1
|
Zhang Z, Zhou M, Tang Y, Qi J, Xu X, Wang P, Han H, Pan T, Song X, Jiang S, Li X, Gu C, Yao Z, Hou Q, Guo M, Lu S, Wu D, Han Y. Impaired megakaryopoiesis due to aberrant macrophage polarization via BTK/Rap1/NF-κB pathway in sepsis-induced thrombocytopenia. Mol Ther 2025; 33:1769-1784. [PMID: 39741411 PMCID: PMC11997490 DOI: 10.1016/j.ymthe.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Sepsis-induced thrombocytopenia (SIT) is a widely accepted predictor of poor prognosis during sepsis, while the mechanism of SIT remains elusive. In this study, we revealed that SIT patients and septic mice exhibited higher levels of pro-inflammatory macrophages and phosphorylated Bruton's tyrosine kinase (p-BTK) expression in macrophages, which were closely correlated with platelet counts. Treatment with the BTK inhibitor BGB-3111 in SIT mice resulted in enhanced production of megakaryocytes and platelets. Depletion of macrophages in SIT mice and coculture experiments further confirmed the critical role of macrophages in the improvement of platelet count induced by BGB-3111. By performing single-cell RNA sequencing on bone marrow-derived cells from SIT mice, we not only confirmed the connection between macrophages and megakaryocytes influenced by BTK but also identified a potential mediation through the Rap1 signaling pathway in macrophages. Subsequent experiments in macrophages demonstrated that inhibition of BTK signaling impeded the pro-inflammatory polarization of macrophages by targeting the Rap1/NF-κB signaling pathway. In conclusion, our study highlights the crucial role of macrophages in SIT, and inhibiting phosphorylation of BTK in macrophages may alleviate SIT through the Rap1/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Department of Hematology, Affiliated Kunshan Hospital of Jiangsu University, 566 East Qianjin Road, Suzhou, Jiangsu 215300, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yaqiong Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaoyan Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Peng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Haohao Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Tingting Pan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaofei Song
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Shuhui Jiang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Chengyuan Gu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Zhenzhen Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Qixiu Hou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Mengting Guo
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Siyi Lu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215006, China; Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, Jiangsu 215006, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
2
|
Singh S, Gyawali YP, Jiang T, Bukowski GS, Zheng H, Zhang H, Owopetu R, Thielges MC, Feng C. Probing calmodulin-NO synthase interactions via site-specific infrared spectroscopy: an introductory investigation. J Biol Inorg Chem 2024; 29:243-250. [PMID: 38580821 PMCID: PMC11181464 DOI: 10.1007/s00775-024-02046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 04/07/2024]
Abstract
Calmodulin (CaM) binds to a linker between the oxygenase and reductase domains of nitric oxide synthase (NOS) to regulate the functional conformational dynamics. Specific residues on the interdomain interface guide the domain-domain docking to facilitate the electron transfer in NOS. Notably, the docking interface between CaM and the heme-containing oxygenase domain of NOS is isoform specific, which is only beginning to be investigated. Toward advancing understanding of the distinct CaM-NOS docking interactions by infrared spectroscopy, we introduced a cyano-group as frequency-resolved vibrational probe into CaM individually and when associated with full-length and a bi-domain oxygenase/FMN construct of the inducible NOS isoform (iNOS). Site-specific, selective labeling with p-cyano-L-phenylalanine (CNF) by amber suppression of CaM bound to the iNOS has been accomplished by protein coexpression due to the instability of recombinant iNOS protein alone. We introduced CNF at residue 108, which is at the putative CaM-heme (NOS) docking interface. CNF was also introduced at residue 29, which is distant from the docking interface. FT IR data show that the 108 site is sensitive to CaM-NOS complex formation, while insensitivity to its association with the iNOS protein or peptide was observed for the 29 site. Moreover, narrowing of the IR bands at residue 108 suggests the C≡N probe experiences a more limited distribution of environments, indicating side chain restriction apparent for the complex with iNOS. This initial work sets the stage for residue-specific characterizations of structural dynamics of the docked states of NOS proteins.
