1
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
2
|
Chavarria-Smith J, Chiu CPC, Jackman JK, Yin J, Zhang J, Hackney JA, Lin WY, Tyagi T, Sun Y, Tao J, Dunlap D, Morton WD, Ghodge SV, Maun HR, Li H, Hernandez-Barry H, Loyet KM, Chen E, Liu J, Tam C, Yaspan BL, Cai H, Balazs M, Arron JR, Li J, Wittwer AJ, Pappu R, Austin CD, Lee WP, Lazarus RA, Sudhamsu J, Koerber JT, Yi T. Dual antibody inhibition of KLK5 and KLK7 for Netherton syndrome and atopic dermatitis. Sci Transl Med 2022; 14:eabp9159. [PMID: 36516271 DOI: 10.1126/scitranslmed.abp9159] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.
Collapse
Affiliation(s)
- Joseph Chavarria-Smith
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cecilia P C Chiu
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet K Jackman
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Juan Zhang
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason A Hackney
- Department of Bioinformatics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Yu Lin
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tulika Tyagi
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Janet Tao
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Debra Dunlap
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - William D Morton
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Swapnil V Ghodge
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Henry R Maun
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hong Li
- Department of Protein Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hilda Hernandez-Barry
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Kelly M Loyet
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Emily Chen
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - John Liu
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Brian L Yaspan
- Department of Human Genetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hao Cai
- Department of Preclinical and Translational Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mercedesz Balazs
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jing Li
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Arthur J Wittwer
- Confluence Discovery Technologies Inc., 4320 Duncan Ave, Suite 400, St. Louis, MO 63108, USA
| | - Rajita Pappu
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Translational Immunology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert A Lazarus
- Departments of Biological Chemistry and Early Discovery Biochemistry, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tangsheng Yi
- Department of Immunology Discovery, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
Bifunctional fusion protein targeting both FXIIa and FXIa displays potent anticoagulation effects. Life Sci 2022; 309:121021. [DOI: 10.1016/j.lfs.2022.121021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
|
4
|
A novel Kunitz protein with proposed dual function from Eudiplozoon nipponicum (Monogenea) impairs haemostasis and action of complement in vitro. Int J Parasitol 2019; 49:337-346. [PMID: 30796952 DOI: 10.1016/j.ijpara.2018.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 12/28/2022]
Abstract
Serine peptidases are involved in many physiological processes including digestion, haemostasis and complement cascade. Parasites regulate activities of host serine peptidases to their own benefit, employing various inhibitors, many of which belong to the Kunitz-type protein family. In this study, we confirmed the presence of potential anticoagulants in protein extracts of the haematophagous monogenean Eudiplozoon nipponicum which parasitizes the common carp. We then focused on a Kunitz protein (EnKT1) discovered in the E. nipponicum transcriptome, which structurally resembles textilinin-1, an antihemorrhagic snake venom factor from Pseudonaja textilis. The protein was recombinantly expressed, purified and biochemically characterised. The recombinant EnKT1 did inhibit in vitro activity of Factor Xa of the coagulation cascade, but exhibited a higher activity against plasmin and plasma kallikrein, which participate in fibrinolysis, production of kinins, and complement activation. Anti-coagulation properties of EnKT1 based on the inhibition of Factor Xa were confirmed by thromboelastography, but no effect on fibrinolysis was observed. Moreover, we discovered that EnKT1 significantly impairs the function of fish complement, possibly by inhibiting plasmin or Factor Xa which can act as a C3 and C5 convertase. We localised Enkt1 transcripts and protein within haematin digestive cells of the parasite by RNA in situ hybridisation and immunohistochemistry, respectively. Based on these results, we suggest that the secretory Kunitz protein of E. nipponicum has a dual function. In particular, it impairs both haemostasis and complement activation in vitro, and thus might facilitate digestion of a host's blood and protect a parasite's gastrodermis from damage by the complement. This study presents, to our knowledge, the first characterisation of a Kunitz protein from monogeneans and the first example of a parasite Kunitz inhibitor that impairs the function of the complement.
Collapse
|
5
|
Boros E, Sebák F, Héja D, Szakács D, Zboray K, Schlosser G, Micsonai A, Kardos J, Bodor A, Pál G. Directed Evolution of Canonical Loops and Their Swapping between Unrelated Serine Proteinase Inhibitors Disprove the Interscaffolding Additivity Model. J Mol Biol 2019; 431:557-575. [PMID: 30543823 DOI: 10.1016/j.jmb.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/26/2018] [Accepted: 12/06/2018] [Indexed: 11/26/2022]
Abstract
Reversible serine proteinase inhibitors comprise 18 unrelated families. Each family has a distinct representative structure but contains a surface loop that adopts the same, canonical conformation in the enzyme-inhibitor complex. The Laskowski mechanism universally applies for the action of all canonical inhibitors independent of their scaffold, but it has two nontrivial extrapolations. Intrascaffolding additivity states that all enzyme-contacting loop residues act independently of each other, while interscaffolding additivity claims that these residues act independently of the scaffold. These theories have great importance for engineering proteinase inhibitors but have not been comprehensively challenged. Therefore, we tested the interscaffolding additivity theory by hard-randomizing all enzyme-contacting canonical loop positions of a Kazal- and a Pacifastin-scaffold inhibitor, displaying the variants on M13 phage, and selecting the libraries on trypsin and chymotrypsin. Directed evolution delivered different patterns on both scaffolds against both enzymes, which contradicts interscaffolding additivity. To quantitatively assess the extent of non-additivity, we measured the affinities of the optimal binding loop variants and their binding loop-swapped versions. While optimal variants have picomolar affinities, swapping the evolved loops results in up to 200,000-fold affinity loss. To decipher the underlying causes, we characterized the stability, overall structure and dynamics of the inhibitors with differential scanning calorimetry, circular dichroism and NMR spectroscopy and molecular dynamic simulations. These studies revealed that the foreign loop destabilizes the lower-stability Pacifastin scaffold, while the higher-stability Kazal scaffold distorts the foreign loop. Our findings disprove interscaffolding additivity and show that loop and scaffold form one integrated unit that needs to be coevolved to provide high-affinity inhibition.
