1
|
Iwasaki H, Suwanai H, Yakou F, Sakai H, Ishii K, Hara N, Buckle AM, Kanekura K, Miyagi T, Narumi S, Suzuki R. Disulfide Bonds of Thyroid Peroxidase Are Critical Elements for Subcellular Localization, Proteasome-Dependent Degradation, and Enzyme Activity. Thyroid 2024; 34:659-667. [PMID: 38482822 DOI: 10.1089/thy.2023.0514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Background: Congenital hypothyroidism (CH) is caused by mutations in cysteine residues, including Cys655 and Cys825 that form disulfide bonds in thyroid peroxidase (TPO). It is highly likely that these disulfide bonds could play an important role in TPO activity. However, to date, no study has comprehensively analyzed cysteine mutations that form disulfide bonds in TPO. In this study, we induced mutations in cysteine residues involved in disulfide bonds formation and analyzed their effect on subcellular localization, degradation, and enzyme activities to evaluate the importance of disulfide bonds in TPO activity. Methods: Vector plasmid TPO mutants, C655F and C825R, known to occur in CH, were transfected into HEK293 cells. TPO activity and protein expression levels were measured by the Amplex red assay and Western blotting. The same procedure was performed in the presence of MG132 proteasome inhibitor. Subcellular localization was determined using immunocytochemistry and flow cytometry. The locations of all disulfide bonds within TPO were predicted using in silico analysis. All TPO mutations associated with disulfide bonds were induced. TPO activity and protein expression levels were also measured in all TPO mutants associated with disulfide bonds using the Amplex red assay and Western blotting. Results: C655F and C825R showed significantly decreased activity and protein expression compared with the wild type (WT) (p < 0.05). In the presence of the MG132 proteasome inhibitor, the protein expression level of TPO increased to a level comparable with that of the WT without increases in its activity. The degree of subcellular distribution of TPO to the cell surface in the mutants was lower compared with the WT TPO. Twenty-four cysteine residues were involved in the formation of 12 disulfide bonds in TPO. All TPO mutants harboring an amino acid substitution in each cysteine showed significantly reduced TPO activity and protein expression levels. Furthermore, the differences in TPO activity depended on the position of the disulfide bond. Conclusions: All 12 disulfide bonds play an important role in the activity of TPO. Furthermore, the mutations lead to misfolding, degradation, and membrane insertion.
Collapse
Affiliation(s)
- Hajime Iwasaki
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Hirotsugu Suwanai
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Fumiyoshi Yakou
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Hiroyuki Sakai
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Keitaro Ishii
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Natsuko Hara
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| | - Ashley M Buckle
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Kohsuke Kanekura
- Department of Pharmacology, Tokyo Medical University, Tokyo, Japan
| | - Tamami Miyagi
- Department of Pharmacology, Tokyo Medical University, Tokyo, Japan
| | - Satoshi Narumi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Ryo Suzuki
- Department of Diabetes, Metabolism, and Endocrinology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
2
|
Zhang X, Kellogg AP, Citterio CE, Zhang H, Larkin D, Morishita Y, Targovnik HM, Balbi VA, Arvan P. Thyroid hormone synthesis continues despite biallelic thyroglobulin mutation with cell death. JCI Insight 2021; 6:148496. [PMID: 33914707 PMCID: PMC8262357 DOI: 10.1172/jci.insight.148496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress. Nevertheless, untreated patients somehow continue to synthesize sufficient thyroxine to yield measurable serum levels that sustain life. Here, we demonstrate that TGW2346R/W2346R humans, TGcog/cog mice, and TGrdw/rdw rats exhibited no detectable ER export of thyroglobulin, accompanied by severe thyroidal ER stress and thyroid cell death. Nevertheless, thyroxine was synthesized, and brief treatment of TGrdw/rdw rats with antithyroid drug was lethal to the animals. When untreated, remarkably, thyroxine was synthesized on the mutant thyroglobulin protein, delivered via dead thyrocytes that decompose within the follicle lumen, where they were iodinated and cannibalized by surrounding live thyrocytes. As the animals continued to grow goiters, circulating thyroxine increased. However, when TGrdw/rdw rats age, they cannot sustain goiter growth that provided the dying cells needed for ongoing thyroxine synthesis, resulting in profound hypothyroidism. These results establish a disease mechanism wherein dead thyrocytes support organismal survival.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron P Kellogg
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Cintia E Citterio
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Buenos Aires, Argentina
| | - Hao Zhang
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Dennis Larkin
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Yoshiaki Morishita
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA.,Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética/Cátedra de Genética, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo, Buenos Aires, Argentina
| | - Viviana A Balbi
- Department of Endocrinology and Growth, Hospital de Niños Sor María Ludovica, La Plata, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Zhao D, Li Y, Shan Z, Teng W, Li J, Teng X. Functional analysis of thyroid peroxidase gene mutations resulting in congenital hypothyroidism. Clin Endocrinol (Oxf) 2020; 93:499-507. [PMID: 32424871 DOI: 10.1111/cen.14253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Thyroid peroxidase (TPO) is essential for thyroid hormone biosynthesis. TPO mutations might lead to congenital hypothyroidism. In the present study, we analysed the function of a compound heterozygous TPO mutation in a Chinese family. DESIGN We studied a 23-year-old Chinese girl with a history of growth retardation and severe constipation from the age of 3 months, who was diagnosed as having congenital hypothyroidism. METHODS Genomic DNA was extracted from peripheral blood samples obtained from the patient's family members. The genomic DNA was sequenced to detect mutations in a panel of genes associated with congenital hypothyroidism. Bioinformatic analysis and structural modelling predicted the potential disease-causing potential mutant genes and the microstructure of the mutant protein, respectively. Western blotting and ELISA were used to measure protein expression, and guaiacol oxidation assay measured the TPO activity of the mutant protein. RESULTS We identified a compound heterozygous mutation (c.C1993T, c.T2473C) in the TPO gene. Bioinformatic analysis predicted that the TPO mutations were potentially disease causing. Structural modelling predicted damage to the microstructure of the mutant TPO protein. Western blotting and ELISA showed reduced protein levels of the mutant TPO protein compared with that of the wild-type protein. The mutant TPO protein showed weaker activity compared with that of the wild-type protein. CONCLUSIONS A novel compound heterozygous mutation of TPO gene was identified in a Chinese family. This mutation might alter the extracellular microstructure of TPO, and decrease its expression and the activity, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Defa Zhao
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Yang Li
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| | - Xiaochun Teng
- Department of Endocrinology and Metabolism, Institute of Endocrine, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zake T, Skuja S, Kalere I, Konrade I, Groma V. Heterogeneity of tissue IL-17 and tight junction proteins expression demonstrated in patients with autoimmune thyroid diseases. Medicine (Baltimore) 2018; 97:e11211. [PMID: 29924048 PMCID: PMC6024462 DOI: 10.1097/md.0000000000011211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Th17 cells together with their hallmark cytokine interleukin (IL)-17 were identified as crucial contributing factors in the pathogenesis of thyroid autoimmunity. The cytokine-regulated tight junction (Tj) disruption is thought to be essential in the initiation and/or development of several diseases. Still, the role of IL-17 maintaining Tj integrity in autoimmune thyroid diseases (AITDs) has not yet been evaluated. We aimed to investigate integrity of the thyroid follicle by studying immunoexpression of cellular Tj - zonula occludens (ZO)-1 and claudin-1 proteins coupled to IL-17A and CD68 detection in AITD patients compared with controls.Thirty-five adult patients undergoing thyroidectomy and presenting 18 cases of Hashimoto thyroiditis (HT), 7 of Graves' disease (GD) as well as 10 subjects of colloid goiter without autoimmune component served as controls were enrolled in this study. An immunohistochemical analysis including IL-17A, ZO-1, claudin-1, and CD68 detection was performed in each case. The correlation of IL-17A with Tj and CD68 in patients with AITD was also analyzed.Apart from inflammatory cells, we evidenced a stronger expression level of IL17A in the thyroid follicular cells in HT patients when compared with GD or colloid goiter. A significant reduction of ZO-1 immunoreactivity was observed in the thyrocytes in HT patients, whereas no significant differences were found in claudin-1 expression in HT and GD compared with colloid goiter patients. A significantly higher number of thyroid follicles with CD68-positive cells was found in HT patients than that in patients with GD or colloid goiter. In HT patients, the expression of IL-17A in the follicular cells was positively correlated with CD68 immunopositivity, whereas no association with claudin-1 or ZO-1 expression was found. GD patients did not reveal any significant correlation of IL-17A with Tj and CD68.Strong overexpression of IL-17A observed in the thyroid epithelial cells is associated with the presence of intrafollicular CD68-positive cells in HT patients. We evidenced the changes in molecules of thyrocyte junctional complexes highlighting impairment of the thyroid follicle integrity in HT, but no association with IL-17A was found.
