically, the lymphomatous growth was predominantly diffuse with fibrosis that induced compartmentalized cell aggregation. It consisted of large cells with varying degrees of nuclear polymorphism and clear to basophilic cytoplasm. On immunohistochemistry, the following phenotype was observed: CD45(+), CD20(+), CD79a(+), PAX5/BSAP(+), BOB.1(+), Oct-2(+), PU.1(+), Bcl-2(+), CD30(+), HLA-DR(+), MAL protein(+/-), Bcl-6(+/-), MUM1/IRF4(+/-), CD10(-/+), CD21(-), CD15(-), CD138(-), CD68(-), and CD3(-). Immunoglobulins were negative both at immunohistochemistry and in situ hybridization. Molecular analysis, performed in 45 cases, showed novel findings. More than half of the cases displayed BCL-6 gene mutations, which usually occurred along with functioning somatic IgV(H) gene mutations and Bcl-6 and/or MUM1/IRF4 expression. The present study supports the concept that a sizable fraction of cases of this lymphoma are from activated germinal center or postgerminal center cells. However, it differs from other aggressive B-cell lymphomas in that it shows defective immunoglobulin production despite the expression of OCT-2, BOB.1, and PU.1 transcription factors and the lack of IgV(H) gene crippling mutations.
Collapse
Affiliation(s)
- Stefano A Pileri
- Istituto di Ematologia e Oncologia Medica, L. e A. Seràgnoli Unità Cliniche e di Anatomia Patologica, Università di Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Casellas R, Jankovic M, Meyer G, Gazumyan A, Luo Y, Roeder R, Nussenzweig M. OcaB is required for normal transcription and V(D)J recombination of a subset of immunoglobulin kappa genes. Cell 2002; 110:575-85. [PMID: 12230975 DOI: 10.1016/s0092-8674(02)00911-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OcaB, a transcriptional coactivator also known as Bob-1 or OBF-1, was isolated on the basis of its ability to enhance transcription of immunoglobulin (Ig) genes in vitro. Paradoxically, OcaB(-/-) mice showed no apparent deficiency in Ig gene transcription, only cellular immune defects including absence of germinal centers (GC) and decreased numbers of immature B cells; the genes targeted by OcaB were not determined. Here we report that OcaB is essential for V(D)J recombination of a subset of Igkappa genes. We show that OcaB modulates recombination by directly enhancing Igkappa gene transcription in vivo.
Collapse
|
21
|
Jundt F, Kley K, Anagnostopoulos I, Schulze Pröbsting K, Greiner A, Mathas S, Scheidereit C, Wirth T, Stein H, Dörken B. Loss of PU.1 expression is associated with defective immunoglobulin transcription in Hodgkin and Reed-Sternberg cells of classical Hodgkin disease. Blood 2002; 99:3060-2. [PMID: 11929801 DOI: 10.1182/blood.v99.8.3060] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin transcription is impaired in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin disease (cHD). We recently demonstrated that defective immunoglobulin promoter transcription correlates with the down-regulation of the B-cell transcription factors Oct2 and BOB.1/OBF.1. These results prompted us to investigate whether immunoglobulin enhancer activity is also impaired in HRS cells and whether as yet unidentified factors could be necessary for immunoglobulin enhancer activity in HRS cells of cHD. Here we analyzed 30 cases of cHD for expression of the Ets family member PU.1 that is known to collaborate with multiple transcription factors and to regulate expression of immunoglobulin genes. We show that PU.1 is not expressed in primary and cultured HRS cells. Reintroduction of PU.1 and Oct2 in cultured HRS cells restored the activity of cotransduced immunoglobulin enhancer constructs. Our study identifies PU.1 deficiency as a recurrent defect in HRS cells that might contribute to their impairment of immunoglobulin transcription.
Collapse
Affiliation(s)
- Franziska Jundt
- Charité, Robert-Rössle-Klinik, Humboldt University of Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Peng Y, Jahroudi N. The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter. Blood 2002; 99:2408-17. [PMID: 11895773 DOI: 10.1182/blood.v99.7.2408] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human von Willebrand factor (VWF) gene sequences -487 to +247 function as an endothelial-specific promoter in vitro. Analysis of the activation mechanism of the VWF promoter has resulted in the identification of a number of cis-acting elements and trans-acting factors that regulate its activity. The GATA and Ets transcription factors were shown to function as activators of transcription, whereas NF1 and Oct1 were shown to repress transcription. We have reported the presence of another repressor element in exon 1 that interacted with a protein complex designated "R." In the absence of NF1 binding, inhibition of this interaction resulted in promoter activation in nonendothelial cells. We have now identified the "R" protein complex as the NFY transcription factor. Using DNA methylation interference assay and base substitution mutation analysis, we show that NFY interacts with a novel DNA sequence corresponding to nucleotides +226 to +234 in the VWF promoter that does not conform to the consensus NFY binding sequence CCAAT. The VWF gene does contain a CCAAT element that is located downstream of the TATA box and we show that the NFY factor also interacts with this CCAAT element. Using antibodies specific against the A, B, and C subunits of NFY, we demonstrate that the NFY complexes interacting with the CCAAT sequence have a composition similar to that of the repressor binding to the first exon sequences. The results of mutation analysis and transfection studies demonstrated that the interaction of NFY with the upstream CCAAT element is required for VWF promoter activation. Based on these results, we hypothesize that NFY can function both as a repressor and activator of transcription and its function may be modulated through its DNA binding sequences.