Collapse
Affiliation(s)
- Eszter Boros
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary; Doctoral School of Pharmaceutical Sciences, Semmelweis University, Üllői út 26, H-1085 Budapest, Hungary
| | - Dávid Héja
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Dávid Szakács
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Katalin Zboray
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - András Micsonai
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, H-1117 Budapest, Hungary.
| |
Collapse
|
6
|
Naftaly S, Cohen I, Shahar A, Hockla A, Radisky ES, Papo N. Mapping protein selectivity landscapes using multi-target selective screening and next-generation sequencing of combinatorial libraries. Nat Commun 2018; 9:3935. [PMID: 30258049 PMCID: PMC6158287 DOI: 10.1038/s41467-018-06403-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022] Open
Abstract
Characterizing the binding selectivity landscape of interacting proteins is crucial both for elucidating the underlying mechanisms of their interaction and for developing selective inhibitors. However, current mapping methods are laborious and cannot provide a sufficiently comprehensive description of the landscape. Here, we introduce a novel and efficient strategy for comprehensively mapping the binding landscape of proteins using a combination of experimental multi-target selective library screening and in silico next-generation sequencing analysis. We map the binding landscape of a non-selective trypsin inhibitor, the amyloid protein precursor inhibitor (APPI), to each of the four human serine proteases (kallikrein-6, mesotrypsin, and anionic and cationic trypsins). We then use this map to dissect and improve the affinity and selectivity of APPI variants toward each of the four proteases. Our strategy can be used as a platform for the development of a new generation of target-selective probes and therapeutic agents based on selective protein-protein interactions.
Collapse
Affiliation(s)
- Si Naftaly
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Itay Cohen
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anat Shahar
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, 32224, USA
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
7
|
Al-Horani RA, Afosah DK. Recent advances in the discovery and development of factor XI/XIa inhibitors. Med Res Rev 2018; 38:1974-2023. [PMID: 29727017 PMCID: PMC6173998 DOI: 10.1002/med.21503] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/09/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125
| | - Daniel K. Afosah
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23219
| |
Collapse
|
8
|
Pre-equilibrium competitive library screening for tuning inhibitor association rate and specificity toward serine proteases. Biochem J 2018. [PMID: 29535275 DOI: 10.1042/bcj20180070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High structural and sequence similarity within protein families can pose significant challenges to the development of selective inhibitors, especially toward proteolytic enzymes. Such enzymes usually belong to large families of closely similar proteases and may also hydrolyze, with different rates, protein- or peptide-based inhibitors. To address this challenge, we employed a combinatorial yeast surface display library approach complemented with a novel pre-equilibrium, competitive screening strategy for facile assessment of the effects of multiple mutations on inhibitor association rates and binding specificity. As a proof of principle for this combined approach, we utilized this strategy to alter inhibitor/protease association rates and to tailor the selectivity of the amyloid β-protein precursor Kunitz protease inhibitor domain (APPI) for inhibition of the oncogenic protease mesotrypsin, in the presence of three competing serine proteases, anionic trypsin, cationic trypsin and kallikrein-6. We generated a variant, designated APPIP13W/M17G/I18F/F34V, with up to 30-fold greater specificity relative to the parental APPIM17G/I18F/F34V protein, and 6500- to 230 000-fold improved specificity relative to the wild-type APPI protein in the presence of the other proteases tested. A series of molecular docking simulations suggested a mechanism of interaction that supported the biochemical results. These simulations predicted that the selectivity and specificity are affected by the interaction of the mutated APPI residues with nonconserved enzyme residues located in or near the binding site. Our strategy will facilitate a better understanding of the binding landscape of multispecific proteins and will pave the way for design of new drugs and diagnostic tools targeting proteases and other proteins.
Collapse
|
9
|
Teufel DP, Bennett G, Harrison H, van Rietschoten K, Pavan S, Stace C, Le Floch F, Van Bergen T, Vermassen E, Barbeaux P, Hu TT, Feyen JHM, Vanhove M. Stable and Long-Lasting, Novel Bicyclic Peptide Plasma Kallikrein Inhibitors for the Treatment of Diabetic Macular Edema. J Med Chem 2018. [DOI: 10.1021/acs.jmedchem.7b01625] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Daniel P. Teufel
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Gavin Bennett
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Helen Harrison
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Silvia Pavan
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Catherine Stace
- Bicycle Therapeutics
Limited, Building 900, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | - Tine Van Bergen
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Elke Vermassen
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | | | - Tjing-Tjing Hu
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| | | | - Marc Vanhove
- Thrombogenics
N.V., Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
10
|
|
11
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Combinatorial protein engineering of proteolytically resistant mesotrypsin inhibitors as candidates for cancer therapy. Biochem J 2016; 473:1329-41. [PMID: 26957636 DOI: 10.1042/bj20151410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
Engineered protein therapeutics offer advantages, including strong target affinity, selectivity and low toxicity, but like natural proteins can be susceptible to proteolytic degradation, thereby limiting their effectiveness. A compelling therapeutic target is mesotrypsin, a protease up-regulated with tumour progression, associated with poor prognosis, and implicated in tumour growth and progression of many cancers. However, with its unique capability for cleavage and inactivation of proteinaceous inhibitors, mesotrypsin presents a formidable challenge to the development of biological inhibitors. We used a powerful yeast display platform for directed evolution, employing a novel multi-modal library screening strategy, to engineer the human amyloid precursor protein Kunitz protease inhibitor domain (APPI) simultaneously for increased proteolytic stability, stronger binding affinity and improved selectivity for mesotrypsin inhibition. We identified a triple mutant APPIM17G/I18F/F34V, with a mesotrypsin inhibition constant (Ki) of 89 pM, as the strongest mesotrypsin inhibitor yet reported; this variant displays 1459-fold improved affinity, up to 350 000-fold greater specificity and 83-fold improved proteolytic stability compared with wild-type APPI. We demonstrated that APPIM17G/I18F/F34V acts as a functional inhibitor in cell-based models of mesotrypsin-dependent prostate cancer cellular invasiveness. Additionally, by solving the crystal structure of the APPIM17G/I18F/F34V-mesotrypsin complex, we obtained new insights into the structural and mechanistic basis for improved binding and proteolytic resistance. Our study identifies a promising mesotrypsin inhibitor as a starting point for development of anticancer protein therapeutics and establishes proof-of-principle for a novel library screening approach that will be widely applicable for simultaneously evolving proteolytic stability in tandem with desired functionality for diverse protein scaffolds.