Collapse
Affiliation(s)
- Tatjana Zake
- Institute of Anatomy and Anthropology
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | | - Ieva Kalere
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | - Ilze Konrade
- Department of Internal Medicine, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
5
|
A hypomorphic mutation of the gamma-1 adaptin gene (Ap1g1) causes inner ear, retina, thyroid, and testes abnormalities in mice. Mamm Genome 2016; 27:200-12. [PMID: 27090238 DOI: 10.1007/s00335-016-9632-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Adaptor protein (AP) complexes function in the intracellular sorting and vesicular transport of membrane proteins. The clathrin-associated AP-1 complex functions at the trans-Golgi network and endosomes, and some forms of this complex are thought to mediate the sorting of proteins in plasma membranes of polarized epithelial cells. A null mutation of the mouse Ap1g1 gene, which encodes the gamma-1 subunit of the AP-1 complex, causes embryonic lethality when homozygous, indicating its critical importance in early development but precluding studies of its possible roles during later stages. Here, we describe our analyses of a new spontaneous mutation of Ap1g1 named "figure eight" (symbol fgt) and show that it is an in-frame deletion of 6 bp, which results in the elimination of two amino acids of the encoded protein. In contrast to Ap1g1 (-/-) null mice, mice homozygous for the recessive fgt mutation are viable with adult survival similar to controls. Although Ap1g1 is ubiquitously expressed, the phenotype of Ap1g1 (fgt) mutant mice is primarily restricted to abnormalities in sensory epithelial cells of the inner ear, pigmented epithelial cells of the retina, follicular epithelial cells of the thyroid gland, and the germinal epithelium of the testis, suggesting that impaired AP-1 sorting and targeting of membrane proteins in these polarized cells may underlie the observed pathologies. Ap1g1 (fgt) mutant mice provide a new animal model to study the in vivo roles of gamma-1 adaptin and the AP-1 complex throughout development and to investigate factors that underlie its associated phenotypic abnormalities.
Collapse
|
6
|
Fröhlich E, Maier E, Wahl R. Interspecies differences in membrane-associated protease activities of thyrocytes and their relevance for thyroid cancer studies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:45. [PMID: 22591973 PMCID: PMC3423041 DOI: 10.1186/1756-9966-31-45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/16/2012] [Indexed: 11/27/2022]
Abstract
Background To understand the role of proteases involved in human thyroid cancer progression and tissue invasion, thyrocytes from other species could potentially be used provided their characteristics are similar. It is not known whether dipeptidyl peptidase IV and aminopeptidase N activities, which are overexpressed in human thyroid cancer, are, as in human, also absent in normal thyrocytes of other species, making them suitable models for studies on the regulation of these proteases. Methods To assess the role of these proteases, activity was measured in thyroid tissue of human, mouse, rat, porcine, bovine and ovine origin. The lysosomal protease, dipeptidyl peptidase II, was used for comparison. Results Murine, rat, ovine, bovine and human thyrocytes all lacked dipeptidyl peptidase IV and aminopeptidase N activity, but porcine thyrocytes were found to possess both. In contrast, lysosomal dipeptidyl peptidase II was strongly expressed in all species. These activity patterns were maintained in cultured cells. Cultured porcine thyrocytes formed follicles with typical morphology upon stimulation with TSH but differed from human thyrocytes in their response to thiamazole. Conclusions These species differences in the expression of dipeptidyl peptidase IV and aminopeptidase N, indicate that porcine thyrocytes cannot be considered appropriate for the study of proteases in human cancer development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Department of Endocrinology, University of Tuebingen, Tuebingen, Germany
| | | | | |
Collapse
|
7
|
|
8
|
Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J, De Deken X. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab 2010; 95:375-82. [PMID: 19952225 DOI: 10.1210/jc.2009-1727] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Thyroid hormone synthesis requires H(2)O(2) produced by dual oxidases (Duoxes) and thyroperoxidase (TPO). Defects in this system lead to congenital hypothyroidism. H(2)O(2) damage to the thyrocytes may be a cause of cancer. OBJECTIVE The objective of the study was to investigate whether Duox and TPO, the H(2)O(2) producer and consumer, might constitute a complex in the plasma membrane of human thyroid cells, thus maximizing efficiency and minimizing leakage and damage. DESIGN The interaction between Duox and TPO was studied by coimmunoprecipitation and Western blotting of plasma membranes from incubated follicles prepared from freshly resected human thyroid tissue from patients undergoing thyroidectomy, and COS-7 cells transiently transfected with the entire Duoxes or truncated [amino (NH2) or carboxyl (COOH) terminal]. RESULTS The following results were reached: 1) Duox and TPO from membranes are coprecipitated, 2) this association is up-regulated through the Gq-phospholipase C-Ca(2+)-protein kinase C pathway and down-regulated through the Gs-cAMP-protein kinase A pathway, 3) H(2)O(2) increases the association of Duox1 and Duox2 to TPO in cells and in membranes, and 4) truncated NH(2)- or COOH-terminal Duox1 and Duox2 proteins show different binding abilities with TPO. CONCLUSION Coimmunoprecipitations show that Duox and TPO locate closely in the plasma membranes of human thyrocytes, and this association can be modulated by H(2)O(2), optimizing working efficiency and minimizing H(2)O(2) spillage. This association could represent one part of a postulated pluriprotein complex involved in iodination. This suggests that defects in this association could impair thyroid hormone synthesis and lead to thyroid insufficiency and cell damage.