Collapse
Affiliation(s)
- Yiwen Peng
- Department of Medicine, Division of Cardiology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | |
Collapse
|
23
|
Tantin D, Sharp PA. Mouse lymphoid cell line selected to have high immunoglobulin promoter activity. Mol Cell Biol 2002; 22:1460-73. [PMID: 11839812 PMCID: PMC134696 DOI: 10.1128/mcb.22.5.1460-1473.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immunoglobulin variable region promoters are predominantly B-cell specific, but the molecular basis for this specificity has not been elucidated. To further understand how B-cell-specific immunoglobulin promoter expression is mediated, the murine lymphoid cell line 2017 was engineered to express the green fluorescent protein under the control of an immunoglobulin heavy chain promoter and selected for high activity using multiple rounds of fluorescence-activated cell sorting. Rare clones with intense and stable immunoglobulin promoter activity were isolated. Transient transfection experiments demonstrated that two different immunoglobulin promoters and two other B-cell-specific promoters have higher activities in the selected cell lines relative to the parental line and to the non-cell-type-specific histone H2B promoter. The increased immunoglobulin activity required nucleotide residues downstream of the transcription initiation site which were also important for maximal activity in B cells and which were conserved in other B-cell-specific promoters. Unlike the unselected cells, the 2017 variants also showed activation of their endogenous immunoglobulin heavy chain variable regions.
Collapse
Affiliation(s)
- Dean Tantin
- Massachusetts Institute of Technology and Center for Cancer Research, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
24
|
Aranburu A, Carlsson R, Persson C, Leanderson T. Transcription factor AP-4 is a ligand for immunoglobulin-kappa promoter E-box elements. Biochem J 2001; 354:431-8. [PMID: 11171123 PMCID: PMC1221672 DOI: 10.1042/0264-6021:3540431] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immunoglobulin (Ig)-kappa promoters from humans and mice share conserved sequences. The octamer element is common to all Ig promoters and pivotal for their function. However, other conserved sequence motifs, that differ between Ig variable gene families, are required for normal promoter function. These conserved motifs do not stimulate transcription in the absence of an octamer. One example is an E-box of the E47/E12 type (5'-CAGCTG-3'), which is found in all promoters of the human and murine Ig-kappa gene subgroups/families, with the exception of subgroups II and VI and their related murine families. In the present study we show that the ubiquitously expressed transcription factor AP-4, and not E47, interacts specifically with the kappa promoter E-boxes when tested in electrophoretic mobility-shift assays using nuclear extracts derived from human and murine B-cell lines. Furthermore, AP-4, unlike E47, did not act as a transactivator, which is in agreement with previous studies on intact kappa promoters, showing that transcription is absent when the octamer element has been mutated. Based on these data, and the conservation of the 5'-CAGCTG-3' motif among human and murine kappa promoters, we propose that AP-4 is the major ligand for Ig-kappa promoter E-boxes.
Collapse
Affiliation(s)
- A Aranburu
- Section for Immunology, Department of Cell and Molecular Biology, Lund University, BMC I13, S-22184 Lund, Sweden.
| | | | | | | |
Collapse
|
25
|
Abstract
Ets is a family of transcription factors present in species ranging from sponges to human. All family members contain an approximately 85 amino acid DNA binding domain, designated the Ets domain. Ets proteins bind to specific purine-rich DNA sequences with a core motif of GGAA/T, and transcriptionally regulate a number of viral and cellular genes. Thus, Ets proteins are an important family of transcription factors that control the expression of genes that are critical for several biological processes, including cellular proliferation, differentiation, development, transformation, and apoptosis. Here, we tabulate genes that are regulated by Ets factors and describe past, present and future strategies for the identification and validation of Ets target genes. Through definition of authentic target genes, we will begin to understand the mechanisms by which Ets factors control normal and abnormal cellular processes.
