1
|
Wei M, Wang Y, Zhang Y, Qiao Y. Plin5: A potential therapeutic target for type 2 diabetes mellitus. Diabetol Metab Syndr 2025; 17:114. [PMID: 40176076 PMCID: PMC11963521 DOI: 10.1186/s13098-025-01680-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a kind of metabolic disease characterized by aberrant insulin secretion as a result of -cell loss or injury, or by impaired insulin sensitivity of peripheral tissues, which finally results in insulin resistance and a disturbance of glucose and lipid metabolism. Among them, lipid metabolism disorders lead to lipotoxicity through oxidative stress and inflammatory response, destroying the structure and function of tissues and cells. Abnormal lipid metabolism can lead to abnormal insulin signaling and disrupt glucose metabolism through a variety of pathways. Therefore, emphasizing lipid metabolism may be a crucial step in the prevention and treatment of T2DM. Plin5 is a lipid droplet surface protein, which can bi-directionally regulate lipid metabolism and plays an important role in lipolysis and fat synthesis. Plin5 can simultaneously decrease the buildup of free fatty acids in the cytoplasm, improve mitochondrial uptake of free fatty acids, speed up fatty acid oxidation through lipid drops-mitochondria interaction, and lessen lipotoxicity. In oxidative tissues like the heart, liver, and skeletal muscle, Plin5 is extensively expressed. And Plin5 is widely involved in β-cell apoptosis, insulin resistance, oxidative stress, inflammatory response and other pathological processes, which has important implications for exploring the pathogenesis of T2DM. In addition, recent studies have found that Plin5 is also closely related to T2DM and cancer, which provides a new perspective for exploring the relationship between T2DM and cancer.
Collapse
Affiliation(s)
- Mengjuan Wei
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yan Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Yufei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yun Qiao
- Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Gianazza E, Papaianni GG, Brocca L, Banfi C, Mallia A. Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders. Int J Mol Sci 2025; 26:557. [PMID: 39859272 PMCID: PMC11765208 DOI: 10.3390/ijms26020557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate "omics" approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients.
Collapse
Affiliation(s)
| | | | | | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (E.G.); (G.G.P.); (L.B.); (A.M.)
| | | |
Collapse
|
3
|
Wołodko K, Šentjurc T, Walewska E, Laniecka E, Jura M, Galvão A. Increased susceptibility to diet-induced obesity in female mice impairs ovarian steroidogenesis: The role of elevated leptin signalling on nodal activity inhibition in theca cells. Mol Metab 2025; 91:102062. [PMID: 39536822 PMCID: PMC11646782 DOI: 10.1016/j.molmet.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Susceptibility to obesity in humans is driven by the intricate interplay of genetic, environmental and behavioural factors. Moreover, the mechanisms linking maternal obesity to infertility remain largely understudied. In this study, we investigated how variable susceptibility to obesity in mice affects ovarian steroidogenesis, with a particular focus on the leptin-mediated dysregulation of Nodal signalling pathway in theca cells (TC). METHODS C56BL/6J (B6) and 129S1/SvlmJ (129) mice, models of maternal obesity (MO), were fed a chow diet (CD) and a high fat diet (HFD) for 16 weeks. To investigate the contrasting effects of leptin on ovarian steroidogenesis, B6 mice pharmacologically treated with leptin for 16 days on CD were used to model hyperleptinemia, while homozygous ob/ob (-/-) mice with genetic leptin deficiency, also on a CD, were used to examine the effects of obesity in the absence of leptin. Following the characterisation of the mouse phenotype, gonadal fat (GON), whole ovaries (WO), ovarian TC and granulosa cell (GC) fractions were collected for mRNA transcription and protein expression analysis. Finally, in vitro treated ovarian explants obtained from B6 mice were used to further elucidate the effects of Nodal on steroidogenesis. RESULTS The significant gain in body weight (BW) and fat mass (FM) in HFD-fed B6 mice (p < 0.05), was associated with increased mRNA transcription of the adipose tissue expansion genes Polymerase I and transcript release factor (Cavin), Secreted frizzled-related protein 5 (Sfrp5) and Mesoderm specific transcript (Mest) in GON (p < 0.05). Furthermore, the HFD-fed B6 mice presented also impaired glucose metabolism and insulin sensitivity (p < 0.05). In contrast, the HFD-fed 129 mice exhibited no changes in BW and FM, maintaining glucose and insulin metabolism. At the ovarian level, decreased protein expression of Steroidogenic Acute Regulatory Protein (StAR) in WO obtained from HFD-fed B6 mice (p = 0.05), was followed by reduced transcription of key steroidogenic genes like Star and Cytochrome P450 17a1 (Cyp17a) in TC (p < 0.05). Furthermore, the transcription of Nodal and its receptors was downregulated (p < 0.05), whereas mRNA levels of Suppressor of cytokine signalling 3 (Socs3) and SMAD family member 7 (Smad7) were upregulated in TC obtained from HFD-fed B6 mice (p < 0.05). No changes were seen in the genes regulating steroidogenesis, Nodal signalling, or Socs3 and Smad7 activity in the ovaries of HFD-fed 129 mice. Importantly, the pharmacological treatment of lean mice with leptin, upregulated the ovarian transcription of Socs3 and Smad7, while downregulating Nodal and its receptors (p < 0.05). Finally, in vitro pharmacological inhibition of Nodal signalling pathway in ovarian explants isolated from CD-fed B6 mice decreased the transcription of Star and Cyp17a in TC (p < 0.05), whereas Nodal treatment of explants obtained from HFD-fed B6 mice restored the transcription of both genes (p < 0.05). CONCLUSIONS Increased susceptibility to obesity in MO is associated with systemic hyperleptinemia and hypoestrogenism due to compromised ovarian steroidogenesis, largely driven by the inhibitory effects of leptin-Smad7 pathway on Nodal signalling activity in the TC compartment of ovarian follicles.
Collapse
Affiliation(s)
- Karolina Wołodko
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Tjaša Šentjurc
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Edyta Walewska
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Elżbieta Laniecka
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Magdalena Jura
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland; The Royal Veterinary College, University of London, London, NW1 0TU, UK.
| |
Collapse
|
4
|
Desgrouas C, Thalheim T, Cerino M, Badens C, Bonello-Palot N. Perilipin 1: a systematic review on its functions on lipid metabolism and atherosclerosis in mice and humans. Cardiovasc Res 2024; 120:237-248. [PMID: 38214891 DOI: 10.1093/cvr/cvae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 01/13/2024] Open
Abstract
The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.
Collapse
Affiliation(s)
- Camille Desgrouas
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Tabea Thalheim
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
| | - Mathieu Cerino
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Catherine Badens
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- AP-HM, Service de Biochimie, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| | - Nathalie Bonello-Palot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Faculte de médecine, 27 Bd Jean Moulin 13005 Marseille, France
- Département de Génétique Médicale, APHM, Hôpital Timone Enfants, Hôpital de la Timone 264 rue Saint Pierre 13005 Marseille, France
| |
Collapse
|
5
|
Yadav R, Swetanshu, Singh P. The molecular mechanism of obesity: The science behind natural exercise yoga and healthy diets in the treatment of obesity. Curr Probl Cardiol 2024; 49:102345. [PMID: 38103823 DOI: 10.1016/j.cpcardiol.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.
Collapse
Affiliation(s)
- Rajesh Yadav
- Sharda School of Allied Health Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India; Department of Physiology, All India Institute of Medical Science, New Delhi, India
| | - Swetanshu
- Department of Zoology, Banaras Hindu University, U.P, India
| | - Pratichi Singh
- School of Biological and Life Sciences, Galgotias University, Greater Noida-203201, Uttar Pradesh, India.
| |
Collapse
|
6
|
Vetrivel S, Tamburello M, Oßwald A, Zhang R, Khan A, Jung S, Baker JE, Rainey WE, Nowak E, Altieri B, Detomas M, Watts D, Williams TA, Wielockx B, Beuschlein F, Reincke M, Sbiera S, Riester A. PPARG dysregulation as a potential molecular target in adrenal Cushing's syndrome. Front Endocrinol (Lausanne) 2023; 14:1265794. [PMID: 38098864 PMCID: PMC10720662 DOI: 10.3389/fendo.2023.1265794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Background We performed a transcriptomic analysis of adrenal signaling pathways in various forms of endogenous Cushing's syndrome (CS) to define areas of dysregulated and druggable targets. Methodology Next-generation sequencing was performed on adrenal samples of patients with primary bilateral macronodular adrenal hyperplasia (PBMAH, n=10) and control adrenal samples (n=8). The validation groups included cortisol-producing adenoma (CPA, n=9) and samples from patients undergoing bilateral adrenalectomy for Cushing's disease (BADX-CD, n=8). In vivo findings were further characterized using three adrenocortical cell-lines (NCI-H295R, CU-ACC2, MUC1). Results Pathway mapping based on significant expression patterns identified PPARG (peroxisome proliferator-activated receptor gamma) pathway as the top hit. Quantitative PCR (QPCR) confirmed that PPARG (l2fc<-1.5) and related genes - FABP4 (l2fc<-5.5), PLIN1 (l2fc<-4.1) and ADIPOQ (l2fc<-3.3) - were significantly downregulated (p<0.005) in PBMAH. Significant downregulation of PPARG was also found in BADX-CD (l2fc<-1.9, p<0.0001) and CPA (l2fc<-1.4, p<0.0001). In vitro studies demonstrated that the PPARG activator rosiglitazone resulted in decreased cell viability in MUC1 and NCI-H295R (p<0.0001). There was also a significant reduction in the production of aldosterone, cortisol, and cortisone in NCI-H295R and in Dihydrotestosterone (DHT) in MUC1 (p<0.05), respectively. Outcome This therapeutic effect was independent of the actions of ACTH, postulating a promising application of PPARG activation in endogenous hypercortisolism.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mariangela Tamburello
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Oßwald
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ru Zhang
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ali Khan
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Sara Jung
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jessica E. Baker
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elisabeth Nowak
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Mario Detomas
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Deepika Watts
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (TUD)/Universitätsklinikum Carl Gustav Carus Dresden (UKD), Dresden, Germany
| | - Tracy Ann Williams
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden (TUD)/Universitätsklinikum Carl Gustav Carus Dresden (UKD), Dresden, Germany
| | - Felix Beuschlein
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| | - Martin Reincke
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Würzburg, Würzburg, Germany
| | - Anna Riester
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
Dalen KT, Li Y. Regulation of lipid droplets and cholesterol metabolism in adrenal cortical cells. VITAMINS AND HORMONES 2023; 124:79-136. [PMID: 38408810 DOI: 10.1016/bs.vh.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.