Collapse
Affiliation(s)
- Yue Song
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, School of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Despite significant progress, deficiencies of iron and iodine remain major public health problems affecting > or =30% of the global population. These deficiencies often coexist in children. Recent studies have demonstrated that a high prevalence of iron deficiency among children in areas of endemic goiter may reduce the effectiveness of iodized salt programs. These findings argue strongly for improving iron status in areas of overlapping deficiency, not only to combat anemia but also to increase the efficacy of iodine prophylaxis. The dual fortification of salt with iodine and iron may prove to be an effective and sustainable method to accomplish these important goals.
Collapse
Affiliation(s)
- Michael B Zimmermann
- Laboratory for Human Nutrition, Swiss Federal Institute of Technology, Zürich CH-8092 Switzerland.
| |
Collapse
|
10
|
Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 2005; 445:269-77. [PMID: 16098474 DOI: 10.1016/j.abb.2005.06.023] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 06/16/2005] [Accepted: 06/20/2005] [Indexed: 10/25/2022]
Abstract
Thyroperoxidase (TPO) is the enzyme involved in thyroid hormone synthesis. Although many studies have been carried out on TPO since it was first identified as being the thyroid microsomal antigen involved in autoimmune thyroid disease, previous authors have focused more on the immunological than on the biochemical aspects of TPO during the last few years. Here, we review the latest contributions in the field of TPO research and provide a large reference list of original publications. Given this promising background, scientists and clinicians will certainly continue in the future to investigate the mechanisms whereby TPO contributes to hormone synthesis and constitutes an important autoantigen involved in autoimmune thyroid disease, and the circumstances under which the normal physiological function of this enzyme takes on a pathological role.
Collapse
Affiliation(s)
- Jean Ruf
- INSERM Unit U555, Faculté de Médecine Timone, Université de la Méditerranée, Marseille, France.
| | | |
Collapse
|
11
|
Kuliawat R, Ramos-Castañeda J, Liu Y, Arvan P. Intracellular Trafficking of Thyroid Peroxidase to the Cell Surface. J Biol Chem 2005; 280:27713-8. [PMID: 15917231 DOI: 10.1074/jbc.m503804200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For thyroid hormone synthesis, thyroid peroxidase (TPO) molecules must be transported from the endoplasmic reticulum via the Golgi complex to be delivered at the cell surface to catalyze iodination of secreted thyroglobulin. Like other glycoproteins, TPO molecules in transit to the cell surface have the potential to acquire endoglycosidase H resistance as a consequence of Golgi-based modification of their N-linked carbohydrates, and measurement of the intracellular distribution of TPO has often relied on this assumption. To examine TPO surface distribution in thyrocyte cell lines, we prepared new antibodies against rat TPO. Antibody reactivity was first established upon expression of recombinant rat (r) TPO in 293 cells, which were heterogeneous for surface expression as determined by flow cytometry. By cell fractionation, surface rTPO fractionated distinctly from internal pools of TPO (that co-fractionate with calnexin), yet surface TPO molecules remained endoglycosidase H (endo H)-sensitive. Although the FRTL5 (and PC Cl3) rat thyrocyte cell line also exhibits almost no endo H-resistant TPO, much of the endogenous rTPO is localized to the cell surface by immunofluorescence. Similar results were obtained by fractionation of FRTL5 cell membranes on sucrose gradients. We conclude that in FRTL5 cells, a large fraction of rTPO is delivered to the plasma membrane yet does not acquire Golgi-type processing of its N-glycans. Rat and mouse thyroid tissue TPO also shows little or no endo H resistance, although cell fractionation still needs to be optimized for these tissues.
Collapse
Affiliation(s)
- Regina Kuliawat
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
12
|
Imai T, Hasumura M, Onose JI, Ueda M, Takizawa T, Cho YM, Hirose M. Development of invasive follicular cell carcinomas in a rat thyroid carcinogenesis model: biological impact of capsular inflammation and reduced cyclooxygenase-2 expression. Cancer Sci 2005; 96:31-7. [PMID: 15649252 PMCID: PMC11159682 DOI: 10.1111/j.1349-7006.2005.00002.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have previously reported that thyroid capsular inflammation induced by sulfadimethoxine (SDM), a goitrogen, might play a role in development of invasive follicular cell adenocarcinomas in rats initiated with N-bis(2-hydroxypropyl)nitrosamine (DHPN). The present study was designed to examine the role of cyclooxygenase (COX)-2, widely known to be up-regulated in inflammatory states, during chemically induced rat thyroid carcinogenesis. Male F344 rats received a subcutaneous DHPN (2800 mg/kg) injection, and 1 week later were allowed free access to drinking water containing antithyroidal propylthiouracil (PTU, 0.003%) or SDM (0.1%) for 4 or 10 weeks. Control groups receiving goitrogen alone and no treatment were also included. At week 4, diffuse follicular cell hyperplasia was induced in all PTU- and SDM-treated groups, along with fibrous capsular thickening and capsular thickening with inflammation, respectively. Additionally, multiple focal follicular cell hyperplasias and adenomas were observed in the DHPN + PTU and DHPN + SDM cases. At week 10, adenocarcinomas invasive to the capsule and restricted to the capsular adjacent region, were frequent in the DHPN + SDM group, but not observed in the animals given DHPN + PTU. Western blots and immunohistochemistry revealed constitutive COX-2 expression in non-neoplastic follicular cells of the control and all of the PTU- and SDM-treated rats. However, COX-2 reactivity was significantly reduced or negative in the preneoplastic/neoplastic lesions in the DHPN-treated groups. In fibrous or inflamed thickened capsules, only a few component cells with inflammatory elements were positive for COX-2, and there was no significant difference in this regard between the PTU and SDM treatments. The present results suggest that capsular inflammation could play a role in development of invasive carcinomas, but COX-2 expression does not make a major contribution.
Collapse
Affiliation(s)
- Toshio Imai
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-Ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Schmitz A, Herzog V. Endoplasmic reticulum-associated degradation: exceptions to the rule. Eur J Cell Biol 2004; 83:501-9. [PMID: 15679096 DOI: 10.1078/0171-9335-00412] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quality control mechanisms in the endoplasmic reticulum (ER) ensure that misfolded proteins are recognized and targeted for degradation. According to the current view of ER-associated degradation (ERAD), the degradation does not occur in the ER itself but requires the retrotranslocation of the proteins to the cytosol where they are degraded by proteasomes. Although this model appears to be valid for many different proteins a number of exceptions from this rule suggest that additional proteasome-independent ERAD pathways may exist. In this review, we will summarize what is known about these alternative ERAD pathways.
