1
|
Zheng Y, Gu Z, Shudde CE, Piper TL, Wang X, Aleck GA, Zhou J, King D, Chanda MK, Trinch L, Zou W, Courtney AH. An engineered viral protein activates STAT5 to prevent T cell suppression. Sci Immunol 2025; 10:eadn9633. [PMID: 40408430 DOI: 10.1126/sciimmunol.adn9633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/08/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
T cell therapy efficacy can be compromised if cytokine-induced Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling is dysregulated or insufficient to sustain functionality. Here, we demonstrate that LCK kinase activity can be recruited to noncanonical protein substrates to directly activate targeted STAT proteins in T cells. STAT activation was accomplished by engineering the herpesvirus saimiri tyrosine kinase interacting protein (TIP) to provide a platform for the enforced recruitment of LCK to STAT proteins. We determined that a minimal region of TIP that binds to LCK could be combined with STAT binding sites derived from endogenous cytokine receptors. These constructs activated targeted STAT proteins in a cytokine-independent manner. We identified a STAT5 activator that sustained CD8+ T cell survival and cytotoxic function ex vivo in the absence of interleukin-2. Tumor outgrowth was reduced in vivo because of enhanced T cell persistence and functionality. Single-cell transcriptomics revealed that the STAT5 activator prevented the expression of genes associated with an exhausted T cell fate. Our findings demonstrate that signaling pathways can be rewired in T cells to sustain their function in solid tumors.
Collapse
Affiliation(s)
- Yating Zheng
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zehui Gu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Claire E Shudde
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor L Piper
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xinyu Wang
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Grace A Aleck
- Cellular and Molecular Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiajia Zhou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- BRCF Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Monica K Chanda
- Cancer Biology Training Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lilliana Trinch
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam H Courtney
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res 2015; 2015:395371. [PMID: 26539553 PMCID: PMC4619936 DOI: 10.1155/2015/395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.
Collapse
|
3
|
Engen JR, Wales TE, Chen S, Marzluff EM, Hassell KM, Weis DD, Smithgall TE. Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry. INT REV PHYS CHEM 2013; 32:96-127. [PMID: 23682200 DOI: 10.1080/0144235x.2012.751175] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion.
Collapse
Affiliation(s)
- John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115 USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Species restriction of Herpesvirus saimiri and Herpesvirus ateles: Human lymphocyte transformation correlates with distinct signaling properties of viral oncoproteins. Virus Res 2012; 165:179-89. [DOI: 10.1016/j.virusres.2012.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/16/2012] [Indexed: 01/05/2023]
|
5
|
Katsch K, de Jong SJ, Albrecht JC, Steger J, Genth H, Posern G, Biesinger B. Actin-dependent activation of serum response factor in T cells by the viral oncoprotein tip. Cell Commun Signal 2012; 10:5. [PMID: 22385615 PMCID: PMC3310822 DOI: 10.1186/1478-811x-10-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/03/2012] [Indexed: 01/05/2023] Open
Abstract
Serum response factor (SRF) acts as a multifunctional transcription factor regulated by mutually exclusive interactions with ternary complex factors (TCFs) or myocardin-related transcription factors (MRTFs). Binding of Rho- and actin-regulated MRTF:SRF complexes to target gene promoters requires an SRF-binding site only, whereas MAPK-regulated TCF:SRF complexes in addition rely on flanking sequences present in the serum response element (SRE). Here, we report on the activation of an SRE luciferase reporter by Tip, the viral oncoprotein essentially contributing to human T-cell transformation by Herpesvirus saimiri. SRE activation in Tip-expressing Jurkat T cells could not be attributed to triggering of the MAPK pathway. Therefore, we further analyzed the contribution of MRTF complexes. Indeed, Tip also activated a reporter construct responsive to MRTF:SRF. Activation of this reporter was abrogated by overexpression of a dominant negative mutant of the MRTF-family member MAL. Moreover, enrichment of monomeric actin suppressed the Tip-induced reporter activity. Further upstream, the Rho-family GTPase Rac, was found to be required for MRTF:SRF reporter activation by Tip. Initiation of this pathway was strictly dependent on Tip's ability to interact with Lck and on the activity of this Src-family kinase. Independent of Tip, T-cell stimulation orchestrates Src-family kinase, MAPK and actin pathways to induce SRF. These findings establish actin-regulated transcription in human T cells and suggest its role in viral oncogenesis.
Collapse
Affiliation(s)
- Kristin Katsch
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
6
|
Toptan T, Ensser A, Fickenscher H. Rhadinovirus vector-derived human telomerase reverse transcriptase expression in primary T cells. Gene Ther 2010; 17:653-61. [PMID: 20164858 DOI: 10.1038/gt.2010.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The rhadinovirus herpesvirus saimiri (HVS) as a gene delivery vector allows large DNA insertions and long-termed gene expression. In the case of T-cell transduction, such vectors use the viral transformation-associated genes of HVS C488 for T-cell amplification. In this report, we investigated whether the gene for the catalytic telomerase subunit human telomerase reverse transcriptase (hTERT) can substitute for the transformation-associated genes in rhadinoviral T-cell transduction and amplification. By using virus mutants generated by en passant mutagenesis from bacterial artificial chromosomes, we observed a very early and functional transgene expression even by virus mutants without transformation-associated genes. The markers of T-cell transformation by HVS, namely CD2 hyperreactivity, overexpression of interleukin-26, and of the tyrosine kinase Lyn could neither be induced nor enhanced by ectopic hTERT expression. When the viral transformation-associated genes were replaced by the hTERT gene, it was not sufficient for growth transformation, although hTERT was efficiently transduced and functionally expressed by the rhadinovirus vector. Thus, the transformation-associated proteins StpC and Tip are responsible for the T-cell phenotype after transduction by HVS and, additionally, modulate telomerase activity independently of hTERT expression.
Collapse
Affiliation(s)
- T Toptan
- Institute for Infection Medicine, Christian-Albrecht University of Kiel, Kiel, Germany
| | | | | |
Collapse
|
7
|
|
8
|
Weis DD, Kjellen P, Sefton BM, Engen JR. Altered dynamics in Lck SH3 upon binding to the LBD1 domain of Herpesvirus saimiri Tip. Protein Sci 2007; 15:2402-10. [PMID: 17008721 PMCID: PMC2242400 DOI: 10.1110/ps.052016406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The Tip protein from Herpesvirus saimiri interacts with the SH3 domain from the Src-family kinase Lck via a proline-containing sequence termed LBD1. Src-family kinase SH3 domains related to Lck have been shown to be dynamic in solution and partially unfold under physiological conditions. The rate of such partial unfolding is reduced by viral protein binding. To determine if the Lck SH3 domain displayed similar behavior, the domain was investigated with hydrogen exchange and mass spectrometry. Lck SH3 was found to be highly dynamic in solution. While other SH3 domains require as much as 10,000 sec to become totally deuterated, Lck SH3 became almost completely labeled within 200 sec. A partial unfolding event involving 8-10 residues was observed with a half-life of approximately 10 sec. Tip LBD1 binding did not cause gross structural changes in Lck SH3 but globally stabilized the domain and reduced the rate of partial unfolding by a factor of five. The region of partial unfolding in Lck SH3 was found to be similar to that identified for other SH3 domains that partially unfold. Although the sequence conservation between Lck SH3 and other closely related SH3 domains is high, the dynamics do not appear to be conserved.
