1
|
RC-4BC cells express nicotinic and muscarinic acetylcholine receptors. PLoS One 2022; 17:e0279284. [PMID: 36525419 PMCID: PMC9757584 DOI: 10.1371/journal.pone.0279284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Acetylcholine is one of the most important endogenous neurotransmitters in a range of organisms spanning different animal phyla. Within pituitary gland it acts as autocrine and paracrine signal. In a current study we assessed expression profile of the different subunits of nicotinic as well as muscarinic acetylcholine receptors in RC-4BC cells, which are derived from rat pituitary gland tumor. Our findings indicate that β2, δ, and M2 subunits are expressed by the cells with the lowest Ct values compared to other tested subunits. The detected Ct values were 26.6±0.16, 27.95±0.5, and 28.8±0.25 for β2, δ, and M2 subunits, respectively.
Collapse
|
2
|
Brann MR, Messier T, Dorman C, Lannigan D. Cell-Based Assays for G-Protein-Coupled/Tyrosine Kinase-Coupled Receptors. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719600100114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Using mammalian cells transiently transfected with receptors, we have developed an assay [Receptor Selection and Amplification Technology (R-SAT); patents pending] that links ligand-dependent cellular transformation to induction of 8-galactosidase in a 96-well plate format. Using these procedures, we have performed high throughput functional assays of receptors that mediate signal transduction by a diversity of mechanisms. Examples include the prostanoid, muscarinic, and neurokinin receptor subtypes that signal via the G-proteins Gq and Gi, the JAK/STAT-linked GM-CSF receptor, the tyrosine kinase neurotrophin receptors, and the classical oncogenes v-ras and p53. The assays have been formatted such that many receptors can be assayed simultaneously (>10 receptors per well) and precise discrimination of ligand efficacy can be obtained (e.g., full and partial agonists, negative and neutral antagonists).
Collapse
Affiliation(s)
- Mark R. Brann
- Receptor Technologies Inc., 276 East Allen, Winooski, Vermont 05404
| | - Terri Messier
- Receptor Technologies Inc., 276 East Allen, Winooski, Vermont 05404
| | - Christine Dorman
- Receptor Technologies Inc., 276 East Allen, Winooski, Vermont 05404
| | - Deborah Lannigan
- Receptor Technologies Inc., 276 East Allen, Winooski, Vermont 05404
| |
Collapse
|
3
|
On the discovery and development of pimavanserin: a novel drug candidate for Parkinson's psychosis. Neurochem Res 2014; 39:2008-17. [PMID: 24682754 PMCID: PMC4172996 DOI: 10.1007/s11064-014-1293-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 12/30/2022]
Abstract
Parkinson’s disease psychosis (PDP) is a condition that may develop in up to 60 % of Parkinson’s patients, and is a major reason for nursing home placement for those affected. There are no FDA approved drugs for PDP but low doses of atypical anti-psychotic drugs (APDs) are commonly prescribed off-label. Only low-dose clozapine has shown efficacy in randomized controlled trials, but all APDs have black box warnings related to the increased mortality and morbidity when used in elderly demented patients. Using molecular pharmacological profiling of a large collection of marketed drugs, we discovered that potent inverse agonist activity against 5-HT2A serotonin receptors was a common feature of atypical APDs, especially the atypical APDs used to treat PDP. Since low-dose clozapine therapy selectively blocks this receptor, it was hypothesized that a highly selective 5-HT2A receptor inverse agonist might provide good symptom control in patients suffering from PDP, with a greatly improved safety and tolerability profile. A high throughput screening and subsequent chemical lead optimization campaign to develop potent, selective 5-HT2A receptor inverse agonists was launched, eventually resulting in the discovery of pimavanserin. Pimavanserin displays nanomolar potency as a 5-HT2A receptor inverse agonist, selectivity for 5-HT2A over 5-HT2C receptors, and no meaningful activity at any other G-protein coupled receptor. It demonstrated robust activity in preclinical models of schizophrenia and PDP, and did not worsen motoric symptoms, in contrast to the APDs tested. In a Phase III clinical trial, pimavanserin showed highly significant benefits in the primary endpoint, the scale for assessment of positive symptoms-PD, a scale adapted for use in PDP. In addition, improvements in all other efficacy endpoints, including physician’s clinical global impression, caregiver burden, night-time sleep quality and daytime wakefulness, were seen. Pimavanserin demonstrated good safety and tolerability and did not worsen motoric symptoms as assessed by the unified Parkinson’s disease rating scale parts II and III. An open-label extension study has further demonstrated that pimavanserin is safe and well-tolerated with long-term use. Pimavanserin may therefore offer a viable treatment option for patients suffering from PDP.
Collapse
|
4
|
Moreira IS. Structural features of the G-protein/GPCR interactions. Biochim Biophys Acta Gen Subj 2013; 1840:16-33. [PMID: 24016604 DOI: 10.1016/j.bbagen.2013.08.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies. SCOPE OF REVIEW The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined. MAJOR CONCLUSIONS Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered. GENERAL SIGNIFICANCE In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.
Collapse
Affiliation(s)
- Irina S Moreira
- REQUIMTE/Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Abstract
There has been great interest in the structure-function relationships of the muscarinic acetylcholine receptors (mAChRs) because these prototypical Family A/class 1 G protein-coupled receptors (GPCRs) are attractive therapeutic targets for both peripheral and central nervous system disorders. A multitude of drugs that act at the mAChRs have been identified over the years, but many of these show minimal selectivity for any one of the five mAChR subtypes over the others, which has hampered their development into therapeutics due to adverse side effects. The lack of drug specificity is primarily due to high sequence similarity in this family of receptor, especially in the orthosteric binding pocket. Thus, there remains an ongoing need for a molecular understanding of how mAChRs bind their ligands, and how selectivity in binding and activation can be achieved. Unfortunately, there remains a paucity of solved high-resolution structures of GPCRs, including the mAChRs, and thus most of our knowledge of structure-function mechanisms related to this receptor family to date has been obtained indirectly through approaches such as mutagenesis. Nonetheless, such studies have revealed a wealth of information that has led to novel insights and may be used to guide future rational drug design campaigns.
Collapse
|
6
|
|
7
|
Kimber MJ, Sayegh L, El-Shehabi F, Song C, Zamanian M, Woods DJ, Day TA, Ribeiro P. Identification of an Ascaris G protein-coupled acetylcholine receptor with atypical muscarinic pharmacology. Int J Parasitol 2009; 39:1215-22. [PMID: 19327362 PMCID: PMC2713365 DOI: 10.1016/j.ijpara.2009.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/26/2009] [Accepted: 03/02/2009] [Indexed: 11/23/2022]
Abstract
Acetylcholine (ACh) is a neurotransmitter/neuromodulator in the nematode nervous system and induces its effects through interaction with both ligand-gated ion channels (LGICs) and G protein-coupled receptors (GPCRs). The structure, pharmacology and physiological importance of LGICs have been appreciably elucidated in model nematodes, including parasitic species where they are targets for anthelmintic drugs. Significantly less, however, is understood about nematode ACh GPCRs, termed GARs (G protein-linked ACh receptors). What is known comes from the free-living Caenorhabditis elegans as no GARs have been characterized from parasitic species. Here we clone a putative GAR from the pig gastrointestinal nematode Ascaris suum with high structural homology to the C. elegans receptor GAR-1. Our GPCR, dubbed AsGAR-1, is alternatively spliced and expressed in the head and tail of adult worms but not in dorsal or ventral body wall muscle, or the ovijector. ACh activated AsGAR-1 in a concentration-dependent manner but the receptor was not activated by other small neurotransmitters. The classical muscarinic agonists carbachol, arecoline, oxotremorine M and bethanechol were also AsGAR-1 agonists but pilocarpine was ineffective. AsGAR-1 activation by ACh was partially antagonized by the muscarinic blocker atropine but pirenzepine and scopolamine were largely ineffective. Certain biogenic amine GPCR antagonists were also found to block AsGAR-1. Our conclusion is that Ascaris possesses G protein-coupled ACh receptors that are homologous in structure to those present in C. elegans, and that although they have some sequence homology to vertebrate muscarinic receptors, their pharmacology is atypically muscarinic.