Collapse
Affiliation(s)
- Anton Schmitz
- Institut für Zellbiologie, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany.
| | | |
Collapse
|
14
|
Low SH, Marmorstein LY, Miura M, Li X, Kudo N, Marmorstein AD, Weimbs T. Retinal pigment epithelial cells exhibit unique expression and localization of plasma membrane syntaxins which may contribute to their trafficking phenotype. J Cell Sci 2002; 115:4545-53. [PMID: 12414999 DOI: 10.1242/jcs.00116] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SNARE membrane fusion machinery controls the fusion of transport vesicles with the apical and basolateral plasma-membrane domains of epithelial cells and is implicated in the specificity of polarized trafficking. To test the hypothesis that differential expression and localization of SNAREs may be a mechanism that contributes to cell-type-specific polarity of different proteins, we studied the expression and distribution of plasma-membrane SNAREs in the retinal pigment epithelium (RPE), an epithelium in which the targeting and steady-state polarity of several plasma membrane proteins differs from most other epithelia. We show here that retinal pigment epithelial cells both in vitro and in vivo differ significantly from MDCK cells and other epithelial cells in their complement of expressed t-SNAREs that are known - or suggested - to be involved in plasma membrane trafficking. Retinal pigment epithelial cells lack expression of the normally apical-specific syntaxin 3. Instead, they express syntaxins 1A and 1B, which are normally restricted to neurons and neuroendocrine cells, on their apical plasma membrane. The polarity of syntaxin 2 is reversed in retinal pigment epithelial cells, and it localizes to a narrow band on the lateral plasma membrane adjacent to the tight junctions. In addition, syntaxin 4 and the v-SNARE endobrevin/VAMP-8 localize to this sub-tight junctional domain, which suggests that this is a region of preferred vesicle exocytosis. Altogether, these data suggest that the unique polarity of many retinal pigment epithelial proteins results from differential expression and distribution of SNAREs at the plasma membrane. We propose that regulation of the expression and subcellular localization of plasma membrane SNAREs may be a general mechanism that contributes to the establishment of distinct sorting phenotypes among epithelial cell types.
Collapse
Affiliation(s)
- Seng Hui Low
- Department of Cell Biology, Lerner Research Institute, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gérard AC, Many MC, Daumerie C, Costagliola S, Miot F, DeVijlder JJM, Colin IM, Denef JF. Structural changes in the angiofollicular units between active and hypofunctioning follicles align with differences in the epithelial expression of newly discovered proteins involved in iodine transport and organification. J Clin Endocrinol Metab 2002; 87:1291-9. [PMID: 11889201 DOI: 10.1210/jcem.87.3.8278] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
In animals, as well as in humans, the thyroid gland is made of active follicles, with cuboidal cells and hypofunctioning follicles, with flattened cells. In this study, the functional status of human follicles was dissected out, based on immunohistochemical detection of TSH receptor, Na(+)/I(-) symporter, pendrin, thyroperoxidase (TPO), thyroid oxidases (ThOXs), and T(4)-containing iodinated Tg (Tg-I). To ascertain that angiofollicular units exist in the human, we studied the microvascular bed of each follicle, in correlation with detection of vascular endothelial growth factor (VEGF), of nitric oxide synthase III, and of endothelin in normal and goitrous thyroids. In hypofunctioning follicles, pendrin, TPO, and ThOXs were not detected, and there was no Tg-I in the colloid. At the opposite, in active follicles, pendrin, TPO, and ThOXs were detected in thyrocytes, and Tg-I was present in the colloid. In normal and goitrous thyroids, the capillary networks surrounding active follicles were larger than those surrounding hypofunctioning follicles. Immunoreactivity for nitric oxide synthase III and endothelin was solely detected in active follicles. Only a few follicles in normal thyroids were immunostained for VEGF, regardless of their functional status. In multinodular goiters, VEGF was detected in contact with the extracellular matrix at the basal pole of the cells. In conclusion, the present study endorses the likelihood of angiofollicular units in the human thyroids. Vascular changes are related to the functional status of thyrocytes.
Collapse
Affiliation(s)
- A-C Gérard
- Histology Unit, Université Catholique de Louvain, Medical School, B-1200, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Recent studies suggest striking similarities between polarized protein sorting in thyrocytes and MDCK epithelial cells, including apical trafficking of thyroglobulin (Tg), thyroid peroxidase, and aminopeptidase N; as well as basolateral targeting of heparan sulfate proteoglycans, thrombospondin 1 (TSP1), type 1 5'-deiodinase, sodium-potassium ATPase, and the thyrotropin receptor. In this report, we have firstly expressed in stably transfected MDCK II cells a range of truncation mutants lacking up to 78% of the C-terminus of TSP1; these studies indicate that the N-terminal region containing the heparin binding domain is sufficient for basolateral targeting of TSP1. Secondly, we have stably transfected MDCK II cells with both Tg and sodium-iodide symporter (NIS) cDNAs, obtaining clones that simultaneously express both thyroid-specific proteins at the apical and basolateral cell surfaces, respectively. These studies represent promising early steps towards designing artificial thyrocytes by thyroid gene transfer into MDCK cells.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Division of Endocrinology and Departments of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
17
|
De Deken X, Wang D, Dumont JE, Miot F. Characterization of ThOX proteins as components of the thyroid H(2)O(2)-generating system. Exp Cell Res 2002; 273:187-96. [PMID: 11822874 DOI: 10.1006/excr.2001.5444] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently cloned two thyroid-specific cDNAs encoding new members of the NADPH oxidase family. ThOX1 and ThOX2 proteins are colocalized with thyroperoxidase at the apical membrane of human thyroid cells. In the present study we have determined their subcellular localization and maturation in relation to their enzymatic activity. A majority of ThOX proteins accumulated inside the cell and only a small fraction was expressed at the surface. Western blots demonstrated that ThOX's are glycoproteins of 180,000 and 190,000. When totally deglycosylated the molecular weight of both ThOX1 and ThOX2 drops to 160,000. Ca(2+) stimulates the basal H(2)O(2) generation in PC Cl3 cells at a level corresponding to 20% of the leukocyte H(2)O(2) production stimulated by PMA. Nonthyroid cell lines transfected with ThOX1 and ThOX2 show only a single immunoreactive band in Western blot analysis, corresponding to the protein of 180,000. This "immature" protein remains exclusively intracellular and does not present any enzymatic activity. This is not modified by coexpression of thyroperoxidase and p22(Phox). Transfection of ThOX cDNAs into PLB-XCGD cells does not reconstitute their NADPH oxidase activity. We conclude that (1) the thyroid contains some elements of the leukocyte H(2)O(2)-generating system but not all of them; (2) ThOX's are predominantly or exclusively located inside the cell in thyrocytes or in transfected cells, respectively, and as such they are inactive; (3) ThOX's cannot replace gp91(Phox) in the leukocyte; and (4) the thyroid H(2)O(2)-generating system is analogous to the leukocyte system with regard to ThOX's and gp91(Phox) but very different in other aspects. Additional thyroid-specific components are probably required to get complete protein processing and full enzymatic activity in the thyroid.