Collapse
Affiliation(s)
- Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | - Yuchuan Li
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
8
|
Abstract
Lipid droplets (LDs) are ubiquitous organelles that store and supply lipids for energy metabolism, membrane synthesis and production of lipid-derived signaling molecules. While compositional differences in the phospholipid monolayer or neutral lipid core of LDs impact their metabolism and function, the proteome of LDs has emerged as a major influencer in all aspects of LD biology. The perilipins (PLINs) are the most studied and abundant proteins residing on the LD surface. This Cell Science at a Glance and the accompanying poster summarize our current knowledge of the common and unique features of the mammalian PLIN family of proteins, the mechanisms through which they affect cell metabolism and signaling, and their links to disease.
Collapse
Affiliation(s)
- Charles P. Najt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mahima Devarajan
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Douglas G. Mashek
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Zhu L, Hu F, Li C, Zhang C, Hang R, Xu R. Perilipin 4 Protein: an Impending Target for Amyotrophic Lateral Sclerosis. Mol Neurobiol 2021; 58:1723-1737. [PMID: 33242187 DOI: 10.1007/s12035-020-02217-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
The pathogenesis of amyotrophic lateral sclerosis (ALS) might exist some relationships with the abnormal lipidomic metabolisms. Therefore, we observed and analyzed the alteration of perilipin 4 (PLIN 4) distribution in the anterior horns (AH); the central canals (CC) and its surrounding gray matter; the posterior horns (PH); and the anterior, lateral, and posterior funiculus (AF, LF, and PF) of the cervical, thoracic, and lumbar segments, as well as the alteration of PLIN 4 expression in the entire spinal cords at the pre-onset, onset, and progression stages of Tg(SOD1*G93A)1Gur (TG) mice and the same period of wild-type(WT) by fluorescent immunohistochemistry, the Western blot, and the image analysis. Results showed that the PLIN 4 distributions in the spinal AH, CC and its surrounding gray matter, PH, AF, and PF of the cervical, thoracic, and lumbar segments in the TG mice at the pre-onset, onset, and progression stages significantly increased compared with those at the same periods of WT mice; the gray matter was especially significant. No significant changes were detected in the LF. PLIN 4 extensively distributed in the neurons and the proliferation neural cells. The PLIN 4 distributions significantly gradually increased from the pre-onset to onset to progression stages, and significantly correlated with the gradual increase death of neural cells. Total PLIN 4 expression in the spinal cords of TG mice significantly increased from the pre-onset, to onset, and to progression stages compared with that in the WT mice. Our data suggested that the PLIN 4 distribution and expression alterations might participate in the death of neural cells in the pathogenesis of ALS through modulating the lipidomic metabolisms and the neural cell proliferation.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Cheng Li
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Caixiang Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Ruiwen Hang
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Affiliated People's Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Li Y, Khanal P, Norheim F, Hjorth M, Bjellaas T, Drevon CA, Vaage J, Kimmel AR, Dalen KT. Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. J Lipid Res 2021; 62:100048. [PMID: 33582145 PMCID: PMC8044703 DOI: 10.1016/j.jlr.2021.100048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl esters (CEs) are the water-insoluble transport and storage form of cholesterol. Steroidogenic cells primarily store CEs in cytoplasmic lipid droplet (LD) organelles, as contrasted to the majority of mammalian cell types that predominantly store triacylglycerol (TAG) in LDs. The LD-binding Plin2 binds to both CE- and TAG-rich LDs, and although Plin2 is known to regulate degradation of TAG-rich LDs, its role for regulation of CE-rich LDs is unclear. To investigate the role of Plin2 in the regulation of CE-rich LDs, we performed histological and molecular characterization of adrenal glands from Plin2+/+ and Plin2-/- mice. Adrenal glands of Plin2-/- mice had significantly enlarged organ size, increased size and numbers of CE-rich LDs in cortical cells, elevated cellular unesterified cholesterol levels, and increased expression of macrophage markers and genes facilitating reverse cholesterol transport. Despite altered LD storage, mobilization of adrenal LDs and secretion of corticosterone induced by adrenocorticotropic hormone stimulation or starvation were similar in Plin2+/+ and Plin2-/- mice. Plin2-/- adrenals accumulated ceroid-like structures rich in multilamellar bodies in the adrenal cortex-medulla boundary, which increased with age, particularly in females. Finally, Plin2-/- mice displayed unexpectedly high levels of phosphatidylglycerols, which directly paralleled the accumulation of these ceroid-like structures. Our findings demonstrate an important role of Plin2 for regulation of CE-rich LDs and cellular cholesterol balance in the adrenal cortex.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Prabhat Khanal
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; VITAS AS, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Toprak U, Hegedus D, Doğan C, Güney G. A journey into the world of insect lipid metabolism. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21682. [PMID: 32335968 DOI: 10.1002/arch.21682] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Lipid metabolism is fundamental to life. In insects, it is critical, during reproduction, flight, starvation, and diapause. The coordination center for insect lipid metabolism is the fat body, which is analogous to the vertebrate adipose tissue and liver. Fat body contains various different cell types; however, adipocytes and oenocytes are the primary cells related to lipid metabolism. Lipid metabolism starts with the hydrolysis of dietary lipids, absorption of lipid monomers, followed by lipid transport from midgut to the fat body, lipogenesis or lipolysis in the fat body, and lipid transport from fat body to other sites demanding energy. Lipid metabolism is under the control of hormones, transcription factors, secondary messengers and posttranscriptional modifications. Primarily, lipogenesis is under the control of insulin-like peptides that activate lipogenic transcription factors, such as sterol regulatory element-binding proteins, whereas lipolysis is coordinated by the adipokinetic hormone that activates lipolytic transcription factors, such as forkhead box class O and cAMP-response element-binding protein. Calcium is the primary-secondary messenger affecting lipid metabolism and has different outcomes depending on the site of lipogenesis or lipolysis. Phosphorylation is central to lipid metabolism and multiple phosphorylases are involved in lipid accumulation or hydrolysis. Although most of the knowledge of insect lipid metabolism comes from the studies on the model Drosophila; other insects, in particular those with obligatory or facultative diapause, also have great potential to study lipid metabolism. The use of these models would significantly improve our knowledge of insect lipid metabolism.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne Hegedus
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Cansu Doğan
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Gözde Güney
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Turkey
| |
Collapse
|
12
|
Cave E, Crowther NJ. Tissue non-specific alkaline phosphatase mediates the accumulation of cholesterol esters in the murine Y1 adrenal cortex cell line. Ann Anat 2019; 227:151420. [PMID: 31563571 DOI: 10.1016/j.aanat.2019.151420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/27/2019] [Accepted: 09/05/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Cholesterol esters (CEs) accumulate in the cells of the adrenal cortex and are used for the synthesis of steroid hormones. The full molecular pathways involved in mediating the accumulation of CEs within the adrenal cortex are yet to be elucidated. Tissue non-specific alkaline phosphatase (TNAP) is needed for intracellular lipid accumulation of triglycerides in adipocytes and is also expressed in the cortical cells of the adrenal gland. Therefore we aimed to determine if TNAP is needed for the accumulation of CEs within the murine Y1 adrenal cortex cell line. METHODS Y1 cells were induced to accumulate lipids. Lipid accumulation and TNAP activity and expression were determined throughout intracellular lipid accumulation. The location of TNAP within the cell was determined through immunohistochemical analysis. Lipid accumulation in the cells was associated with a rise in TNAP activity and TNAP was localised to lipid droplets within the Y1 cells. Inhibition of TNAP with a specific inhibitor (levamisole) resulted in the cessation of CE accumulation. DISCUSSION AND CONCLUSIONS These data demonstrate that TNAP plays a role in the control of lipid accumulation in this adrenal cortex cell line. Therefore, in both triglyceride and CE storing cell types TNAP would seem to be essential for intra-cellular lipid storage.
Collapse
Affiliation(s)
- Eleanor Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, National Health Laboratory Service, School of Pathology, Johannesburg, South Africa.
| | - Nigel J Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, National Health Laboratory Service, School of Pathology, Johannesburg, South Africa
| |
Collapse
|
13
|
Control of Drosophila Growth and Survival by the Lipid Droplet-Associated Protein CG9186/Sturkopf. Cell Rep 2019; 26:3726-3740.e7. [DOI: 10.1016/j.celrep.2019.02.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 05/08/2018] [Accepted: 02/27/2019] [Indexed: 12/20/2022] Open
|
14
|
Milon A, Pawlicki P, Rak A, Mlyczynska E, Płachno BJ, Tworzydlo W, Gorowska-Wojtowicz E, Bilinska B, Kotula-Balak M. Telocytes are localized to testis of the bank vole (Myodes glareolus) and are affected by lighting conditions and G-coupled membrane estrogen receptor (GPER) signaling. Gen Comp Endocrinol 2019; 271:39-48. [PMID: 30391242 DOI: 10.1016/j.ygcen.2018.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
We aim to explore the presence of a novel cell type, telocytes (TCs), in the bank vole testis interstitium following G-coupled membrane estrogen receptor (GPER) signaling withdrawal. In addition, the involvement of interstitial cells in lipid homeostasis was investigated. Bank voles (actively reproducing or regressed) were administered with GPER antagonist (G-15; 50 μg/kg bw) injections. To examine TC distribution, ultrastructure, function, and their connotation in the interstitial tissue lipid balance, electron microscopic observations were implemented. Immunohistochemistry and Western blot for the TC marker, CD34, and lipid balance molecules: leptin, adiponectin, and perilipin were performed. Photoperiod-regulated testis steroidogenic function was estimated via serum melatonin level and intratesticular cholesterol concentrations in immunoenzymatic assays. We demonstrate the presence of TCs in bank vole testis interstitium. Distinctive TC morphology: small cell bodies with very long, slender prolongations, constituting a three-dimensional network around the interstitial cells was seen. Ultrastructurally, scarce mitochondria, a few cisternae of the endoplasmic reticulum, and lipid droplets indicated possible TC implications in lipid homeostasis. Changes in CD34 expression in TCs were seen in relation to GPER disturbances. In GPER-blocked testis, single TCs were present in the LD interstitium when in SD ones they were occasionally absent. Moreover, in TCs of SD voles, a lack of lipid droplets was revealed, likely reflecting attenuated TC function during regression. However, melatonin levels decreased in GPER-blocked LD and SD. Concomitantly, leptin, adiponectin, and perilipin expressions together with cholesterol content varied after blockage. Based on our results we suggest TCs are an important component of the bank vole testis interstitium as they are implicated in ultramorphology maintenance, protein interactions, and lipid homeostasis.