Collapse
Affiliation(s)
- Michael J. Kimber
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011 USA
| | - Laura Sayegh
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Fouad El-Shehabi
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| | - Chuanzhe Song
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011 USA
| | - Mostafa Zamanian
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011 USA
| | - Debra J. Woods
- Pfizer Animal Health, 7000 Portage Road, Kalamazoo MI 49001 USA
| | - Tim A. Day
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011 USA
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Macdonald Campus, 21,111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X 3V9
| |
Collapse
|
8
|
Lane JR, Powney B, Wise A, Rees S, Milligan G. G protein coupling and ligand selectivity of the D2L and D3 dopamine receptors. J Pharmacol Exp Ther 2008; 325:319-30. [PMID: 18218829 DOI: 10.1124/jpet.107.134296] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The human dopamine D(2L) receptor couples promiscuously to multiple members of the Galpha(i/o) subfamily. Despite the high homology of the D(2L) and D(3) receptors, the G protein coupling specificity of the human D(3) receptor is less clearly characterized. The primary aim of this study, then, was the parallel characterization of the G protein coupling specificity of the D(2L) and D(3) receptors. By using both receptor-G protein fusion proteins and stable cell lines in which pertussis toxin-resistant mutants of individual Galpha(i)-family G proteins were expressed in an inducible fashion, we demonstrated highly selective coupling of the D(3) receptor to Galpha(o1). Furthermore, by using the fusion proteins to ensure identical stoichiometry of receptor to G protein for each pairing, a range of ligands displayed higher potency and, for partial agonists, higher efficacy at the D(3) receptor when coupled to Galpha(o1) compared with the D(2L) receptor. The second aim of this study was to investigate the molecular basis of the above differential G protein coupling specificity. The importance of a 12-amino acid sequence from the C-terminal end of the third intracellular loop of the D(2L) receptor in providing promiscuity in G protein coupling was demonstrated using a chimeric D(3)/D(2) receptor in which the equivalent region of the D(3) receptor was exchanged for this sequence. This chimera displayed D(3)-like affinity for [(3)H]spiperone and potency for agonists but gained D(2)-like ability to couple to each of Galpha(i1-3) as well as Galpha(o1).
Collapse
Affiliation(s)
- J Robert Lane
- Davidson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK.
| | | | | | | | | |
Collapse
|
9
|
Li JH, Hamdan FF, Kim SK, Jacobson KA, Zhang X, Han SJ, Wess J. Ligand-Specific Changes in M3 Muscarinic Acetylcholine Receptor Structure Detected by a Disulfide Scanning Strategy. Biochemistry 2008; 47:2776-88. [DOI: 10.1021/bi7019113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Hua Li
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Fadi F. Hamdan
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Soo-Kyung Kim
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Xiaohong Zhang
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Sung-Jun Han
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| | - Jürgen Wess
- Molecular Signaling and Molecular Recognition Sections, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 8 Center Drive, Bethesda, Maryland 20892
| |
Collapse
|
10
|
Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES. Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 2006; 70:1974-83. [PMID: 16959945 DOI: 10.1124/mol.106.024901] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transmembrane domain 3 (TM3) plays a crucial role mediating muscarinic acetylcholine receptor activation by acetylcholine, carbachol, and other muscarinic agonists. We compared the effects of point mutations throughout TM3 on the interactions of carbachol, 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl] piperidine hydrogen chloride (AC-42), a potent structural analog of AC-42 called 4-[3-(4-butylpiperidin-1-yl)-propyl]-7-fluoro-4H-benzo[1,4]oxazin-3-one (AC-260584), N-desmethylclozapine, and clozapine with the M(1) muscarinic receptor. The binding and activation profiles of these ligands fell into three distinct patterns; one exemplified by orthosteric compounds like carbachol, another by structural analogs of AC-42, and a third by structural analogs of N-desmethylclozapine. All mutations tested severely reduced carbachol binding and activation of M(1). In contrast, the agonist actions of AC-42 and AC-260584 were greatly potentiated by the W101A mutation, slightly reduced by Y106A, and slightly increased by S109A. Clozapine and N-desmethylclozapine displayed substantially increased maximum responses at the Y106A and W101A mutants, slightly lower activity at S109A, but no substantial changes in potency. At L102A and N110A, agonist responses to AC-42, AC-260584, clozapine, and N-desmethylclozapine were all substantially reduced, but usually less than carbachol. D105A showed no functional responses to all ligands. Displacement and dissociation rate experiments demonstrated clear allosteric properties of AC-42 and AC-260584 but not for N-desmethylclozapine and clozapine, indicating that they may contact different residues than carbachol to activate M(1) but occupy substantially overlapping spaces, in contrast to AC-42 and AC-260584, which occupy separable spaces. These results show that M(1) receptors can be activated in at least three distinct ways and that there is no requirement for potent muscarinic agonists to mimic acetylcholine interactions with TM3.
Collapse
Affiliation(s)
- Tracy A Spalding
- ACADIA Pharmaceuticals, Inc., 3911 Sorrento Valley Boulevard, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Matsumoto ML, Narzinski K, Kiser PD, Nikiforovich GV, Baranski TJ. A comprehensive structure-function map of the intracellular surface of the human C5a receptor. I. Identification of critical residues. J Biol Chem 2006; 282:3105-21. [PMID: 17135254 DOI: 10.1074/jbc.m607679200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptors are one of the largest protein families in nature; however, the mechanisms by which they activate G proteins are still poorly understood. To identify residues on the intracellular face of the human C5a receptor that are involved in G protein activation, we performed a genetic analysis of each of the three intracellular loops and the carboxyl-terminal tail of the receptor. Amino acid substitutions were randomly incorporated into each loop, and functional receptors were identified in yeast. The third intracellular loop contains the largest number of preserved residues (positions resistant to amino acid substitutions), followed by the second loop, the first loop, and lastly the carboxyl terminus. Surprisingly, complete removal of the carboxyl-terminal tail did not impair C5a receptor signaling. When mapped onto a three-dimensional structural model of the inactive state of the C5a receptor, the preserved residues reside on one half of the intracellular surface of the receptor, creating a potential activation face. Together these data provide one of the most comprehensive functional maps of the intracellular surface of any G protein-coupled receptor to date.
Collapse
Affiliation(s)
- Marissa L Matsumoto
- Department of Medicine and Molecular Biology, Washington School of Medicine, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
12
|
Spalding TA, Burstein ES. Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res 2006; 26:61-85. [PMID: 16595339 DOI: 10.1080/10799890600567349] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
We review the literature describing constitutive activity of the five muscarinic acetylcholine receptors in native and recombinant systems and discuss the effect of constitutive activity on muscarinic pharmacology in the context of modern models of receptor activation. We include a summary of mutations found to cause constitutive activity and discuss the implications of these data for the structure, function, and activation mechanism of muscarinic receptors. Finally, we discuss the possible physiological significance of constitutive activity of muscarinic receptors, incorporating information provided by targeted deletion of each of the muscarinic subtypes.
Collapse
Affiliation(s)
- Tracy A Spalding
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, USA.
| | | |
Collapse
|
13
|
Phatarpekar PV, Durdan SF, Copeland CM, Crittenden EL, Neece JD, García DM. Molecular and pharmacological characterization of muscarinic receptors in retinal pigment epithelium: role in light-adaptive pigment movements. J Neurochem 2005; 95:1504-20. [PMID: 16269010 DOI: 10.1111/j.1471-4159.2005.03512.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Muscarinic receptors are the predominant cholinergic receptors in the central and peripheral nervous systems. Recently, activation of muscarinic receptors was found to elicit pigment granule dispersion in retinal pigment epithelium isolated from bluegill fish. Pigment granule movement in retinal pigment epithelium is a light-adaptive mechanism in fish. In the present study, we used pharmacological and molecular approaches to identify the muscarinic receptor subtype and the intracellular signaling pathway involved in the pigment granule dispersion in retinal pigment epithelium. Of the muscarinic receptor subtype-specific antagonists used, only antagonists specific for M1 and M3 muscarinic receptors were found to block carbamyl choline (carbachol)-induced pigment granule dispersion. A phospholipase C inhibitor also blocked carbachol-induced pigment granule dispersion, and a similar result was obtained when retinal pigment epithelium was incubated with an inositol trisphosphate receptor inhibitor. We isolated M2 and M5 receptor genes from bluegill and studied their expression. Only M5 was found to be expressed in retinal pigment epithelium. Taken together, pharmacological and molecular evidence suggest that activation of an odd subtype of muscarinic receptor, possibly M5, on fish retinal pigment epithelium induces pigment granule dispersion.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adaptation, Ocular
- Alkaloids
- Animals
- Behavior, Animal
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Cholinesterase Inhibitors/pharmacology
- Cloning, Molecular/methods
- Colforsin/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Enzyme Inhibitors/pharmacology
- Perciformes
- Phylogeny
- Pigment Epithelium of Eye/drug effects
- Pigment Epithelium of Eye/metabolism
- Pigment Epithelium of Eye/radiation effects
- Pigments, Biological/physiology
- RNA, Messenger/biosynthesis
- Receptors, Muscarinic/classification
- Receptors, Muscarinic/genetics
- Receptors, Muscarinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Sequence Analysis, DNA/methods
- Sequence Analysis, Protein/methods
- Sesquiterpenes/pharmacology
Collapse
Affiliation(s)
- Prasad V Phatarpekar
- Department of Biology, Texas State University-San Marcos, San Marcos, Texas 78666, USA
| | | | | | | | | | | |
Collapse
|
14
|
O'Connor KA, Roth BL. Screening the receptorome for plant-based psychoactive compounds. Life Sci 2005; 78:506-11. [PMID: 16213532 DOI: 10.1016/j.lfs.2005.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Indexed: 10/25/2022]
Abstract
Throughout time, humans have used psychoactive plants and plant-derived products for spiritual, therapeutic and recreational purposes. Furthermore, the investigation of psychoactive plants such as Cannabis sativa (marijuana), Nicotiana tabacum (tobacco) and analogues of psychoactive plant derivatives such as lysergic acid diethylamide (LSD) have provided insight into our understanding of neurochemical processes and diseases of the CNS. Currently, many of these compounds are being used to treat a variety of diseases, such as depression and anxiety in the case of Piper methysticum Kava Kava (Martin et al., 2002; Singh and Singh, 2002). G-protein coupled receptors (GPCRs) are the most common molecular target for both psychoactive drugs and pharmaceuticals. The "receptorome" (that portion of the genome encoding ligand reception) encompasses more than 8% of the human genome (Roth et al., 2004) and as such provides a large number of possible targets for psychoactive drug interactions. A systematic, comprehensive study is necessary to identify novel active psychoactive plant-based compounds and the molecular targets of known compounds. Herein we describe the development of a high throughput system (HTS) to screen psychoactive compounds against the receptorome and present two examples (Salvia divinorum, the "magic mint" hallucinogen and Banisteriopsis caapi, the main component of Ayahuasca, a psychoactive beverage) where HTS enabled the identification of the molecular target of each compound.