Collapse
Affiliation(s)
- Xavier De Deken
- Institut de Recherche Interdisciplinaire, Université Libre de Bruxelles, Campus Erasme, 808, Route de Lennik, Brussels, Belgium.
| | | | | | | |
Collapse
|
18
|
Toda S, Koike N, Sugihara H. Thyrocyte integration, and thyroid folliculogenesis and tissue regeneration: perspective for thyroid tissue engineering. Pathol Int 2001; 51:403-17. [PMID: 11422801 DOI: 10.1046/j.1440-1827.2001.01218.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thyroid gland is composed of many ball-like structures called thyroid follicles, which are supported by the interfollicular extracellular matrix (ECM) and a capillary network. The component thyrocytes are highly integrated in their specific structural and functional polarization. In conventional monolayer and floating culture systems, thyrocytes cannot organize themselves into follicles with normal polarity. In contrast, in 3-D collagen gel culture, thyrocytes easily form stable follicles with physiological polarity. Integration of thyrocyte growth and differentiation results ultimately in thyroid folliculogenesis. This culture method and subacute thyroiditis are two promising models for addressing mechanisms of folliculogenesis, because thyroid-follicle formation actively occurs both in the culture system and at the regenerative phase of the disorder. The understanding of the mechanistic basis of folliculogenesis is prerequisite for generation of artificial thyroid tissue, which would enable a more physiological strategy to the treatment of hypothyroidism caused by various diseases and surgical processes than conventional hormone replacement therapy. We review here thyrocyte integration, and thyroid folliculogenesis and tissue regeneration. We also briefly discuss a perspective for thyroid tissue regeneration and engineering.
Collapse
Affiliation(s)
- S Toda
- Department of Pathology, Saga Medical School and; Koike Thyroid Hospital, Saga, Japan.
| | | | | |
Collapse
|
19
|
Niccoli-Sire P, Fayadat L, Siffroi-Fernandez S, Malthierry Y, Franc JL. Alternatively spliced form of human thyroperoxidase, TPOzanelli: activity, intracellular trafficking, and role in hormonogenesis. Biochemistry 2001; 40:2572-9. [PMID: 11327880 DOI: 10.1021/bi0026324] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thyroperoxidase (TPO), a type I transmembrane heme containing glycoprotein, catalyzes iodide organification and thyroid hormone synthesis. One of the two main alternatively spliced forms of this enzyme, TPOzanelli, which is present in Graves's disease thyroid tissue, has a cytoplasmic domain completely modified. In the first stage of this study, the results of RT-PCR experiments showed that the TPOzanelli mRNA is present in normal thyroid tissue. We then generated CHO cell lines expressing the wild-type TPO (TPO1) and the alternatively spliced form TPOzanelli. Upon investigating a panel of 12 mAbs directed against the extracellular domain of TPO1 and sera from patients with a high titer of TPO autoantibodies, we observed that (i) the three-dimensional structure of this domain is similar in both isoforms; (ii) the autoantibodies recognize TPOzanelli as well as TPO1. The results of pulse chase and cell surface biotinylation experiments showed that the TPOzanelli has a shorter half-life (7 versus 11 h) and is expressed at the cell surface in lesser amounts than TPO1 (7 versus 15%). The total enzymatic activity and cell surface activity were determined in CHO cells expressing TPO1 and TPOzanelli, and TPO1 and TPOzanelli were found to have similar levels of activity. It was established that approximately 20% of the TPO purified from a Graves' disease thyroid gland was precipitated by polyclonal antibodies directed against a specific part of the cytoplasmic tail of TPOzanelli. This confirmed that the protein corresponding to the mRNA is present in the thyroid tissue. All in all, these results indicate that TPOzanelli can be expected to play a role in thyroid hormone synthesis and in thyroid autoimmunity.
Collapse
Affiliation(s)
- P Niccoli-Sire
- U38 INSERM, Faculté de Médecine, Université de la Méditerranée, 27 Bd J. Moulin, 13385 Marseille Cedex 5, France
| | | | | | | | | |
Collapse
|
20
|
Martin-Belmonte F, Alonso MA, Zhang X, Arvan P. Thyroglobulin is selected as luminal protein cargo for apical transport via detergent-resistant membranes in epithelial cells. J Biol Chem 2000; 275:41074-81. [PMID: 11013241 DOI: 10.1074/jbc.m005429200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Thyroid hormone synthesis by thyrocytes depends upon apical secretion of thyroglobulin (Tg), the glycoprotein prohormone. In stably transfected MDCK cells, recombinant Tg is also secreted apically. All secreted Tg has undergone Golgi carbohydrate modification, whereas most intracellular Tg (which is slow to exit the endoplasmic reticulum) is sensitive to digestion with endoglycosidase H. However, in MDCK cells and PC Cl3 thyrocytes, a subpopulation of newly synthesized recombinant and endogenous Tg, respectively, is recovered in a Triton X-100 insoluble, glycosphingolipid/cholesterol-enriched (GEM/raft) fraction, and this small subpopulation is overwhelmingly endoglycosidase H resistant. Upon apical secretion, Tg solubility is restored. Apical secretion of Tg is inhibited by cellular cholesterol depletion. In FRT cells, recombinant Tg becomes Triton X-100 insoluble within 60 min after synthesis and a portion is actually endoglycosidase H-sensitive, suggesting early Tg entry into GEMs/rafts. Interestingly in FRT cells, Tg remains associated with the apical plasma membrane upon exocytosis, and all surface Tg is GEM/raft-associated. Thus, Tg is the first secretory protein demonstrated to enter Triton X-100 insoluble membranes en route to the apical surface of epithelial cells. The data imply that Tg utilizes a cargo-selective mechanism for apical sorting.