Collapse
|
13
|
Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol 2015; 33:408-18. [DOI: 10.1016/j.tibtech.2015.03.012] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
|
14
|
Kadonosono T, Yabe E, Furuta T, Yamano A, Tsubaki T, Sekine T, Kuchimaru T, Sakurai M, Kizaka-Kondoh S. A fluorescent protein scaffold for presenting structurally constrained peptides provides an effective screening system to identify high affinity target-binding peptides. PLoS One 2014; 9:e103397. [PMID: 25084350 PMCID: PMC4118881 DOI: 10.1371/journal.pone.0103397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/01/2014] [Indexed: 11/18/2022] Open
Abstract
Peptides that have high affinity for target molecules on the surface of cancer cells are crucial for the development of targeted cancer therapies. However, unstructured peptides often fail to bind their target molecules with high affinity. To efficiently identify high-affinity target-binding peptides, we have constructed a fluorescent protein scaffold, designated gFPS, in which structurally constrained peptides are integrated at residues K131-L137 of superfolder green fluorescent protein. Molecular dynamics simulation supported the suitability of this site for presentation of exogenous peptides with a constrained structure. gFPS can present 4 to 12 exogenous amino acids without a loss of fluorescence. When gFPSs presenting human epidermal growth factor receptor type 2 (HER2)-targeting peptides were added to the culture medium of HER2-expressing cells, we could easily identify the peptides with high HER2-affinity and -specificity based on gFPS fluorescence. In addition, gFPS could be expressed on the yeast cell surface and applied for a high-throughput screening. These results demonstrate that gFPS has the potential to serve as a powerful tool to improve screening of structurally constrained peptides that have a high target affinity, and suggest that it could expedite the one-step identification of clinically applicable cancer cell-binding peptides.
Collapse
Affiliation(s)
- Tetsuya Kadonosono
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Etsuri Yabe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama City, Japan
| | - Akihiro Yamano
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takuya Tsubaki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takuya Sekine
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Takahiro Kuchimaru
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama City, Japan
| | - Shinae Kizaka-Kondoh
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Japan
- * E-mail:
| |
Collapse
|
15
|
Earl STH, Richards R, Johnson LA, Flight S, Anderson S, Liao A, de Jersey J, Masci PP, Lavin MF. Identification and characterisation of Kunitz-type plasma kallikrein inhibitors unique to Oxyuranus sp. snake venoms. Biochimie 2011; 94:365-73. [PMID: 21843588 DOI: 10.1016/j.biochi.2011.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022]
Abstract
As part of a wider study on Australian snake venom components, we have identified and characterised Kunitz-type protease inhibitors from the venoms of Oxyuranus scutellatus and Oxyuranus microlepidotus (Australian taipans) with plasma kallikrein inhibitory activity. Each inhibitor had a mass of 7 kDa and was purified from the venom as part of a protein complex. Mass spectrometry and N-terminal sequencing was employed to obtain amino acid sequence information for each inhibitor and a recombinant form of the O. scutellatus inhibitor, termed TSPI, was subsequently expressed and purified. TSPI was investigated for inhibition against a panel of 12 enzymes involved in haemostasis and estimates of the K(i) value determined for each enzyme. TSPI was found to be a broad spectrum inhibitor with most potent inhibitory activity observed against plasma kallikrein that corresponded to a K(i) of 0.057 ± 0.019 nM. TSPI also inhibited fibrinolysis in whole blood and prolonged the intrinsic clotting time. These inhibitors are also unique in that they appear to be found only in Oxyuranus sp. venoms.
Collapse
Affiliation(s)
- Stephen T H Earl
- The Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane 4029, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bajaj MS, Ogueli GI, Kumar Y, Vadivel K, Lawson G, Shanker S, Schmidt AE, Bajaj SP. Engineering kunitz domain 1 (KD1) of human tissue factor pathway inhibitor-2 to selectively inhibit fibrinolysis: properties of KD1-L17R variant. J Biol Chem 2010; 286:4329-40. [PMID: 21115497 DOI: 10.1074/jbc.m110.191163] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) inhibits factor XIa, plasma kallikrein, and factor VIIa/tissue factor; accordingly, it has been proposed for use as an anticoagulant. Full-length TFPI-2 or its isolated first Kunitz domain (KD1) also inhibits plasmin; therefore, it has been proposed for use as an antifibrinolytic agent. However, the anticoagulant properties of TFPI-2 or KD1 would diminish its antifibrinolytic function. In this study, structure-based investigations and analysis of the serine protease profiles revealed that coagulation enzymes prefer a hydrophobic residue at the P2' position in their substrates/inhibitors, whereas plasmin prefers a positively charged arginine residue at the corresponding position in its substrates/inhibitors. Based upon this observation, we changed the P2' residue Leu-17 in KD1 to Arg (KD1-L17R) and compared its inhibitory properties with wild-type KD1 (KD1-WT). Both WT and KD1-L17R were expressed in Escherichia coli, folded, and purified to homogeneity. N-terminal sequences and mass spectra confirmed proper expression of KD1-WT and KD1-L17R. Compared with KD1-WT, the KD1-L17R did not inhibit factor XIa, plasma kallikrein, or factor VIIa/tissue factor. Furthermore, KD1-L17R inhibited plasmin with ∼6-fold increased affinity and effectively prevented plasma clot fibrinolysis induced by tissue plasminogen activator. Similarly, in a mouse liver laceration bleeding model, KD1-L17R was ∼8-fold more effective than KD1-WT in preventing blood loss. Importantly, in this bleeding model, KD1-L17R was equally or more effective than aprotinin or tranexamic acid, which have been used as antifibrinolytic agents to prevent blood loss during major surgery/trauma. Furthermore, as compared with aprotinin, renal toxicity was not observed with KD1-L17R.
Collapse
Affiliation(s)
- Madhu S Bajaj
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Phage display as a powerful tool to engineer protease inhibitors. Biochimie 2010; 92:1689-704. [DOI: 10.1016/j.biochi.2010.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 05/05/2010] [Indexed: 11/18/2022]
|
18
|
Drag M, Salvesen GS. Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 2010; 9:690-701. [PMID: 20811381 DOI: 10.1038/nrd3053] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteases have an important role in many signalling pathways, and represent potential drug targets for diseases ranging from cardiovascular disorders to cancer, as well as for combating many parasites and viruses. Although inhibitors of well-established protease targets such as angiotensin-converting enzyme and HIV protease have shown substantial therapeutic success, developing drugs for new protease targets has proved challenging in recent years. This in part could be due to issues such as the difficulty of achieving selectivity when targeting protease active sites. This Perspective discusses the general principles in protease-based drug discovery, highlighting the lessons learned and the emerging strategies, such as targeting allosteric sites, which could help harness the therapeutic potential of new protease targets.
Collapse
Affiliation(s)
- Marcin Drag
- Program in Apoptosis and Cell Death Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | |
Collapse
|
19
|
Abstract
Phage display has been extensively used to study protein-protein interactions, receptor- and antibody-binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described.