Collapse
Affiliation(s)
- Kerry Ann O'Connor
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106-4935, USA
| | | |
Collapse
|
15
|
Brüss M, Kostanian A, Bönisch H, Göthert M. The naturally occurring Arg219Leu variant of the human 5-HT1A receptor: impairment of signal transduction. Pharmacogenet Genomics 2005; 15:257-64. [PMID: 15864118 DOI: 10.1097/01213011-200504000-00009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study in transfected HEK293 cells aimed to investigate whether the pharmacological and/or transductional properties of the naturally occurring Arg219Leu variant (VAR) in the third intracellular loop of the h5-HT1A receptor differ from those of the wild-type receptor. Binding of [3H]8-hydroxy-2-(di-n-propylamino)tetraline ([H]8-OH-DPAT) and of [35S]GTPgammaS to membranes, as well as inhibition of forskolin-stimulated [3H]cAMP formation by 5-HT receptor agonists in whole cells, were estimated. The VAR and wild-type h5-HT1A receptors were found to be expressed at virtually identical densities. The VAR and wild-type receptors did also not differ with respect to the potencies of 5-HT receptor agonists and antagonists in inhibiting [3H]8-OH-DPAT binding. The ability of 5-HT to stimulate [35S]GTPgammaS binding (a measure of G protein coupling) to the VAR receptor and of the agonists 5-HT, buspirone and urapidil to inhibit forskolin-stimulated cAMP accumulation in HEK293 cells expressing the VAR receptor was decreased by 60-90%. In conclusion, the Arg219Leu variation of the human 5-HT1A receptor does not change the binding properties, but is associated with a drastic impairment of signal transduction. In patients carrying this variation, disturbances of 5-HT1A receptor-mediated functions and diminished responses to drugs acting via this receptor may occur.
Collapse
Affiliation(s)
- Michael Brüss
- Institute of Pharmacology and Toxicology, University of Bonn, Bonn, Germany.
| | | | | | | |
Collapse
|
16
|
Huang W, Osman R, Gershengorn MC. Agonist-induced conformational changes in thyrotropin-releasing hormone receptor type I: disulfide cross-linking and molecular modeling approaches. Biochemistry 2005; 44:2419-31. [PMID: 15709754 DOI: 10.1021/bi048808+] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The conformational changes at the cytoplasmic ends of transmembrane helices 5 and 6 (TMH5 and TMH6) of thyrotropin-releasing hormone (TRH) receptor type I (TRH-R1) during activation were analyzed by cysteine-scanning mutagenesis followed by disulfide cross-linking and molecular modeling. Sixteen double cysteine mutants were constructed by substitution of one residue at the cytoplasmic end of TMH5 and the other at that of TMH6. The cross-linking experiments indicate that four mutants, Q263C/G212C, Q263C/Y211C, T265C/G212C, and T265C/Y211C, exhibited disulfide bond formation that was sensitive to TRH occupancy. We refined our previous TRH-R1 models by embedding them into a hydrated explicit lipid bilayer. Molecular dynamics simulations of the models, as well as in silico double cysteine models, generated trajectories that were in agreement with experimental results. Our findings suggest that TRH binding induces a separation of the cytoplasmic ends of TMH5 and TMH6 and a rotation of TMH6. These changes likely increase the surface accessible area at the juxtamembrane region of intracellular loop 3 that could promote interactions between G proteins and key residues within the receptor.
Collapse
Affiliation(s)
- Wei Huang
- Clinical Endocrinology Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Building 50/4134, Bethesda, Maryland 20892-1818, USA
| | | | | |
Collapse
|
17
|
Affiliation(s)
- Blaine N Armbruster
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
18
|
Kristiansen K. Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 2004; 103:21-80. [PMID: 15251227 DOI: 10.1016/j.pharmthera.2004.05.002] [Citation(s) in RCA: 400] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The superfamily of G-protein-coupled receptors (GPCRs) could be subclassified into 7 families (A, B, large N-terminal family B-7 transmembrane helix, C, Frizzled/Smoothened, taste 2, and vomeronasal 1 receptors) among mammalian species. Cloning and functional studies of GPCRs have revealed that the superfamily of GPCRs comprises receptors for chemically diverse native ligands including (1) endogenous compounds like amines, peptides, and Wnt proteins (i.e., secreted proteins activating Frizzled receptors); (2) endogenous cell surface adhesion molecules; and (3) photons and exogenous compounds like odorants. The combined use of site-directed mutagenesis and molecular modeling approaches have provided detailed insight into molecular mechanisms of ligand binding, receptor folding, receptor activation, G-protein coupling, and regulation of GPCRs. The vast majority of family A, B, C, vomeronasal 1, and taste 2 receptors are able to transduce signals into cells through G-protein coupling. However, G-protein-independent signaling mechanisms have also been reported for many GPCRs. Specific interaction motifs in the intracellular parts of these receptors allow them to interact with scaffold proteins. Protein engineering techniques have provided information on molecular mechanisms of GPCR-accessory protein, GPCR-GPCR, and GPCR-scaffold protein interactions. Site-directed mutagenesis and molecular dynamics simulations have revealed that the inactive state conformations are stabilized by specific interhelical and intrahelical salt bridge interactions and hydrophobic-type interactions. Constitutively activating mutations or agonist binding disrupts such constraining interactions leading to receptor conformations that associates with and activate G-proteins.
Collapse
Affiliation(s)
- Kurt Kristiansen
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| |
Collapse
|
19
|
Del Tredici AL, Schiffer HH, Burstein ES, Lameh J, Mohell N, Hacksell U, Brann MR, Weiner DM. Pharmacology of polymorphic variants of the human 5-HT1A receptor. Biochem Pharmacol 2004; 67:479-90. [PMID: 15037200 DOI: 10.1016/j.bcp.2003.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Accepted: 09/26/2003] [Indexed: 11/15/2022]
Abstract
The 5-HT1A receptor is a critical mediator of serotonergic (5-HT) function. We have identified 13 potential single nucleotide polymorphisms resulting in amino acid changes throughout the human 5-HT1A receptor. The pharmacological profiles of these 13 polymorphic variants were then characterized using a high-throughput assay based on ligand-dependent transformation of NIH/3T3 cells. The majority of the polymorphic variants displayed wild-type pharmacological profiles in response to a panel of well-established agonists at the 5-HT1A receptor. However, the A50V polymorphic variant, which had an alanine to valine substitution in transmembrane 1, exhibited a loss of detectable response to 5-HT. Interestingly, all other agonists tested, including buspirone, lisuride, and (+)8-OH-DPAT, exhibited efficacies similar to that of the wild-type receptor. The competitive antagonist, methiothepin, also displayed a 19-fold decrease in potency at the A50V variant receptor. However, both 5-HT and methiothepin were able to compete for [3H]WAY-100635 binding to the A50V variant with affinities similar to the wild-type receptor. Moreover, the Bmax of [3H]WAY-100635 binding was 14-fold lower for the A50V variant than for the wild-type receptor. Thus, the A50V receptor variant exhibited ligand-specific functional alterations in addition to lower expression levels. These data suggest a previously unappreciated role for transmembrane 1 in mediating 5-HT response at the 5-HT1A receptor. Furthermore, individuals that potentially harbor the A50V polymorphism might display aberrant affective behaviors and altered responses to drugs targeting the 5-HT1A receptor.