Collapse
Affiliation(s)
- V I Sementchenko
- Center for Molecular and Structural Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29403, USA
| | | |
Collapse
|
26
|
Pendergraft WF, Alcorta DA, Segelmark M, Yang JJ, Tuttle R, Jennette JC, Falk RJ, Preston GA. ANCA antigens, proteinase 3 and myeloperoxidase, are not expressed in endothelial cells. Kidney Int 2000; 57:1981-90. [PMID: 10792617 DOI: 10.1046/j.1523-1755.2000.00048.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND One hypothesis for the pathogenesis of vasculitis associated with antineutrophil cytoplasmic autoantibodies (ANCAs) proposes that ANCAs bind to ANCA antigens, such as proteinase 3 (PR3) or myeloperoxidase (MPO), which are produced by endothelial cells and expressed on their surfaces. There are conflicting reports, however, on whether endothelial cells express the ANCA antigen PR3, and there are no reports on endothelial expression of MPO. The aim of this study was to determine the presence or absence of PR3 and MPO mRNA in both venous and arterial endothelial cells, employing standard reverse transcription-polymerase chain reaction (RT-PCR) techniques and also the quantitative and highly specific method, TaqMan PCR. METHODS RT-PCR (with 3 primer sets) and TaqMan PCR, a method for detecting low copy transcripts, were used to probe for PR3 and MPO transcripts in human endothelial cells from umbilical vein (HUVEC) and artery (HUAEC) and from lung microvascular (HLMVEC). Cells were treated with interferon-gamma (200 units/mL) or tumor necrosis factor-alpha (3 or 10 ng/mL) or both. RESULTS Transcripts for PR3 and/or MPO were not detected in HUVEC, HUAEC, and HLMVEC by standard RT-PCR. Analyses for PR3 protein confirmed that PR3 is not expressed in HUVEC. HUVEC and HUAEC were negative for PR3 and MPO by TaqMan PCR. CONCLUSIONS PR3 and MPO are not expressed in HUVEC, HUAEC, or HLMVEC. Endothelial cell presentation of endogenous PR3 and MPO antigens is not involved in the pathogenesis of ANCA-associated vasculitis. Alternative explanations need to be explored to determine the pathogenic effect of ANCAs.
Collapse
Affiliation(s)
- W F Pendergraft
- Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, 27599, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bemark M, Mårtensson A, Liberg D, Leanderson T. Spi-C, a novel Ets protein that is temporally regulated during B lymphocyte development. J Biol Chem 1999; 274:10259-67. [PMID: 10187812 DOI: 10.1074/jbc.274.15.10259] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel Ets protein was isolated by yeast one-hybrid screening of a cDNA library made from lipopolysaccharide-stimulated mouse splenic B cells, using the SP6 kappa promoter kappaY element as a bait. The novel Ets protein was most closely related to PU.1 and Spi-B within the DNA binding Ets domain and was therefore named Spi-C. However, Spi-C may represent a novel subgroup within the Ets protein family, as it differed significantly from Spi-B and PU.1 within helix 1 of the Ets domain. Spi-C was encoded by a single-copy gene that was mapped to chromosome 10, region C. Spi-C interacted with DNA similarly to PU.1 as judged by methylation interference, band-shift and site selection analysis, and activated transcription of a kappaY element reporter gene upon co-transfection of HeLa cells. Spi-C RNA was expressed in mature B lymphocytes and at lower levels in macrophages. Furthermore, pre-B cell and plasma cell lines were Spi-C-negative, suggesting that Spi-C might be a regulatory molecule during a specific phase of B lymphoid development.
Collapse
Affiliation(s)
- M Bemark
- Immunology Unit, Department of Cell and Molecular Biology, Lund University, P. O. Box 7031, S-220 07 Lund, Sweden
| | | | | | | |
Collapse
|
28
|
Lloberas J, Soler C, Celada A. The key role of PU.1/SPI-1 in B cells, myeloid cells and macrophages. IMMUNOLOGY TODAY 1999; 20:184-9. [PMID: 10203717 DOI: 10.1016/s0167-5699(99)01442-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Lloberas
- Dept de Fisiologia (Biologia del macrofag), Facultat de Biologia, and Fundació August Pi i Sunyer, Campus Bellvitge, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
29
|
Sauter P, Matthias P. Coactivator OBF-1 makes selective contacts with both the POU-specific domain and the POU homeodomain and acts as a molecular clamp on DNA. Mol Cell Biol 1998; 18:7397-409. [PMID: 9819426 PMCID: PMC109321 DOI: 10.1128/mcb.18.12.7397] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lymphoid-specific transcriptional coactivator OBF-1 (also known as OCA-B or Bob-1) is recruited to octamer site-containing promoters by interacting with Oct-1 or Oct-2 and thereby enhances the transactivation potential of these two Oct factors. For this interaction the POU domain is sufficient. By contrast, OBF-1 does not interact with the POU domains of other POU proteins, such as Oct-4, Oct-6, or Pit-1, even though these factors bind efficiently to the octamer motif. Here we examined the structural requirements for selective interaction between the POU domain and OBF-1. Previous data have shown that formation of a ternary complex among OBF-1, the POU domain, and the DNA is critically dependent on residues within the octamer site. By methylation interference analysis we identified bases that react differently in the presence of OBF-1 compared to the POU domain alone, and using phosphothioate backbone-modified probes in electrophoretic mobility shift assays, we identified several positions influencing ternary complex formation. We then used Oct-1/Pit-1 POU domain chimeras to analyze the selectivity of the interaction between OBF-1 and the POU domain. This analysis indicated that both the POU specific domain (POUS) and the POU homeodomain (POUH) contribute to complex formation. Amino acids that are different in the Pit-1 and Oct-1 POU domains and are considered to be solvent accessible based on the Oct-1 POU domain/DNA cocrystal structure were replaced with alanine residues and analyzed for their influence on complex formation. Thereby, we identified residues L6 and E7 in the POUS and residues K155 and I159 in the POUH to be critical in vitro and in vivo for selective interaction with OBF-1. Furthermore, in an in vivo assay we could show that OBF-1 is able to functionally recruit two artificially separated halves of the POU domain to the promoter DNA, thereby leading to transactivation. These data allow us to propose a model of the interaction between OBF-1 and the POU domain, whereby OBF-1 acts as a molecular clamp holding together the two moieties of the POU domain and the DNA.