Collapse
Affiliation(s)
- F Martin-Belmonte
- Centro de Biologia Molecular "Severo Ochoa," Universidad Autonoma de Madrid, Madrid 280-49, Spain
| | | | | | | |
Collapse
|
21
|
Zhang X, Arvan P. Cell type-dependent differences in thyroid peroxidase cell surface expression. J Biol Chem 2000; 275:31946-53. [PMID: 10924504 DOI: 10.1074/jbc.m003559200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, it has been suggested that only approximately 2% of human thyroid peroxidase (hTPO(933)) reaches the surface of stably transfected (Chinese hamster ovary) cells, most being degraded intracellularly, and this might be representative of thyroid peroxidase (TPO) behavior in thyrocytes (Fayadat, L., Siffroi-Fernandez, S., Lanet, J., and Franc, J.-L. (2000) J. Biol. Chem. 275, 15948-15954). In agreement, in stably transfected Madin-Darby canine kidney clones, nonpermeabilized cells exhibit wild-type hTPO(933) immunofluorescence (apically) on <10% of that found in permeabilized cells, where an endoplasmic reticulum pattern is observed. Further, a C-terminally truncated, membrane-anchorless hTPO(848) is also retained in the endoplasmic reticulum of stably transfected Madin-Darby canine kidney cells. However, by contrast, in Chinese hamster ovary cells after transient transfection, hTPO(933) immunofluorescence is detected equally well in nonpermeabilized and permeabilized cells, indicating that a large portion of hTPO(933) is present at the cell surface; furthermore, hTPO(848) is efficiently secreted. Further, using an antiserum not cross-reacting with rat TPO, we find by immunofluorescence that in stable clones of PC Cl3 (rat) thyrocytes, considerably more ( approximately 50%) of the cells exhibit hTPO(933) at the cell surface. However, cell surface biotinylation and endoglycosidase H digestion assays appear to under-represent the extent of hTPO(933) transport, presumably because protein folding limits both Golgi carbohydrate modification and accessibility of lysines in the extracellular domain. We conclude that cell type-specific factors may facilitate stable expression of TPO at the cell surface of thyrocytes.
Collapse
Affiliation(s)
- X Zhang
- Division of Endocrinology and Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
22
|
Fayadat L, Siffroi-Fernandez S, Lanet J, Franc JL. Degradation of human thyroperoxidase in the endoplasmic reticulum involves two different pathways depending on the folding state of the protein. J Biol Chem 2000; 275:15948-54. [PMID: 10748076 DOI: 10.1074/jbc.m905763199] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human thyroperoxidase (hTPO), a type I transmembrane glycoprotein, plays a key role in thyroid hormone synthesis. In a previous paper (Fayadat, L., Niccoli, P., Lanet, J., and Franc, J. L. (1998) Endocrinology 139, 4277-4285) we established that after the synthesis, only 15-20% of the hTPO molecules were recognized by a monoclonal antibody (mAb15) directed against a conformational structure and that only 2% were able to reach the cell surface. In the present study using pulse-chase experiments in the presence or absence of protease inhibitors followed by immunoprecipitation procedures with monoclonal antibodies recognizing unfolded or partially folded hTPO forms we show that: (i) unfolded hTPO forms are degraded by the proteasome and (ii) partially folded hTPO forms are degraded by other proteases. It was also established upon incubating endoplasmic reticulum (ER) membranes in vitro that the degradation of the partially folded hTPO was carried out by serine and cysteine integral ER membrane proteases. These data provide valuable insights into the quality control mechanisms whereby the cells get rid of misfolded or unfolded proteins. Moreover, this is the first study describing a protein degradation process involving two distinct degradation pathways (proteasome and ER cysteine/serine proteases) at the ER level, depending on the folding state of the protein.
Collapse
Affiliation(s)
- L Fayadat
- U38 INSERM, Faculté de Médecine, Université de la Méditerranée, 13385 Marseille cedex 5, France
| | | | | | | |
Collapse
|
23
|
Fayadat L, Siffroi-Fernandez S, Lanet J, Franc JL. Calnexin and calreticulin binding to human thyroperoxidase is required for its first folding step(s) but is not sufficient to promote efficient cell surface expression. Endocrinology 2000; 141:959-66. [PMID: 10698171 DOI: 10.1210/endo.141.3.7362] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Human thyroperoxidase (hTPO) is a type I transmembrane-bound heme-containing glycoprotein that catalyzes the synthesis of thyroid hormones. In a previous study we stably expressed hTPO in Chinese hamster ovary cells and observed that after the synthesis, only 20% of the hTPO molecules were recognized by a monoclonal antibody (mAb 15) directed against a conformational structure, and that only 2% were able to reach the cell surface. In the present study it was proposed to determine how calnexin (CNX) and calreticulin (CRT) contribute to the folding of hTPO. Sequential immunoprecipitation was performed using anti-CNX or anti-CRT followed by anti-hTPO antibodies, and the results showed that CNX and CRT were associated with hTPO. Inhibiting the interactions between CNX or CRT and hTPO using castanospermine greatly reduced the first step(s) in the hTPO folding process. Under these conditions, the half-life of this enzyme was greatly reduced (2.5 vs. 17 h in the control experiments), and hTPO was degraded via the proteasome pathway. This reduced the rate of hTPO transport to the cell surface. Overexpression of CNX or CRT into the hTPO-CHO cells was found to enhance the first hTPO folding step(s) by 20-60%, but did not increase the level of hTPO present at the cell surface. All in all, these findings provide evidence that CNX and CRT are crucial to the first step(s) in hTPO folding, but that interactions with other molecular chaperones are required for the last folding steps to take place.
Collapse
Affiliation(s)
- L Fayadat
- INSERM U-38, Université de la Méditerranée, Faculté de Médecine, Marseille, France
| | | | | | | |
Collapse
|
24
|
Baum BJ, Berkman ME, Marmary Y, Goldsmith CM, Baccaglini L, Wang S, Wellner RB, Hoque AT, Atkinson JC, Yamagishi H, Kagami H, Parlow AF, Chao J. Polarized secretion of transgene products from salivary glands in vivo. Hum Gene Ther 1999; 10:2789-97. [PMID: 10584925 DOI: 10.1089/10430349950016528] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously (Kagami et al. Hum. Gene Ther. 1996;7:2177-2184) we have shown that salivary glands are able to secrete a transgene-encoded protein into serum as well as saliva. This result and other published data suggest that salivary glands may be a useful target site for vectors encoding therapeutic proteins for systemic delivery. The aim of the present study was to assess in vivo if transgene-encoded secretory proteins follow distinct, polarized sorting pathways as has been shown to occur "classically" in cell biological studies in vitro. Four first-generation, E1-, type 5 recombinant adenoviruses were used to deliver different transgenes to a rat submandibular cell line in vitro or to rat submandibular glands in vivo. Subsequently, the secretory distribution of the encoded proteins was determined. Luciferase, which has no signal peptide, served as a cell-associated, negative control and was used to correct for any nonspecific secretory protein release from cells. The three remaining transgene products tested, human tissue kallikrein (hK1), human growth hormone (hGH), and human alpha1-antitrypsin (halpha1AT), were predominantly secreted (>96%) in vitro. Most importantly, in vivo, after a parasympathomimetic secretory stimulus, both hK1 and hGH were secreted primarily in an exocrine manner into saliva. Conversely, halpha1AT was predominantly secreted into the bloodstream, i.e., in an endocrine manner. The aggregate results are consistent with the recognition of signals encoded within the transgenes that result in specific patterns of polarized protein secretion from rat submandibular gland cells in vivo.