Collapse
Affiliation(s)
- David D Weis
- Department of Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | | | | | | |
Collapse
|
9
|
Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. FEBS J 2006; 273:5442-56. [PMID: 17094785 DOI: 10.1111/j.1742-4658.2006.05535.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cbl is an adaptor protein and ubiquitin ligase that binds and is phosphorylated by the nonreceptor tyrosine kinase Src. We previously showed that the primary interaction between Src and Cbl is mediated by the Src homology domain 3 (SH3) of Src binding to proline-rich sequences of Cbl. The peptide Cbl RDLPPPPPPDRP(540-551), which corresponds to residues 540-551 of Cbl, inhibited the binding of a GST-Src SH3 fusion protein to Cbl, whereas RDLAPPAPPPDR(540-551) did not, suggesting that Src binds to this site on Cbl in a class I orientation. Mutating prolines 543-548 reduced Src binding to the Cbl 479-636 fragment significantly more than mutating the prolines in the PPVPPR(494-499) motif, which was previously reported to bind Src SH3. Mutating Cbl prolines 543-548 to alanines substantially reduced Src binding to Cbl, Src-induced phosphorylation of Cbl, and the inhibition of Src kinase activity by Cbl. Expressing the mutated Cbl in osteoclasts induced a moderate reduction in bone-resorbing activity and increased amounts of Src protein. In contrast, disabling the tyrosine kinase-binding domain of full-length Cbl by mutating glycine 306 to glutamic acid, and thereby preventing the previously described binding of the tyrosine kinase-binding domain to the Src phosphotyrosine 416, had no effect on Cbl phosphorylation, the inhibition of Src activity by full-length Cbl, or bone resorption. These data indicate that the Cbl RDLPPPP(540-546) sequence is a functionally important binding site for Src.
Collapse
Affiliation(s)
- Archana Sanjay
- Departments of Orthopedics & Rehabilitation and Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | |
Collapse
|
10
|
Heck E, Friedrich U, Gack MU, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Ensser A, Biesinger B. Growth transformation of human T cells by herpesvirus saimiri requires multiple Tip-Lck interaction motifs. J Virol 2006; 80:9934-42. [PMID: 17005671 PMCID: PMC1617286 DOI: 10.1128/jvi.01112-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Trible RP, Emert-Sedlak L, Smithgall TE. HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 2006; 281:27029-38. [PMID: 16849330 PMCID: PMC2892265 DOI: 10.1074/jbc.m601128200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.
Collapse
Affiliation(s)
| | | | - Thomas E. Smithgall
- To whom correspondence should be addressed: Dept. of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Pittsburgh, PA 15261. Tel.: 412-648-9495; Fax: 412-624-1401;
| |
Collapse
|
12
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
13
|
Albrecht JC, Müller-Fleckenstein I, Schmidt M, Fleckenstein B, Biesinger B. Tyrosine phosphorylation of the Tio oncoprotein is essential for transformation of primary human T cells. J Virol 2005; 79:10507-13. [PMID: 16051843 PMCID: PMC1182665 DOI: 10.1128/jvi.79.16.10507-10513.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human T cells are transformed to antigen-independent permanent growth in vitro upon infection with herpesvirus saimiri subgroup C strains. The viral oncoproteins required for this process, StpC and Tip, could be replaced by Tio, the oncoprotein of herpesvirus ateles. Here we demonstrate that proliferation of lymphocytes transformed with Tio-recombinant herpesvirus saimiri required the activity of Src family kinases. Src kinases had previously been identified as interaction partners of Tio. This interaction was now shown to be independent of any of the four tyrosine residues of Tio but to be dependent on an SH3-binding motif. Mutations within this motif abrogated the transforming capabilities of Tio-recombinant herpesvirus saimiri. Furthermore, kinase interaction resulted in the phosphorylation of Tio on a single tyrosine residue at position 136. Mutation of this residue in the viral context revealed that this phosphorylation site, but none of the other tyrosine residues, was required for T-cell transformation. These data indicate that the interaction of Tio with a Src kinase is essential for both the initiation and the maintenance of T-cell transformation by recombinant herpesvirus saimiri. The requirement for the tyrosine phosphorylation site at position 136 suggests a role for Tio beyond simple deregulation of the kinase.
Collapse
Affiliation(s)
- Jens-Christian Albrecht
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abstract
gamma2-Herpesviruses, also termed rhadinoviruses, have long been known as animal pathogens causing lymphoproliferative diseases such as malignant catarrhal fever in cattle or T-cell lymphoma in certain Neotropical primates. The rhadinovirus prototype is Herpesvirus saimiri (HVS), a T-lymphotropic agent of squirrel monkeys (Saimiri sciureus); Herpesvirus ateles (HVA) is closely related to HVS. The first human rhadinovirus, human herpesvirus type 8 (HHV-8), was discovered a decade ago in Kaposi's sarcoma (KS) biopsies. It was found to be strongly associated with all forms of KS, as well as with multicentric Castleman's disease and primary effusion lymphoma (PEL). Since DNA of this virus is regularly found in all KS forms, and specifically in the spindle cells of KS, it was also termed KS-associated herpesvirus (KSHV). Several simian rhadinoviruses related to KSHV have been discovered in various Old World primates, though they seem only loosely associated with pathogenicity or tumor induction. In contrast, HVS and HVA cause T-cell lymphoma in numerous non-natural primate hosts; HVS strains of the subgroup C are capable of transforming human and simian T-lymphocytes to continuous growth in cell culture and can provide useful tools for T-cell immunology or gene transfer. Here, we describe their natural history, genome structure, biology, and pathogenesis in T-cell transformation and oncogenesis.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
15
|
Heck E, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Biesinger B, Ensser A. T-cell growth transformation by herpesvirus saimiri is independent of STAT3 activation. J Virol 2005; 79:5713-20. [PMID: 15827186 PMCID: PMC1082769 DOI: 10.1128/jvi.79.9.5713-5720.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (saimirine herpesvirus 2) (HVS), a T-lymphotropic tumor virus, induces lymphoproliferative disease in several species of New World primates. In addition, strains of HVS subgroup C are able to transform T cells of Old World primates, including humans, to permanently growing T-cell lines. In concert with the Stp oncoprotein, the tyrosine kinase-interacting protein (Tip) of HVS C488 is required for T-cell transformation in vitro and lymphoma induction in vivo. Tip was previously shown to interact with the protein tyrosine kinase Lck. Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis and has also been detected in HVS-transformed T-cell lines. Furthermore, Tip contains a putative consensus YXPQ binding motif for the SH2 (src homology 2) domains of STAT1 and STAT3. Tip tyrosine phosphorylation at this site was required for binding of STATs and induction of STAT-dependent transcription. Here we sought to address the relevance of STAT activation for transformation of human T cells by introducing a tyrosine-to-phenylalanine mutation in the YXPQ motif of Tip of HVS C488. Unexpectedly, the recombinant virus was still able to transform human T lymphocytes, but it had lost its capability to activate STAT3 as well as STAT1. This demonstrates that growth transformation by HVS is independent of STAT3 activation.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Tamgüney G, Van Snick J, Fickenscher H. Autocrine stimulation of rhadinovirus-transformed T cells by the chemokine CCL1/I-309. Oncogene 2004; 23:8475-85. [PMID: 15378023 DOI: 10.1038/sj.onc.1207903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rhadinovirus herpesvirus saimiri transforms human T lymphocytes to stable growth in culture. Besides the viral oncogenes stpC and tip, little is understood about the transformation process at the cellular level. To identify cellular factors that might contribute to growth transformation, we compared cellular gene expression in pairs of herpesvirus saimiri-transformed and nontransformed human T-cell clones. Using cDNA arrays and suppressive subtractive hybridization, we were able to identify the chemokine CCL1/I-309 as one of the few cellular genes that are strongly overexpressed in T cells after growth transformation with herpesvirus saimiri. The transformed T cells expressed CCR8, the receptor for CCL1, which rapidly induced intracellular calcium ion levels. Neutralizing antibodies to CCL1 led to reduced secretion of interferon-gamma and tumor necrosis factor-alpha as well as to reduced proliferation rates in transformed T cells. Thus, we propose that growth transformation of human T cells with herpesvirus saimiri gives rise to an autocrine loop where the proliferation of transformed T cells is supported by the endogenous production of the chemokine CCL1.