Collapse
Affiliation(s)
- Swapnil Singh
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Yadav Prasad Gyawali
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Ting Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Gregory S Bukowski
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Huayu Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Haikun Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Rebecca Owopetu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN, 47405, USA.
| | - Changjian Feng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA.
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
| |
Collapse
|
3
|
Dent MR, DeMartino AW. Nitric oxide and thiols: Chemical biology, signalling paradigms and vascular therapeutic potential. Br J Pharmacol 2023:10.1111/bph.16274. [PMID: 37908126 PMCID: PMC11058123 DOI: 10.1111/bph.16274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/18/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023] Open
Abstract
Nitric oxide (• NO) interactions with biological thiols play crucial, but incompletely determined, roles in vascular signalling and other biological processes. Here, we highlight two recently proposed signalling paradigms: (1) the formation of a vasodilating labile nitrosyl ferrous haem (NO-ferrohaem) facilitated by thiols via thiyl radical generation and (2) polysulfides/persulfides and their interaction with • NO. We also describe the specific (bio)chemical routes in which • NO and thiols react to form S-nitrosothiols, a broad class of small molecules, and protein post-translational modifications that can influence protein function through catalytic site or allosteric structural changes. S-Nitrosothiol formation depends upon cellular conditions, but critically, an appropriate oxidant for either the thiol (yielding a thiyl radical) or • NO (yielding a nitrosonium [NO+ ]-donating species) is required. We examine the roles of these collective • NO/thiol species in vascular signalling and their cardiovascular therapeutic potential.
Collapse
Affiliation(s)
- Matthew R. Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony W. DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Seki M, Takeuchi E, Fukui E, Matsumoto H. Upregulation of iNOS and phosphorylated eNOS in the implantation-induced blastocysts of mice. Reprod Med Biol 2023; 22:e12545. [PMID: 37841392 PMCID: PMC10568119 DOI: 10.1002/rmb2.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/20/2023] [Accepted: 09/16/2023] [Indexed: 10/17/2023] Open
Abstract
Purpose This study aimed to examine expressions of iNOS and phosphorylated eNOS (p-eNOS) in implantation-induced blastocysts. We also examined the upstream of p-eNOS. Methods To address the protein expressions in implantation-induced blastocysts, we performed immunohistochemical analysis using a delayed implantation mouse model. Immunostaining for iNOS, p-eNOS, and p-Akt was done. To address the relationship between p-eNOS and p-Akt, activated blastocysts were treated with an Akt inhibitor, MK-2206. Results iNOS expression was at low levels in dormant blastocysts, whereas the expression was significantly increased in the activated blastocysts. Double staining of p-eNOS and p-Akt in individual blastocysts showed colocalization of p-eNOS and p-Akt of the trophectoderm. p-eNOS and p-Akt expressions were at low levels in dormant blastocysts, whereas both of them were significantly increased in the activated blastocysts. Both dormant and activated blastocysts showed significant positive correlations between p-eNOS and p-Akt. MK-2206 treatment for activated blastocysts showed that blastocysts with lower p-Akt had significantly lower p-eNOS levels. Conclusions iNOS and p-eNOS, Ca2+ independent NOS, are upregulated by E2 in the blastocysts during implantation activation. Furthermore, p-eNOS is upregulated in implantation-induced blastocysts downstream of p-Akt.