Collapse
Affiliation(s)
- Agnieszka Milon
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Piotr Pawlicki
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewa Mlyczynska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Waclaw Tworzydlo
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Gorowska-Wojtowicz
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Barbara Bilinska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland
| | - Malgorzata Kotula-Balak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
15
|
Wei S, Liu S, Su X, Wang W, Li F, Deng J, Lyu Y, Geng B, Xu G. Spontaneous development of hepatosteatosis in perilipin-1 null mice with adipose tissue dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:212-218. [PMID: 29191637 DOI: 10.1016/j.bbalip.2017.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 11/13/2017] [Accepted: 11/25/2017] [Indexed: 10/18/2022]
Abstract
Fatty liver features triglyceride accumulation in hepatocytes and often occurs with obesity and lipodystrophy in humans. Here, we investigated the mechanism of maladaptive hepatosteatosis with adipose-tissue dysfunction. Perilipin 1 (Plin1) did not exist in hepatocytes but was expressed exclusively in adipocytes as a dual modulator for regulating two principal adipose-tissue functions, triglyceride storage and breakdown. Plin1-/- mice showed decreased fat storage but increased lipolysis and efflux of fatty acids from adipose tissue, and hepatosteatosis spontaneously developed without altered circulating inflammatory adipocytokine levels. Plin1-/- adipose dysfunction impaired insulin sensitivity and hepatic glucose metabolism, which might inhibit gluconeogenesis to produce more intermediates for hepatic lipid synthesis. Indeed, the livers of Plin1-/- mice exhibited upregulated mRNA and protein expression of key enzymes and transcriptional factors for the uptake and transport of fatty acids and for de novo synthesis of triglycerides, but the expression of key enzymes and transcriptional factors for fatty-acid oxidation was downregulated. Biochemical assays in Plin1-/- mice confirmed increased fatty acid synthase activity but decreased activity of mitochondrial carnitine palmitoyltransferase 1 and [3H]-palmitate oxidation in the liver. We concluded that dysregulation of two principal functions, adipose storage and hydrolysis, had deleterious consequences on the hepatic lipid metabolism and thereby caused maladaptive hepatosteatosis. This mouse model might mimic and explain the pathogenesis of hepatosteatosis occurring in two typical disorders of adipose tissue dysfunction, obesity and lipodystrophy, particularly in lipodystrophic patients with Plin1 mutation.
Collapse
Affiliation(s)
- Suning Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shangxin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xueying Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Fengjuan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jingna Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ying Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
16
|
Mirheydari M, Mann EK, Kooijman EE. Interaction of a model apolipoprotein, apoLp-III, with an oil-phospholipid interface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:396-406. [PMID: 29030246 DOI: 10.1016/j.bbamem.2017.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 10/08/2017] [Indexed: 01/29/2023]
Abstract
Lipid droplets are "small" organelles that play an important role in de novo synthesis of new membrane, and steroid hormones, as well as in energy storage. The way proteins interact specifically with the oil-(phospho-)lipid monolayer interface of lipid droplets is a relatively unexplored but crucial question. Here, we use our home built liquid droplet tensiometer to mimic intracellular lipid droplets and study protein-lipid interactions at this interface. As model neutral lipid binding protein, we use apoLp-III, an amphipathic α-helix bundle protein. This domain is also found in proteins from the perilipin family and in apoE. Protein binding to the monolayer is studied by the decrease in the oil/water surface tension. Previous work used POPC (one of the major lipids found on lipid droplets) to form the phospholipid monolayer on the triolein surface. Here we expand this work by incorporating other lipids with different physico-chemical properties to study the effect of charge and lipid head-group size. This study sheds light on the affinity of this important protein domain to interact with lipids.
Collapse
Affiliation(s)
- Mona Mirheydari
- Physics Department, Kent State University, Kent, OH 44242, United States.
| | - Elizabeth K Mann
- Physics Department, Kent State University, Kent, OH 44242, United States
| | - Edgar E Kooijman
- Department of Biological Sciences, Kent State University, Kent, OH 44242, United States
| |
Collapse
|
17
|
Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1221-1232. [PMID: 28754637 DOI: 10.1016/j.bbalip.2017.07.009] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
Abstract
Lipid droplets in chordates are decorated by two or more members of the perilipin family of lipid droplet surface proteins. The perilipins sequester lipids by protecting lipid droplets from lipase action. Their relative expression and protective nature is adapted to the balance of lipid storage and utilization in specific cells. Most cells of the body have tiny lipid droplets with perilipins 2 and 3 at the surfaces, whereas specialized fat-storing cells with larger lipid droplets also express perilipins 1, 4, and/or 5. Perilipins 1, 2, and 5 modulate lipolysis by controlling the access of lipases and co-factors of lipases to substrate lipids stored within lipid droplets. Although perilipin 2 is relatively permissive to lipolysis, perilipins 1 and 5 have distinct control mechanisms that are altered by phosphorylation. Here we evaluate recent progress toward understanding functions of the perilipins with a focus on their role in regulating lipolysis and autophagy. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Carole Sztalryd
- Department of Medicine, Division of Endocrinology, School of Medicine, University of Maryland, Baltimore, MD, USA; Geriatric Research, Education, and Clinical Center, Baltimore Veterans Affairs Health Care Center, Baltimore, MD, USA.
| | - Dawn L Brasaemle
- Department of Nutritional Sciences and Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
18
|
Itabe H, Yamaguchi T, Nimura S, Sasabe N. Perilipins: a diversity of intracellular lipid droplet proteins. Lipids Health Dis 2017; 16:83. [PMID: 28454542 PMCID: PMC5410086 DOI: 10.1186/s12944-017-0473-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/22/2017] [Indexed: 01/04/2023] Open
Abstract
Intracellular lipid droplets (LDs) are found in a wide variety of cell types and have been recognized as organelles with unique spherical structures. Although LDs are not stable lipid-depots, they are active sites of neutral lipid metabolism, and comprise neutral lipid or cholesterol cores surrounded by phospholipid monolayers containing specialized proteins. However, sizes and protein compositions vary between cell and tissue types. Proteins of the perilipin family have been associated with surfaces of LDs and all carry a conserved 11-mer repeat motif. Accumulating evidence indicates that all perilipins are involved in LD formation and that all play roles in LD function under differing conditions. In this brief review, we summarize current knowledge of the roles of perilipins and lipid metabolizing enzymes in a variety of mammalian cell types.
Collapse
Affiliation(s)
- Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.
| | - Tomohiro Yamaguchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Present address: College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyaka-ku, Nagoya, 463-8521, Japan
| | - Satomi Nimura
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan.,Department of Hospital Pharmaceutics, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| | - Naoko Sasabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo, 142-8555, Japan
| |
Collapse
|
19
|
The stellate cell system (vitamin A-storing cell system). Anat Sci Int 2017; 92:387-455. [PMID: 28299597 DOI: 10.1007/s12565-017-0395-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/15/2017] [Indexed: 01/18/2023]
Abstract
Past, present, and future research into hepatic stellate cells (HSCs, also called vitamin A-storing cells, lipocytes, interstitial cells, fat-storing cells, or Ito cells) are summarized and discussed in this review. Kupffer discovered black-stained cells in the liver using the gold chloride method and named them stellate cells (Sternzellen in German) in 1876. Wake rediscovered the cells in 1971 using the same gold chloride method and various modern histological techniques including electron microscopy. Between their discovery and rediscovery, HSCs disappeared from the research history. Their identification, the establishment of cell isolation and culture methods, and the development of cellular and molecular biological techniques promoted HSC research after their rediscovery. In mammals, HSCs exist in the space between liver parenchymal cells (PCs) or hepatocytes and liver sinusoidal endothelial cells (LSECs) of the hepatic lobule, and store 50-80% of all vitamin A in the body as retinyl ester in lipid droplets in the cytoplasm. SCs also exist in extrahepatic organs such as pancreas, lung, and kidney. Hepatic (HSCs) and extrahepatic stellate cells (EHSCs) form the stellate cell (SC) system or SC family; the main storage site of vitamin A in the body is HSCs in the liver. In pathological conditions such as liver fibrosis, HSCs lose vitamin A, and synthesize a large amount of extracellular matrix (ECM) components including collagen, proteoglycan, glycosaminoglycan, and adhesive glycoproteins. The morphology of these cells also changes from the star-shaped HSCs to that of fibroblasts or myofibroblasts.
Collapse
|
20
|
Abstract
Lipid droplets are the universal cellular organelles for the transient or long-term storage of lipids. The number, size and composition of lipid droplets vary greatly within cells in a homogenous population as well as in different cell types. The variability of intracellular lipid-storage organelles reflects the diversification of lipid droplet composition and function. Lipid droplet diversification results, for example, in two cellular lipid droplet populations that are prone to diminish and grow, respectively. The aberrant accumulation or depletion of lipids are hallmarks or causes of various human pathologies. Thus, a better understanding of the origins of lipid droplet diversification is not only a fascinating cell biology question but also potentially serves to improve comprehension of pathologies that entail the accumulation of lipids. This Commentary covers the lipid droplet life cycle and highlights the early steps during lipid droplet biogenesis, which we propose to be the potential driving forces of lipid droplet diversification.