Collapse
Affiliation(s)
- B J Baum
- Gene Therapy and Therapeutics Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Prabakaran D, Ahima RS, Harney JW, Berry MJ, Larsen PR, Arvan P. Polarized targeting of epithelial cell proteins in thyrocytes and MDCK cells. J Cell Sci 1999; 112 ( Pt 8):1247-56. [PMID: 10085259 DOI: 10.1242/jcs.112.8.1247] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized trafficking signals may be interpreted differently in different cell types. In this study, we have compared the polarized trafficking of different proteins expressed endogenously in primary porcine thyroid epithelial cells to similar proteins expressed in MDCK cells. As in MDCK cells, NH4Cl treatment of filter-grown thyrocytes caused mis-sorted soluble proteins to exhibit enhanced secretion to the apical medium. In independent studies, thrombospondin 1 (a thyroid basolaterally secreted protein) was secreted basolaterally from MDCK cells. Likewise, the 5′-deiodinase (a thyroid basolateral membrane protein) encoded by the DIO1 gene was also distributed basolaterally in transfected MDCK cells. Consistent with previous reports, when the secretion of human growth hormone (an unglycosylated regulated secretory protein) was examined from transfected MDCK cells, the release was nonpolarized. However, transfected thyrocytes secreted growth hormone apically in a manner dependent upon zinc addition. Moreover, two additional regulated secretory proteins expressed in thyrocytes, thyroglobulin (the major endogenous glycoprotein) and parathyroid hormone (an unglycosylated protein expressed transiently), were secreted apically even in the absence of zinc. We hypothesize that while cellular mechanisms for interpreting polarity signals are generally similar between thyrocytes and MDCK cells, thyrocytes allow for specialized packaging of regulated secretory proteins for apical delivery, which does not require glycosylation but may involve availability of certain ions as well as appropriate intracellular compartmentation.
Collapse
Affiliation(s)
- D Prabakaran
- Beth Israel Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
26
|
Lipardi C, Nitsch L, Zurzolo C. Mechanisms of apical protein sorting in polarized thyroid epithelial cells. Biochimie 1999; 81:347-53. [PMID: 10401668 DOI: 10.1016/s0300-9084(99)80080-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The process leading to thyroid hormone synthesis is vectorial and depends upon the polarized organization of the thyrocytes into the follicular unit. Thyrocyte membrane proteins are delivered to two distinct domains of the plasma membrane using apical (AP) and basolateral (BL) sorting signals. A recent hypothesis for AP sorting proposes that apically destined proteins cluster with glycosphingolipids (GSLs) and cholesterol, into microdomains (or rafts) of the Golgi membrane from which AP vesicles originate. In MDCK cells the human neurotrophin receptor, p75hNTR, is delivered to the AP surface through a sorting signal, rich in O-glycosylated sugars, identified in its ectodomain. We have investigated whether this signal is functional in the thyroid-derived FRT cell line and whether p75hNTR clusters into lipid rafts to be sorted to the AP membrane. We found that p75hNTR is apically delivered via a direct pathway and does not associate with rafts during its transport to the surface of FRT cells. Therefore, although the same signal could be recognized by different cell types thyroid cells may possess a tissue-specific sorting machinery.
Collapse
Affiliation(s)
- C Lipardi
- Centro di Endocrinologia ed Oncologia Sperimentale del CNR-Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | |
Collapse
|
27
|
Lemansky P, Brix K, Herzog V. Iodination of mature cathepsin D in thyrocytes as an indicator for its transport to the cell surface. Eur J Cell Biol 1998; 76:53-62. [PMID: 9650783 DOI: 10.1016/s0171-9335(98)80017-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Thyrocytes are known for their ability to iodinate thyroglobulin from which the thyroid hormones are generated. In the intact thyroid gland the iodination process is almost exclusively executed at the apical plasma membrane of thyroid epithelial cells. Here, we show that freshly isolated thyrocytes iodinated polypeptides other than thyroglobulin and that one of the major iodinated polypeptides was the mature form of the lysosomal protease cathepsin D (CD). The detection of mature CD as an iodinated polypeptide suggested that a fraction of the lysosomally maturated enzyme was delivered to the apical plasma membrane where it became available for iodination. After labeling of thyrocytes with [35S]methionine/cysteine overnight part of the mature CD was released into the culture medium. This was abolished by inhibiting maturation of CD with NH4Cl, indicating that mature CD appeared in the medium after its proteolytic maturation in an acidic compartment. Besides CD other soluble lysosomal polypeptides like the beta-N-acetylhexosaminidase and the sphingolipid-activating protein D (Sap D) were iodinated and partially secreted as mature polypeptides. In contrast, the membrane-associated lysosomal ceramidase was iodinated and partially secreted as immature single-chain enzyme and not as fully maturated two-chain enzyme. These data indicate that a portion of mature CD and other soluble lysosomal enzymes is delivered from lysosomes to the cell surface whereas some membrane-associated enzymes from the terminal lysosomal compartment are efficiently excluded from this process.
Collapse
Affiliation(s)
- P Lemansky
- Institut für Zellbiologie und Bonner Forum Biomedizin, Bonn, Germany
| | | | | |
Collapse
|
28
|
Penel C, Gruffat D, Alquier C, Benoliel AM, Chabaud O. Thyrotropin chronically regulates the pool of thyroperoxidase and its intracellular distribution: a quantitative confocal microscopic study. J Cell Physiol 1998; 174:160-9. [PMID: 9428802 DOI: 10.1002/(sici)1097-4652(199802)174:2<160::aid-jcp3>3.0.co;2-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The regulation of thyroperoxidase (TPO) expression and of its intracellular distribution was studied in porcine thyroid cells cultured on porous bottom filters. Cells were cultured for 18 days in the absence or in the presence of thyrotropin (TSH) and with or without iodide. Microsomes were purified and analyzed by electrophoresis. TPO was detected by immunoblotting with polyclonal anti-porcine TPO antibodies and quantified by scanning the bands. The amount of TPO was increased 2-fold by TSH. High concentrations of iodide (1-50 microM, added daily) decreased the level of TPO. Confocal microscopy served to determine the intracellular localization of TPO and its quantitative distribution. Intracellular and surface-located TPO was detected by fluorescein-labeled antibodies on saponin-treated cells. Quantitative confocal microscopy showed that TSH increased the total amount of TPO 2-fold as for immunoblotting. The highest amount of TPO was found in the perinuclear area and between the nucleus and the Golgi apparatus. Only 4% of TPO was present on the apical surface and about 1% on the basolateral membrane; the remainder (about 95%) was inside the cells. TSH did not change these relative contents. TSH modified the intracellular distribution of the enzyme, increasing the TPO pool from the perinuclear area to apical membrane. This domain could be a site of storage of TPO. Adding a physiological concentration of iodide (0.5 microM, daily) did not influence the intracellular distribution of TPO. We concluded that chronic TSH stimulation 1) increased 2-fold the pool of TPO but did not change the relative proportion of TPO inside the cells and on the apical surface, and 2) modified the intracellular distribution of vesicular TPO, the major part of which was accumulated in the perinuclear and cytoplasmic area under the subapical domain of the polarized cells.