Collapse
|
20
|
Amorim TML, Macedo LLP, Uchoa AF, Oliveira AS, Pitanga JCM, Macedo FP, Santos EA, de Sales MP. Proteolytic digestive enzymes and peritrophic membranes during the development of Plodia interpunctella (Lepidoptera: Piralidae): targets for the action of soybean trypsin inhibitor (SBTI) and chitin-binding vicilin (EvV). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:7738-45. [PMID: 18693741 DOI: 10.1021/jf801224d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The digestive system of P. interpunctella was characterized during its larval development to determine possible targets for the action of proteinaceous enzyme inhibitors and chitin-binding proteins. High proteolytic activities using azocasein at pH 9.5 as substrate were found. These specific enzymatic activities (AU/mg protein) showed an increase in the homogenate of third instar larvae, and when analyzed by individual larvae (AU/gut), the increase was in sixth instar larvae. Zymograms showed two bands corresponding to those enzymatic activities, which were inhibited by TLCK and SBTI, indicating that the larvae mainly used serine proteinases at pH 9.5 in their digestive process. The presence of a peritrophic membrane in the larvae was confirmed by chemical testing and light microscopy. In a bioassay, P. interpunctella was not susceptible to the soybean trypsin inhibitor, which did not affect larval mass and mortality, likely due to the weak association with its target digestive enzyme. EvV (Erythrina velutina vicilin), when added to the diet, affected mortality (LD50 0.23%) and larval mass (ED50 0.27%). This effect was associated with EvV-binding to the peritrophic membrane, as seen by immunolocalization. EvV was susceptible to gut enzymes and after the digestion process, released an immunoreactive fragment that was bound to the peritrophic matrix, which probably was responsible for the action of EvV.
Collapse
Affiliation(s)
- Ticiana M L Amorim
- Chemistry and Bioactive Protein Function Laboratory, Department of Biochemistry, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Herman RE, Badders D, Fuller M, Makienko EG, Houston ME, Quay SC, Johnson PH. The Trp cage motif as a scaffold for the display of a randomized peptide library on bacteriophage T7. J Biol Chem 2007; 282:9813-9824. [PMID: 17264074 DOI: 10.1074/jbc.m610722200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phage libraries displaying linear or disulfide-constrained peptides often yield weak binders, upon screening against a target, and must be optimized to improve affinity. The disadvantages of libraries based on larger complex proteins, such as single chain antibodies, have stimulated interest in the development of smaller nonimmunoglobulin protein scaffolds. A promising candidate is the Trp cage motif, a 20-residue C-terminal sequence of exendin-4. Amino acid substitution within the Trp cage resulted in a 20-mer peptide recognized as an ultrafast cooperative folding miniprotein, with ideal characteristics for the discovery of small structured nonimmunoglobulin motifs having a stable tertiary structure. Although we were unable to display the Trp cage on M13 phage, successful display was achieved using the lytic T7 phage. Interestingly, mutations were observed at a frequency dependent on display valency. A Trp cage library designed with randomized amino acids at seven solvent-exposed positions was developed from 1.6 x 10(9) primary clones in T7Select10-3b. DNA sequencing of 109 library clones revealed 38% mutants and 16% truncations by TAG codons at randomized positions. Amino acid frequencies were largely within expected bounds and DIVAA analysis revealed that the library had an average diversity of 0.67. Utility of the library was demonstrated by identification of HPQ containing Trp cage miniproteins, which bound streptavidin, and AAADPYAQWLQSMGPHSGRPPPR, which bound to human bronchial epithelial cells. A high complexity library based on the Trp cage miniprotein has demonstrated potential for identifying novel cell and protein binding peptides that could be used for the delivery of therapeutic molecules or as target-specific therapeutic agents.
Collapse
Affiliation(s)
| | - Douglas Badders
- Nastech Pharmaceutical Company, Inc., Bothell, Washington 98021
| | - Mark Fuller
- Nastech Pharmaceutical Company, Inc., Bothell, Washington 98021
| | | | | | - Steven C Quay
- Nastech Pharmaceutical Company, Inc., Bothell, Washington 98021
| | - Paul H Johnson
- Nastech Pharmaceutical Company, Inc., Bothell, Washington 98021.
| |
Collapse
|
22
|
Hey T, Fiedler E, Rudolph R, Fiedler M. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 2006; 23:514-22. [PMID: 16054718 DOI: 10.1016/j.tibtech.2005.07.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 05/18/2005] [Accepted: 07/14/2005] [Indexed: 12/01/2022]
Abstract
Using combinatorial chemistry to generate novel binding molecules based on protein frameworks ('scaffolds') is a concept that has been strongly promoted during the past five years in both academia and industry. Non-antibody recognition proteins derive from different structural families and mimic the binding principle of immunoglobulins to varying degrees. In addition to the specific binding of a pre-defined target, these proteins provide favourable characteristics such as robustness, ease of modification and cost-efficient production. The broad spectrum of potential applications, including research tools, separomics, diagnostics and therapy, has led to the commercial exploitation of this technology by various small- and medium-sized companies. It is predicted that scaffold-based affinity reagents will broaden and complement applications that are presently covered by natural or recombinant antibodies. Here, we provide an overview on current approaches in the biotech industry, considering both scientific and commercial aspects.
Collapse
Affiliation(s)
- Thomas Hey
- Scil Proteins GmbH, Heinrich-Damerow-Str.1, 06120 Halle/Saale, Germany
| | | | | | | |
Collapse
|
23
|
Fan B, Wu TD, Li W, Kirchhofer D. Identification of Hepatocyte Growth Factor Activator Inhibitor-1B as a Potential Physiological Inhibitor of Prostasin. J Biol Chem 2005; 280:34513-20. [PMID: 16103126 DOI: 10.1074/jbc.m502119200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostasin is a trypsin-like serine protease that is glycosylphosphatidylinositol-anchored to the epithelial cell surface, from where it can be released in a soluble form. We undertook a co-expression search using the Genesis Enterprise System Database from Gene Logic to identify prostasin inhibitors, on the assumption that prostasin and its natural inhibitors may have a similar gene expression pattern. We found the expression profile of prostasin in normal human tissues to correlate highly with hepatocyte growth factor activator inhibitor-1B (HAI-1B) and its splice variant HAI-1. Soluble HAI-1B (sHAI-1B), comprising the entire extracellular domain, formed a 1:1 complex with purified prostasin in protein binding assays and inhibited prostasin enzymatic activity with an IC(50) of 66 +/- 15 nM. Two sHAI-1B mutants with inactivated N- and C-terminal Kunitz domains (KD1 and KD2) were used to show that the interaction of sHAI-1B with prostasin is mediated by KD1. In agreement, KD1 (Thr(246)-Val(303)) alone potently inhibited prostasin activity (IC(50) = 4.7 +/- 0.5 nM). Furthermore, prostasin was isolated with two major HAI-1/1B fragments (40 and 58 kDa) from OVCAR3 cell medium, demonstrating that prostasin.HAI-1/1B complexes are formed naturally. Moreover, when prostasin and HAI-1B were co-expressed in Chinese hamster ovary cells, complexes of prostasin with HAI-1B were detected on the cell membrane as well as in the culture medium, suggesting that preformed complexes were shed from the cell surface. The identification of HAI-1B as a potential physiological regulator of prostasin function, as described herein, may further the investigation of the role of prostasin in normal physiology and cancer.