Collapse
Affiliation(s)
- Abdou Rachid Thiam
- Laboratoire de Physique Statistique, École Normale Supérieure, PSL Research University; Université Paris Diderot Sorbonne Paris-Cité; Sorbonne Universités UPMC Univ Paris 06; CNRS; 24 rue Lhomond, Paris 75005, France
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany .,Systems Biology of Lipid Metabolism, Heinrich Heine University, Universitätsstr. 1, Düsseldorf 40225, Germany
| |
Collapse
|
21
|
Yin F, Yu H, Lepp D, Shi X, Yang X, Hu J, Leeson S, Yang C, Nie S, Hou Y, Gong J. Transcriptome Analysis Reveals Regulation of Gene Expression for Lipid Catabolism in Young Broilers by Butyrate Glycerides. PLoS One 2016; 11:e0160751. [PMID: 27508934 PMCID: PMC4979964 DOI: 10.1371/journal.pone.0160751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/25/2016] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND & AIMS Butyrate has been shown to potently regulate energy expenditure and lipid metabolism in animals, yet the underlying mechanisms remain to be fully understood. The aim of this study was to investigate the molecular mechanisms of butyrate (in the form of butyrate glycerides, BG)-induced lipid metabolism at the level of gene expression in the jejunum and liver of broilers. METHODOLOGY/PRINCIPAL FINDINGS Two animal experiments were included in this study. In Experiment 1, two hundred and forty male broiler chickens were equally allocated into two groups: 1) basal diet (BD), 2) BG diets (BD + BG). Growth performance was compared between treatments for the 41-day trial. In Experiment 2, forty male broiler chickens were equally allocated into two groups. The general experimental design, group and management were the same as described in Experiment 1 except for reduced bird numbers and 21-day duration of the trial. Growth performance, abdominal fat deposition, serum lipid profiles as well as serum and tissue concentrations of key enzymes involved in lipid metabolism were compared between treatments. RNA-seq was employed to identify both differentially expressed genes (DEGs) and treatment specifically expressed genes (TSEGs). Functional clustering of DEGs and TSEGs and signaling pathways associated with lipid metabolism were identified using Ingenuity Pathways Analysis (IPA) and DAVID Bioinformatics Resources 6.7 (DAVID-BR). Quantitative PCR (qPCR) assays were subsequently conducted to further examine the expression of genes in the peroxisome proliferator-activated receptors (PPAR) signaling pathway identified by DAVID-BR. Dietary BG intervention significantly reduced abdominal fat ratio (abdominal fat weight/final body weight) in broilers. The decreased fat deposition in BG-fed chickens was in accordance with serum lipid profiles as well as the level of lipid metabolism-related enzymes in the serum, abdominal adipose, jejunum and liver. RNA-seq analysis indicated that dietary BG intervention induced 79 and 205 characterized DEGs in the jejunum and liver, respectively. In addition, 255 and 165 TSEGs were detected in the liver and jejunum of BG-fed group, while 162 and 211 TSEGs genes were observed in the liver and jejunum of BD-fed birds, respectively. Bioinformatic analysis with both IPA and DAVID-BR further revealed a significant enrichment of DEGs and TSEGs in the biological processes for reducing the synthesis, storage, transportation and secretion of lipids in the jejunum, while those in the liver were for enhancing the oxidation of ingested lipids and fatty acids. In particular, transcriptional regulators of THRSP and EGR-1 as well as several DEGs involved in the PPAR-α signaling pathway were significantly induced by dietary BG intervention for lipid catabolism. CONCLUSIONS Our results demonstrate that BG reduces body fat deposition via regulation of gene expression, which is involved in the biological events relating to the reduction of synthesis, storage, transportation and secretion, and improvement of oxidation of lipids and fatty acids.
Collapse
Affiliation(s)
- Fugui Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xuejiang Shi
- Next Generation Sequencing Platforms, Clinical Genomics Centre, the UHN/MSH Gene Profiling Facility, Toronto, Ontario, Canada
| | - Xiaojian Yang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Steve Leeson
- Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, Hubei, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
22
|
Mirheydari M, Rathnayake SS, Frederick H, Arhar T, Mann EK, Cocklin S, Kooijman EE. Insertion of perilipin 3 into a glycero(phospho)lipid monolayer depends on lipid headgroup and acyl chain species. J Lipid Res 2016; 57:1465-76. [PMID: 27256689 DOI: 10.1194/jlr.m068205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Indexed: 12/27/2022] Open
Abstract
Lipid droplets (LDs) are organelles that contribute to various cellular functions that are vital for life. Aside from acting as a neutral lipid storage depot, they are also involved in building new membranes, synthesis of steroid hormones, and cell signaling. Many aspects of LD structure and function are not yet well-understood. Here we investigate the interaction of perilipin 3, a member of the perilipin family of LD binding proteins, and three N-terminal truncation mutants with lipid monolayers. The interaction is studied as a function of surface pressure for a series of systematically chosen lipids. We find that the C terminus of perilipin 3 has different insertion behavior from that of the longer truncation mutants and the full-length protein. Inclusion of N-terminal sequences with the C terminus decreases the ability of the protein construct to insert in lipid monolayers. Coupling of anionic lipids to negative spontaneous curvature facilitates protein interaction and insertion. The C terminus shows strong preference for lipids with more saturated fatty acids. This work sheds light on the LD binding properties and function of the different domains of perilipin 3.
Collapse
Affiliation(s)
- Mona Mirheydari
- Departments of Physics, Kent State University, Kent, OH 44242
| | | | - Hannah Frederick
- Chemistry and Biochemistry, Kent State University, Kent, OH 44242
| | - Taylor Arhar
- Department of Chemistry and Biochemistry, Loyola Marymount University, Los Angeles, CA 90045
| | | | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | | |
Collapse
|
23
|
Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 2016; 13:4527-34. [PMID: 27082419 PMCID: PMC4878557 DOI: 10.3892/mmr.2016.5099] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
Collapse
|
24
|
Medwid S, Guan H, Yang K. Prenatal exposure to bisphenol A disrupts adrenal steroidogenesis in adult mouse offspring. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:203-208. [PMID: 27017381 DOI: 10.1016/j.etap.2016.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/16/2016] [Indexed: 06/05/2023]
Abstract
The present study sought to determine if prenatal exposure to bisphenol A (BPA) alters adrenal steroidogenesis in adult offspring. Pregnant mice were exposed to BPA (25mg BPA/kg food pellet) via diet from day 7 to the end of pregnancy. At eight weeks of age, offsprings were sacrificed, blood samples and adrenal glands were collected for hormone assays and western blot analysis, respectively. We found that: (1) BPA increased adrenal gland weight in both males and females; (2) although BPA elevated plasma corticosterone levels in both sexes, it stimulated the expression of StAR and cyp11A1, the two rate-limiting factors in the steroidogenic pathway, only in female adrenal glands; and interestingly (3) BPA did not alter plasma ACTH levels or adrenal expression of the key steroidogenic transcription factor SF-1 in either sex. Taken together, the present study provides novel insights into the long-term consequences of developmental BPA exposure on adrenal steroidogenesis.
Collapse
Affiliation(s)
- Samantha Medwid
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada
| | - Haiyan Guan
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada
| | - Kaiping Yang
- Children's Health Research Institute & Lawson Health Research Institute, Departments of Obstetrics & Gynaecology and Physiology & Pharmacology, Western University, 800 Commissioners Rd. E., London, Ontario N6C 2V5, Canada.
| |
Collapse
|
25
|
Padilla-Benavides T, Velez-delValle C, Marsch-Moreno M, Castro-Muñozledo F, Kuri-Harcuch W. Lipogenic Enzymes Complexes and Cytoplasmic Lipid Droplet Formation During Adipogenesis. J Cell Biochem 2016; 117:2315-26. [DOI: 10.1002/jcb.25529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/26/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Teresita Padilla-Benavides
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Cristina Velez-delValle
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Meytha Marsch-Moreno
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Federico Castro-Muñozledo
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| | - Walid Kuri-Harcuch
- Department of Cell Biology; Center for Research and Advanced Studies-IPN (CINVESTAV-IPN); México City 07360 Mexico
| |
Collapse
|
26
|
TACHIBANA T, KUSAKABE KT, OSAKI S, KURAISHI T, HATTORI S, YOSHIZAWA M, KAI C, KISO Y. Histocytological specificities of adrenal cortex in the New World Monkeys, Aotus lemurinus and Saimiri boliviensis. J Vet Med Sci 2016; 78:161-5. [PMID: 26321299 PMCID: PMC4751139 DOI: 10.1292/jvms.15-0290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/12/2015] [Indexed: 11/22/2022] Open
Abstract
The New World monkey Aotus spp. (night monkeys) are expected for use of valuable experimental animal with the close species of Saimiri spp. (squirrel monkeys). Saimiri is known to show spontaneous hypercortisolemia, although few reports in Aotus. We compared basic states of blood steroid hormones and histological structure of the adrenal glands in two monkeys. Serum cortisol and ACTH levels were statistically lower in Aotus than Saimiri. Conversely, Aotus adrenocortical area showed significant enlargement, especially at the zona fasciculata. Electron microscopic observation at Aotus fasciculata cells revealed notable accumulation of large lipid droplets and irregular shapes of the mitochondrial cristae. These results suggest potential differences in cellular activities for steroidogenesis between Aotus and Saimiri and experimental usefulness in adrenocortical physiology and pathological models.
Collapse
Affiliation(s)
- Toru TACHIBANA
- Laboratory of Basic Veterinary Science, The United Graduate
School of Veterinary Science, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, The United Graduate
School of Veterinary Science, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Sayuri OSAKI
- Laboratory of Basic Veterinary Science, The United Graduate
School of Veterinary Science, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| | - Takeshi KURAISHI
- Amami Laboratory of Injurious Animals, Institute of Medical
Science, The University of Tokyo, 802 Teyasu, Setouchi-cho, Ohshima-gun, Kagoshima
894–1531, Japan
| | - Shosaku HATTORI
- Amami Laboratory of Injurious Animals, Institute of Medical
Science, The University of Tokyo, 802 Teyasu, Setouchi-cho, Ohshima-gun, Kagoshima
894–1531, Japan
| | - Midori YOSHIZAWA
- Graduate School of Agricultural Science, Utsunomiya
University, 350 Mine-machi, Utsunomiya, Tochigi 321–8505, Japan
| | - Chieko KAI
- Amami Laboratory of Injurious Animals, Institute of Medical
Science, The University of Tokyo, 802 Teyasu, Setouchi-cho, Ohshima-gun, Kagoshima
894–1531, Japan
| | - Yasuo KISO
- Laboratory of Basic Veterinary Science, The United Graduate
School of Veterinary Science, 1677–1 Yoshida, Yamaguchi 753–8515, Japan
| |
Collapse
|
27
|
Zou L, Wang W, Liu S, Zhao X, Lyv Y, Du C, Su X, Geng B, Xu G. Spontaneous hypertension occurs with adipose tissue dysfunction in perilipin-1 null mice. Biochim Biophys Acta Mol Basis Dis 2015; 1862:182-91. [PMID: 26521150 DOI: 10.1016/j.bbadis.2015.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/10/2015] [Accepted: 10/27/2015] [Indexed: 11/26/2022]
Abstract
Perilipin-1 (Plin1) coats lipid droplets exclusively in adipocytes and regulates two principle functions of adipose tissue, triglyceride storage and hydrolysis, which are disrupted upon Plin1 deficiency. In the present study, we investigated the alterations in systemic metabolites and hormones, vascular function and adipose function in spontaneous hypertensive mice lacking perilipin-1 (Plin1-/-). Plin1-/- mice developed spontaneous hypertension without obvious alterations in systemic metabolites and hormones. Plin1 expressed only in adipose cells but not in vascular cells, so its ablation would have no direct effect in situ on blood vessels. Instead, Plin1-/- mice showed dysfunctions of perivascular adipose tissue (PVAT), a fat depot that anatomically surrounds systemic arteries and has an anticontractile effect. In Plin1-/- mice, aortic and mesenteric PVAT were reduced in mass and adipocyte derived relaxing factor secretion, but increased in basal lipolysis, angiotensin II secretion, macrophage infiltration and oxidative stress. Such multiple culprits impaired the anticontractile effect of PVAT to promote vasoconstriction of aortic and mesenteric arteries of Plin1-/- mice. Furthermore, arterial vessels of Plin1-/- mice showed increasing angiotensin II receptor type 1, monocyte chemotactic protein-1 and interlukin-6 expression, structural damage of endothelial and smooth muscle cells, along with impaired endothelium-dependent relaxation. Hypertension in Plin1-/- mice might occur as a deleterious consequence of PVAT dysfunction. This finding provides the direct evidence that links dysfunctional PVAT to vascular dysfunction and hypertension, particularly in pathophysiological states. This hypertensive mouse model might mimic and explain the hypertension occurring in patients with adipose tissue dysfunction, particularly with Plin1 mutations.