Collapse
Affiliation(s)
- P Sauter
- Friedrich Miescher-Institute, CH-4058 Basel, Switzerland
| | | |
Collapse
|
30
|
Bemark M, Olsson H, Heinegård D, Leanderson T. Purification and characterization of a protein binding to the SP6 kappa promoter. A potential role for CArG-box binding factor-A in kappa transcription. J Biol Chem 1998; 273:18881-90. [PMID: 9668064 DOI: 10.1074/jbc.273.30.18881] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A protein interacting with an A-T-rich region that is a positive control element within the SP6 kappa promoter was purified and identified as CArG-box binding factor-A. The purified protein was shown to interact specifically with the coding strand of single-stranded DNA and, with lower affinity, with double-stranded DNA. A mutation that inhibited binding of the protein to the A-T-rich region also aborted the transcriptional stimulatory effect of the region. Two Ets proteins, PU.1 and elf-1, that have previously been shown to bind to an adjacent DNA element were shown to physically interact with CArG-box binding factor-A. An antiserum raised against the protein recognized two different forms indicating either that different splice-forms of CArG-box binding factor-A are expressed, or that the protein is subject to post-translational modification.
Collapse
Affiliation(s)
- M Bemark
- Immunology, Department of Cellular and Molecular Biology, Lund University, S-220 07 Lund, Sweden
| | | | | | | |
Collapse
|
31
|
Abstract
Information is increasingly available concerning the molecular events that occur during primary and antigen-dependent stages of B cell development. In this review the roles of transcription factors and coactivators are discussed with respect to changes in expression patterns of various genes during B cell development. Transcriptional regulation is also discussed in the context of developmentally regulated immunoglobulin gene V(D)J recombination, somatic hypermutation, and isotype switch recombination.
Collapse
Affiliation(s)
- A Henderson
- Department of Veterinary Science, Pennsylvania State University, University Park 16802, USA.
| | | |
Collapse
|
32
|
Liberg D, Sigvardsson M, Bemark M, Leanderson T. Differentiation-Specific, Octamer-Dependent Costimulation of κ Transcription. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.8.3899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
By mutational analysis of the octamer-TATA box intervening region in the mouse SP6 κ promoter, we have mapped two octamer-dependent, costimulatory regions, A and B. The A region was active in late B cells only, while the B region was active throughout B cell differentiation. The B region was TATA proximal and contained a heptamer and an E box of the E2A type that is common in Vκ promoters. Mutation of the heptamer element did not decrease transcriptional stimulation from this region, but mutations in, or immediately 5′ of, the E box core sequence did. A protein binding to this region could be detected in nuclear extracts. The complex could only partially be competed with a μE5 binding site and could not be supershifted with Abs raised to E2A gene products, indicating that it may represent a novel E-box binding complex. The A region was located proximal to the octamer and contained a CCCT element that is conserved both with regard to position and sequence in human VκII promoters. By mutational analysis, the transcriptional stimulatory activity was mapped to the CCCT element that also is part of an early B cell factor (EBF) binding site. In late B cells, a novel protein (FA), which did not bind to the EBF binding site in the mb1 promoter, interacted with the A region. This protein was found to be expressed at lower levels in early B cells as well as in HeLa cells. Thus, the octamer-flanking sequence contains positive control elements that may act independently but that differ in the stage of B cell differentiation at which they are active. One of these factors is an example of an ubiquitously expressed transcription factor that participate in differentiation-specific transcriptional activation.
Collapse
Affiliation(s)
- David Liberg
- Immunology Group, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | - Mikael Sigvardsson
- Immunology Group, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | - Mats Bemark
- Immunology Group, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| | - Tomas Leanderson
- Immunology Group, Department of Cell and Molecular Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Alley TL, Cooper MD, Chen M, Kubagawa H. Genomic structure of PIR-B, the inhibitory member of the paired immunoglobulin-like receptor genes in mice. TISSUE ANTIGENS 1998; 51:224-31. [PMID: 9550322 DOI: 10.1111/j.1399-0039.1998.tb03096.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The genes encoding the murine paired immunoglobulin-like receptors PIR-A and PIR-B are members of a novel gene family which encode cell-surface receptors bearing immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and their non-inhibitory/activatory counterparts. PIR-A and PIR-B have highly homologous extracellular domains but distinct transmembrane and cytoplasmic regions. A charged arginine in the transmembrane region of PIR-A suggests its potential association with other transmembrane proteins to form a signal transducing unit. PIR-B, in contrast, has an uncharged transmembrane region and several ITIMs in its cytoplasmic tail. These characteristics suggest that PIR-A and PIR-B which are coordinately expressed by B cells and myeloid cells, serve counter-regulatory roles in humoral and inflammatory responses. In the present study we have determined the genomic structure of the single copy PIR-B gene. The gene consists of 15 exons and spans approximately 8 kilobases. The first exon contains the 5' untranslated region, the ATG translation start site, and approximately half of the leader peptide sequence. The remainder of the leader peptide sequence is encoded by exon 2. Exons 3-8 encode the six extracellular immunoglobulin-like domains and exons 9 and 10 code for the extracellular membrane proximal and transmembrane regions. The final five exons (exons 11-15) encode for the ITIM-bearing cytoplasmic tail and the 3' untranslated region. The intron/exon boundaries of PIR-B obey the GT-AG rule and are in phase I, with the notable exception of the three boundaries determined for ITIM-containing exons. A microsatellite composed of the trinucleotide repeat AAG in the intron between exons 9 and 10 provides a useful marker for studying population genetics.