Collapse
Affiliation(s)
- Andria L Del Tredici
- ACADIA Pharmaceuticals, 3911 Sorrento Valley Blvd, San Diego, CA 92121-1402, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Weissman JT, Ma JN, Essex A, Gao Y, Burstein ES. G-protein-coupled receptor-mediated activation of rap GTPases: characterization of a novel Galphai regulated pathway. Oncogene 2004; 23:241-9. [PMID: 14712229 DOI: 10.1038/sj.onc.1207014] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ras proteins mediate the proliferative effects of G-protein-coupled receptors (GPCRs), but the role of Rap proteins in GPCR signaling is unclear. We have developed a novel cellular proliferation assay for examining signal transduction to Rap utilizing Ras-rap chimeras that respond selectively to Rap-specific exchange factors, but which stimulate cellular proliferation through Ras effectors. Both the D1 dopamine receptor (Gs-coupled) and the 5HT1E serotonin receptor (Gi-coupled) mediated cellular proliferation in a Ras/rap chimera-dependent manner. Responses to both receptors were PKA-independent. Both receptors activated Ras/rap and full-length Rap as measured by activation-specific probes. Pertussis toxin blocked Ras/rap-dependent responses to 5HT1E but not D1. Ras/rap-dependent responses to both receptors were insensitive to beta-gamma scavengers. Responses to 5HT1E, but not D1, were sensitive to inhibition by a dominant-negative C3G fragment, by the Src-like kinase inhibitors PP1 and PP2, and by a dominant-negative mutant of Src. Very similar data were obtained for two other Gi-coupled receptors, the D2 dopamine receptor and the alpha2C adrenergic receptor. A constitutively active mutant of Galphai2 also mediated Ras/rap-dependent responses. These data indicate that GPCRs coupled to pertussis-toxin-sensitive G-proteins activate Rap through a Galpha subunit, C3G, and Src-dependent pathway.
Collapse
Affiliation(s)
- Jacques T Weissman
- ACADIA Pharmaceuticals Inc., 3911 Sorrento Valley Blvd, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
21
|
Weiner DM, Goodman MW, Colpitts TM, Feddock MA, Duggento KL, Nash NR, Levey AI, Brann MR. Functional Screening of Drug Target Genes. ACTA ACUST UNITED AC 2004; 4:119-28. [PMID: 15059034 DOI: 10.2165/00129785-200404020-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND AND OBJECTIVES A number of recent studies surveying single nucleotide polymorphisms within the exonic regions of human genes have revealed a significant number of such variants, including many non-synonymous variants. This highlights the need to directly identify, within individual clinically well-defined patients, those variants that alter protein function as well as structure. We report on the development of a novel phenotypic screening process that combines high-throughput molecular cloning techniques with functional expression utilizing the cell-based assay R-SAT. METHODS We applied the phenotypic screening process to an analysis of the m1 muscarinic acetylcholine receptor (CHRM1) gene in a cohort of 74 individuals, including 48 diagnosed with neurodegenerative disease, primarily Alzheimer disease, who have been stratified according to their clinical response to the acetylcholinesterase inhibitor donepezil. Phenotypic screening of the CHRM1 gene involved PCR-based amplification from genomic DNA and heterologous expression in mammalian cells. RESULTS Phenotypic screening yielded functional responses to the agonist carbachol displaying a mean potency (-pEC(50)+/- standard deviation) of 5.8 +/- 0.2, which did not differ from that observed with expression of the wild-type receptor gene (6.0 +/- 0.3). No altered levels of constitutive receptor activity were observed. Dideoxy sequencing did not reveal any non-synonymous variants in the coding exon of this gene within this clinical cohort, while detecting three synonymous variants. CONCLUSION The results confirm that the m1 receptor gene (CHRM1) is not highly polymorphic in the human population, suggesting that genetic variation within the coding exon of this gene is not a contributing factor to the clinical variability observed during treatment of dementia with cholinergic enhancement therapies.
Collapse
Affiliation(s)
- David M Weiner
- ACADIA Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Schmidt C, Li B, Bloodworth L, Erlenbach I, Zeng FY, Wess J. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that "silence" a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J Biol Chem 2003; 278:30248-60. [PMID: 12750375 DOI: 10.1074/jbc.m304991200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The M3 muscarinic receptor is a prototypical member of the class I family of G protein-coupled receptors (GPCRs). To facilitate studies on the structural mechanisms governing M3 receptor activation, we generated an M3 receptor-expressing yeast strain (Saccharomyces cerevisiae) that requires agonist-dependent M3 receptor activation for cell growth. By using receptor random mutagenesis followed by a genetic screen in yeast, we initially identified a point mutation at the cytoplasmic end of transmembrane domain (TM) VI (Q490L) that led to robust agonist-independent M3 receptor signaling in both yeast and mammalian cells. To explore further the molecular mechanisms by which point mutations can render GPCRs constitutively active, we subjected a region of the Q490L mutant M3 receptor that included TM V-VII to random mutagenesis. We then applied a yeast genetic screen to identify second-site mutations that could suppress the activating effects of the Q490L mutation and restore wild-type receptor-like function to the Q490L mutant receptor. This analysis led to the identification of 12 point mutations that allowed the Q490L mutant receptor to function in a fashion similar to the wild-type receptor. These amino acid substitutions mapped to two distinct regions of the M3 receptor, the exofacial segments of TM V and VI and the cytoplasmic ends of TM V-VII. Strikingly, in the absence of the activating Q490L mutation, all recovered point mutations severely reduced the efficiency of receptor/G protein coupling, indicating that the targeted residues play important roles in receptor activation and/or receptor/G protein coupling. This strategy should be generally applicable to identify sites in GPCRs that are critically involved in receptor function.
Collapse
Affiliation(s)
- Clarice Schmidt
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
23
|
Lin CY, Varma MG, Joubel A, Madabushi S, Lichtarge O, Barber DL. Conserved motifs in somatostatin, D2-dopamine, and alpha 2B-adrenergic receptors for inhibiting the Na-H exchanger, NHE1. J Biol Chem 2003; 278:15128-35. [PMID: 12566440 DOI: 10.1074/jbc.m212315200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor subtypes within families of G protein-coupled receptors that are activated by similar ligands can regulate distinct intracellular effectors. We identified conserved motifs within intracellular domains 2 and 3 of selective subtypes of several G protein-coupled receptor families that confer coupling to the Na-H exchanger, NHE1. A T(s,p)V motif within intracellular domain 2 and a QQ(r) motif within intracellular domain 3 are shared by the somatostatin receptor subtypes SSTR1, -3, and -4, which couple to the inhibition of NHE1, but not by SSTR2 and -5, which do not signal to NHE1. Only the collective substitution of cognate SSTR2 residues with these two motifs conferred the ability of mutant SSTR2 to inhibit NHE1. Both motifs are present in D(2)-dopamine receptors, which inhibit NHE1, and in alpha(2B)-adrenergic receptors, which couple to the inhibition of NHE1, but not in alpha(2A)-adrenergic receptors, which do not regulate NHE1. These findings indicate that motifs shared by different subfamilies of G protein-coupled receptors, but not necessarily by receptor subtypes within a subfamily, can confer coupling to a common effector.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Conserved Sequence
- Membrane Proteins
- Rats
- Receptors, Adrenergic, alpha-2/chemistry
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Dopamine D2/chemistry
- Receptors, Dopamine D2/metabolism
- Receptors, Somatostatin/chemistry
- Receptors, Somatostatin/metabolism
- Sequence Alignment
- Signal Transduction
- Sodium-Hydrogen Exchangers/antagonists & inhibitors
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Chin-Yu Lin
- University of California, San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
24
|
Lee A, Rana BK, Schiffer HH, Schork NJ, Brann MR, Insel PA, Weiner DM. Distribution analysis of nonsynonymous polymorphisms within the G-protein-coupled receptor gene family. Genomics 2003; 81:245-8. [PMID: 12659808 DOI: 10.1016/s0888-7543(03)00009-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) superfamily is one of the largest classes of proteins in mammalian genomes. GPCRs mediate diverse physiological functions and are the targets of >50% of all clinical drugs. The sequencing of the human genome and large-scale polymorphism discovery efforts have established an abundant source of single nucleotide polymorphisms (SNPs), particularly those that result in a change in the encoded amino acids (cSNPs), many are of which in GPCRs. Although the majority of these cSNPs are assumed not to be disease-causing (nDCs), experimental data on their functional impact are lacking. Here, we have computationally analyzed the distribution of 454 cSNPs within the GPCR gene family and have found that disease-causing cSNPs (DCs) are overrepresented, whereas nDCs are underrepresented or neutral in transmembrane and extracellular loop domains, respectively. This finding reflects the relative importance of these domains to GPCR function and implies different biological characteristics for the two sets of human polymorphisms.