Collapse
Affiliation(s)
- Liangqiang Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiyi Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Shangxin Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaojing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Ying Lyv
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Congkuo Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xueying Su
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Pourteymour S, Lee S, Langleite TM, Eckardt K, Hjorth M, Bindesbøll C, Dalen KT, Birkeland KI, Drevon CA, Holen T, Norheim F. Perilipin 4 in human skeletal muscle: localization and effect of physical activity. Physiol Rep 2015; 3:3/8/e12481. [PMID: 26265748 PMCID: PMC4562567 DOI: 10.14814/phy2.12481] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Perilipins (PLINs) coat the surface of lipid droplets and are important for the regulation of lipid turnover. Knowledge about the physiological role of the individual PLINs in skeletal muscle is limited although lipid metabolism is very important for muscle contraction. To determine the effect of long-term exercise on PLINs expression, 26 middle-aged, sedentary men underwent 12 weeks combined endurance and strength training intervention. Muscle biopsies from m. vastus lateralis and subcutaneous adipose tissue were taken before and after the intervention and total gene expression was measured with deep mRNA sequencing. PLIN4 mRNA exhibited the highest expression of all five PLINs in both tissues, and the expression was significantly reduced after long-term exercise in skeletal muscle. Moreover, PLIN4 mRNA expression levels in muscle correlated with the expression of genes involved in de novo phospholipid biosynthesis, with muscular content of phosphatidylethanolamine and phosphatidylcholine, and with the content of subsarcolemmal lipid droplets. The PLIN4 protein was mainly located at the periphery of skeletal muscle fibers, with higher levels in slow-twitch as compared to fast-twitch skeletal muscle fibers. In summary, we report reduced expression of PLIN4 after long-term physical activity, and preferential slow-twitch skeletal muscle fibers and plasma membrane-associated PLIN4 location.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Sindre Lee
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgrim M Langleite
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine University of Oslo, Oslo, Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Christian Bindesbøll
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Knut T Dalen
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Kåre I Birkeland
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital and Faculty of Medicine University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Torgeir Holen
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine University of Oslo, Oslo, Norway
| |
Collapse
|
29
|
Yamaguchi T, Fujikawa N, Nimura S, Tokuoka Y, Tsuda S, Aiuchi T, Kato R, Obama T, Itabe H. Characterization of lipid droplets in steroidogenic MLTC-1 Leydig cells: Protein profiles and the morphological change induced by hormone stimulation. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1285-95. [PMID: 26143378 DOI: 10.1016/j.bbalip.2015.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022]
Abstract
Lipid droplets (LDs) are functional subcellular organelles involved in multiple intracellular processes. LDs are found in nearly all types of eukaryotic cells, but their properties are highly variable in different types of tissues. Steroidogenic cells synthesize steroid hormones de novo from the cholesterol deposited in cytosolic LDs. However, the roles of LD proteins in steroidogenesis under pituitary hormone stimulation have not been well elucidated. The protein profile of isolated LDs from the mouse Leydig tumor cell line MLTC-1 was distinct from that of hepatic cells or macrophages. By proteomic analysis of the components using mass spectrometry, two enzymes for steroidogenesis, 3β-hydroxysteroid dehydrogenase type 1 (3βHSD1) and 17 β-hydroxysteroid dehydrogenase type 11 (17βHSD11), were identified in two strong bands in the LD fractions. The LD fraction of MLTC-1 cells also included CYP11A1 and CYP17, suggesting that the LDs contain all the enzymes needed for testosterone synthesis. The steroidogenesis in Leydig cells is activated by luteinizing hormone through a PKA-dependent pathway. Stimulation of MLTC-1 cells with luteinizing hormone or 8-bromo-cAMP caused drastic changes in the morphology of the LDs in the MLTC-1 cells. Upon stimulation, large perinuclear LDs are turned into much smaller LDs and dispersed throughout the cytosol. These results raise the possibility that LDs are involved in a regulatory pathway of steroidogenesis, not just by serving as a storage depot for cholesterol esters, but also by providing enzymes and generating sites for enzymatic activity.
Collapse
Affiliation(s)
- Tomohiro Yamaguchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Noriyuki Fujikawa
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Satomi Nimura
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Yutaro Tokuoka
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Sonoka Tsuda
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| |
Collapse
|
30
|
Zhao X, Gao M, He J, Zou L, Lyu Y, Zhang L, Geng B, Liu G, Xu G. Perilipin1 deficiency in whole body or bone marrow-derived cells attenuates lesions in atherosclerosis-prone mice. PLoS One 2015; 10:e0123738. [PMID: 25855981 PMCID: PMC4391836 DOI: 10.1371/journal.pone.0123738] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 03/05/2015] [Indexed: 02/05/2023] Open
Abstract
Aims The objective of this study is to determine the role of perilipin 1 (Plin1) in whole body or bone marrow-derived cells on atherogenesis. Methods and Results Accumulated evidence have indicated the role of Plin1 in atherosclerosis, however, these findings are controversial. In this study, we showed that Plin1 was assembled and colocalized with CD68 in macrophages in atherosclerotic plaques of ApoE-/- mice. We further found 39% reduction of plaque size in the aortic roots of Plin1 and ApoE double knockout (Plin1-/-ApoE-/-) females compared with ApoE-/- female littermates. In order to verify whether this reduction was macrophage-specific, the bone marrow cells from wild-type or Plin1 deficient mice (Plin1-/-) were transplanted into LDL receptor deficient mice (LDLR-/-). Mice receiving Plin1-/- bone marrow cells showed also 49% reduction in aortic atherosclerotic lesions compared with LDLR-/- mice received wild-type bone marrow cells. In vitro experiments showed that Plin1-/- macrophages had decreased protein expression of CD36 translocase and an enhanced cholesterol ester hydrolysis upon aggregated-LDL loading, with unaltered expression of many other regulators of cholesterol metabolism, such as cellular lipases, and Plin2 and 3. Given the fundamental role of Plin1 in protecting LD lipids from lipase hydrolysis, it is reasonably speculated that the assembly of Plin1 in microphages might function to reduce lipolysis and hence increase lipid retention in ApoE-/- plaques, but this pro-atherosclerotic property would be abrogated on inactivation of Plin1. Conclusion Plin1 deficiency in bone marrow-derived cells may be responsible for reduced atherosclerotic lesions in the mice.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Apolipoproteins E/genetics
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Bone Marrow Transplantation
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cholesterol Esters/genetics
- Cholesterol Esters/metabolism
- Female
- Humans
- Macrophages/metabolism
- Macrophages/pathology
- Membrane Proteins/metabolism
- Mice
- Mice, Knockout
- Perilipin-1
- Perilipin-2
- Perilipin-3
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/pathology
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
Collapse
Affiliation(s)
- Xiaojing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Mingming Gao
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| | - Jinhan He
- Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Liangqiang Zou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Lyu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ling Zhang
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- * E-mail: (GL); (BG)
| | - George Liu
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
- * E-mail: (GL); (BG)
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- The Key Laboratory of Molecular Cardiovascular Sciences, the Ministry of Education, Beijing, China
| |
Collapse
|
31
|
Adaikalakoteswari A, Finer S, Voyias PD, McCarthy CM, Vatish M, Moore J, Smart-Halajko M, Bawazeer N, Al-Daghri NM, McTernan PG, Kumar S, Hitman GA, Saravanan P, Tripathi G. Vitamin B12 insufficiency induces cholesterol biosynthesis by limiting s-adenosylmethionine and modulating the methylation of SREBF1 and LDLR genes. Clin Epigenetics 2015; 7:14. [PMID: 25763114 PMCID: PMC4356060 DOI: 10.1186/s13148-015-0046-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 01/14/2015] [Indexed: 12/23/2022] Open
Abstract
Background The dietary supply of methyl donors such as folate, vitamin B12, betaine, methionine, and choline is essential for normal growth, development, and physiological functions through the life course. Both human and animal studies have shown that vitamin B12 deficiency is associated with altered lipid profile and play an important role in the prediction of metabolic risk, however, as of yet, no direct mechanism has been investigated to confirm this. Results Three independent clinical studies of women (i) non-pregnant at child-bearing age, (ii) in early pregnancy, and (iii) at delivery showed that low vitamin B12 status was associated with higher total cholesterol, LDL cholesterol, and cholesterol-to-HDL ratio. These results guided the investigation into the cellular mechanisms of induced cholesterol biosynthesis due to vitamin B12 deficiency, using human adipocytes as a model system. Adipocytes cultured in low or no vitamin B12 conditions had increased cholesterol and homocysteine levels compared to control. The induction of cholesterol biosynthesis was associated with reduced s-adenosylmethionine (AdoMet)-to-s-adenosylhomocysteine (AdoHcy) ratio, also known as methylation potential (MP). We therefore studied whether reduced MP could lead to hypomethylation of genes involved in the regulation of cholesterol biosynthesis. Genome-wide and targeted DNA methylation analysis identified that the promoter regions of SREBF1 and LDLR, two key regulators of cholesterol biosynthesis, were hypomethylated under vitamin B12-deficient conditions, and as a result, their expressions and cholesterol biosynthesis were also significantly increased. This finding was further confirmed by the addition of the methylation inhibitor, 5-aza-2′-deoxycytidine, which resulted in increased SREBF1 and LDLR expressions and cholesterol accumulation in vitamin B12-sufficient conditions. Finally, we observed that the expression of SREBF1, LDLR, and cholesterol biosynthesis genes were increased in adipose tissue of vitamin B12 deficient mothers compared to control group. Conclusions Clinical data suggests that vitamin B12 deficiency is an important metabolic risk factor. Regulation of AdoMet-to-AdoHcy levels by vitamin B12 could be an important mechanism by which it can influence cholesterol biosynthesis pathway in human adipocytes. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0046-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Antonysunil Adaikalakoteswari