Collapse
Affiliation(s)
- Bin Fan
- Department of Protein Engineering, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | |
Collapse
|
24
|
Navaneetham D, Jin L, Pandey P, Strickler JE, Babine RE, Abdel-Meguid SS, Walsh PN. Structural and mutational analyses of the molecular interactions between the catalytic domain of factor XIa and the Kunitz protease inhibitor domain of protease nexin 2. J Biol Chem 2005; 280:36165-75. [PMID: 16085935 DOI: 10.1074/jbc.m504990200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Factor XIa (FXIa) is a serine protease important for initiating the intrinsic pathway of blood coagulation. Protease nexin 2 (PN2) is a Kunitz-type protease inhibitor secreted by activated platelets and a physiologically important inhibitor of FXIa. Inhibition of FXIa by PN2 requires interactions between the two proteins that are confined to the catalytic domain of the enzyme and the Kunitz protease inhibitor (KPI) domain of PN2. Recombinant PN2KPI and a mutant form of the FXI catalytic domain (FXIac) were expressed in yeast, purified to homogeneity, co-crystallized, and the structure of the complex was solved at 2.6 angstroms (Protein Data Bank code 1ZJD). In this complex, PN2KPI has a characteristic, disulfide-stabilized double loop structure that fits into the FXIac active site. To determine the contributions of residues within PN2KPI to its inhibitory activity, selected point mutations in PN2KPI loop 1 11TGPCRAMISR20 and loop 2 34FYGGC38 were tested for their ability to inhibit FXIa. The P1 site mutation R15A completely abolished its ability to inhibit FXIa. IC50 values for the wild type protein and the remaining mutants were as follows: PN2KPI WT, 1.28 nM; P13A, 5.92 nM; M17A, 1.62 nM; S19A, 1.86 nM; R20A, 5.67 nM; F34A, 9.85 nM. The IC50 values for the M17A and S19A mutants were not significantly different from those obtained with wild type PN2KPI. These functional studies and activated partial thromboplastin time analysis validate predictions made from the PN2KPI-FXIac co-crystal structure and implicate PN2KPI residues, in descending order of importance, Arg15, Phe34, Pro13, and Arg20 in FXIa inhibition by PN2KPI.
Collapse
Affiliation(s)
- Duraiswamy Navaneetham
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Petrenko VA, Sorokulova IB. Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods 2004; 58:147-68. [PMID: 15234514 DOI: 10.1016/j.mimet.2004.04.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 04/03/2004] [Accepted: 04/06/2004] [Indexed: 11/30/2022]
Abstract
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 253 Greene Hall, Auburn, AL 36849, USA.
| | | |
Collapse
|
26
|
Sant'Anna Azzolini S, Sasaki SD, Torquato RJS, Andreotti R, Andreotti E, Tanaka AS. Rhipicephalus sanguineus trypsin inhibitors present in the tick larvae: isolation, characterization, and partial primary structure determination. Arch Biochem Biophys 2003; 417:176-82. [PMID: 12941299 DOI: 10.1016/s0003-9861(03)00344-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood sucking animals are a rich source of proteinase inhibitors mainly those that interfere in their host hemostatic systems. The tick Rhipicephalus sanguineus is an ectoparasite of dogs and other animals. The aims of this work were the purification and characterization of serine proteinase inhibitors present in R. sanguineus larvae (RsTI). The inhibitors (RsTI) were isolated by affinity chromatography on trypsin-Sepharose and ion exchange chromatographies in Resource Q and Mono S columns. These RsTIs were separated in around 12 different protein peaks, when they showed molecular masses between 8 and 18 kDa, by SDS-PAGE. Purified RsTIs presented differences in the specificity for different serine proteinases. RsTIQ2 was, better inhibitor than RsTIQ7 and RsTIS5 for neutrophil elastase, plasmin, and HuPK with dissociation constants (K(i)) of 1.3, 3.2, and 22 nM, respectively. Other inhibitors such as RsTIQ7, RsTIS3, and RsTIS5 also affected neutrophil elastase and plasmin with K(i) in the nM range. The RsTIQ2, RsTIQ7, and RsTIS5 amino acid sequence data allowed classifying them as members of the Kunitz-type serine proteinase inhibitor family, even though the RsTI role is still unknown. Our present results showed that serine proteinase inhibitors from R. sanguineus are similar to inhibitors from Boophilus microplus other hard tick species, suggesting a similar role of these inhibitors in hard tick species and also as a potential tool to generate or improve vaccine against different ectoparasites with an unique antigen.
Collapse
Affiliation(s)
- Simone Sant'Anna Azzolini
- Departamento de Bioquímica, Universidade Federal de São Paulo, Escola Paulista de Medicina, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
27
|
Stoop AA, Craik CS. Engineering of a macromolecular scaffold to develop specific protease inhibitors. Nat Biotechnol 2003; 21:1063-8. [PMID: 12923547 DOI: 10.1038/nbt860] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Accepted: 06/26/2003] [Indexed: 12/31/2022]
Abstract
The specific inhibition of serine proteases, which are crucial switches in many physiologically important processes, is of value both for basic research and for therapeutic applications. Ecotin, a potent macromolecular inhibitor of serine proteases of the S1A family, presents an attractive scaffold to engineer specific protease inhibitors because of its large inhibitor-protease interface. Using synthetic shuffling in combination with a restricted tetranomial diversity, we created ecotin libraries that are mutated at all 20 amino acid residues in the binding interface. The efficacy of these libraries was demonstrated against the serine protease plasma kallikrein (Pkal). Competitive phage display selection yielded a Pkal inhibitor with an apparent dissociation equilibrium constant (K(i)*) of 11 pM, whereas K(i)* values for related proteases (such as Factor Xa (FXa), Factor XIa (FXIa), urokinase-type plasminogen activator (uPA), thrombin, and membrane-type serine protease 1 (MT-SP1)) were four to seven orders of magnitude higher. The adaptability of the scaffold was demonstrated by the isolation of inhibitors to two additional serine proteases, MT-SP1/matriptase and Factor XIIa.