Collapse
Affiliation(s)
- C Penel
- INSERM CJF 93-11-IFR. J. Roche, Faculté de Médecine Nord, Université de la Méditerranée, Marseille, France
| | | | | | | | | |
Collapse
|
29
|
Niccoli P, Fayadat L, Panneels V, Lanet J, Franc JL. Human thyroperoxidase in its alternatively spliced form (TPO2) is enzymatically inactive and exhibits changes in intracellular processing and trafficking. J Biol Chem 1997; 272:29487-92. [PMID: 9368009 DOI: 10.1074/jbc.272.47.29487] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thyroid peroxidase (TPO1) is a membrane-bound heme-containing glycoprotein that catalyzes the synthesis of thyroid hormones. We generated stable cell lines expressing TPO1 and the alternatively spliced isoform TPO2. Pulse-chase studies showed that TPO2 half-life was dramatically decreased as compared with TPO1. The sensitivity of TPO2 to endo-beta-N-acetylglucosaminidase H indicated that the protein is processed through the endoplasmic reticulum and bears high mannose-type structures. Cell surface biotinylation experiments showed that the two isoforms also differ in their intracellular trafficking. TPO2 was totally retained in the cell, whereas 15% of TPO1 reached the cell surface. The inability of TPO2 to come out of the intracellular compartments was related to structural changes in the molecule. Evidence of these changes was obtained through the lack of recognition of TPO2 by half of the 13 TPO monoclonal antibodies tested in immunoprecipitation experiments. Our data suggest that because of an improper folding, TPO2 is trapped in the endoplasmic reticulum and rapidly degraded. The failure of incorporation of [14C]aminolevulinic acid in the cultured cells showed that TPO2 did not bind to heme, whereas TPO1 did. This result was confirmed through a guaiacol assay showing that TPO2 is enzymatically inactive.
Collapse
Affiliation(s)
- P Niccoli
- INSERM U38, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille, cedex 05, France
| | | | | | | | | |
Collapse
|
30
|
Arvan P, Kim PS, Kuliawat R, Prabakaran D, Muresan Z, Yoo SE, Abu Hossain S. Intracellular protein transport to the thyrocyte plasma membrane: potential implications for thyroid physiology. Thyroid 1997; 7:89-105. [PMID: 9086577 DOI: 10.1089/thy.1997.7.89] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present a snapshot of developments in epithelial biology that may prove helpful in understanding cellular aspects of the machinery designed for the synthesis of thyroid hormones on the thyroglobulin precursor. The functional unit of the thyroid gland is the follicle, delimited by a monolayer of thyrocytes. Like the cells of most simple epithelia, thyrocytes exhibit specialization of the cell surface that confronts two different extracellular environments-apical and basolateral, which are separated by tight junctions. Specifically, the basolateral domain faces the interstitium/bloodstream, while the apical domain is in contact with the lumen that is the primary target for newly synthesized thyroglobulin secretion and also serves as a storage depot for previously secreted protein. Thyrocytes use their polarity in several important ways, such as for maintaining basolaterally located iodide uptake and T4 deiodination, as well apically located iodide efflux and iodination machinery. The mechanisms by which this organization is established, fall in large part under the more general cell biological problem of intracellular sorting and trafficking of different proteins en route to the cell surface. Nearly all exportable proteins begin their biological life after synthesis in an intracellular compartment known as the endoplasmic reticulum (ER), upon which different degrees of difficulty may be encountered during nascent polypeptide folding and initial export to the Golgi complex. In these initial stages, ER molecular chaperones can assist in monitoring protein folding and export while themselves remaining as resident proteins of the thyroid ER. After export from the ER, most subsequent sorting for protein delivery to apical or basolateral surfaces of thyrocytes occurs within another specialized intracellular compartment known as the trans-Golgi network. Targeting information encoded in secretory proteins and plasma membrane proteins can be exposed or buried at different stages along the export pathway, which is likely to account for sorting and specific delivery of different newly-synthesized proteins. Defects in either burying or exposing these structural signals, and consequent abnormalities in protein transport, may contribute to different thyroid pathologies.
Collapse
Affiliation(s)
- P Arvan
- Division of Endocrinology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Endocytosis in eukaryotic cells is characterized by the continuous and regulated formation of prolific numbers of membrane vesicles at the plasma membrane. These vesicles come in several different varieties, ranging from the actin-dependent formation of phagosomes involved in particle uptake, to smaller clathrin-coated vesicles responsible for the internalization of extracellular fluid and receptor-bound ligands. In general, each of these vesicle types results in the delivery of their contents to lysosomes for degradation. The membrane components of endocytic vesicles, on the other hand, are subject to a series of highly complex and iterative molecular sorting events resulting in their targeting to specific destinations. In recent years, much has been learned about the function of the endocytic pathway and the mechanisms responsible for the molecular sorting of proteins and lipids. This review attempts to integrate these new concepts with long-established views of endocytosis to present a more coherent picture of how the endocytic pathway is organized and how the intracellular transport of internalized membrane components is controlled. Of particular importance are emerging concepts concerning the protein-based signals responsible for molecular sorting and the cytosolic complexes responsible for the decoding of these signals.
Collapse
Affiliation(s)
- I Mellman
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| |
Collapse
|
32
|
Ali S, Hall J, Hazlewood GP, Hirst BH, Gilbert HJ. A protein targeting signal that functions in polarized epithelial cells in vivo. Biochem J 1996; 315 ( Pt 3):857-62. [PMID: 8645168 PMCID: PMC1217285 DOI: 10.1042/bj3150857] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Eukaryotic membrane-associated polypeptides often contain a glycosylphosphatidylinositol (GPI) anchor that signals the attachment of GPI lipids to these proteins. The GPI anchor can function as a basolateral or apical targeting signal in mammalian cells cultured in vitro, although the function of the GPI anchor in vivo remains to be elucidated. In this study we have evaluated the effect of fusing a GPI anchor sequence to a prokaryotic reporter protein on the cellular location of the polypeptide in polarized epithelial cells of transgenic mice. The bacterial enzyme, when fused to a eukaryotic signal peptide, was secreted through the basolateral membrane of small-intestinal enterocytes; however, when the enzyme was lined to the GPI anchor sequence the polypeptide was redirected to the apical surface of the epithelial cells. These data provide the first direct evidence that the GPI anchor functions as an apical membrane protein sorting signal in polarized epithelial cells in vivo.
Collapse
Affiliation(s)
- S Ali
- Department of Biological and Nutritional Sciences, University of Newcastle upon Tyne, U.K
| | | | | | | | | |
Collapse
|