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Sarah Finer
- Centre for Diabetes, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK ; Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, University of Cambridge, Addenbrooke's Hospital, Box 289, Cambridge, CB2 0QQ UK
| | - Philip D Voyias
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Ciara M McCarthy
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Manu Vatish
- Nuffield Department of Obstetrics and Gynaecology University of Oxford Level 3, John Radcliffe Hospital, Oxford, University of Oxford, Oxford, OX3 9DU UK
| | - Jonathan Moore
- Warwick Systems Biology, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL UK
| | - Melissa Smart-Halajko
- Centre for Diabetes, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK
| | - Nahla Bawazeer
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Nasser M Al-Daghri
- Biochemistry Department, College of Science, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Philip G McTernan
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Sudhesh Kumar
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| | - Graham A Hitman
- Centre for Diabetes, Blizard Institute, Queen Mary University of London, 4 Newark Street, London, E1 2AT UK
| | - Ponnusamy Saravanan
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK ; iDEA Centre, George Eliot Hospital, Nuneton, CV10 7DJ UK
| | - Gyanendra Tripathi
- Division of Metabolic and Vascular Health, Clinical Sciences Research Laboratories, Warwick Medical School, University Hospital Coventry and Warwickshire, University of Warwick, Clifford Bridge Road, Coventry, CV2 2DX UK
| |
Collapse
|
32
|
Song W, Yu H, Lin Y, Sun K, Zhang Y, Song Y, Hui R, Chen J. A functional variant in the exon 5 of PLIN1 reduces risk of central obesity by possible regulation of lipid storage. Biochem Biophys Res Commun 2015; 456:896-900. [DOI: 10.1016/j.bbrc.2014.12.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 12/11/2014] [Indexed: 10/24/2022]
|
33
|
Wu JW, Yang H, Wang SP, Soni KG, Brunel-Guitton C, Mitchell GA. Inborn errors of cytoplasmic triglyceride metabolism. J Inherit Metab Dis 2015; 38:85-98. [PMID: 25300978 DOI: 10.1007/s10545-014-9767-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 08/25/2014] [Indexed: 01/14/2023]
Abstract
Triglyceride (TG) synthesis, storage, and degradation together constitute cytoplasmic TG metabolism (CTGM). CTGM is mostly studied in adipocytes, where starting from glycerol-3-phosphate and fatty acyl (FA)-coenzyme A (CoA), TGs are synthesized then stored in cytoplasmic lipid droplets. TG hydrolysis proceeds sequentially, producing FAs and glycerol. Several reactions of CTGM can be catalyzed by more than one enzyme, creating great potential for complex tissue-specific physiology. In adipose tissue, CTGM provides FA as a systemic energy source during fasting and is related to obesity. Inborn errors and mouse models have demonstrated the importance of CTGM for non-adipose tissues, including skeletal muscle, myocardium and liver, because steatosis and dysfunction can occur. We discuss known inborn errors of CTGM, including deficiencies of: AGPAT2 (a form of generalized lipodystrophy), LPIN1 (childhood rhabdomyolysis), LPIN2 (an inflammatory condition, Majeed syndrome, described elsewhere in this issue), DGAT1 (protein loosing enteropathy), perilipin 1 (partial lipodystrophy), CGI-58 (gene ABHD5, neutral lipid storage disease (NLSD) with ichthyosis and "Jordan's anomaly" of vacuolated polymorphonuclear leukocytes), adipose triglyceride lipase (ATGL, gene PNPLA2, NLSD with myopathy, cardiomyopathy and Jordan's anomaly), hormone-sensitive lipase (HSL, gene LIPE, hypertriglyceridemia, and insulin resistance). Two inborn errors of glycerol metabolism are known: glycerol kinase (GK, causing pseudohypertriglyceridemia) and glycerol-3-phosphate dehydrogenase (GPD1, childhood hepatic steatosis). Mouse models often resemble human phenotypes but may diverge markedly. Inborn errors have been described for less than one-third of CTGM enzymes, and new phenotypes may yet be identified.
Collapse
Affiliation(s)
- Jiang Wei Wu
- Division of Medical Genetics, Department of Pediatrics, Université de Montréal and CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Sahu-Osen A, Montero-Moran G, Schittmayer M, Fritz K, Dinh A, Chang YF, McMahon D, Boeszoermenyi A, Cornaciu I, Russell D, Oberer M, Carman GM, Birner-Gruenberger R, Brasaemle DL. CGI-58/ABHD5 is phosphorylated on Ser239 by protein kinase A: control of subcellular localization. J Lipid Res 2014; 56:109-21. [PMID: 25421061 PMCID: PMC4274058 DOI: 10.1194/jlr.m055004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CGI-58/ABHD5 coactivates adipose triglyceride lipase (ATGL). In adipocytes, CGI-58 binds to perilipin 1A on lipid droplets under basal conditions, preventing interaction with ATGL. Upon activation of protein kinase A (PKA), perilipin 1A is phosphorylated and CGI-58 rapidly disperses into the cytoplasm, enabling lipase coactivation. Because the amino acid sequence of murine CGI-58 has a predicted PKA consensus sequence of RKYS239S240, we hypothesized that phosphorylation of CGI-58 is involved in this process. We show that Ser239 of murine CGI-58 is a substrate for PKA using phosphoamino acid analysis, MS, and immunoblotting approaches to study phosphorylation of recombinant CGI-58 and endogenous CGI-58 of adipose tissue. Phosphorylation of CGI-58 neither increased nor impaired coactivation of ATGL in vitro. Moreover, Ser239 was not required for CGI-58 function to increase triacylglycerol turnover in human neutral lipid storage disorder fibroblasts that lack endogenous CGI-58. Both CGI-58 and S239A/S240A-mutated CGI-58 localized to perilipin 1A-coated lipid droplets in cells. When PKA was activated, WT CGI-58 dispersed into the cytoplasm, whereas substantial S239A/S240A-mutated CGI-58 remained on lipid droplets. Perilipin phosphorylation also contributed to CGI-58 dispersion. PKA-mediated phosphorylation of CGI-58 is required for dispersion of CGI-58 from perilipin 1A-coated lipid droplets, thereby increasing CGI-58 availability for ATGL coactivation.
Collapse
Affiliation(s)
- Anita Sahu-Osen
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Gabriela Montero-Moran
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Matthias Schittmayer
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Katarina Fritz
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Anna Dinh
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Yu-Fang Chang
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Derek McMahon
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | | | - Irina Cornaciu
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - Deanna Russell
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Monika Oberer
- Institute of Molecular Biosciences, University of Graz, Graz, Austria A-8010
| | - George M Carman
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Ruth Birner-Gruenberger
- Research Unit Functional Proteomics and Metabolic Pathways, Institute of Pathology, Medical University of Graz, Graz, Austria A-8036, and Omics Center Graz, BioTechMed-Graz, Graz, Austria A-8010
| | - Dawn L Brasaemle
- Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901 Departments of Nutritional Sciences Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| |
Collapse
|
35
|
Zhang RN, Fu XW, Jia BY, Liu C, Cheng KR, Zhu SE. Expression of perilipin 2 (PLIN2) in porcine oocytes during maturation. Reprod Domest Anim 2014; 49:875-80. [PMID: 25131988 DOI: 10.1111/rda.12386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 06/22/2014] [Indexed: 11/28/2022]
Abstract
Perilipins have been reported to limit the interaction of lipases with neutral lipids within the droplets, thereby regulating neutral lipid accumulation and utilization. This study aimed to identify the location and expression of PLIN1 and PLIN2 in porcine oocytes during maturation. Quantitative real-time polymerase chain reaction (qRT-PCR), immunostaining and Western blot methods were used to characterize the expression and distribution patterns of PLIN1 and PLIN2 in porcine oocytes. The results showed that PLIN1 was not detectable in porcine oocytes. PLIN2 and BODIPY 493/503-detected neutral lipid droplets appeared identical distribution patterns and extensive colocalization in both GV and MII porcine oocytes. PLIN2 protein expression was higher in GV oocytes than that in MII oocytes (p < 0.05), although PLIN2 mRNA expression was similar in both groups. These findings suggested that PLIN2 was a major lipid droplet-associated protein in porcine oocytes.
Collapse
Affiliation(s)
- R N Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | | | | | | | | | | |
Collapse
|
36
|
Khor VK, Ahrends R, Lin Y, Shen WJ, Adams CM, Roseman AN, Cortez Y, Teruel MN, Azhar S, Kraemer FB. The proteome of cholesteryl-ester-enriched versus triacylglycerol-enriched lipid droplets. PLoS One 2014; 9:e105047. [PMID: 25111084 PMCID: PMC4128735 DOI: 10.1371/journal.pone.0105047] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 07/19/2014] [Indexed: 12/20/2022] Open
Abstract
Within cells, lipids are stored in the form of lipid droplets (LDs), consisting of a neutral lipid core, surrounded by a phospholipid monolayer and an outer layer of protein. LDs typically accumulate either triacylglycerol (TAG) and diacylglycerol or cholesteryl ester (CE), depending on the type of tissue. Recently, there has been an increased interest in the proteins that surround LDs. LD proteins have been found to be quite diverse, from structural proteins to metabolic enzymes, proteins involved in vesicular transport, and proteins that may play a role in LD formation. Previous proteomics analyses have focused on TAG-enriched LDs, whereas CE-enriched LDs have been largely ignored. Our study has compared the LD proteins from CE-enriched LDs to TAG-enriched LDs in steroidogenic cells. In primary rat granulosa cells loaded with either HDL to produce CE-enriched LDs or fatty acids to produce TAG-enriched LDs, 61 proteins were found to be elevated in CE-enriched LDs and 40 proteins elevated in TAG-enriched LDs with 278 proteins in similar amounts. Protein expression was further validated by selected reaction monitoring (SRM) mass spectrometry (MS). SRM verified expression of 25 of 27 peptides that were previously detected by tandem mass tagging MS. Several proteins were confirmed to be elevated in CE-enriched LDs by SRM including the intermediate filament vimentin. This study is the first to compare the proteins found on CE-enriched LDs with TAG-enriched LDs and constitutes the first step in creating a better understanding of the proteins found on CE-enriched LDs in steroidogenic cells.