Collapse
Affiliation(s)
- A Allart Stoop
- Department of Pharmaceutical Chemistry, University of California San Francisco, 600 16th Street Suite S512, San Francisco, California 94143-2280, USA
| | | |
Collapse
|
28
|
Abstract
The essential element of any immuno-based detector device is the probe that binds analyte and, as a part of the analytical platform, generates a measurable signal. The present review summarizes the state of the art in development of the probes for detection of the biological threat agents: toxins, bacteria, spores and viruses. Traditionally, the probes are antibodies, which are isolated from sera of immunized animals or culture media of hybridomas. However, the "natural" antibodies may have limited application in the new generation of real-time field detectors and monitoring systems, where stress-resistant and inexpensive long-livers are required. Phage display is a newcomer in the detection area, whose expertise is development of molecular probes for targeting of various biological structures. The probes can be selection from about billion clone libraries of recombinant phages expressing on their surface a vast variety of peptides and proteins, including antigen-binding fragments of antibodies. The selection procedure, like kind of affinity chromatography, allows separating of phage binders, which are propagated in Escherichia coli bacterial cells and purified using inexpensive technology. Although phage display traditionally is focused more on development of medical preparations and studying molecular recognition in biological systems, there are some examples of its successful use for detection, which are presented in the review. To be used as probes for detection, peptides and antibodies identified by phage display are usually chemically synthesized or produced in bacteria. Another interesting aspect is using of the selected phage itself as a probe in detector devices, like sort of substitute antibodies. This idea is illustrated in the review by "detection" of beta-galactosidase from E. coli with "landscape" phage displaying a dense array of peptide binders on the surface.
Collapse
Affiliation(s)
- Valery A Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 253 Greene Hall, Auburn, AL 36849-5519, USA.
| | | |
Collapse
|
29
|
Peek M, Moran P, Mendoza N, Wickramasinghe D, Kirchhofer D. Unusual proteolytic activation of pro-hepatocyte growth factor by plasma kallikrein and coagulation factor XIa. J Biol Chem 2002; 277:47804-9. [PMID: 12372819 DOI: 10.1074/jbc.m209778200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF), the ligand for the receptor tyrosine kinase c-Met, is composed of an alpha-chain containing four Kringle domains (K1-K4) and a serine protease domain-like beta-chain. Receptor activation by HGF is contingent upon prior proteolytic conversion of the secreted inactive single chain form (pro-HGF) into the biologically active two chain form by a single cleavage at the Arg(494)-Val(495) bond. By screening a panel of serine proteases we identified two new HGF activators, plasma kallikrein and coagulation factor XIa (FXIa). The concentrations of kallikrein and FXIa to cleave 50% (EC(50)) of (125)I-labeled pro-HGF during a 4-h period were 10 and 17 nm. Unlike other known activators, both FXIa and kallikrein processed pro-HGF by cleavage at two sites. Using N-terminal sequencing they were identified as the normal cleavage site Arg(494)-Val(495) and the novel site Arg(424)-His(425) located in the K4 domain of the alpha-chain. The identity of this unusual second cleavage site was firmly established by use of the double mutant HGF(R424A/R494E), which was completely resistant to cleavage by kallikrein and FXIa. Experiments with another mutant form, HGF(Arg(494) --> Glu), indicated that cleavage at the K4 site was independent of a prior cleavage at the primary, kinetically preferred Arg(494)-Val(495) site. The cleavage at the K4 site had no obvious consequences on HGF function, because it was fully capable of phosphorylating the c-Met receptor of A549 cells. This may be explained by the disulfide bond network in K4, which holds the cleaved alpha-chain together. In conclusion, the ability of plasma kallikrein and FXIa to activate pro-HGF in vitro raises the possibility that mediators of inflammation and blood coagulation may also regulate processes that involve the HGF/c-Met pathway, such as tissue repair and angiogenesis.
Collapse
Affiliation(s)
- Mark Peek
- Department of Physiology, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
30
|
Legendre D, Vucic B, Hougardy V, Girboux AL, Henrioul C, Van Haute J, Soumillion P, Fastrez J. TEM-1 beta-lactamase as a scaffold for protein recognition and assay. Protein Sci 2002; 11:1506-18. [PMID: 12021449 PMCID: PMC2373628 DOI: 10.1110/ps.0203102] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2002] [Revised: 03/07/2002] [Accepted: 03/15/2002] [Indexed: 10/14/2022]
Abstract
A large number of different proteins or protein domains have been investigated as possible scaffolds to engineer antibody-like molecules. We have previously shown that the TEM-1 beta-lactamase can accommodate insertions of random sequences in two loops surrounding its active site without compromising its activity. From the libraries that were generated, active enzymes binding with high affinities to monoclonal antibodies raised against prostate-specific antigen, a protein unrelated to beta-lactamase, could be isolated. Antibody binding was shown to affect markedly the enzyme activity. As a consequence, these enzymes have the potential to be used as signaling molecules in direct or competitive homogeneous immunoassay. Preliminary results showed that beta-lactamase clones binding to streptavidin could also be isolated, indicating that some enzymes in the libraries have the ability to recognize proteins other than antibodies. In this paper, we show that, in addition to beta-lactamases binding to streptavidin, beta-lactamase clones binding to horse spleen ferritin and beta-galactosidase could be isolated. Affinity maturation of a clone binding to ferritin allowed obtaining beta-lactamases with affinities comprised between 10 and 20 nM (Kd) for the protein. Contrary to what was observed for beta-lactamases issued from selections on antibodies, enzyme complexation induced only a modest effect on enzyme activity, in the three cases studied. This kind of enzyme could prove useful in replacement of enzyme-conjugated antibodies in enzyme-linked immunosorbant assays (ELISA) or in other applications that use antibodies conjugated to an enzyme.
Collapse
Affiliation(s)
- Daniel Legendre
- Laboratoire de Biochimie Physique et des Biopolyméres, Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The past year has seen further maturation of the techniques used to display populations of proteins and peptides and to select members with desired properties. Many protein domains have now been displayed on genetic packages, diverse populations have been made, and binders with specific useful properties have been selected. Affinity maturation has been demonstrated so that binding in the low nanomolar to subnanomolar range by non-antibodies is now achievable.