Collapse
Affiliation(s)
- Misato Seki
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Eisaku Takeuchi
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Emiko Fukui
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| | - Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, School of AgricultureUtsunomiya UniversityUtsunomiya, TochigiJapan
- Center for Bioscience Research and EducationUtsunomiya UniversityUtsunomiya, TochigiJapan
| |
Collapse
|
5
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
6
|
Boumezber S, Yelekçi K. Screening of novel and selective inhibitors for neuronal nitric oxide synthase (nNOS) via structure-based drug design techniques. J Biomol Struct Dyn 2022; 41:3607-3629. [PMID: 35322764 DOI: 10.1080/07391102.2022.2054471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
NO, or nitric oxide, is produced by a family of enzymes called nitric oxide synthase (NOS) from L-arginine. NO regulates many physiological functions such as smooth muscle relaxation, immune defense, and memory function. The overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is implicated in neurodegeneration and neuropathic pain, making nNOS inhibition a promising therapeutic approach. Many developed nNOS inhibitors, generally L-arginine mimetics, have some issues in selectivity and bioavailability. According to earlier studies, targeting nNOS has the advantage of decreasing excess NO in the brain while avoiding the negative consequences of inhibiting the two isozymes: endothelial NOS (eNOS) and inducible NOS (iNOS). This study applied structure-based virtual screening, molecular docking, and molecular dynamics simulations to design potent and selective inhibitors against nNOS over related isoforms (eNOS and iNOS) using human X-ray crystal structures of the NOS isoforms. It was discovered that some compounds displayed a very good inhibitory potency for hnNOS and moderate selectivity for the other isozymes, eNOS and iNOS, in addition to good solubility and desirable physiochemical properties. The compounds which showed good stability and selectivity with nNOS, such as ZINC000013485422, can be interesting and informative guidance for designing more potent human nNOS inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sarah Boumezber
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| | - Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey
| |
Collapse
|
7
|
Lalive AL, Nuno-Perez A, Tchenio A, Mameli M. Mild stress accumulation limits GABAergic synaptic plasticity in the lateral habenula. Eur J Neurosci 2021; 55:377-387. [PMID: 34963191 PMCID: PMC9305738 DOI: 10.1111/ejn.15581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022]
Abstract
Animals can cope with isolated stressful situations without enduring long-term consequences. However, when exposure to stressors becomes recurrent, behavioral symptoms of anxiety and depression can emerge. Yet, the neuronal mechanisms governing responsivity to isolated stressor remain elusive. Here, we investigate synaptic adaptations following mild stress in the lateral habenula (LHb), a structure engaged in aversion encoding and dysfunctional in depression. We describe that neuronal depolarization in the LHb drives long-term depression of inhibitory, but not excitatory, synaptic transmission (GABA LTD). This plasticity requires nitric oxide and presynaptic GABAB receptors, leading to a decrease in probability of GABA release. Mild stressors such as brief social isolation, or exposure to novel environment in the company of littermates, do not alter GABA LTD. In contrast, GABA LTD is absent after mice experience a novel environment in social isolation. Altogether, our results suggest that LHb GABAergic plasticity is sensitive to stress accumulation, which could represent a threshold mechanism for long-term alterations of LHb function.
Collapse
Affiliation(s)
- Arnaud L Lalive
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Alvaro Nuno-Perez
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anna Tchenio
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Institut du Fer à Moulin, Inserm UMR-S 839, Paris, France
| |
Collapse
|
8
|
Filippovich SY, Onufriev MV, Peregud DI, Bachurina GP, Kritsky MS. Nitric-Oxide Synthase Activity in the Photomorphogenesis of Neurospora сrassa. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820040043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Bueno-Silva B, Rosalen PL, Alencar SM, Mayer MPA. Vestitol drives LPS-activated macrophages into M2 phenotype through modulation of NF-κB pathway. Int Immunopharmacol 2020; 82:106329. [PMID: 32114412 DOI: 10.1016/j.intimp.2020.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Previously, we demonstrated the anti-inflammatory properties of vestitol in a neutrophil model. Here, we show the effects of vestitol on macrophage activation and function. Vestitol was obtained from Brazilian red propolis after bioguided fractionation and tested at different concentrations in LPS-activated RAW 264.7 murine macrophages for nitric oxide (NO) production and cell viability. The levels of TNF-α, IL1-β, TGF-β, IL-4, IL-6, IL-10, IL-12, GM-CSF, IFN-ɣ and gene expression related to cytokines, NO, PI3K-AKT and signal transduction pathways were assayed by ELISA and RT-qPCR, respectively. Differences were determined by one-way ANOVA followed by Tukey-Kramer. Vestitol inhibited NO production by 83% at 0.55 μM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-β levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. The modulatory effects of vestitol are due to inhibition of NF-κB and Erk 1/2 signaling pathways, which are associated with the production of pro-inflammatory factors.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Pedro L Rosalen