Collapse
Affiliation(s)
- Gültekin Tamgüney
- Virology Department, Ruprecht Karls University Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
18
|
Abstract
Regulation of the Src-related tyrosine kinase Lck is crucial to the outcome of T-cell receptor (TCR) stimulation. It was previously shown that the stability of the constitutively active mutant LckY505F is controlled by Hsp90 (M. J. Bijlmakers and M. Marsh, Mol. Biol. Cell. 11:1585-1595, 2000). Here we establish that following TCR stimulation, endogenous activated Lck in T cells is also degraded in the presence of the Hsp90 inhibitor geldanamycin. Using Lck constructs expressed in COS-7 cells, we show that the presence of activating Lck mutations results not only in the enhanced dependence on Hsp90 but also in enhanced ubiquitination of Lck. Although both processes were induced by mutations Y505F and W97A that release the SH2 and SH3 inhibitory intramolecular interactions, respectively, neither process required Lck kinase activity or activation-dependent phosphorylation at serines 42 and 59 or tyrosine 394. By binding to the ATP-binding site, the Src family inhibitor PP2 reduced ubiquitination and overcame the need for Hsp90 monitoring of active Lck. We conclude that the levels of active Lck are influenced by two opposing processes, targeting for degradation by ubiquitination and rescue from degradation by Hsp90 monitoring. Based on the PP2 result, we propose that activation-induced conformational changes of the Lck kinase domain instigate both regulatory processes.
Collapse
Affiliation(s)
- Ana Giannini
- Department of Immunobiology, Guy's Hospital, King's College London, United Kingdom
| | | |
Collapse
|
19
|
Raymond AD, Hasham MG, Tsygankov AY, Henderson EE. Herpesvirus saimiri-encoded proteins Tip and StpC modulate human immunodeficiency virus type 1 replication in T-cell lines and lymphocytes independently of viral tropism. Virology 2004; 324:60-6. [PMID: 15183053 DOI: 10.1016/j.virol.2004.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/09/2004] [Accepted: 03/19/2004] [Indexed: 11/25/2022]
Abstract
Herpesvirus saimiri (HVS)-transformed T-lymphocytes are permissive for both X4 and R5 strains of human immunodeficiency virus type 1 (HIV-1). HVS-encoded proteins tyrosine-kinase interacting protein (Tip) and saimiri transformation-associated protein subgroup C (StpC) were previously implicated in altering HIV permissiveness. MOLT4 cells expressing StpC or StpC and Tip are permissive for X4 strains of HIV-1. In contrast, HIV-1 was restricted in MOLT4 cells expressing Tip alone. Here we show that MOLT4 cells and primary lymphocytes expressing StpC are permissive for R5 strains of HIV-1 while Tip expression restricted R5 strains. These results suggest that intracellular immunization with Tip and StpC could be developed as models for therapeutic strategies targeting both X4 and R5 strains of HIV-1.
Collapse
Affiliation(s)
- Andrea D Raymond
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
20
|
Hasham MG, Tsygankov AY. Tip, an Lck-interacting protein of Herpesvirus saimiri, causes Fas- and Lck-dependent apoptosis of T lymphocytes. Virology 2004; 320:313-29. [PMID: 15016553 DOI: 10.1016/j.virol.2003.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
Saimiriine herpesvirus-2 (Herpesvirus saimiri) transforms T lymphocytes, including human, to continuous growth in vitro. H. saimiri-induced transformation is becoming an important tool of T-cell biology, including studies of HIV replication. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T-cell transformation. In spite of the important role of these proteins, their biological functions and the molecular mechanisms of their action remain insufficiently understood. To further elucidate the effects of Tip on T cells, we transduced T lymphocytes, using an efficient lentiviral gene transfer system, to express Tip in the absence of other H. saimiri proteins. Our results indicate that Tip specifically inhibits IL-2 production by human T lymphocytes. Furthermore, Tip promotes T-cell apoptosis, which appears to be the reason for the observed decrease in IL-2 production. Finally, the apoptotic effect of Tip in T cells is mediated by Fas and requires the presence of active Lck in the cell.
Collapse
Affiliation(s)
- Muneer G Hasham
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
21
|
Sorokina EM, Merlo JJ, Tsygankov AY. Molecular mechanisms of the effect of herpesvirus saimiri protein StpC on the signaling pathway leading to NF-kappaB activation. J Biol Chem 2004; 279:13469-77. [PMID: 14724292 DOI: 10.1074/jbc.m305250200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2) causes lethal T lymphoproliferative diseases in the susceptible species and transforms T lymphocytes to continuous growth in vitro. H. saimiri-induced transformation of T cells is becoming an important experimental tool of biomedical research. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T cell transformation by this virus. It has been shown previously that StpC transforms fibroblasts, activates NF-kappaB, and binds to tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins, but the molecular mechanism of its action remains insufficiently understood. This study further characterized the effect of StpC on NF-kappaB. First, StpC activates NF-kappaB via the consensus pathway involving activation of I-kappaB kinase and subsequent phosphorylation and degradation of I-kappaB in both T lymphoid and epithelial cells. Second, triggering of this pathway by StpC in both T lymphoid and epithelial cells is dependent on the presence of functional NF-kappaB-inducing kinase (NIK). Third, StpC physically interacts with TRAF in epithelial cells, and the effect of StpC on NF-kappaB activity in these cells requires the presence of functional TRAF. Finally the effect of StpC is completely independent of TNF-alpha, a well described stimulus of NF-kappaB activity. Moreover it appears that StpC uncouples stimulation of NF-kappaB activity from TNF-alpha stimulation. Overall these results argue that the effect of StpC on NF-kappaB is similar to the effects of other viral proteins, "usurping" the TRAF/NIK/I-kappaB kinase pathway, and reinforce the notion that the role of StpC in cell transformation by H. saimiri may be mediated by signaling that results in NF-kappaB activation.
Collapse
Affiliation(s)
- Elena M Sorokina
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
22
|
Ensser A, Thurau M, Wittmann S, Fickenscher H. The genome of herpesvirus saimiri C488 which is capable of transforming human T cells. Virology 2003; 314:471-87. [PMID: 14554077 DOI: 10.1016/s0042-6822(03)00449-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Herpesvirus saimiri (HVS), the rhadinovirus prototype, is apathogenic in the persistently infected natural host, the squirrel monkey, but causes acute T cell leukemia in other New World primate species. In contrast to subgroups A and B, only strains of HVS subgroup C such as C488 are capable of transforming primary human T cells to stable antigen-independent growth in culture. Here, we report the complete 155-kb genome sequence of the transformation-competent HVS strain C488. The A+T-rich unique L-DNA of 113,027 bp encodes at least 77 open reading frames and 5 URNAs. In addition to the viral oncogenes stp and tip, only a few genes including the transactivator orf50 and the glycoprotein orf51 are highly divergent. In a series of new primary HVS isolates, the subgroup-specific divergence of the orf50/orf51 alleles was studied. In these new isolates, the orf50/orf51 alleles of the respective subgroup segregate with the stp and/or tip oncogene alleles, which are essential for transformation.
Collapse
Affiliation(s)
- Armin Ensser
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
23
|
Kjellen P, Amdjadi K, Lund TC, Medveczky PG, Sefton BM. The herpesvirus saimiri tip484 and tip488 proteins both stimulate lck tyrosine protein kinase activity in vivo and in vitro. Virology 2002; 297:281-8. [PMID: 12083826 DOI: 10.1006/viro.2002.1419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus saimiri (HVS) of subgroup C efficiently induces leukemia in New World primates and transforms human lymphocytes. The viral tyrosine kinase interacting protein (Tip) binds to the tyrosine protein kinase Lck and is essential for transformation. Understanding how Tip modulates Lck activity is important for elucidating the mechanism of herpesvirus saimiri leukemogenesis. However, there are reports suggesting that whereas the Tip protein of HVS strain 484 stimulates the activity of Lck, the Tip protein of HVS strain 488 inhibits Lck. To determine whether these two divergent Tip proteins have opposite effects on Lck activity, we compared them in parallel. We found that both Tip proteins stimulated Lck kinase activity in vivo and in vitro and that both stimulated NF-AT- and STAT3-dependent transcription in T cells. Our data support the model that HVS infection increases the activity of Lck through the action of Tip.