Collapse
Affiliation(s)
- R C Ladner
- Dyax Corp, One Kendall Square, Building 600, Suite 623, Cambridge, MA 02139, USA.
| | | |
Collapse
|
32
|
Rudgers GW, Palzkill T. Protein minimization by random fragmentation and selection. PROTEIN ENGINEERING 2001; 14:487-92. [PMID: 11522922 DOI: 10.1093/protein/14.7.487] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein-protein interactions are involved in most biological processes and are important targets for drug design. Over the past decade, there has been increased interest in the design of small molecules that mimic functional epitopes of protein inhibitors. BLIP is a 165 amino acid protein that is a potent inhibitor of TEM-1 beta-lactamase (K(i) = 0.1 nM). To aid in the development of new inhibitors of beta-lactamase, the gene encoding BLIP was randomly fragmented and DNA segments encoding peptides that retain the ability to bind TEM-1 beta-lactamase were isolated using phage display. The selected peptides revealed a common, overlapping region that includes BLIP residues C30-D49. Synthesis and binding analysis of the C30-D49 peptide indicate that this peptide inhibits TEM-1 beta-lactamase. Therefore, a peptide derivative of BLIP that has been reduced in size by 88% compared with wild-type BLIP retains the ability to bind and inhibit beta-lactamase.
Collapse
Affiliation(s)
- G W Rudgers
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
33
|
Grzesiak A, Krokoszynska I, Krowarsch D, Buczek O, Dadlez M, Otlewski J. Inhibition of six serine proteinases of the human coagulation system by mutants of bovine pancreatic trypsin inhibitor. J Biol Chem 2000; 275:33346-52. [PMID: 10930417 DOI: 10.1074/jbc.m006085200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A series of 12 bovine pancreatic trypsin inhibitor variants mutated in the P(4) and P(3) positions of the canonical binding loop containing additional K15R and M52L mutations were used to probe the role of single amino acid substitutions on binding to bovine trypsin and to the following human proteinases involved in blood clotting: plasmin, plasma kallikrein, factors X(a) and XII(a), thrombin, and protein C. The mutants were expressed in Escherichia coli as fusion proteins with the LE1413 hydrophobic polypeptide and purified from inclusion bodies; these steps were followed by CNBr cleavage and oxidative refolding. The mutants inhibited the blood-clotting proteinases with association constants in the range of 10(3)-10(10) m(-)(1). Inhibition of plasma kallikrein, factors X(a) and XII(a), thrombin, and protein C could be improved by up to 2 orders of magnitude by the K15R substitution. The highest increase in the association constant for P(3) mutant was measured for factor XII(a); P13S substitution increased the K(a) value 58-fold. Several other substitutions at P(3) resulted in about 10-fold increase for factor X(a), thrombin, and protein C. The cumulative P(3) and P(1) effects on K(a) values for the strongest mutant compared with the wild type bovine pancreatic trypsin inhibitor were in the range of 2.2- (plasmin) to 4,000-fold (factors XII(a) and X(a)). The substitutions at the P(4) site always caused negative effects (a decrease in the range from over 1,000- to 1.3-fold) on binding to all studied enzymes, including trypsin. Thermal stability studies showed a very large decrease of the denaturation temperature (about 22 degrees C) for all P(4) mutants, suggesting that substitution of the wild type Gly-12 residue leads to a change in the binding loop conformation manifesting itself in non-optimal binding to the proteinase active site.
Collapse
Affiliation(s)
- A Grzesiak
- Laboratory of Protein Engineering, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, 50-137 Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
34
|
Grzesiak A, Helland R, Smalås AO, Krowarsch D, Dadlez M, Otlewski J. Substitutions at the P(1) position in BPTI strongly affect the association energy with serine proteinases. J Mol Biol 2000; 301:205-17. [PMID: 10926503 DOI: 10.1006/jmbi.2000.3935] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of the S(1) subsite in trypsin, chymotrypsin and plasmin has been examined by measuring the association with seven different mutants of bovine pancreatic trypsin inhibitor (BPTI); the mutants contain Gly, Ala, Ser, Val, Leu, Arg, and Trp at the P(1) position of the reactive site. The effects of substitutions at the P(1) position on the association constants are very large, comprising seven orders of magnitude for trypsin and plasmin, and over five orders for chymotrypsin. All mutants showed a decrease of the association constant to the three proteinases in the same order: Ala>Gly>Ser>Arg>Val>Leu>Trp. Calorimetric and circular dichroism methods showed that none of the P1 substitutions, except the P1-Val mutant, lead to destabilisation of the binding loop conformation. The X-ray structure of the complex formed between bovine beta-trypsin and P(1)-Leu BPTI showed that the P(1)-Leu sterically conflicts with the side-chain of P(3)-Ile, which thereby is forced to rotate approximately 90 degrees. Ile18 (P(3)) in its new orientation, in turn interacts with the Tyr39 side-chain of trypsin. Introduction of a large side-chain at the P1' position apparently leads to a cascade of small alterations of the trypsin-BPTI interface that seem to destabilise the complex by it adopting a less optimized packing and by tilting the BPTI molecule up to 15 degrees compared to the native trypsin-BPTI complex.
Collapse
Affiliation(s)
- A Grzesiak
- Protein Engineering Laboratory, Institute of Biochemistry and Molecular Biology, University of Wroclaw, Tamka 2, Wroclaw, 50-137, Poland
| | | | | | | | | | | |
Collapse
|
35
|
Wirsching F, Opitz T, Dietrich R, Schwienhorst A. Display of functional thrombin inhibitor hirudin on the surface of phage M13. Gene X 1997; 204:177-84. [PMID: 9434182 DOI: 10.1016/s0378-1119(97)00540-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A synthetic gene for hirudin was ligated into phagemid pCANTAB5E. This construct allows production of either soluble hirudin or phage having hirudin displayed on the surface. Similarly, hirudin variants with extensions either at their N- or C-terminus were generated. The genes were expressed in their soluble form in a non-suppressor strain of E. coli. Periplasmatic fractions were evaluated in standard thrombin inhibition assays. Extending hirudin by a single Gln residue at the N-terminus reduces the activity by two orders of magnitude. This suggests that either the terminal amine group makes an important interaction or that steric constraints do not allow additional amino acids here. Only C-terminal extensions maintain most of the thrombin inhibitor activity of r-hirudin. The r-hirudin gene was also expressed on the tips of filamentous phage as a fusion protein with protein III (pIII). The hirudin-pIII fusion protein was detected with anti-hirudin antibody and with anti-E-tag antibody by Western blot analysis. Recombinant phages were shown to bind to immobilized thrombin in a dose-dependent manner. Upon addition of soluble thrombin, recombinant hirudin phages could be eluted specifically. Finally, purified phages carrying displayed r-hirudin were shown to inhibit thrombin in a standard amidolytic assay for thrombin inhibitor activity. These results demonstrate that hirudin can be C-terminally extended without diminishing the antithrombic activity. Beyond that, active hirudin can be displayed on the surface of M13 phage. As a conclusion, applied molecular evolution, i.e. the selection of hirudin-based thrombin inhibitor variants with tailored properties from (partially) randomized peptide pools should now be possible.