Collapse
Affiliation(s)
- T L Alley
- Department of Microbiology, University of Alabama at Birmingham, 35294-3300, USA
| | | | | | | |
Collapse
|
34
|
Sareneva T, Matikainen S, Vanhatalo J, Melén K, Pelkonen J, Julkunen I. Kinetics of cytokine and NFAT gene expression in human interleukin-2-dependent T lymphoblasts stimulated via T-cell receptor. Immunol Suppl 1998; 93:350-7. [PMID: 9640245 PMCID: PMC1364083 DOI: 10.1046/j.1365-2567.1998.00440.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T cells respond to mitogenic or antigenic stimulation by proliferation and by turning on cytokine gene expression. Here we have analysed the kinetics and nature of cytokine production in human peripheral blood-derived T lymphoblasts stimulated with anti-CD3 antibodies or Lens culinaris lectin (LCL). T cells were purified from peripheral blood mononuclear cells (PBMC) and primarily activated with anti-CD3 antibodies and cultured in the presence of interleukin-2 (IL-2). Anti-CD3-restimulated T cells (mainly CD8+) produced IL-2, interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) and low levels of IL-4 and IL-10 transcripts and proteins. No IL-6 gene expression was observed. In LCL-stimulated cells the cytokine production pattern was very similar. Steady-state mRNA levels of IL-2, IL-10 and IFN-gamma peaked at 3 hr after anti-CD3 stimulation and declined rapidly thereafter. The kinetics of TNF-alpha mRNA expression was faster, being at its peak level 1 hr after stimulation. Anti-CD3-stimulated IL-2 gene expression was down-regulated by protein synthesis inhibitor, whereas IL-10, IFN-gamma and TNF-alpha genes were readily induced independent of ongoing protein synthesis. T-cell receptor stimulation also induced a very rapid expression of c-jun, c-fos and NFATc1 (NFATc) genes, the gene products of which are involved in cytokine gene expression. In conclusion, the cytokines synthesized by IL-2-dependent T cells were predominantly IL-2, IFN-gamma and TNF-alpha.
Collapse
Affiliation(s)
- T Sareneva
- Department of Virology, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
35
|
Avots A, Hoffmeyer A, Flory E, Cimanis A, Rapp UR, Serfling E. GABP factors bind to a distal interleukin 2 (IL-2) enhancer and contribute to c-Raf-mediated increase in IL-2 induction. Mol Cell Biol 1997; 17:4381-9. [PMID: 9234696 PMCID: PMC232292 DOI: 10.1128/mcb.17.8.4381] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Triggering of the T-cell receptor-CD3 complex activates two major signal cascades in T lymphocytes, (i) Ca2+-dependent signal cascades and (ii) protein kinase cascades. Both signal cascades contribute to the induction of the interleukin 2 (IL-2) gene during T-cell activation. Prominent protein kinase cascades are those that activate mitogen-activated protein (MAP) kinases. We show here that c-Raf, which is at the helm of the classic MAP-Erk cascade, contributes to IL-2 induction through a distal enhancer element spanning the nucleotides from positions -502 to -413 in front of the transcriptional start site of the IL-2 gene. Induction of this distal IL-2 enhancer differs from induction of the proximal IL-2 promoter-enhancer, since it is induced by phorbol esters alone and independent from Ca2+ signals. In DNA-protein binding studies, we detected the binding of transcription factors GABP alpha and -beta to a dyad symmetry element (DSE) of the distal enhancer, which is formed by palindromic binding sites of Ets-like factors. Introduction of point mutations suppressing GABP binding to the DSE interfered with the induction of the distal enhancer and the entire IL-2 promoter-enhancer, while overexpression of both GABP factors enhanced the IL-2 promoter-enhancer induction. Overexpression of BXB, a constitutive active version of c-Raf, and of further members of the Ras-Raf-Erk signal cascade exerted an increase of GABP-mediated promoter-enhancer induction. In conjunction with previously published data on c-Raf-induced phosphorylation of GABP factors (E. Flory, A. Hoffmeyer, U. Smola, U. R. Rapp, and J. T. Bruder, J. Virol. 70:2260-2268, 1996), these results indicate a contribution of GABP factors to the Raf-mediated enhancement of IL-2 induction during T-cell activation.