Collapse
Affiliation(s)
- Victor K. Khor
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Robert Ahrends
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Ye Lin
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Wen-Jun Shen
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Christopher M. Adams
- Mass Spectrometry Center, Stanford University, Stanford, California, United States of America
| | - Ann Nomoto Roseman
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Yuan Cortez
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Mary N. Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, California, United States of America
| | - Salman Azhar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
| | - Fredric B. Kraemer
- Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California, United States of America
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Mitochondrial proteomic analysis reveals the molecular mechanisms underlying reproductive toxicity of zearalenone in MLTC-1 cells. Toxicology 2014; 324:55-67. [PMID: 25058043 DOI: 10.1016/j.tox.2014.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/03/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEA), a Fusarium mycotoxin that contaminates cereal crops worldwide, has been shown to affect the male reproductive system and trigger reactive oxygen species (ROS) generation. However, the mechanisms of its toxicity have not been fully understood. Because mitochondrion is a key organelle involved in producing ROS and generating metabolic intermediates for biosynthesis, an iTRAQ-based mitoproteomics approach was employed to identify the molecular mechanism of zearalenone toxicity using mitochondria of mouse Leydig tumor cells (MLTC-1). A total of 2014 nonredundant proteins were identified, among which 1401 proteins (69.56%) were overlapped. There were 52 differentially expressed proteins in response to ZEA, and they were primarily involved in energy metabolism, molecular transport and endocrine-related functions. Consistent with mitochondrial proteomic analysis, the ATP and intracellular Ca(2+) levels increased after ZEA treatment. The results suggest that lipid metabolism changed significantly after low-dose ZEA exposure, resulting in two alterations. One is the increase in energy production through promoted fatty acid uptake and β-oxidation, along with excessive oxidative stress; the other is an inhibition of steroidogenesis and esterification, possibly resulting in reduced hormone secretion. A hypothetical model of ZEA-induced mitochondrial damage is proposed to provide a framework for the mechanism of ZEA toxicity.
Collapse
|
38
|
Arrese EL, Saudale FZ, Soulages JL. Lipid Droplets as Signaling Platforms Linking Metabolic and Cellular Functions. Lipid Insights 2014; 7:7-16. [PMID: 25221429 PMCID: PMC4161058 DOI: 10.4137/lpi.s11128] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The main cells of the adipose tissue of animals, adipocytes, are characterized by the presence of large cytosolic lipid droplets (LDs) that store triglyceride (TG) and cholesterol. However, most cells have LDs and the ability to store lipids. LDs have a well-known central role in storage and provision of fatty acids and cholesterol. However, the complexity of the regulation of lipid metabolism on the surface of the LDs is still a matter of intense study. Beyond this role, a number of recent studies have suggested that LDs have major functions in other cellular processes, such as protein storage and degradation, infection, and immunity. Thus, our perception of LDs has been radically transformed from simple globules of fat to highly dynamic organelles of unexpected complexity. Here, we compiled some recent evidence supporting the emerging view that LDs act as platforms connecting a number of relevant metabolic and cellular functions.
Collapse
Affiliation(s)
- Estela L Arrese
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Fredy Z Saudale
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| | - Jose L Soulages
- Department of Biochemistry and Molecular Biology; Oklahoma State University; Stillwater, OK, 74078, USA
| |
Collapse
|
39
|
Chen M, Wang H, Li X, Li N, Xu G, Meng Q. PLIN1 deficiency affects testicular gene expression at the meiotic stage in the first wave of spermatogenesis. Gene 2014; 543:212-9. [PMID: 24727056 DOI: 10.1016/j.gene.2014.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 01/24/2023]
Abstract
PLIN1, a lipid droplet associated protein, has been implicated in playing a key role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 is found to be highly expressed in Leydig cells of testis, suggesting a potential role in steroidogenesis and spermatogenesis. In this study, we showed that PLIN1 was expressed in testis and that its mRNA levels declined significantly with development. To investigate the role of PLIN1, we take advantage of PLIN1-null mice. We found that the number of seminiferous tubules containing round spermatids was significantly increased at P21 (postnatal day 21). Furthermore, microarray analysis showed that there were 538 differentially expressed genes between PLIN1-null and wild-type mice at P21. The up-regulated genes in knockout mice were enriched in spermatogenesis by Gene Ontology classification. Among them, Prm1 and Wbp2nl are important for spermatogenesis which were confirmed by real-time PCR. Unexpectedly, the levels of serum testosterone and serum 17β-estradiol as well as steroidogenic genes are not altered in the PLIN1-null mice. Compared to the wild-type mice, no significant difference of fertility was found in the PLIN1-null mice. Therefore, these findings indicated that PLIN1 disruption leads to the increase of round spermatid-containing seminiferous tubules at the meiotic stage of the first wave of spermatogenesis through regulating spermatogenic related genes.
Collapse
Affiliation(s)
- Min Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangdong Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ning Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Guoheng Xu
- Department of Physiology and Pathophysiology, Peking (Beijing) University Health Science Center, 38 Xueyuan Road, Beijing 100083, China
| | - Qingyong Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Fülöp L, Rajki A, Katona D, Szanda G, Spät A. Extramitochondrial OPA1 and adrenocortical function. Mol Cell Endocrinol 2013; 381:70-9. [PMID: 23906536 DOI: 10.1016/j.mce.2013.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/19/2013] [Accepted: 07/19/2013] [Indexed: 02/06/2023]
Abstract
We have previously described that silencing of the mitochondrial protein OPA1 enhances mitochondrial Ca(2+) signaling and aldosterone production in H295R adrenocortical cells. Since extramitochondrial OPA1 (emOPA1) was reported to facilitate cAMP-induced lipolysis, we hypothesized that emOPA1, via the enhanced hydrolysis of cholesterol esters, augments aldosterone production in H295R cells. A few OPA1 immunopositive spots were detected in ∼40% of the cells. In cell fractionation studies OPA1/COX IV (mitochondrial marker) ratio in the post-mitochondrial fractions was an order of magnitude higher than that in the mitochondrial fraction. The ratio of long to short OPA1 isoforms was lower in post-mitochondrial than in mitochondrial fractions. Knockdown of OPA1 failed to reduce db-cAMP-induced phosphorylation of hormone-sensitive lipase (HSL), Ca(2+) signaling and aldosterone secretion. In conclusion, OPA1 could be detected in the post-mitochondrial fractions, nevertheless, OPA1 did not interfere with the cAMP - PKA - HSL mediated activation of aldosterone secretion.
Collapse
Affiliation(s)
- László Fülöp
- Department of Physiology, Faculty of Medicine, Semmelweis University, Hungary
| | | | | | | | | |
Collapse
|
41
|
Barone R, Macaluso F, Catanese P, Marino Gammazza A, Rizzuto L, Marozzi P, Lo Giudice G, Stampone T, Cappello F, Morici G, Zummo G, Farina F, Di Felice V. Endurance exercise and conjugated linoleic acid (CLA) supplementation up-regulate CYP17A1 and stimulate testosterone biosynthesis. PLoS One 2013; 8:e79686. [PMID: 24223995 PMCID: PMC3818175 DOI: 10.1371/journal.pone.0079686] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/24/2013] [Indexed: 01/12/2023] Open
Abstract
A new role for fat supplements, in particular conjugated linoleic acid (CLA), has been delineated in steroidogenesis, although the underlying molecular mechanisms have not yet been elucidated. The aims of the present study were to identify the pathway stimulated by CLA supplementation using a cell culture model and to determine whether this same pathway is also stimulated in vivo by CLA supplementation associated with exercise. In vitro, Leydig tumour rat cells (R2C) supplemented with different concentrations of CLA exhibited increasing testosterone biosynthesis accompanied by increasing levels of CYP17A1 mRNA and protein. In vivo, trained mice showed an increase in free plasma testosterone and an up-regulation of CYP17A1 mRNA and protein. The effect of training on CYP17A1 expression and testosterone biosynthesis was significantly higher in the trained mice supplemented with CLA compared to the placebo. The results of the present study demonstrated that CLA stimulates testosterone biosynthesis via CYP17A1, and endurance training led to the synthesis of testosterone in vivo by inducing the overexpression of CYP17A1 mRNA and protein in the Leydig cells of the testis. This effect was enhanced by CLA supplementation. Therefore, CLA-associated physical activity may be used for its steroidogenic property in different fields, such as alimentary industry, human reproductive medicine, sport science, and anti-muscle wasting.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC), University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Issop L, Rone MB, Papadopoulos V. Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol 2013; 371:34-46. [PMID: 23246788 DOI: 10.1016/j.mce.2012.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/20/2022]
Abstract
Steroid biosynthesis is a multi-step process controlled by pituitary hormones, which, via cAMP-dependent signaling pathways, drive tissue-specific steroid formation. Steroidogenesis begins with the transport of the substrate, cholesterol, from intracellular stores into the inner mitochondrial membrane, where the steroidogenic enzyme CYP11A1 converts cholesterol to pregnenolone. This process is accelerated by hormones and involves a number of proteins and protein-protein interactions. Indeed, cholesterol, stored in lipid droplets and membranes, is transferred through a hormone-induced complex of proteins derived from the cytosol, mitochondria, and other organelles termed the transduceosome to the outer mitochondrial membrane. From there, cholesterol reaches CYP11A1 through outer/inner membrane contact sites. Thus, cholesterol transfer is likely achieved through a hormone-dependent reorganization of organelles and protein distribution and interactions. The findings reviewed herein suggest the presence of a hormone-dependent organelle communication network mediated by protein-protein interactions and inter-organelle trafficking, resulting in the efficient and timely delivery of cholesterol into mitochondria for steroid synthesis.
Collapse
Affiliation(s)
- Leeyah Issop
- Research Institute of the McGill University Health Centre, Department of Medicine, McGill University, Montreal, Quebec, Canada H3G 1A4
| | | | | |
Collapse
|
43
|
Kraemer FB, Khor VK, Shen WJ, Azhar S. Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol 2013; 371:15-9. [PMID: 23089211 PMCID: PMC3584206 DOI: 10.1016/j.mce.2012.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/05/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
Intracellular lipid droplets (LDs) are dynamic organelles that contain a number of associated proteins including perilipin (Plin) and vimentin. Cholesteryl ester (CE)-rich LDs normally accumulate in steroidogenic cells and their mobilization is the preferred initial source of cholesterol for steroidogenesis. Plin1a, 1b and 5 were found to preferentially associate with triacylglycerol-rich LDs and Plin1c and Plin4 to associate with CE-rich LDs, but the biological significance of this remains unanswered. Vimentin null mice were found to have decreased ACTH-stimulated corticosterone levels, and decreased progesterone levels in females, but normal hCG-stimulated testosterone levels in males. Smaller LDs were seen in null cells. Lipoprotein cholesterol delivery to adrenals and ovary was normal, as was the expression of steroidogenic genes; however, the movement of cholesterol to mitochondria was reduced in vimentin null mice. These results suggest that vimentin is important in the maintenance of CE-rich LDs and in the movement of cholesterol for steroidogenesis.