Collapse
Affiliation(s)
- Peter Kjellen
- Molecular Cell and Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
24
|
Schweimer K, Hoffmann S, Bauer F, Friedrich U, Kardinal C, Feller SM, Biesinger B, Sticht H. Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck. Biochemistry 2002; 41:5120-30. [PMID: 11955060 DOI: 10.1021/bi015986j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herpesvirus saimiri codes for a tyrosine kinase interacting protein (Tip) that interacts with both the SH3 domain and the kinase domain of the T-cell-specific tyrosine kinase Lck via two separate motifs. The activation of Lck by Tip is considered as a key event in the transformation of human T-lymphocytes during herpesviral infection. We investigated the interaction of proline-rich Tip peptides with the LckSH3 domain starting with the structural characterization of the unbound interaction partners. The solution structure of the LckSH3 was determined by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy using 44 residual dipolar couplings in addition to the conventional experimental restraints. Circular dichroism spectroscopy proved that the polyproline helix of Tip is already formed prior to SH3 binding and is conformationally stable. NMR titration experiments point out three major regions of the Tip-Lck interaction comprising the RT loop, the n-src loop, and a helical turn preceding the last strand of the beta-sheet. Further changes of the chemical shifts were observed for the N- and C-terminal beta-strands of the SH3 domain, indicating additional contacts outside the proline-rich segment or subtle structural rearrangements transmitted from the binding site of the proline helix. Fluorescence spectroscopy shows that Tip binds to the SH3 domains of several Src kinases (Lck, Hck, Lyn, Src, Fyn, Yes), exhibiting the highest affinities for Lyn, Hck, and Lck.
Collapse
Affiliation(s)
- Kristian Schweimer
- Lehrstuhl für Biopolymere, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Reiss C, Niedobitek G, Hör S, Lisner R, Friedrich U, Bodemer W, Biesinger B. Peripheral T-cell lymphoma in herpesvirus saimiri-infected tamarins: tumor cell lines reveal subgroup-specific differences. Virology 2002; 294:31-46. [PMID: 11886263 DOI: 10.1006/viro.2001.1304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficiency of lymphoma induction by herpesvirus saimiri (HVS) isolates correlates with the genetically defined viral subgroups A, B, and C. To compare subgroup-specific effects, highly susceptible tamarins were infected with HVS strain A-11, B-SMHI, or C-488. All animals developed T-cell lymphomas indistinguishable with respect to clinical, pathological, and virological parameters. Ex vivo T-cell lines were established readily from the HVS C-488 animal, less efficiently in the presence of HVS A-11, and from only a single HVS B-SMHI sample. These cultivated cells revealed strain-specific biochemical characteristics. HVS A-11 strongly induced the expression of tyrosine kinase Lyn. HVS C-488 led to the activation of STAT3, which is most likely linked to the association of virus-encoded Tip with tyrosine kinase Lck. The lack of these activities in HVS B-SMHI-transformed cells may correlate with the reduced oncogenic phenotype of this virus in species other than tamarins.
Collapse
Affiliation(s)
- Christine Reiss
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Meinl E, Derfuss T, Pirzer R, Blank N, Lengenfelder D, Blancher A, Le Deist F, Fleckenstein B, Hivroz C. Herpesvirus saimiri replaces ZAP-70 for CD3- and CD2-mediated T cell activation. J Biol Chem 2001; 276:36902-8. [PMID: 11463783 DOI: 10.1074/jbc.m102668200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein tyrosine kinase ZAP-70 plays a pivotal role involved in signal transduction through the T cell receptor and CD2. Defects in ZAP-70 result in severe combined immunodeficiency. We report that Herpesvirus saimiri, which does not code for a ZAP-70 homologue, can replace this tyrosine kinase. H. saimiri is an oncogenic virus that transforms human T cells to stable growth based on mutual CD2-mediated activation. Although CD2-mediated proliferation of ZAP-70-deficient uninfected T cells was absent, we could establish H. saimiri-transformed T cell lines from two unrelated patients presenting with ZAP-70 deficiencies. In these cell lines, CD2 and CD3 activation were restored in terms of [Ca(2+)](i), MAPK activation, cytokine production, and proliferation. Activation-induced tyrosine phosphorylation of zeta remained defective. The transformed cells expressed very high levels of the ZAP-70-related kinase Syk. This increased expression was not observed in the primary T cells from the patients and was not due to the transformation by the virus because transformed cell lines established from control T cells did not present this particularity. In conclusion, wild type H. saimiri can restore CD2- and CD3-mediated activation in signaling-deficient human T cells. It extends our understanding of interactions between the oncogenic H. saimiri and the infected host cells.
Collapse
Affiliation(s)
- E Meinl
- Department of Neuroimmunology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Greve T, Tamgüney G, Fleischer B, Fickenscher H, Bröker BM. Downregulation of p56(lck) tyrosine kinase activity in T cells of squirrel monkeys (Saimiri sciureus) correlates with the nontransforming and apathogenic properties of herpesvirus saimiri in its natural host. J Virol 2001; 75:9252-61. [PMID: 11533187 PMCID: PMC114492 DOI: 10.1128/jvi.75.19.9252-9261.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri is capable of transforming T lymphocytes of various primate species to stable growth in culture. The interaction of the T-cellular tyrosine kinase p56(lck) with the transformation-associated viral protein Tip has been shown before to activate the kinase and provides one model for the T-cell-specific transformation by herpesvirus saimiri subgroup C strains. In contrast to other primate species, squirrel monkeys (Saimiri sciureus) are naturally infected with the virus without signs of lymphoma or other disease. Although the endogenous virus was regularly recovered from peripheral blood cells from squirrel monkeys, we observed that the T cells lost the virus genomes in culture. Superinfection with virus strain C488 did not induce growth transformation, in contrast to parallel experiments with T cells of other primate species. Surprisingly, p56(lck) was enzymatically inactive in primary T-cell lines derived from different squirrel monkeys, although the T cells reacted appropriately to stimulatory signals. The cDNA sequence revealed minor point mutations only, and transfections in COS-7 cells demonstrated that the S. sciureus lck gene codes for a functional enzyme. In S. sciureus, the tyrosine kinase p56(lck) was not activated after T-cell stimulation and enzymatic activity could not be induced by Tip of herpesvirus saimiri C488. However, the suppression of p56(lck) was partially released after administration of the phosphatase inhibitor pervanadate. This argues for unique species-specific conditions in T cells of S. sciureus which may interfere with the transforming activity and pathogenicity of herpesvirus saimiri subgroup C strains in their natural host.