Collapse
Affiliation(s)
- A Avots
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Bemark M, Leanderson T. Diverse transcription factors are involved in the quantitative regulation of transcriptional activation of kappa promoters. Eur J Immunol 1997; 27:1308-18. [PMID: 9209478 DOI: 10.1002/eji.1830270603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoglobulin kappa promoters show sequence divergence but conserved function between different subgroups. Here we show that three separate 5' elements are required for synergistic stimulation of transcription with the decamer in a kappa promoter. These sites are a 5' E-box, a 3' AT-rich region in the pentadecamer (pd) element, and the kappa-Y element. Elf-1 is a novel kappa-Y element ligand induced upon mitogenic stimulation of resting B lymphocytes. Furthermore, the 5' E2A-like E-box in the pd element could be substituted by an upstream stimulatory factor motif with conservation of function. Thus, the synergistic activation requirements of kappa transcription is strictly dependent on the quantitative presence of transcription factor-binding motifs 5' of the decamer, but these differ qualitatively in that they may bind an array of proteins with conserved function.
Collapse
Affiliation(s)
- M Bemark
- Immunology Group, CMB, Lund University, Sweden
| | | |
Collapse
|
37
|
Rood JA, Van Horn S, Drake FH, Gowen M, Debouck C. Genomic organization and chromosome localization of the human cathepsin K gene (CTSK). Genomics 1997; 41:169-76. [PMID: 9143491 DOI: 10.1006/geno.1997.4614] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human cathepsin K is a recently described cysteine protease with high sequence homology to cathepsins S and L, members of the papain superfamily of cysteine proteases. Cathepsin K is abundantly and selectively expressed in osteoclasts and may perform a specialized role in osteoclast-mediated bone resorption. In the present study, the genomic organization and chromosomal localization of human cathepsin K (HGMW-approved symbol CTSK) were determined. Intron-exon boundaries were identified by PCR on human genomic DNA, and subsequently a P1 genomic clone containing the full-length gene was isolated. Cathepsin K spans approximately 12.1 kb of genomic DNA and is composed of eight exons and seven introns. The genomic organization of cathepsin K is similar to that of cathepsins S and L. The gene was mapped to chromosome 1q21 by fluorescence in situ hybridization. Primer walking on the P1 genomic clone identified 1108 bp of 5' flanking sequence and 459 bp of 3' flanking sequence. Ribonuclease protection assay and 5' RACE indicated a single transcriptional start site 49 bp upstream of the initiator Met codon. Analysis of the 5' flanking region indicates that this gene lacks canonical TATA and CAAT boxes and contains multiple potential transcription regulatory sites. The characterization of the cathepsin K gene and its promoter may provide valuable insights not only into its osteoclast-selective expression, but also into the molecular mechanisms responsible for osteoclast activation.
Collapse
Affiliation(s)
- J A Rood
- Department of Molecular Diagnostics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | | | | | | | |
Collapse
|
38
|
Bassuk AG, Leiden JM. The role of Ets transcription factors in the development and function of the mammalian immune system. Adv Immunol 1997; 64:65-104. [PMID: 9100980 DOI: 10.1016/s0065-2776(08)60887-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- A G Bassuk
- Department of Medicine, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
39
|
Grigoryev S, Stewart AE, Kwon YT, Arfin SM, Bradshaw RA, Jenkins NA, Copeland NG, Varshavsky A. A mouse amidase specific for N-terminal asparagine. The gene, the enzyme, and their function in the N-end rule pathway. J Biol Chem 1996; 271:28521-32. [PMID: 8910481 DOI: 10.1074/jbc.271.45.28521] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The N-end rule relates the in vivo half-life of a protein to the identity of its N-terminal residue. In both fungi and mammals, the tertiary destabilizing N-terminal residues asparagine and glutamine function through their conversion, by enzymatic deamidation, into the secondary destabilizing residues aspartate and glutamate, whose destabilizing activity requires their enzymatic conjugation to arginine, one of the primary destabilizing residues. We report the isolation and analysis of a mouse cDNA and the corresponding gene (termed Ntan1) that encode a 310-residue amidohydrolase (termed NtN-amidase) specific for N-terminal asparagine. The approximately 17-kilobase pair Ntan1 gene is located in the proximal region of mouse chromosome 16 and contains 10 exons ranging from 54 to 177 base pairs in length. The approximately 1.4-kilobase pair Ntan1 mRNA is expressed in all of the tested mouse tissues and cell lines and is down-regulated upon the conversion of myoblasts into myotubes. The Ntan1 promoter is located approximately 500 base pairs upstream of the Ntan1 start codon. The deduced amino acid sequence of mouse NtN-amidase is 88% identical to the sequence of its porcine counterpart, but bears no significant similarity to the sequence of the NTA1-encoded N-terminal amidohydrolase of the yeast Saccharomyces cerevisiae, which can deamidate either N-terminal asparagine or glutamine. The expression of mouse NtN-amidase in S. cerevisiae nta1Delta was used to verify that NtN-amidase retains its asparagine selectivity in vivo and can implement the asparagine-specific subset of the N-end rule. Further dissection of mouse Ntan1, including its null phenotype analysis, should illuminate the functions of the N-end rule, most of which are still unknown.