Collapse
Affiliation(s)
- Andria Lee
- ACADIA Pharmaceuticals, 3911 Sorrento Valley Blvd., San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Bartus CL, Jaakola VP, Reusch R, Valentine HH, Heikinheimo P, Levay A, Potter LT, Heimo H, Goldman A, Turner GJ. Downstream coding region determinants of bacterio-opsin, muscarinic acetylcholine receptor and adrenergic receptor expression in Halobacterium salinarum. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:109-23. [PMID: 12586385 DOI: 10.1016/s0005-2736(02)00710-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of this work is to develop a prokaryotic system capable of expressing membrane-bound receptors in quantities suitable for biochemical and biophysical studies. Our strategy exploits the endogenous high-level expression of the membrane protein bacteriorhodopsin (BR) in the Archaeon Halobacterium salinarum. We attempted to express the human muscarinic acetylcholine (M(1)) and adrenergic (a2b) receptors by fusing the coding region of the m1 and a2b genes to nucleotide sequences known to direct bacterio-opsin (bop) gene transcription. The fusions included downstream modifications to produce non-native carboxyl-terminal amino acids useful for protein identification and purification. bop mRNA and BR accumulation were found to be tightly coupled and the carboxyl-terminal coding region modifications perturbed both. m1 and a2b mRNA levels were low, and accumulation was sensitive to both the extent of the bop gene fusion and the specific carboxyl-terminal coding sequence modifications included. Functional a2b adrenergic receptor expression was observed to be dependent on the downstream coding region. This work demonstrates that a critical determinant of expression resides in the downstream coding region of the wild-type bop gene and manipulation of the downstream coding region of heterologous genes may affect their potential for expression in H. salinarum.
Collapse
Affiliation(s)
- Cynthia L Bartus
- Department of Physiology and Biophysics, and the Neuroscience Program, University of Miami School of Medicine, PO Box 016430, 1600 NW 10th Avenue, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Piu F, Magnani M, Ader ME. Dissection of the cytoplasmic domains of cytokine receptors involved in STAT and Ras dependent proliferation. Oncogene 2002; 21:3579-91. [PMID: 12032860 DOI: 10.1038/sj.onc.1205444] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2001] [Revised: 02/11/2002] [Accepted: 02/21/2002] [Indexed: 11/08/2022]
Abstract
Cytokine receptors have different signaling requirements which ultimately lead to various physiological responses. In an effort to precisely characterize the molecular determinants involved in the proliferative response mediated by cytokines, we examine dose-dependent proliferation of the betac (GM-CSF, IL-3, IL-5) and homodimeric (G-CSF, TPO) cytokine receptors. Here we report that all cytokine receptors tested activate mostly STAT3 and STAT5. While STAT3 had a positive effect on betac cytokine receptor dependent proliferation, STAT5 was strongly inhibitory. Similarly, G-CSF and TPO lead to activation of STAT3 and STAT5 but, unlike the betac cytokine receptors, both stimulated cellular growth. On the other hand, Ras activation was necessary for all receptor mediated proliferation with the exception of G-CSF R. Truncated mutants of the receptors intracellular domains were used to delineate the functional domains involved in JAK/STAT and Ras activation linked to cellular growth. For instance, we revealed a critical role for the specific alpha subunit of the betac receptors in triggering receptor activation, STAT3 stimulation and proliferation, while Ras activation originates from the distal intracellular portion of the betac subunit. Finally, we showed that proximal STAT activation is the triggering event of G-CSF and TPO receptor function.
Collapse
Affiliation(s)
- Fabrice Piu
- ACADIA Pharmaceuticals Inc., Signal Transduction Group, San Diego, California, CA 92121, USA.
| | | | | |
Collapse
|
27
|
Affiliation(s)
- Martine J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, 1081HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Ward SDC, Hamdan FF, Bloodworth LM, Wess J. Conformational changes that occur during M3 muscarinic acetylcholine receptor activation probed by the use of an in situ disulfide cross-linking strategy. J Biol Chem 2002; 277:2247-57. [PMID: 11698401 DOI: 10.1074/jbc.m107647200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structural changes involved in ligand-dependent activation of G protein-coupled receptors are not well understood at present. To address this issue, we developed an in situ disulfide cross-linking strategy using the rat M(3) muscarinic receptor, a prototypical G(q)-coupled receptor, as a model system. It is known that a tyrosine residue (Tyr(254)) located at the C terminus of transmembrane domain (TM) V and several primarily hydrophobic amino acids present within the cytoplasmic portion of TM VI play key roles in determining the G protein coupling selectivity of the M(3) receptor subtype. To examine whether M3 receptor activation involves changes in the relative orientations of these functionally critical residues, pairs of cysteine residues were substituted into a modified version of the M(3) receptor that contained a factor Xa cleavage site within the third intracellular loop and lacked most endogenous cysteine residues. All analyzed mutant receptors contained a Y254C point mutation and a second cysteine substitution within the segment Lys(484)-Ser(493) at the intracellular end of TM VI. Following their transient expression in COS-7 cells, mutant receptors present in their native membrane environment (in situ) were subjected to mild oxidizing conditions, either in the absence or in the presence of the muscarinic agonist, carbachol. The successful formation of disulfide cross-links was monitored by studying changes in the electrophoretic mobility of oxidized, factor Xa-treated receptors on SDS gels. The observed cross-linking patterns indicated that M(3) receptor activation leads to structural changes that allow the cytoplasmic ends of TM V and TM VI to move closer to each other and that also appear to involve a major change in secondary structure at the cytoplasmic end of TM VI. This is the first study employing an in situ disulfide cross-linking strategy to examine agonist-dependent dynamic structural changes in a G protein-coupled receptor.
Collapse
Affiliation(s)
- Stuart D C Ward
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
29
|
Chan KY, Pang RT, Chow BK. Functional segregation of the highly conserved basic motifs within the third endoloop of the human secretin receptor. Endocrinology 2001; 142:3926-34. [PMID: 11517171 DOI: 10.1210/endo.142.9.8389] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, a mutagenesis-based strategy was employed to assess the roles of two highly conserved motifs (KLR and RLAR) within the third endoloop of the human secretin receptor. Block deletion of KLRT and mutation of Lys323 (K(323)I) significantly reduced cAMP accumulation, and these mutations did not affect ligand interaction and receptor number expressed on the cell surface. Thus, the KLRT region at the N terminus of the third endoloop, particularly Lys323, is important for G protein coupling. For the RLAR motif, receptors with substitutions at positions 339 and 342 from Arg to Ala (R(339, 342)A), Glu (R(339, 342)E), or Ile (R(339, 342)I) as well as block deletion of the RLAR motif were all found to be defective in both secretin-binding and cAMP production. Interestingly, a single mutation at the corresponding positions of Arg339 or Arg342 responded as the wild-type human secretin receptor in all functional assays, indicating that the presence of one Arg at either position within the RLAR motif is sufficient for a normal receptor function. Immunofluorescent staining of these mutant receptors showed that these Arg residues are responsible for surface presentation and/or receptor stability.
Collapse
Affiliation(s)
- K Y Chan
- Department of Zoology, University of Hong Kong, Hong Kong, People's Republic of China
| | | | | |
Collapse
|
30
|
Kohen R, Fashingbauer LA, Heidmann DE, Guthrie CR, Hamblin MW. Cloning of the mouse 5-HT6 serotonin receptor and mutagenesis studies of the third cytoplasmic loop. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 90:110-7. [PMID: 11406289 DOI: 10.1016/s0169-328x(01)00090-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned the mouse 5-HT6 serotonin receptor and examined structure-function relationships in the C-terminal end of the third cytoplasmic (CIII) loop, introducing point mutations by site-directed mutagenesis at positions 264 to 268. We examined the ability of 5-HT6 wild type and receptor mutants to activate a cAMP responsive reporter gene when transiently expressed in JEG-3 or COS-7 cells. The wild type 5-HT6 receptor showed strong constitutive activity even when expressed at very low levels and which increased in proportion to the amount of receptor cDNA transfected. Three of the five mutants investigated (K264I, K267A and A268R) showed reduction in constitutive activity compared to wild type. These data suggest that constitutive activity may be important to 5-HT6 receptor activity in vivo and that, unlike some other G-protein coupled receptors, alteration in the BBXXB CIII-loop motif reduces rather than further activates basal activity of the murine 5-HT6 receptor.