Collapse
|
44
|
Bindesbøll C, Berg O, Arntsen B, Nebb HI, Dalen KT. Fatty acids regulate perilipin5 in muscle by activating PPARδ. J Lipid Res 2013; 54:1949-63. [PMID: 23606724 DOI: 10.1194/jlr.m038992] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface of lipid droplets (LDs) in various cell types is coated with perilipin proteins encoded by the Plin genes. Perilipins regulate LD metabolism by selectively recruiting lipases and other proteins to LDs. We have studied the expression of perilipins in mouse muscle. The glycolytic fiber-enriched gastrocnemius muscle expresses predominantly Plin2-4. The oxidative fiber-enriched soleus muscle expresses Plin2-5. Expression of Plin2 and Plin4-5 is elevated in gastrocnemius and soleus muscles from mice fed a high-fat diet. This effect is preserved in peroxisome proliferator-activated receptor (PPAR)α-deficient mice. Mouse muscle derived C2C12 cells differentiated into glycolytic fibers increase transcription of these Plins when exposed to various long chain fatty acids (FAs). To understand how FAs regulate Plin genes, we used specific activators and antagonists against PPARs, Plin promoter reporter assays, chromatin immunoprecipitation, siRNA, and animal models. Our analyses demonstrate that FAs require PPARδ to induce transcription of Plin4 and Plin5. We further identify a functional PPAR binding site in the Plin5 gene and establish Plin5 as a novel direct PPARδ target in muscle. Our study reveals that muscle cells respond to elevated FAs by increasing transcription of several perilipin LD-coating proteins. This induction renders the muscle better equipped to sequester incoming FAs into cytosolic LDs.
Collapse
Affiliation(s)
- Christian Bindesbøll
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
45
|
Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem 2013; 288:8505-8518. [PMID: 23362264 DOI: 10.1074/jbc.m112.417873] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Joëlle Cohen-Tannoudji
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Raymond Counis
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Charles W Garner
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Fredric B Kraemer
- Department of Medicine, Veterans Affairs Palo Alto Heath Care System, Palo Alto, California 94304
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430.
| |
Collapse
|
46
|
Macaluso F, Morici G, Catanese P, Ardizzone NM, Marino Gammazza A, Bonsignore G, Lo Giudice G, Stampone T, Barone R, Farina F, Di Felice V. Effect of conjugated linoleic acid on testosterone levels in vitro and in vivo after an acute bout of resistance exercise. J Strength Cond Res 2012; 26:1667-74. [PMID: 22614148 DOI: 10.1519/jsc.0b013e318231ab78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The purposes of the present study were to investigate the effect of conjugated linoleic acid (CLA) supplementation on testosterone levels in vitro on a cell line derived from Leydig cells (R2C) and in vivo in the blood of physically active subjects before and after a resistance exercise bout. In vitro R2C cells were treated with different CLA concentrations (0-30 μM) for 24 and 48 hours. After treatment, supernatant media were tested to determine testosterone secretion. The CLA increased the testosterone secretion only after 48 hours. In vivo, 10 resistance-trained male subjects, in a double-blind placebo-controlled and crossover study design were randomized for 3 weeks of either 6 g·d⁻¹ CLA or placebo. Blood was drawn pre and post each resistance exercise bout to determine the total testosterone and sex hormone-binding globulin (SHBG) levels. No significant differences were observed for total testosterone or SHBG pre and post each resistance exercise bout; although after the resistance exercise bouts, total testosterone increased moderately (effect size = moderate), whereas after CLA supplementation, there was a large increase in total testosterone (effect size = large). CLA supplementation induced an increase in testosterone levels in Leydig cells in vitro after 48 hours but not in vivo before and after a resistance exercise bout. These findings suggest that CLA supplementation may promote testosterone synthesis through a molecular pathway that should be investigated in the future, although this effect did not have an anabolic relevance in our in vivo model.
Collapse
Affiliation(s)
- Filippo Macaluso
- Department of Physiological Science, Stellenbosch University, Stellenbosch, South Africa.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hsieh K, Lee YK, Londos C, Raaka BM, Dalen KT, Kimmel AR. Perilipin family members preferentially sequester to either triacylglycerol-specific or cholesteryl-ester-specific intracellular lipid storage droplets. J Cell Sci 2012; 125:4067-76. [PMID: 22685330 PMCID: PMC3482316 DOI: 10.1242/jcs.104943] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Perilipin family proteins (Plins) coat the surface of intracellular neutral lipid storage droplets in various cell types. Studies across diverse species demonstrate that Plins regulate lipid storage metabolism through recruitment of lipases and other regulatory proteins to lipid droplet surfaces. Mammalian genomes have distinct Plin gene members and additional protein forms derived from specific mRNA splice variants. However, it is not known if the different Plins have distinct functional properties. Using biochemical, cellular imaging and flow cytometric analyses, we now show that within individual cells of various types, the different Plin proteins preferentially sequester to separate pools of lipid storage droplets. By examining ectopically expressed GFP fusions and all endogenous Plin protein forms, we demonstrate that different Plins sequester to different types of lipid droplets that are composed of either triacylcerides or cholesterol esters. Furthermore, Plins with strong association preferences to triacylceride (or cholesterol ester) droplets can re-direct the relative intracellular triacylceride-cholesterol ester balance toward the targeted lipid. Our data suggest diversity of Plin function, alter previous assumptions about shared collective actions of the Plins, and indicate that each Plin can have separate and unique functions.
Collapse
Affiliation(s)
- Kai Hsieh
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
48
|
Watt MJ, Hoy AJ. Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 2012; 302:E1315-28. [PMID: 22185843 DOI: 10.1152/ajpendo.00561.2011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fatty acids derived from adipose tissue lipolysis, intramyocellular triacylglycerol lipolysis, or de novo lipogenesis serve a variety of functions in skeletal muscle. The two major fates of fatty acids are mitochondrial oxidation to provide energy for the myocyte and storage within a variety of lipids, where they are stored primarily in discrete lipid droplets or serve as important structural components of membranes. In this review, we provide a brief overview of skeletal muscle fatty acid metabolism and highlight recent notable advances in the field. We then 1) discuss how lipids are stored in and mobilized from various subcellular locations to provide adaptive or maladaptive signals in the myocyte and 2) outline how lipid metabolites or metabolic byproducts derived from the actions of triacylglycerol metabolism or β-oxidation act as positive and negative regulators of insulin action. We have placed an emphasis on recent developments in the lipid biology field with respect to understanding skeletal muscle physiology and discuss unanswered questions and technical limitations for assessing lipid signaling in skeletal muscle.
Collapse
Affiliation(s)
- Matthew J Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
49
|
Gu G, Gao Q, Yuan X, Huang L, Ge L. Immunolocalization of adipocytes and prostaglandin E2 and its four receptor proteins EP1, EP2, EP3, and EP4 in the caprine cervix during spontaneous term labor. Biol Reprod 2012; 86:159, 1-10. [PMID: 22402965 DOI: 10.1095/biolreprod.111.096040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The mechanisms of cervical ripening and dilation in mammals remain obscure. Information is lacking about the localization of prostaglandin E(2) (PGE(2))-producing cells and PGE(2) receptors (EP) in intrapartum cervix and whether cervical dilation at parturition is an active process. To reveal these mechanisms, immunolocalization of EP1-EP4 (official gene symbols PTGER1-PTGER4) and PGE(2)-producing cells in caprine cervix during nonpregnancy, pregnancy, and parturition was assayed by immunohistochemistry (IHC); the mRNA expression levels of PTGS2, PTGER2 (EP2), and PTGER4 (EP4) were determined using quantitative PCR; and the existence of adipocytes in the cervix at various stages was demonstrated with Oil Red O staining and IHC of perilipin A. The results suggested that in intrapartum caprine cervix staining of the PGE(2) was observed in the overall tissues, for example, blood vessels, canal or glandular epithelia, serosa, circular and longitudinal muscles, and stroma in addition to adipocytes; EP2 was detectable in all the tissues other than glandular epithelia; EP4 was strongly expressed in all the tissues other than serosa; EP1 was detected mainly in arterioles and canal or glandular epithelia; and EP3 was poorly expressed only in stroma, canal epithelia, and circular muscles. Little or no expression of EP2, EP3, and EP4 as well as PGE(2) in all cervical tissues was observed during nonpregnancy and pregnancy except for the strong expression of EP1 in canal or glandular epithelia during pregnancy. The mRNA expression levels of PTGS2, PTGER2, and PTGER4 were significantly higher in intrapartum than nonpregnant and midpregnant cervices (P < 0.01). Adipocytes appear only in the intrapartum cervix. These results support the concept that PGE(2) modulates specific functions in various anatomical structures of the caprine cervix at labor and the appearance of adipocytes at labor is likely related to caprine cervical dilation.
Collapse
Affiliation(s)
- Guosheng Gu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Wang H, Sztalryd C. Oxidative tissue: perilipin 5 links storage with the furnace. Trends Endocrinol Metab 2011; 22:197-203. [PMID: 21632259 PMCID: PMC3122074 DOI: 10.1016/j.tem.2011.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 03/25/2011] [Accepted: 03/30/2011] [Indexed: 10/18/2022]
Abstract
Cellular energy homeostasis is a crucial function of oxidative tissues and is altered in obesity, a continuously rising health problem. Lipid droplets (LD) are thought to play a central role in lipid homeostasis by mediating the transient storage of fatty acids in the form of triglyceride, while preventing high levels of toxic lipid intermediates or oxidized lipids that mediate cellular lipotoxicity. Members of the perilipin protein family coating LD surfaces have been found to serve important regulatory and structural functions crucial to the regulation of lipid stores. This review examines the results of studies on one of the newest members of the perilipin family, perilipin 5, which has emerged as a putative key player in LD function in oxidative tissues.
Collapse
Affiliation(s)
- Hong Wang
- The Geriatric Research, Education and Clinical Center, Baltimore Veterans Affairs Health Care Center, and Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|