Collapse
Affiliation(s)
- T Greve
- Bernhard-Nocht-Institut für Tropenmedizin, D-20359 Hamburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Abstract
Herpesvirus saimiri (saimiriine herpesvirus 2) is the classical prototype of the gamma(2)-herpesviruses or rhadinoviruses, which also contains a human member, the Kaposi's sarcoma-associated herpesvirus. The T-lymphotropic Herpesvirus saimiri establishes specific replicative and persistent conditions in different primate host species. Virtually all squirrel monkeys (Saimiri sciureus) are persistently infected with this virus. In its natural host, the virus does not cause disease, whereas it induces fatal acute T-cell lymphoma in other monkey species after experimental infection. The virus can be isolated by cocultivation of permissive epithelial cells with peripheral blood cells from naturally infected squirrel monkeys and from susceptible New World monkeys during the virus-induced disease. Tumour-derived and in vitro-transformed T-cell lines from New World monkeys release virus particles. Herpesvirus ateles is a closely related virus of spider monkeys (Ateles spp.) and has similar pathogenic properties to Herpesvirus saimiri in other New World primate species. Similar to other rhadinoviruses, the genome of Herpesvirus saimiri harbours a series of virus genes with pronounced homology to cellular counterparts including a D-type cyclin, a G-protein-coupled receptor, an interleukin-17, a superantigen homologue, and several inhibitors of the complement cascade and of different apoptosis pathways. Preserved function has been demonstrated for most of the homologues of cellular proteins. These viral functions are mostly dispensable for the transforming and pathogenic capability of the virus. However, they are considered relevant for the apathogenic persistence of Herpesvirus saimiri in its natural host. A terminal region of the non-repetitive coding part of the virus genome is essential for pathogenicity and T-cell transformation. Based on the pathogenic phenotypes and the different alleles of this variable region, the virus strains have been assigned to three subgroups, termed A, B and C. In the highly oncogenic subgroup C strains, the two virus genes stpC and tip are transcribed from one bicistronic mRNA and are essential for transformation and leukaemia induction. stpC fulfils the typical criteria of an oncogene; its product interacts with Ras and tumour necrosis factor-associated factors and induces mitogen-activated protein kinase and nuclear factor kappa B activation. Tip interacts with the RNA transport factor Tap, with signal transduction and activation of transcription factors, and with the T-cellular tyrosine kinase Lck, which is activated by this interaction and phosphorylates Tip as a substrate. It is of particular interest that certain subgroup C virus strains such as C488 are capable of transforming human T lymphocytes to stable growth in culture. The transformed human T cells harbour multiple copies of the viral genome in the form of stable, non-integrated episomes. The cells express only a few virus genes and do not produce virus particles. The transformed cells maintain the antigen specificity and many other essential functions of their parental T-cell clones. Based on the preserved functional phenotype of the transformed T cells, Herpesvirus saimiri provides useful tools for T-cell immunology, for gene transfer and possibly also for experimental adoptive immunotherapy.
Collapse
Affiliation(s)
- H Fickenscher
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany.
| | | |
Collapse
|
29
|
Wehner LE, Schröder N, Kamino K, Friedrich U, Biesinger B, Rüther U. Herpesvirus saimiri Tip gene causes T-cell lymphomas in transgenic mice. DNA Cell Biol 2001; 20:81-8. [PMID: 11244565 DOI: 10.1089/104454901750070283] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
New World primates develop T-cell lymphomas on infection with Herpesvirus saimiri. To investigate the oncogenic potential of the Tip gene of Herpesvirus saimiri strain C488, we tried to establish transgenic mice that should express Tip under control of a constitutive promoter. Although transgene-positive embryos were found, lines could not be established. However, using a system in which the transgene has to be activated by a Cre recombinase-mediated deletion, we were able to obtain several Tip transgenic lines. At high expression levels, the mice developed T-cell lymphomas. Thus, Tip can induce lymphomas and is therefore very likely responsible for the oncogenicity of Herpesvirus saimiri.
Collapse
MESH Headings
- Animals
- Crosses, Genetic
- Embryonic and Fetal Development/genetics
- Genes, Viral
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/pathogenicity
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/mortality
- Lymphoma, T-Cell/pathology
- Lymphoma, T-Cell/virology
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic/genetics
- Mice, Transgenic/virology
- Phosphoproteins/biosynthesis
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Phosphoproteins/physiology
- Survival Analysis
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Viral Proteins/physiology
- Viral Structural Proteins/genetics
Collapse
Affiliation(s)
- L E Wehner
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Merlo JJ, Tsygankov AY. Herpesvirus saimiri oncoproteins Tip and StpC synergistically stimulate NF-kappaB activity and interleukin-2 gene expression. Virology 2001; 279:325-38. [PMID: 11145913 DOI: 10.1006/viro.2000.0714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Saimiriine herpesvirus 2 (Herpesvirus saimiri) is capable of inducing lethal T-cell lymphoproliferative diseases in primates and of immortalizing human T lymphocytes in vitro. Two viral oncoproteins, Tip and StpC, are essential for T-cell transformation by Herpesvirus saimiri strains of the subgroup C, which exhibits a higher transformation potential than other subgroups of this virus. Despite the importance of these proteins, the molecular basis of their effects on T cells is poorly understood. It remains unclear how Tip and StpC affect gene expression and what is the molecular basis of their cooperation. To address these issues, we expressed Tip and StpC in T lymphoblastoid cells and assessed both their effects on and transcription factors involved in IL-2 gene expression. Our study shows that Tip and StpC cooperate to upregulate IL-2 gene expression, that their effect is mediated primarily by NF-kappaB and NF-AT, which is partially dependent on tyrosine phosphorylation.
Collapse
Affiliation(s)
- J J Merlo
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, Pennsylvania, 19140, USA
| | | |
Collapse
|
31
|
Hall KT, Giles MS, Goodwin DJ, Calderwood MA, Carr IM, Stevenson AJ, Markham AF, Whitehouse A. Analysis of gene expression in a human cell line stably transduced with herpesvirus saimiri. J Virol 2000; 74:7331-7. [PMID: 10906186 PMCID: PMC112253 DOI: 10.1128/jvi.74.16.7331-7337.2000] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus saimiri (HVS) is the prototype gamma-2 herpesvirus; it has significant homology to the human gammaherpesviruses Kaposi's sarcoma-associated virus and Epstein-Barr virus and the murine gammaherpesvirus murine herpesvirus 68. HVS causes a persistent asymptomatic infection in its natural host, the squirrel monkey. Both subgroups A and C possess the ability to immortalize common marmoset T lymphocytes to interleukin-2-independent proliferation. However, only subgroup C is capable of transforming human, rabbit, and rhesus monkey lymphocytes in vitro. In addition, HVS can stably transduce a variety of human cell lines where the virus persists as a nonintegrating circular episome. In this study, we have developed a system in which the HVS DNA is stably maintained as a nonintegrated circular episome in the human lung carcinoma cell line A549. Virus production can be reactivated using chemical inducing agents, including tetradecanoyl phorbol acetate and n-butyrate, suggesting that the infection in human A549 cells is latent. To analyze virus gene expression in these stably transduced cells, Northern blot analysis was performed using a series of probes produced from restriction fragments spanning the entire coding region of the HVS genome. This demonstrated that an adjacent set of genes containing open reading frames (ORFs) 71 to 73 are expressed in this stably transduced cell line. Moreover, these genes are transcribed as a polycistronic mRNA species produced from a common promoter upstream of ORF 73. This model may serve as a useful tool in the further analysis of the role of ORFs 71 to 73 in gamma-2 herpesvirus latency.
Collapse
Affiliation(s)
- K T Hall
- Molecular Medicine Unit, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Isakov N, Biesinger B. Lck protein tyrosine kinase is a key regulator of T-cell activation and a target for signal intervention by Herpesvirus saimiri and other viral gene products. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3413-21. [PMID: 10848956 DOI: 10.1046/j.1432-1327.2000.01412.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein tyrosine kinases (PTKs) are critically involved in signaling pathways that regulate cell growth, differentiation, activation, and transformation. It is not surprising, therefore, that viruses acquire effector molecules targeting these kinases to ensure their own replication and/or persistence. This review summarizes our current knowledge on Lck, a member of the Src family of PTK, and its viral interaction partners. Lck plays a key role in T lymphocyte activation and differentiation. It is associated with a variety of cell surface receptors and is critical for signal transduction from the T-cell antigen receptor (TCR). Consequently, Lck is targeted by regulatory proteins of T-lymphotropic viruses, especially by the Herpesvirus saimiri (HVS) tyrosine kinase interacting protein (Tip). This oncoprotein physically interacts with Lck in HVS transformed T cells and has an impact on its catalytic activity. However, while Tip inhibits Lck activity in stably expressing cell lines, opposite effects were observed in several in vitro systems. At least in part, this complex situation may be related to the bipartite nature of the interaction surface of the two proteins. Studies on the interrelationships between Lck and its viral partners contribute to the understanding of the mechanisms of T-cell growth regulation, in general, and of viral pathogenicity in particular. In addition, understanding the regulation of Lck activity by viral proteins may serve as a basis for the development of new drugs capable of modifying Lck activity in different pathological situations.