Collapse
Affiliation(s)
- F Wirsching
- Institut für Molekulare Biotechnologie, Department of Molecular Evolution Biology, Jena, Germany
| | | | | | | |
Collapse
|
36
|
Scheidig AJ, Hynes TR, Pelletier LA, Wells JA, Kossiakoff AA. Crystal structures of bovine chymotrypsin and trypsin complexed to the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) and basic pancreatic trypsin inhibitor (BPTI): engineering of inhibitors with altered specificities. Protein Sci 1997; 6:1806-24. [PMID: 9300481 PMCID: PMC2143802 DOI: 10.1002/pro.5560060902] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The crystal structures of the inhibitor domain of Alzheimer's amyloid beta-protein precursor (APPI) complexed to bovine chymotrypsin (C-APPI) and trypsin (T-APPI) and basic pancreatic trypsin inhibitor (BPTI) bound to chymotrypsin (C-BPTI) have been solved and analyzed at 2.1 A, 1.8 A, and 2.6 A resolution, respectively. APPI and BPTI belong to the Kunitz family of inhibitors, which is characterized by a distinctive tertiary fold with three conserved disulfide bonds. At the specificity-determining site of these inhibitors (P1), residue 15(I)4 is an arginine in APPI and a lysine in BPTI, residue types that are counter to the chymotryptic hydrophobic specificity. In the chymotrypsin complexes, the Arg and Lys P1 side chains of the inhibitors adopt conformations that bend away from the bottom of the binding pocket to interact productively with elements of the binding pocket other than those observed for specificity-matched P1 side chains. The stereochemistry of the nucleophilic hydroxyl of Ser 195 in chymotrypsin relative to the scissile P1 bond of the inhibitors is identical to that observed for these groups in the trypsin-APPI complex, where Arg 15(I) is an optimal side chain for tryptic specificity. To further evaluate the diversity of sequences that can be accommodated by one of these inhibitors, APPI, we used phage display to randomly mutate residues 11, 13, 15, 17, and 19, which are major binding determinants. Inhibitors variants were selected that bound to either trypsin or chymotrypsin. As expected, trypsin specificity was principally directed by having a basic side chain at P1 (position 15); however, the P1 residues that were selected for chymotrypsin binding were His and Asn, rather than the expected large hydrophobic types. This can be rationalized by modeling these hydrophilic side chains to have similar H-bonding interactions to those observed in the structures of the described complexes. The specificity, or lack thereof, for the other individual subsites is discussed in the context of the "allowed" residues determined from a phage display mutagenesis selection experiment.
Collapse
Affiliation(s)
- A J Scheidig
- Protein Engineering Department, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | |
Collapse
|
37
|
Djie MZ, Stone SR, Le Bonniec BF. Intrinsic specificity of the reactive site loop of alpha1-antitrypsin, alpha1-antichymotrypsin, antithrombin III, and protease nexin I. J Biol Chem 1997; 272:16268-73. [PMID: 9195929 DOI: 10.1074/jbc.272.26.16268] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Members of the serpin (serine protease inhibitor) family share a similar backbone structure but expose a variable reactive-site loop, which binds to the catalytic groove of the target protease. Specificity originates in part from the sequence of this loop and also from secondary binding sites that contribute to the inhibitor function. To clarify the intrinsic contribution of the reactive-site loop, alpha1-antichymotrypsin has been utilized as a scaffold to construct chimeras carrying the loop of antithrombin III, protease nexin 1, or alpha1-antitrypsin. Reactive-site loops not only vary in sequence but also in length; therefore, the length of the reactive-site loop was also varied in the chimeras. The efficacy of the specificity transfer was evaluated by measuring the stoichiometry of the reaction, the ability to form an SDS-stable complex, and the association rate constant with a number of potential targets (chymotrypsin, neutrophil elastase, trypsin, thrombin, factor Xa, activated protein C, and urokinase). Overall, substitution of a reactive-site loop was not sufficient to transfer the specificity of a given serpin to alpha1-antichymotrypsin. Specificity of the chimera partly matched that of the loop donor and partly that of the acceptor, whereas the behavior as an inhibitor or a substrate depended upon the targeted protease. Results suggest that, aside from the contributions of the loop sequence and the framework-specific secondary binding sites, an intramolecular control may be essential for productive interaction.
Collapse
Affiliation(s)
- M Z Djie
- Department of Haematology, University of Cambridge, MRC Centre, Hills Road, Cambridge, CB2 2QH, United Kingdom
| | | | | |
Collapse
|
38
|
Ley AC, Markland W, Ladner RC. Obtaining a family of high-affinity, high-specificity protein inhibitors of plasmin and plasma kallikrein. Mol Divers 1996; 2:119-24. [PMID: 9238642 DOI: 10.1007/bf01718709] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human lipoprotein-associated coagulation inhibitor (LACI) is a serum protein containing three Kunitz domains. We displayed the first domain (LACI-D1) on the III protein of phage M13 and made libraries of this domain. We iteratively varied 13 residues in the region corresponding to the BPTI-trypsin interface and selected for binding to human plasmin (PLA) and human plasma kallikrein (pKAL). For PLA, our first-round best binder, EPI-P211, had KD = 2 nM. Using information from the first selection, we made a PLA-biased library containing approximately 500,000 proteins and selected from these a protein, EPI-P302, having a KD for PLA of 87 pM. EPI-P302 inhibits pKAL with KD approximately 250 nM (approximately 2800-fold higher than for PLA) and KD values for other proteases are higher yet. From the same initial LACI-D1 library, we selected an inhibitor of pKAL, EPI-K401, with a KD for pKAL of 287 pM. We used information from this selection to construct a pKAL-biased library from which we selected EPI-K502, which has a KD for pKAL of 40 pM. EPI-K502 inhibits PLA with KD approximately 20 nM (500-fold higher than for pKAL); KD values for other proteases are much higher. For both targets and for both selections, there are families of proteins having a few differences and a range of affinities for their targets. These proteins are candidate drugs and imaging agents for indications involving excess PLA or pKAL. Structure-activity relationships of PLA and pKAL binders will allow design of small molecules that are specific for these targets.
Collapse
Affiliation(s)
- A C Ley
- Protein Engineering Corporation, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
39
|
Abstract
Phage display of proteins continues to be an important technology with a variety of applications. In the past year, advances have been made in coupling rational protein design with the power of the display selection process. In addition to the widely used filamentous phage, other bacteriophage surface expression systems have now been developed, some of which may be of particular use for the selection of surface-display cDNA clones.
Collapse
Affiliation(s)
- I S Dunn
- Queensland Cancer Fund Research Unit, Department of Patholog,y Medical School, University of Queensland, Herston 4006, Brisbane, Queensland, Australia.
| |
Collapse
|