Collapse
Affiliation(s)
- R Kohen
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, GRECC-182B, 1660 S. Columbian Way, Seattle, WA 98108, USA
| | | | | | | | | |
Collapse
|
31
|
Chen A, Gao ZG, Barak D, Liang BT, Jacobson KA. Constitutive activation of A(3) adenosine receptors by site-directed mutagenesis. Biochem Biophys Res Commun 2001; 284:596-601. [PMID: 11396942 PMCID: PMC3626079 DOI: 10.1006/bbrc.2001.5027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The objective of this study was to create constitutively active mutant human A(3) adenosine receptors (ARs) using single amino acid replacements, based on findings from other G protein-coupled receptors. A(3) ARs mutated in transmembrane helical domains (TMs) 1, 3, 6, and 7 were expressed in COS-7 cells and subjected to agonist radioligand binding and phospholipase C (PLC) and adenylyl cyclase (AC) assays. Three mutant receptors, A229E in TM6 and R108A and R108K in the DRY motif of TM3, were found to be constitutively active in both functional assays. The potency of the A(3) agonist Cl-IB-MECA (1-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methyluronamide) in PLC activation was enhanced by at least an order of magnitude over wild type (EC(50) 951 nM) in R108A and A229E mutant receptors. Cl-IB-MECA was much less potent (>10-fold) in C88F, Y109F, and Y282F and mutants or inactive following double mutation of the DRY motif. The degree of constitutive activation was more pronounced for the AC signaling pathway than for the PLC signaling pathway. The results indicated that specific locations within the TMs proximal to the cytosolic region were responsible for constraining the receptor in a G protein-uncoupled conformation.
Collapse
Affiliation(s)
- Aishe Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dov Barak
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- on leave from Israel Institute for Biological Research, Ness Ziona, Israel
| | - Bruce T. Liang
- Department of Medicine, Cardiovascular Division, and Department of Pharmacology University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Abstract
Upon the binding of their ligands, G protein-coupled receptors couple to the heterotrimeric G proteins to transduce a signal. One receptor family may couple to a single G protein subtype and another family to several ones. Is there a signal in the receptor sequence that can give an indication of the G protein subtype selectivity? We used a sequence analysis method on biogenic amine and adenosine receptors and concluded that a weak signal can be detected in receptor families where specialization for coupling to a given G protein occurred during a recent divergent evolutionary process. Proteins 2000;41:448-459.
Collapse
Affiliation(s)
- F Horn
- BIOcomputing, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
33
|
Jensen AA, Spalding TA, Burstein ES, Sheppard PO, O'Hara PJ, Brann MR, Krogsgaard-Larsen P, Bräuner-Osborne H. Functional importance of the Ala(116)-Pro(136) region in the calcium-sensing receptor. Constitutive activity and inverse agonism in a family C G-protein-coupled receptor. J Biol Chem 2000; 275:29547-55. [PMID: 10835431 DOI: 10.1074/jbc.m910023199] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-sensing receptor (CaR) belongs to family C of the G-protein-coupled receptor superfamily. To date 14 activating mutations in CaR showing increased sensitivity to Ca(2+) have been identified in humans with autosomal dominant hypocalcemia. Four of these activating mutations are found in the Ala(116)-Pro(136) region of CaR, indicating that this part of the receptor is particularly sensitive to mutation-induced activation. This region was subjected to random saturation mutagenesis, and 219 mutant receptor clones were isolated and screened pharmacologically in a high throughput screening assay. Selected mutants were characterized further in an inositol phosphate assay. The vast majority of the mutants tested displayed an increased affinity for Ca(2+). Furthermore, 21 of the mutants showed increased basal activity in the absence of agonist. This constitutive activity was not diminished when the mutations were transferred to a chimeric receptor Ca/1a consisting of the amino-terminal domain of the CaR and the 7 transmembrane and intracellular domains of the metabotropic glutamate receptor mGluR1a. CPCCOEt, a noncompetitive antagonist acting at the 7 transmembrane domain of mGluR1a, suppressed the elevated basal response of the constitutively activated Ca/1a mutants demonstrating inverse agonist activity of CPCCOEt. Taken together, our results demonstrate that the Ala(116)-Pro(136) region is of key importance for the maintenance of the inactive conformation of CaR.
Collapse
Affiliation(s)
- A A Jensen
- NeuroScience PharmaBiotec Research Centre, Department of Medicinal Chemistry, The Royal Danish School of Pharmacy, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang M, Zhao X, Chen HC, Catt KJ, Hunyady L. Activation of the AT1 angiotensin receptor is dependent on adjacent apolar residues in the carboxyl terminus of the third cytoplasmic loop. J Biol Chem 2000; 275:15782-8. [PMID: 10747880 DOI: 10.1074/jbc.m000198200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The C-terminal region of the third intracellular loop of the AT(1) angiotensin receptor (AT(1)-R) is an important determinant of G protein coupling. The roles of individual residues in agonist-induced activation of G(q/11)-dependent phosphoinositide hydrolysis were determined by mutational analysis of the amino acids in this region. Functional studies on mutant receptors transiently expressed in COS-7 cells showed that alanine substitutions of the amino acids in positions 232-240 of the third loop had no major effect on signal generation. However, deletion mutations that removed Ile(238) or affected its position relative to transmembrane helix VI significantly impaired angiotensin II-induced inositol phosphate responses. Substitution of Ile(238) with an acidic residue abolished the ability of the receptor to mediate inositol phosphate production, whereas its replacement with basic or polar residues reduced the amplitude of inositol phosphate responses. Substitutions of Phe(239) with polar residues had relatively minor effects on inositol phosphate signal generation, but its replacement by aspartic acid reduced, and by positively charged residues (Lys, Arg) significantly increased, angiotensin II-induced inositol phosphate responses. The internalization kinetics of the Ile(238) and Phe(239) mutant receptors were impaired in parallel with the reduction in their signaling responses. These findings have identified Ile(238) and Phe(239) as the critical residues in the C-terminal region of the third intracellular loop of the AT(1)-R for receptor activation. They also suggest that an apolar amino acid corresponding to Ile(238) of the AT(1)-R is a general requirement for activation of other G protein-coupled receptors by their agonist ligands.
Collapse
Affiliation(s)
- M Zhang
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | | | |
Collapse
|
35
|
Eglen RM, Nahorski SR. The muscarinic M(5) receptor: a silent or emerging subtype? Br J Pharmacol 2000; 130:13-21. [PMID: 10780992 PMCID: PMC1572033 DOI: 10.1038/sj.bjp.0703276] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/1999] [Revised: 12/17/1999] [Accepted: 02/09/2000] [Indexed: 11/08/2022] Open
Affiliation(s)
- R M Eglen
- Center for Biological Research, Neurobiology Unit, Roche Bioscience, Palo Alto, CA 94304, USA
| | | |
Collapse
|
36
|
Abstract
G protein-coupled, seven-transmembrane segment receptors (GPCRs or 7TM receptors), with more than 1000 different members, comprise the largest superfamily of proteins in the body. Since the cloning of the first receptors more than a decade ago, extensive experimental work has uncovered multiple aspects of their function and challenged many traditional paradigms. However, it is only recently that we are beginning to gain insight into some of the most fundamental questions in the molecular function of this class of receptors. How can, for example, so many chemically diverse hormones, neurotransmitters, and other signaling molecules activate receptors believed to share a similar overall tertiary structure? What is the nature of the physical changes linking agonist binding to receptor activation and subsequent transduction of the signal to the associated G protein on the cytoplasmic side of the membrane and to other putative signaling pathways? The goal of the present review is to specifically address these questions as well as to depict the current awareness about GPCR structure-function relationships in general.
Collapse
Affiliation(s)
- U Gether
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
37
|
Miettinen HM, Gripentrog JM, Mason MM, Jesaitis AJ. Identification of putative sites of interaction between the human formyl peptide receptor and G protein. J Biol Chem 1999; 274:27934-42. [PMID: 10488141 DOI: 10.1074/jbc.274.39.27934] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wild-type and 35 mutant formyl peptide receptors (FPRs) were stably expressed in Chinese hamster ovary cells. All cell surface-expressed mutant receptors bound N-formyl peptide with similar affinities as wild-type FPR, suggesting that the mutations did not affect the ligand-binding site. G protein coupling was examined by quantitative analysis of N-formyl-methionyl-leucyl-phenylalanine-induced increase in binding of (35)S-labeled guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) to membranes. The most prominent uncoupled FPR mutants were located in the N-terminal part of the second transmembrane domain (S63W and D71A) and the C-terminal interface of the third transmembrane domain (R123A and C124S/C126S). In addition, less pronounced uncoupling was detected with deletion mutations in the third cytoplasmic loop and in the cytoplasmic tail. Further analysis of some of the mutants that were judged to be uncoupled based on the [(35)S]GTPgammaS membrane-binding assay were found to transduce a signal, as evidenced by intracellular calcium mobilization and activation of p42/44 MAPK. Thus, these single point mutations in FPR did not completely abolish the interaction with G protein, emphasizing that the coupling site is coordinated by several different regions of the receptor. Mutations located in the putative fifth and sixth transmembrane domains near the N- and C-terminal parts of the third cytoplasmic loop did not result in uncoupling. These regions have previously been shown to be critical for G protein coupling to many other G protein-coupled receptors. Thus, FPR appears to have a G protein-interacting site distinct from the adrenergic receptors, the muscarinic receptors, and the angiotensin receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Androstadienes/pharmacology
- Animals
- CHO Cells
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cricetinae
- Cytoplasm/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- GTP-Binding Proteins/chemistry
- GTP-Binding Proteins/metabolism
- Guanosine 5'-O-(3-Thiotriphosphate)/metabolism
- Humans
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- N-Formylmethionine Leucyl-Phenylalanine/pharmacology
- Protein Structure, Secondary
- Receptors, Formyl Peptide
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Transfection
- Virulence Factors, Bordetella/pharmacology
- Wortmannin
Collapse
Affiliation(s)
- H M Miettinen
- Department of Microbiology, Montana State University, Bozeman, Montana 59717-3520, USA.