Collapse
Affiliation(s)
- N Isakov
- Department of Microbiology and Immunology, Faculty of Health Sciences, and the Cancer Research Center, Ben Gurion University of the Negev, Beer Sheva, Israel.
| | | |
Collapse
|
33
|
Knappe A, Hör S, Wittmann S, Fickenscher H. Induction of a novel cellular homolog of interleukin-10, AK155, by transformation of T lymphocytes with herpesvirus saimiri. J Virol 2000; 74:3881-7. [PMID: 10729163 PMCID: PMC111897 DOI: 10.1128/jvi.74.8.3881-3887.2000] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although herpesvirus saimiri-transformed T lymphocytes retain multiple normal T-cell functions, only a few changes have been described. By subtractive hybridization, we have isolated a novel cellular gene, ak155, a sequence homolog of the interleukin-10 gene. Specifically herpesvirus saimiri-transformed T cells overexpress ak155 and secrete the protein into the supernatant. In other T-cell lines and in native peripheral blood cells, but not in B cells, ak155 is transcribed at low levels. AK155 forms homodimers similarly to interleukin-10. As a lymphokine, AK155 may contribute to the transformed phenotype of human T cells after infection by herpesvirus saimiri.
Collapse
Affiliation(s)
- A Knappe
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
34
|
DiMaio D, Lai CC, Klein O. Virocrine transformation: the intersection between viral transforming proteins and cellular signal transduction pathways. Annu Rev Microbiol 2000; 52:397-421. [PMID: 9891803 DOI: 10.1146/annurev.micro.52.1.397] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes a mechanism of viral transformation involving activation of cellular signaling pathways. We focus on four viral oncoproteins: the E5 protein of bovine papillomavirus, which activates the platelet-derived growth factor beta receptor; gp55 of spleen focus forming virus, which activates the erythropoietin receptor; polyoma virus middle T antigen, which resembles an activated receptor tyrosine kinase; and LMP-1 of Epstein-Barr virus, which mimics an activated tumor necrosis factor receptor. These examples indicate that diverse viruses induce cell transformation by activating cellular signal transduction pathways. Study of this mechanism of viral transformation will provide new insights into viral tumorigenesis and cellular signal transduction.
Collapse
Affiliation(s)
- D DiMaio
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| | | | | |
Collapse
|
35
|
Abstract
Herpesvirus ateles is an agent indigenous to spider monkeys (Ateles spp.) and causes fulminant lymphomas in various New World primates. Structural and genetic relatedness led to the classification of this virus as a member of the genus Rhadinovirus. It is most closely related to Herpesvirus saimiri. The 108,409-bp light DNA segment of the herpesvirus ateles strain 73 genome has two genes for U-RNA-like transcripts and 73 open reading frames, of which at least 6 show significant homologies to cellular genes (encoding complement control proteins, apoptosis-regulatory proteins, D-type cyclins, interleukin-8 receptors, and enzymes involved in nucleotide metabolism). The left terminal region of the light DNA segment bears the putative rhadinovirus oncogene tio.
Collapse
Affiliation(s)
- J C Albrecht
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| |
Collapse
|
36
|
Henderson EE, Tsygankov AY, Merlo JJ, Romano G, Guan M. Altered replication of human immunodeficiency virus type 1 (HIV-1) in T cell lines retrovirally transduced to express Herpesvirus saimiri proteins StpC and/or Tip. Virology 1999; 264:125-33. [PMID: 10544137 DOI: 10.1006/viro.1999.9988] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human peripheral blood T lymphocytes are transformed in vitro to continuous proliferation by Herpesvirus saimiri subgroup C strains. It has been previously shown that H. saimiri-transformed human T cell lines are a permissive system for HIV-1 and 2 replication and are highly susceptible to infection by HIV-1 and 2. Two open reading frames of H. saimiri, StpC and Tip, are required for T cell transformation and are unique to this herpesvirus. The successful transduction of human T cells with retroviral vectors expressing H. saimiri proteins StpC and Tip has allowed us to extend the previously mentioned observations and investigate the role of StpC and Tip in replication of HIV-1 T-tropic strains (IIIB, MN, and RF) in human T cell lines. StpC expression in Molt4 dramatically enhanced HIV-1 replication as measured by Tat protein expression, syncytia formation, and accumulation of reverse transcriptase activity. In contrast, Tip expression in Molt4 cells inhibited HIV-1 replication and cytopathic effects relative to Molt4 cells transduced with the empty vector alone. The StpC-induced phenotype dominated in Molt4 cells transduced to express both StpC and Tip, suggesting that StpC is responsible for facilitating HIV-1 replication in H. saimiri-transformed T cells. Colony-forming ability of Tip-expressing Molt4 cells following HIV-1 infection was greatly enhanced over Molt4 cells expressing either StpC or no H. saimiri proteins at all. HIV-1 proviral DNA could be detected by PCR in surviving Molt4 cells expressing StpC or Tip, indicating that a persistent infection was established. A better understanding of the effects of Tip and StpC proteins on the biology of human hemopoietic stem cells may lead to novel therapeutic interventions for the treatment of AIDS.
Collapse
Affiliation(s)
- E E Henderson
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | |
Collapse
|
37
|
Hartley DA, Hurley TR, Hardwick JS, Lund TC, Medveczky PG, Sefton BM. Activation of the lck tyrosine-protein kinase by the binding of the tip protein of herpesvirus saimiri in the absence of regulatory tyrosine phosphorylation. J Biol Chem 1999; 274:20056-9. [PMID: 10400611 DOI: 10.1074/jbc.274.29.20056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tip protein of herpesvirus saimiri 484 binds to the Lck tyrosine-protein kinase at two sites and activates it dramatically. Lck has been shown previously to be activated by either phosphorylation of Tyr394 or dephosphorylation of Tyr505. We examined here whether a change in the phosphorylation of either site was required for the activation of Lck by Tip. Remarkably, mutation of both regulatory sites of tyrosine phosphorylation did not prevent activation of Lck by Tip either in vivo or in a cell free in vitro system. Tip therefore appears to be able to activate Lck through an induced conformational change that does not necessarily involve altered phosphorylation of the kinase. Tip may represent the prototype of a novel type of regulator of tyrosine-protein kinases.
Collapse
Affiliation(s)
- D A Hartley
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Albrecht JC, Friedrich U, Kardinal C, Koehn J, Fleckenstein B, Feller SM, Biesinger B. Herpesvirus ateles gene product Tio interacts with nonreceptor protein tyrosine kinases. J Virol 1999; 73:4631-9. [PMID: 10233922 PMCID: PMC112504 DOI: 10.1128/jvi.73.6.4631-4639.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus ateles is a gamma-2-herpesvirus which naturally infects spider monkeys (Ateles spp.) and causes malignant lymphoproliferative disorders in various other New World primates. The genomic sequence of herpesvirus ateles strain 73 revealed a close relationship to herpesvirus saimiri, with a high degree of variability within the left terminus of the coding region. A spliced mRNA transcribed from this region was detected in New World monkey T-cell lines transformed by herpesvirus ateles in vitro or derived from T cells of infected Saguinus oedipus. The encoded viral protein, termed Tio, shows restricted homology to the oncoprotein StpC and to the tyrosine kinase-interacting protein Tip, two gene products responsible for the T-cell-transforming and oncogenic phenotype of herpesvirus saimiri group C strains. Tio was detectable in lysates of the transformed T lymphocytes. Dimer formation was observed after expression of recombinant Tio. After cotransfection, Tio was phosphorylated in vivo by the protein tyrosine kinases Lck and Src and less efficiently by Fyn. Stable complexes of these Src family kinases with the viral protein were detected in lysates of the transfected cells. Binding analyses indicated a direct interaction of Tio with the SH3 domains of Lyn, Hck, Lck, Src, Fyn, and Yes. In addition, tyrosine-phosphorylated Tio bound to the SH2 domains of Lck, Src, or Fyn. Thus, herpesvirus ateles-encoded Tio may contribute to viral T-cell transformation by influencing the function of Src family kinases.