Collapse
Affiliation(s)
- S Grigoryev
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Akbarali Y, Oettgen P, Boltax J, Libermann TA. ELF-1 interacts with and transactivates the IgH enhancer pi site. J Biol Chem 1996; 271:26007-12. [PMID: 8824239 DOI: 10.1074/jbc.271.42.26007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We previously identified a B-cell-specific regulatory element in the immunoglobulin heavy chain (IgH) enhancer, pi, with striking similarity to binding sites for ets-related transcription factors. Whereas the ability of ets-related factors to bind to and transactivate the pi site has been substantiated, the identification of the particular member of the ets family responsible for B-cell-specific regulation of the pi site has remained controversial. We have used antibodies specific for individual members of the ets family to evaluate which ets-related factor in B-cell nuclear extracts interacts with the IgH pi site. We present strong evidence that ELF-1 is highly expressed in B-cells and is one of two major factors specifically interacting with the murine IgH enhancer pi site in B-cell nuclear extracts. Binding of ELF-1 correlates with activity of the pi site, since mutations abolishing function of pi also inhibit binding of ELF-1. Furthermore, we demonstrate that ELF-1 can transactivate the IgH enhancer in HeLa cells, suggesting a role for ELF-1 in B-cell-specific IgH gene expression.
Collapse
Affiliation(s)
- Y Akbarali
- Department of Medicine, Beth Israel Hospital, and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
41
|
Bastian LS, Yagi M, Chan C, Roth GJ. Analysis of the megakaryocyte glycoprotein IX promoter identifies positive and negative regulatory domains and functional GATA and Ets sites. J Biol Chem 1996; 271:18554-60. [PMID: 8702504 DOI: 10.1074/jbc.271.31.18554] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The glycoprotein (GP) Ib-V-IX multisubunit complex binds to von Willebrand factor and mediates the adhesion of platelets to the subendothelium of damaged blood vessels. Expression of the GPIX subunit is required for stability of the complex, and its absence in platelets is associated with the rare bleeding disorder Bernard-Soulier syndrome. Comparative analyses indicate that the four GPIb-V-IX subunits are members of the leucine-rich repeat family and suggest that GPIX resembles a possible primitive progenitor of this group. To characterize GPIX transcriptional regulation, a series of 5' deletion constructs was made linking the GPIX upstream flanking sequence to the luciferase marker gene, and promoter activity was measured in transiently transfected human erythroleukemia cells. This analysis identified two negative regulatory domains between -686 to -423 and -311 to -203 and two positive regulatory domains at -323 to -311 and -151 to -100 relative to the GPIX transcription start site. In addition, site-directed mutagenesis experiments and in vitro gel retardation assays identified Ets and GATA elements at -42 and -65, which positively regulate GPIX promoter activity and specifically bind nuclear factors derived from human erythroleukemia cells. DNase I protection experiments identified a protein-dependent "footprint" and hypersensitive site within the GPIX Ets sequence. These results provide a framework for comparison of the GPIX promoter with others of the GPIb-V-IX system, other megakaryocyte-specific genes, and other members of the leucine-rich repeat family.
Collapse
Affiliation(s)
- L S Bastian
- Hematology Section, Medical and Research Services, Seattle Veterans' Affairs Medical Center, Seattle, Washington 98108, USA
| | | | | | | |
Collapse
|
42
|
Sambasivarao D, Hooton J, Dost A, Paetkau V. A novel immunosuppressive factor in bovine colostrum blocks activation of the interleukin 2 gene enhancer at the NFAT site. Biochem Cell Biol 1996; 74:585-93. [PMID: 8960365 DOI: 10.1139/o96-063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A factor in bovine colostrum (colostrum inhibitory factor, CIF) inhibits interleukin 2 (IL2) production in activated T helper cells by blocking the accumulation of IL2 mRNA. To determine whether CIF blocks at the level of IL2 transcription, we introduced reporter plasmids into the human T leukemia cell line Jurkat by transient transfection. These contained the luciferase gene under the control of either the human IL2 upstream enhancer region (segments -326 to +45) or three repeats of the NFAT element contained within it (segments -255 to -285). Expression of luciferase in these cells was induced by phorbol myristate acetate plus a calcium ionophore. CIF inhibited induction of either construct as did cyclosporine, which is known to block activation of the NFAT element. CIF failed to inhibit several other enhancer elements. The NFAT-controlled luciferase gene system distinguishes CIF from other T cell inhibitory activities present in colostrum, in particular, TGF beta 1 and TGF beta 2 and the glucocorticoids. Stably transfected Jurkat cells behaved similarly to the transiently transfected ones with respect to inhibition by CIF and cyclosporine. The NFAT-luc assay is a useful technique for the rapid, sensitive measurement of CIF or other immunosuppressants with a similar mode of action.