| | | | | | | |
Collapse
|
38
|
Wheeler MB, Gelling RW, Hinke SA, Tu B, Pederson RA, Lynn F, Ehses J, McIntosh CH. Characterization of the carboxyl-terminal domain of the rat glucose-dependent insulinotropic polypeptide (GIP) receptor. A role for serines 426 and 427 in regulating the rate of internalization. J Biol Chem 1999; 274:24593-601. [PMID: 10455124 DOI: 10.1074/jbc.274.35.24593] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is a gastrointestinal hormone involved in the regulation of insulin secretion. In non-insulin-dependent diabetes mellitus insulin responses to GIP are blunted, possibly due to altered signal transduction or reduced receptor number. Site-directed mutagenesis was used to construct truncated GIP receptors to study the importance of the carboxyl-terminal tail (CT) in binding, signaling, and receptor internalization. Receptors truncated at amino acids 425, 418, and 405, expressed in COS-7 or CHO-K1 cells, exhibited similar binding to wild type receptors. GIP-dependent cAMP production with the 405 mutant was decreased in COS-7 cells. Maximal cAMP production in CHO-K1 cells was reduced with all truncated forms. Binding was undetectable with a receptor truncated at amino acid 400; increasing tail length by adding 5 alanines restored binding and signaling. Mutants produced by alanine scanning of residues 394-401, adjacent to transmembrane domain 7, were all functional. CT truncation by 30 or more amino acids, mutation of serines 426/427, singly or combined, or complete CT serine knockout all reduced receptor internalization rate. The majority of the GIP receptor CT is therefore not required for signaling, a minimum chain length of approximately 405 amino acids is needed for receptor expression, and serines 426 and 427 are important for regulating rate of receptor internalization.
Collapse
Affiliation(s)
- M B Wheeler
- Departments of Medicine and Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pedersen H, Bräuner-Osborne H, Ball RG, Frydenvang K, Meier E, Bøgesø KP, Krogsgaard-Larsen P. Synthesis and muscarinic receptor pharmacology of a series of 4,5,6,7-tetrahydroisothiazolo[4,5-c]pyridine bioisosteres of arecoline. Bioorg Med Chem 1999; 7:795-809. [PMID: 10400332 DOI: 10.1016/s0968-0896(99)00033-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A series of O- and ring-alkylated derivatives of 4,5,6,7-tetrahydroisothiazolo[4,5-c]pyridin-3-ol was synthesized via treatment of appropriately substituted 4-benzylamino-1,2,5,6-tetrahydropyridine-3-carboxamides with hydrogen sulfide and subsequent ring closure by oxidation with bromine. The muscarinic receptor affinity as well as estimated relative efficacy and subtype selectivity of this series of bicyclic arecoline bioisosteres were determined using rat brain membranes and a number of tritiated muscarinic receptor ligands. The effects at the five cloned human muscarinic receptor subtypes of a selected series of chiral analogues, with established absolute stereochemistry, were studied using receptor selection and amplification technology (R-SAT). The potency, relative efficacy, and receptor subtype selectivity of these compounds were related to the structure of the O-substituents and the position and stereochemical orientation of the piperidine ring methyl substituents.
Collapse
Affiliation(s)
- H Pedersen
- Medicinal Chemistry Research, H. Lundbeck A/S, Valby-Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Gelber EI, Kroeze WK, Willins DL, Gray JA, Sinar CA, Hyde EG, Gurevich V, Benovic J, Roth BL. Structure and function of the third intracellular loop of the 5-hydroxytryptamine2A receptor: the third intracellular loop is alpha-helical and binds purified arrestins. J Neurochem 1999; 72:2206-2214. [PMID: 10217304 DOI: 10.1046/j.1471-4159.1999.0722206.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the precise structure and function of the intracellular domains of G protein-coupled receptors is essential for understanding how receptors are regulated, and how they transduce their signals from the extracellular milieu to intracellular sites. To understand better the structure and function of the intracellular domain of the 5-hydroxytryptamine2A (5-HT2A) receptor, a model G(alpha)q-coupled receptor, we overexpressed and purified to homogeneity the entire third intracellular loop (i3) of the 5-HT2A receptor, a region previously implicated in G-protein coupling. Circular dichroism spectroscopy of the purified i3 protein was consistent with alpha-helical and beta-loop, -turn, and -sheet structure. Using random peptide phage libraries, we identified several arrestin-like sequences as i3-interacting peptides. We subsequently found that all three known arrestins (beta-arrestin, arrestin-3, and visual arrestin) bound specifically to fusion proteins encoding the i3 loop of the 5-HT(2A) receptor. Competition binding studies with synthetic and recombinant peptides showed that the middle portion of the i3 loop, and not the extreme N and C termini, was likely to be involved in i3-arrestin interactions. Dual-label immunofluorescence confocal microscopic studies of rat cortex indicated that many cortical pyramidal neurons coexpressed arrestins (beta-arrestin or arrestin-3) and 5-HT2A receptors, particularly in intracellular vesicles. Our results demonstrate (a) that the i3 loop of the 5-HT2A receptor represents a structurally ordered domain composed of alpha-helical and beta-loop, -turn, and -sheet regions, (b) that this loop interacts with arrestins in vitro, and is hence active, and (c) that arrestins are colocalized with 5-HT2A receptors in vivo.
Collapse
Affiliation(s)
- E I Gelber
- Department of Biochemistry, Case Western Reserve University Medical School, Cleveland, Ohio 44106-4935, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Filteau F, Veilleux F, Lévesque D. Effects of reciprocal chimeras between the C-terminal portion of third intracellular loops of the human dopamine D2 and D3 receptors. FEBS Lett 1999; 447:251-6. [PMID: 10214956 DOI: 10.1016/s0014-5793(99)00290-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dopamine D3 receptor is a member of the G protein-coupled superfamily of receptors. However, its coupling with intracellular events is still not well understood. We have performed chimera constructions in which amino acid residues located in a region of the receptor involved in the coupling with second messengers (the C-terminal portion of the third intracellular loop) have been exchanged between dopamine D2 and D3 receptors. Chimera constructions did not modify substantially the pharmacological profiles, nor G protein coupling, as compared to their respective wild-type receptors. However, the D2 receptor chimera, containing the C-terminal portion of the third intracellular loop of the D3 receptor, has a lower potency to inhibit cyclic AMP production. The reciprocal construction generated a D3 receptor that is fully coupled to this second messenger pathway whereas, the native D3 receptor is uncoupled to this pathway in our transfected cells. These results suggest that the sequence selected is important for specific coupling characteristics shown by these two dopamine receptor homologues.
Collapse
Affiliation(s)
- F Filteau
- Unité de Recherche en Neuroscience, Centre Hospitalier Universitaire du Québec, Canada
| | | | | |
Collapse
|
42
|
Wang HL. A conserved arginine in the distal third intracellular loop of the mu-opioid receptor is required for G protein activation. J Neurochem 1999; 72:1307-14. [PMID: 10037504 DOI: 10.1046/j.1471-4159.1999.0721307.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, the functional significance of the intracellular C-terminal loop of the mu-opioid receptor in activating Gi proteins was determined by constructing a C-terminal deletion mutant mu(C delta 45) receptor, which lacks the carboxyl 45 amino acids. When the truncated mu(C delta 45) receptor was stably expressed in human embryonic kidney (HEK) 293 cells, the efficacy and the potency of [D-Ala2,N-Me-Phe4,Gly-ol5]enkephalin (DAMGO), a specific mu-opioid receptor agonist, to inhibit forskolin-stimulated adenylate cyclase activity were not significantly affected. Similar to other G-coupled receptors, the third cytoplasmic loop of the mu-opioid receptor contains conserved basic residues (R276/R277/R280) at the C-terminal segment. Mutating these basic residues to neutral amino acids (L276/M277/L280) greatly impaired the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP formation. Replacing R276/R277 with L276/M277 did not affect the efficacy and potency by which DAMGO inhibits the adenylate cyclase activity. In HEK 293 cells stably expressing mutant (R280L) mu-opioid receptors, the ability of DAMGO to inhibit forskolin-stimulated cyclic AMP production was greatly reduced. These results suggest that the intracellular carboxyl tail of the mu-opioid receptor does not play a significant role in activating Gi proteins and that the arginine residue (R280) at the distal third cytoplasmic loop is required for Gi activation by the mu-opioid receptor.