Collapse
Affiliation(s)
- J C Albrecht
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Jung JU, Choi JK, Ensser A, Biesinger B. Herpesvirus saimiri as a model for gammaherpesvirus oncogenesis. Semin Cancer Biol 1999; 9:231-9. [PMID: 10343074 DOI: 10.1006/scbi.1998.0115] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus saimiri (HVS) causes T-lymphoproliferative dis-$borders in several New World and Old World primate species and in certain rabbits.In vitro infection leads to permanent growth of primary T cells of primate and human origins. The transformation-relevant proteins of HVS interact with cellular proto-oncoproteins which results in cell growth transformation. In addition, virus-encoded cellular homologues may contribute to transformation or persistence of HVS by altering cellular signal transduction and deregulating cell growth control. Because of the presence of a permissive cell culture system and in vitro Land in vivo transformation assays, HVS provides a unique opportunity to investigate the mechanisms of cancer induction by oncogenic herpesviruses.
Collapse
Affiliation(s)
- J U Jung
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772-9102, USA
| | | | | | | |
Collapse
|
40
|
Lund TC, Prator PC, Medveczky MM, Medveczky PG. The Lck binding domain of herpesvirus saimiri tip-484 constitutively activates Lck and STAT3 in T cells. J Virol 1999; 73:1689-94. [PMID: 9882381 PMCID: PMC104000 DOI: 10.1128/jvi.73.2.1689-1694.1999] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constitutive activation of signal transducers and activators of transcription (STATs) has been associated with oncogenesis. Previously, a protein required for T-cell transformation by the DNA tumor virus herpesvirus saimiri (HVS) strain 484, designated tyrosine kinase-interacting protein (Tip-484), was shown to interact with and dramatically upregulate the activity of the STATs in an Lck-dependent manner. The minimal region of Tip-484 responsible for binding Lck was defined as a 10-residue C-terminal Src-related kinase homology domain, an 18-amino-acid spacer, and a 10-residue potential SH3 binding domain. This region is termed the LBD (for Lck binding domain). The present data show that only the LBD of Tip-484 is needed to activate Lck in vitro and in vivo. Finally, the LBD was shown to form a complex with STAT3 in vitro, and expression of the LBD in T cells led to STAT3 activation equal to that of full-length Tip-484. These studies demonstrate that the 48-amino-acid LBD of Tip-484 can perform as effectively as the full-length protein in vitro and in vivo.
Collapse
Affiliation(s)
- T C Lund
- Department of Medical Microbiology and Immunology, Institute for Biomolecular Science, and the H. Lee Moffit Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612-4799, USA
| | | | | | | |
Collapse
|
41
|
Duboise SM, Lee H, Guo J, Choi JK, Czajak S, Simon M, Desrosiers RC, Jung JU. Mutation of the Lck-binding motif of Tip enhances lymphoid cell activation by herpesvirus saimiri. J Virol 1998; 72:2607-14. [PMID: 9525577 PMCID: PMC109695 DOI: 10.1128/jvi.72.4.2607-2614.1998] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The proline-rich SH3-binding (SH3B) motif of the tyrosine kinase-interacting protein (Tip) of herpesvirus saimiri (HVS) is required for binding to the cellular Src family kinase Lck. We constructed a mutant form of HVS in which prolines in the SH3B motif of Tip were altered to alanines. This mutant form of Tip was incapable of binding to Lck. The mutant virus, HVS/Tip mSH3B, retained its ability to immortalize common marmoset lymphocytes in culture. In fact, common marmoset lymphocytes immortalized by the HVS/Tip mSH3B mutant displayed increased expression of HLA-DR lymphocyte activation marker, an altered pattern of tyrosine phosphorylation, increased expression of the tyrosine kinase Lyn, and a shift in electrophoretic mobility of Lck compared to cells immortalized by wild-type HVS. Experimental infection of common marmosets resulted in fulminant lymphoma with both HVS/Tip mSH3B and wild-type HVS. However, HVS/Tip mSH3B produced greater infiltration of affected organs by proliferating lymphoid cells compared to wild-type HVS. These results demonstrate that Tip binding to Lck is not necessary for transformation and that abrogation of Tip binding to Lck alters the characteristics of transformed cells and the severity of the pathologic lesions.
Collapse
Affiliation(s)
- S M Duboise
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Noraz N, Saha K, Ottones F, Smith S, Taylor N. Cutting Edge: Constitutive Activation of TCR Signaling Molecules in IL-2-Independent Herpesvirus saimiri-Transformed T Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.5.2042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Both human T cell leukemia virus type I and simian Herpesvirus saimiri (HVS) transform human T cells in vitro. Although IL-2-independent growth in human T cell leukemia virus type I-transformed T cells is associated with constitutive phosphorylation of JAK/STAT kinases, we now demonstrate that different mechanisms may be responsible for the ability of HVS-transformed T cells to proliferate in the absence of exogenous cytokines. The IL-2 independence of an HVS-transformed cell line correlated with constitutive activation of protein tyrosine kinases known to be induced following TCR engagement. Thus, in these cells we observed increased phosphotransferase activity of Lck as well as constitutive tyrosine phosphorylation of the TCR-associated ZAP-70 kinase and expression of the related Syk protein tyrosine kinase. While Syk is generally not expressed in activated T cells, its introduction has been shown to enhance TCR responsiveness. These results suggest that distinct signal transduction cascades can participate in the transition of T cells to IL-2 independence.
Collapse
Affiliation(s)
- Nelly Noraz
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Kunal Saha
- †Molecular Virology Laboratory, St. Luke’s-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York, NY 10019; and
| | - Florence Ottones
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| | - Susan Smith
- ‡Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90027
| | - Naomi Taylor
- *Institut de Génétique Moléculaire de Montpellier, Montpellier, France
| |
Collapse
|
43
|
Duboise SM, Guo J, Czajak S, Desrosiers RC, Jung JU. STP and Tip are essential for herpesvirus saimiri oncogenicity. J Virol 1998; 72:1308-13. [PMID: 9445031 PMCID: PMC124609 DOI: 10.1128/jvi.72.2.1308-1313.1998] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mutant forms of herpesvirus saimiri (HVS) subgroup C strain 488 with deletions in either STP-C488 or Tip were constructed. The transforming potentials of the HVS mutants were tested in cell culture and in common marmosets. Parental HVS subgroup C strain 488 immortalized common marmoset T lymphocytes in vitro to interleukin-2-independent growth, but neither of the deletion mutants produced such growth transformation. Wild-type HVS produced fatal lymphoma within 19 to 20 days of experimental infection of common marmosets, while HVS deltaSTP-C488 and HVS deltaTip were nononcogenic. Virus was repeatedly isolated from the peripheral blood of marmosets infected with mutant virus for more than 5 months. These results demonstrate that STP-C488 and Tip are not required for replication or persistence, but each is essential for transformation in cell culture and for lymphoma induction in common marmosets.