Collapse
Affiliation(s)
- D Sambasivarao
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
43
|
Chen H, Zhang P, Radomska HS, Hetherington CJ, Zhang DE, Tenen DG. Octamer binding factors and their coactivator can activate the murine PU.1 (spi-1) promoter. J Biol Chem 1996; 271:15743-52. [PMID: 8663022 DOI: 10.1074/jbc.271.26.15743] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PU.1 (spi-1), a member of the Ets transcription factor family, is predominantly expressed in myeloid and B cells, activates many B cell and myeloid genes, and is critical for development of both of these lineages. Our previous studies (Chen, H. M., Ray-Gallet, D., Zhang, P., Hetherington, C. J., Gonzalez, D. A., Zhang, D.-E., Moreau-Gachelin, F., and Tenen, D. G. (1995) Oncogene 11, 1549-1560) demonstrate that the PU.1 promoter directs cell type-specific reporter gene expression in myeloid cell lines, and that PU.1 activates its own promoter in an autoregulatory loop. Here we show that the murine PU.1 promoter is also specifically and highly functional in B cell lines as well. Oct-1 and Oct-2 can bind specifically to a site at base pair -55 in vitro, and this site is specifically protected in B cells in vivo. We also demonstrate that two other sites contribute to promoter activity in B cells; an Sp1 binding site adjacent to the octamer site, and the PU.1 autoregulatory site. Finally, we show that the B cell coactivator OBF-1/Bob1/OCA-B is only expressed in B cells and not in myeloid cells, and that OBF-1/Bob1/OCA-B can transactivate the PU.1 promoter in HeLa and myeloid cells. This B cell restricted coactivator may be responsible for the B cell specific expression of PU.1 mediated by the octamer site.
Collapse
Affiliation(s)
- H Chen
- Hematology/Oncology Division, Department of Medicine, Beth Israel Hospital, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
44
|
Schubart DB, Sauter P, Massa S, Friedl EM, Schwarzenbach H, Matthias P. Gene structure and characterization of the murine homologue of the B cell-specific transcriptional coactivator OBF-1. Nucleic Acids Res 1996; 24:1913-20. [PMID: 8657574 PMCID: PMC145881 DOI: 10.1093/nar/24.10.1913] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The B cell-specific activity of immunoglobulin (Ig) gene promoters is to a large extent mediated by the conserved octamer motif ATTTGCAT. This requires the DNA binding octamer factors Oct-1 and/or Oct-2, as well as an additional B cell-restricted non-DNA binding cofactor. We recently cloned such a coactivator specific for Oct-1 or Oct-2 from human B cells and called it OBF-1. Here we report the isolation and characterization of the murine homologue. Full-length cDNA clones as well as genomic clones were isolated and the gene structure was determined. The deduced protein sequence shows that the mouse protein has an identical length, is likewise proline rich and shows 89% overall identity to the human protein. The OBF-1 gene is expressed in a very highly B cell-specific manner and is transcribed in cells representative of all stages of B cell differentiation, including the earliest ones. We show that OBF-1 interacts in the absence of DNA with the POU domain of Oct-1 or Oct-2 and also with the general transcription factors TBP and TFIIB. Furthermore, we demonstrate that although OBF-1 efficiently activates promoter octamer sites, it does not activate enhancer octamer sites.
Collapse
Affiliation(s)
- D B Schubart
- Friedrich Miescher Institute, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
45
|
Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W, Tavitian A. Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 1996; 16:2453-63. [PMID: 8628313 PMCID: PMC231234 DOI: 10.1128/mcb.16.5.2453] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Insertional mutagenesis of the spi-1 gene is associated with the emergence of malignant proerythroblasts during Friend virus-induced acute erythroleukemia. To determine the role of spi-1/PU.1 in the genesis of leukemia, we generated spi-1 transgenic mice. In one founder line the transgene was overexpressed as an unexpected-size transcript in various mouse tissues. Homozygous transgenic animals gave rise to live-born offspring, but 50% of the animals developed a multistep erythroleukemia within 1.5 to 6 months of birth whereas the remainder survived without evidence of disease. At the onset of the disease, mice became severely anemic. Their hematopoietic tissues were massively invaded with nontumorigenic proerythroblasts that express a high level of Spi-1 protein. These transgenic proerythroblasts are partially blocked in differentiation and strictly dependent on erythropoietin for their proliferation both in vivo and in vitro. A complete but transient regression of the disease was observed after erythrocyte transfusion, suggesting that the constitutive expression of spi-1 is related to the block of the differentiation of erythroid precursors. At relapse, erythropoietin-independent malignant proerythroblasts arose. Growth factor autonomy could be partially explained by the autocrine secretion of erythropoietin; however, other genetic events appear to be necessary to confer the full malignant phenotype. These results reveal that overexpression of spi-1 is essential for malignant erythropoiesis and does not alter other hematopoietic lineages.
Collapse
MESH Headings
- Animals
- Cell Line
- Chlorocebus aethiops
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Exons
- Friend murine leukemia virus/genetics
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/pathology
- Homozygote
- Leukemia, Erythroblastic, Acute/genetics
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/physiopathology
- Liver/cytology
- Liver/pathology
- Mice
- Mice, Transgenic
- Mutagenesis, Insertional
- Organ Specificity
- Retroviridae Proteins, Oncogenic/biosynthesis
- Retroviridae Proteins, Oncogenic/genetics
- Spleen/cytology
- Spleen/pathology
- Transcription, Genetic
- Transfection
Collapse
|