Collapse
Affiliation(s)
- H L Wang
- Department of Physiology, Chang Gung University School of Medicine, Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
43
|
Abstract
Molecular cloning studies have shown that G-protein-coupled receptors form one of the largest protein families found in nature, and it is estimated that approximately 1000 different such receptors exist in mammals. Characteristically, when activated by the appropriate ligand, an individual receptor can recognize and activate only a limited set of the many structurally closely related heterotrimeric G-proteins expressed within a cell. To understand how this selectivity is achieved at a molecular level has become the focus of an ever increasing number of laboratories. This review provides an overview of recent structural, molecular genetic, biochemical, and biophysical studies that have led to novel insights into the molecular mechanisms governing receptor-mediated G-protein activation and receptor/G-protein coupling selectivity.
Collapse
Affiliation(s)
- J Wess
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Abstract
The molecular mechanisms governing the coupling selectivity of G protein-coupled receptors activated by peptide ligands are not well understood. To shed light on this issue, we have used the Gq/11-linked V1a and the Gs-coupled V2 vasopressin peptide receptors as model systems. To explore the structural basis underlying the ability of the V2 receptor to selectively recognize Gs, we systematically substituted distinct V2 receptor segments (or single amino acids) into the V1a receptor and studied whether the resulting hybrid receptors gained the ability to mediate hormone-dependent cAMP production. This strategy appeared particularly attractive since hormone stimulation of the V1a receptor has virtually no effect on intracellular cAMP levels. Functional analysis of a large number of mutant receptors transiently expressed in COS-7 cells indicated that the presence of V2 receptor sequence at the N terminus of the third intracellular loop is critical for efficient activation of Gs. More detailed mutational analysis of this receptor region showed that two polar V2 receptor residues, Gln225 and Glu231, play key roles in Gs recognition. In addition, a short sequence at the N terminus of the cytoplasmic tail was found to make an important contribution to V2 receptor/Gs coupling selectivity. We also made the novel observation that the efficiency of V2 receptor/Gs coupling can be modulated by the length of the central portion of the third intracellular loop (rather than the specific amino acid sequence within this domain). These findings provide novel insights into the molecular mechanisms regulating peptide receptor/G protein coupling selectivity.
Collapse
Affiliation(s)
- I Erlenbach
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
45
|
Stepwise phosphorylation mechanisms and signal transmission within a ligand–receptor–Gαβγ-protein-complex. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s0166-1280(98)00073-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Burstein ES, Spalding TA, Brann MR. The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J Biol Chem 1998; 273:24322-7. [PMID: 9733718 DOI: 10.1074/jbc.273.38.24322] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have completed a systematic search of the intracellular loops of a muscarinic acetylcholine receptor for domains that govern G-protein coupling. A unique feature of the second intracellular (i2) loop was an ordered cluster of residues where diverse substitutions cause constitutive activation. A second group of residues in i2 was identified where mutations compromised receptor/G-protein coupling. The residues of each group alternate and are spaced three to four positions apart, suggesting an alpha-helical structure where these groups form opposing faces of the helix. We propose that the constitutively activating face normally constrains the receptor in the "off-state," while the other face couples G-proteins in the "on-state." Therefore, the i2 loop functions as the switch enabling G-protein activation.
Collapse
Affiliation(s)
- E S Burstein
- ACADIA Pharmaceuticals Inc., San Diego, California 92121, USA
| | | | | |
Collapse
|
47
|
Spalding TA, Burstein ES, Henderson SC, Ducote KR, Brann MR. Identification of a ligand-dependent switch within a muscarinic receptor. J Biol Chem 1998; 273:21563-8. [PMID: 9705286 DOI: 10.1074/jbc.273.34.21563] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G-protein-coupled receptors spontaneously switch between active and inactive conformations. Agonists stabilize the active conformation, whereas antagonists stabilize the inactive conformation. In a systematic search for residues that participate in receptor function, several regions of the m5 muscarinic receptor were randomly mutated and tested for their functional properties. Mutations spanning one face of transmembrane 6 (TM6) were found to induce high levels of receptor activity in the absence of agonists (constitutive activity). The same face of TM6 contained several residues crucial for receptor activation by agonists and one residue identified as a contact site for both agonists and antagonists. In addition, one mutation induced agonist-like responses from the receptor when exposed to classical antagonists. These results suggest that TM6 is a switch that defines the activation state of the receptor, and that ligand interactions with TM6 stabilize the receptor in either an active or an inactive conformation.
Collapse
Affiliation(s)
- T A Spalding
- ACADIA Pharmaceuticals, Inc., San Diego, California 92121, USA.
| | | | | | | | | |
Collapse
|
48
|
Kostenis E, Zeng FY, Wess J. Structure-function analysis of muscarinic acetylcholine receptors. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:265-8. [PMID: 9789820 DOI: 10.1016/s0928-4257(98)80030-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural basis underlying the G protein coupling selectivity of different muscarinic receptor subtypes was analyzed by using a combined molecular genetic/biochemical approach. These studies led to the identification of key residues on the receptors as well as the associated G proteins that are critically involved in determining proper receptor/G protein recognition. Mutational analysis of the m3 muscarinic receptor showed that most native cysteine residues are not required for productive receptor/G protein coupling. The putative extracellular disulfide bond was found to be essential for efficient trafficking of the receptor protein to the cell surface but not for receptor-mediated G protein activation.
Collapse
Affiliation(s)
- E Kostenis
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
49
|
Burstein ES, Spalding TA, Brann MR. Structure/function relationships of a G-protein coupling pocket formed by the third intracellular loop of the m5 muscarinic receptor. Biochemistry 1998; 37:4052-8. [PMID: 9521726 DOI: 10.1021/bi972132j] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using random saturation mutagenesis, we have previously identified the amino acids K439, A440, and A441 in the C-terminus of the third intracellular loop (Ci3) of the m5 muscarinic receptor as being critical for G-protein coupling [Burstein, E. S., Spalding, T. A., Hill-Eubanks, D., and Brann, M. R. (1995) J. Biol. Chem. 270, 3141-3146]. In the present study, we have constructed a series of point mutants at each of these residues and characterized their functional phenotypes in order to define the structure/function relationships of each of these residues for G-protein coupling. Although a wide variety of substitutions were tolerated at K439, most caused significant increases in the EC50 of carbachol and decreases in the maximum response (Rmax). Only other basic residues were well tolerated (<10-fold increase in EC50, >70% of wild type). Acidic substitutions had the largest effects, reducing Rmax to under 20% of wild type. At A440, only the conservative substitution threonine was well tolerated. Substitutions by hydrophobic, polar, and basic residues caused 10-80-fold increases in EC50 values and in many cases also significantly reduced Rmax (<70% of wild type). In contrast, at A441 mutations selectively affected EC50 but not Rmax values. Previously we identified I216, Y217, T220, and R223 as the residues in the N-terminus of the i3 loop of m5 (Ni3) that are critical for G-protein coupling [Burstein, E. S., Spalding, T. S., and Brann, M. R. (1996) J. Biol. Chem. 271, 2882-2885]. To investigate whether there were additive contributions of Ni3 and Ci3 to G-protein coupling, the functional responses of two double mutants, R223E/K439E and Y217S/A441T, were evaluated. Though these mutations were tolerated individually, both double mutant receptors produced almost indetectable responses. Little or no changes in expression levels or ligand binding properties were detected, suggesting the observed effects were caused primarily by changes receptor/G-protein coupling. We conclude that K439 participates in G-protein activation through an ionic mechanism, that A440 fulfills a structural role forming part of the G-protein coupling pocket, and that A441 contributes to receptor affinity for G-proteins. We propose that the third intracellular loop forms a G-protein coupling pocket comprised of a positively charged "lip" and a hydrophobic core.
Collapse
Affiliation(s)
- E S Burstein
- Acadia Pharmaceuticals, Incorporated, San Diego, California 92121, USA
| | | | | |
Collapse
|
50
|
Pauwels PJ, Wurch T. Review: amino acid domains involved in constitutive activation of G-protein-coupled receptors. Mol Neurobiol 1998; 17:109-35. [PMID: 9887449 DOI: 10.1007/bf02802027] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Guanine nucleotide-binding protein-coupled receptors may attain an active conformation in the absence of agonist by spontaneous isomerization and thus yield constitutive, agonist-independent, activity. This has mainly been demonstrated for isolated membranes and recombinant wild-type receptors, and mutant receptors. They generally show remarkable increases in the sensitivity of a biological response. The location of activating mutations both within a single receptor and across receptors is widespread, with changes reported in the seven-transmembrane domains, the second and third intracellular loop. For most of these receptors, examples of ligands defined as inverse agonists have been documented. Regulation of these receptors by inverse agonists opposite to that observed by agonists, and the therapeutic potential of inverse agonists is underlined.
Collapse
Affiliation(s)
- P J Pauwels
- Department of Cellular and Molecular Biology, Centre de Recherche Pierre Fabre, Castres, France
| | | |
Collapse
|