Collapse
Affiliation(s)
- S M Duboise
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | |
Collapse
|
44
|
3 Growth Transformation of Human T Cells. METHODS IN MICROBIOLOGY 1998. [DOI: 10.1016/s0580-9517(08)70693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
45
|
Knappe A, Hiller C, Thurau M, Wittmann S, Hofmann H, Fleckenstein B, Fickenscher H. The superantigen-homologous viral immediate-early gene ie14/vsag in herpesvirus saimiri-transformed human T cells. J Virol 1997; 71:9124-33. [PMID: 9371569 PMCID: PMC230213 DOI: 10.1128/jvi.71.12.9124-9133.1997] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Herpesvirus saimiri C488 transforms human T lymphocytes to stable growth in culture. The growth-transformed human T cells harbor the viral genome in a nonintegrated episomal form without production of virus particles. In these cells, virus gene expression was previously found to be confined to the transforming genes stpC and tip. In order to analyze virus gene expression in more detail, we applied a subtractive hybridization technique and compared stimulated virus-transformed cells with uninfected parental T cells of the same donor. A number of known T-cell activation genes were isolated. Viral stpC/tip cDNAs were enriched after subtraction. In addition, the viral immediate-early, superantigen-homologous gene ie14/vsag was represented by numerous cDNA clones that comprised the entire spliced transcript. Whereas a weak basal expression of ie14/vsag was detected by reverse transcription-PCR only, the phorbol ester-induced transcripts were readily shown by Northern blotting. ie14/vsag, which before had been classified as a major immediate-early gene of herpesvirus saimiri, is localized within a highly conserved region with extensive homologies to the cellular genome. Mutant viruses without the ie14/vsag gene are replication competent and fully capable of transforming human and marmoset T cells. Since ie14/vsag is transiently expressed after stimulation, it may increase T-cell proliferation in an activation-dependent and superantigen-like but apparently Vbeta-independent way.
Collapse
MESH Headings
- Animals
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Base Sequence
- Callithrix
- Cell Transformation, Viral
- DNA, Viral
- Gene Expression Regulation, Viral
- Genes, Immediate-Early
- Genes, Viral
- Genome, Viral
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/immunology
- Herpesvirus 2, Saimiriine/physiology
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Superantigens/genetics
- Superantigens/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
- Transformation, Genetic
- Virus Replication
Collapse
Affiliation(s)
- A Knappe
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Virus replication and spreading in a host population depends on highly specific interactions of viral proteins with infected cells, resulting in subversion of multiple cellular signal transduction pathways. For instance, viral proteins cause cell cycle progression of the infected host cell in order to establish a cellular environment favourable for virus replication. Of equal importance for successful virus propagation is virus-mediated attenuation of a host's immune response. Many of the pathways controlling these aspects of cell behaviour are regulated by cellular tyrosine kinases. One particular family of these enzymes, Src family kinases, are involved in processing signals emanating from the plasma membrane upon stimulation by growth factors, by cell-substratum or by cell-cell contact. Two families of DNA viruses, polyoma- and herpesviruses, encode proteins targeted at tyrosine kinases. The middle-T antigens expressed by mouse and hamster polyomavirus associate with and activate Src family tyrosine kinases. Two members of the herpes family of DNA viruses, Epstein-Barr virus (EBV) and herpesvirus saimiri (HVS), encode proteins, LMP2A and Tip, respectively, that associate with cellular tyrosine kinases of the Src and Syk/Zap family. Upon association with these viral proteins, the activity of these tyrosine kinases is changed resulting in altered signal output. Middle-T, LMP2A and Tip are therefore excellent tools to study the regulation of Src family kinases.
Collapse
Affiliation(s)
- N Dunant
- Friedrich Miescher-Institute, Basel, Switzerland
| | | |
Collapse
|
47
|
Guo J, Duboise M, Lee H, Li M, Choi JK, Rosenzweig M, Jung JU. Enhanced downregulation of Lck-mediated signal transduction by a Y114 mutation of herpesvirus Saimiri tip. J Virol 1997; 71:7092-6. [PMID: 9261442 PMCID: PMC192003 DOI: 10.1128/jvi.71.9.7092-7096.1997] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tip of herpesvirus saimiri associates with Lck and downregulates Lck function in cellular signal transduction. In this report, we demonstrate that mutation of tyrosine 114 of Tip significantly increases Lck-binding activity. This mutant exhibits a dramatic increase in the suppression of cellular tyrosine phosphorylation and surface expression of lymphocyte antigens in comparison with wild-type Tip. In addition, the expression of TipY114 converted the transforming morphology of fibroblasts induced by oncogenic F505 Lck to a normal cellular morphology. These results further support a mechanism by which the association of Tip with Lck negatively regulates Lck-mediated signal transduction.
Collapse
Affiliation(s)
- J Guo
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Collette Y, Olive D. Non-receptor protein tyrosine kinases as immune targets of viruses. IMMUNOLOGY TODAY 1997; 18:393-400. [PMID: 9267082 DOI: 10.1016/s0167-5699(97)01104-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Collette
- Unité de Cancérologie et de Thérapeutique Expérimentales de l'INSERM (Unité 119), Marseilles, France.
| | | |
Collapse
|
49
|
Nava VE, Cheng EH, Veliuona M, Zou S, Clem RJ, Mayer ML, Hardwick JM. Herpesvirus saimiri encodes a functional homolog of the human bcl-2 oncogene. J Virol 1997; 71:4118-22. [PMID: 9094693 PMCID: PMC191568 DOI: 10.1128/jvi.71.5.4118-4122.1997] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we demonstrate that open reading frame 16 (ORF16) of the oncogenic herpesvirus saimiri protects cells from heterologous virus-induced apoptosis. The BH1 and BH2 homology domains are highly conserved in ORF16, and ORF16 heterodimerizes with Bcl-2 family members Bax and Bak. However, ORF16 lacks the core sequence of the conserved BH3 homology domain, suggesting that this region is not essential for anti-apoptotic activity. Conservation of a functional bcl-2 homolog among gammaherpesviruses suggests that inhibition of programmed cell death is important in the biology of these viruses.
Collapse
Affiliation(s)
- V E Nava
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Fickenscher H, Bökel C, Knappe A, Biesinger B, Meinl E, Fleischer B, Fleckenstein B, Bröker BM. Functional phenotype of transformed human alphabeta and gammadelta T cells determined by different subgroup C strains of herpesvirus Saimiri. J Virol 1997; 71:2252-63. [PMID: 9032360 PMCID: PMC191333 DOI: 10.1128/jvi.71.3.2252-2263.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on sequence divergence in the transformation-relevant region, herpesvirus saimiri strains are classified into three subgroups. Only members of subgroup C transform human T lymphocytes to continuous interleukin-2-dependent growth in culture. In this study, human cord blood T cells were immortalized by using different subgroup C strains (C488, C484, and C139). The resulting T-cell lines represented different types of T-cell clones. They were either CD4+ or CD8+ and expressed either the alphabeta or the gammadelta type of T-cell receptors. If transformed by the same virus strain, alphabeta and gammadelta clones were similar with respect to viral persistence, virus gene expression, proliferation, and Th1-type cytokine production. However, major differences were observed in T cells immortalized by different subgroup C strains. Strain C139 persisted at low copy number, compared to the high copy number of prototype C488. The transformation-associated genes stpC and tip of strain C488 were strongly induced after T-cell stimulation. The homologous genes of strain C139 were only weakly expressed and not induced after activation. After CD2 ligation, the C488-transformed T cells produced interleukin-2, whereas the C139-transformed cells did not. Correspondingly, the C139-transformed T cells were less sensitive to cyclosporin A. Sequence comparison from different subgroup C strains revealed a variability of the stpC/tip promoter region and of the Lck-binding viral protein Tip. Thus, closely related subgroup C strains of herpesvirus saimiri cause major differences in the functional phenotype of growth-transformed human T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aotidae
- Base Sequence
- CD2 Antigens/immunology
- Cell Line
- Cell Line, Transformed
- Cells, Cultured
- Herpesvirus 2, Saimiriine/immunology
- Herpesvirus 2, Saimiriine/isolation & purification
- Humans
- Jurkat Cells
- Leukocytes, Mononuclear/cytology
- Leukocytes, Mononuclear/immunology
- Mice
- Molecular Sequence Data
- Phenotype
- Phosphoproteins/chemistry
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- H Fickenscher
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|