- Piracicaba Dental School, University of Campinas - UNICAMP, Department of Physiological Sciences, P.O. Box 52, 13414-903, Piracicaba, SP, Brazil
| | - Severino M Alencar
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
10
|
Piazza M, Taiakina V, Dieckmann T, Guillemette JG. Structural Consequences of Calmodulin EF Hand Mutations. Biochemistry 2017; 56:944-956. [PMID: 28121131 DOI: 10.1021/acs.biochem.6b01296] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Valentina Taiakina
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - J Guy Guillemette
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Piazza M, Dieckmann T, Guillemette JG. Structural Studies of a Complex Between Endothelial Nitric Oxide Synthase and Calmodulin at Physiological Calcium Concentration. Biochemistry 2016; 55:5962-5971. [DOI: 10.1021/acs.biochem.6b00821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J. Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
12
|
Marshall CB, Nishikawa T, Osawa M, Stathopulos PB, Ikura M. Calmodulin and STIM proteins: Two major calcium sensors in the cytoplasm and endoplasmic reticulum. Biochem Biophys Res Commun 2015; 460:5-21. [PMID: 25998729 DOI: 10.1016/j.bbrc.2015.01.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
The calcium (Ca(2+)) ion is a universal signalling messenger which plays vital physiological roles in all eukaryotes. To decode highly regulated intracellular Ca(2+) signals, cells have evolved a number of sensor proteins that are ideally adapted to respond to a specific range of Ca(2+) levels. Among many such proteins, calmodulin (CaM) is a multi-functional cytoplasmic Ca(2+) sensor with a remarkable ability to interact with and regulate a plethora of structurally diverse target proteins. CaM achieves this 'multi-talented' functionality through two EF-hand domains, each with an independent capacity to bind targets, and an adaptable flexible linker. By contrast, stromal interaction molecule-1 and -2 (STIMs) have evolved for a specific role in endoplasmic reticulum (ER) Ca(2+) sensing using EF-hand machinery analogous to CaM; however, whereas CaM structurally adjusts to dissimilar binding partners, STIMs use the EF-hand machinery to self-regulate the stability of the Ca(2+) sensing domain. The molecular mechanisms underlying the Ca(2+)-dependent signal transduction by CaM and STIMs have revealed a remarkable repertoire of actions and underscore the flexibility of nature in molecular evolution and adaption to discrete Ca(2+) levels. Recent genomic sequencing efforts have uncovered a number of disease-associated mutations in both CaM and STIM1. This article aims to highlight the most recent key structural and functional findings in the CaM and STIM fields, and discusses how these two Ca(2+) sensor proteins execute their biological functions.
Collapse
Affiliation(s)
- Christopher B Marshall
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Tadateru Nishikawa
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, N6A 5C1, Canada.
| | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
13
|
Piazza M, Guillemette JG, Dieckmann T. Dynamics of nitric oxide synthase-calmodulin interactions at physiological calcium concentrations. Biochemistry 2015; 54:1989-2000. [PMID: 25751535 DOI: 10.1021/bi501353s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The intracellular Ca²⁺ concentration is an important regulator of many cellular functions. The small acidic protein calmodulin (CaM) serves as a Ca²⁺ sensor and control element for many enzymes. Nitric oxide synthase (NOS) is one of the proteins that is activated by CaM and plays a major role in a number of key physiological and pathological processes. Previous studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. We have analyzed the structure and dynamics of complexes formed by peptides based on inducible NOS (iNOS) and endothelial NOS (eNOS) with CaM at Ca²⁺ concentrations that mimic the physiological basal (17 and 100 nM) and elevated levels (225 nM) found in mammalian cells using fluorescence techniques and nuclear magnetic resonance spectroscopy. The results show the CaM-NOS complexes have similar structures at physiological and fully saturated Ca²⁺ levels; however, their dynamics are remarkably different. At 225 nM Ca²⁺, the CaM-NOS complexes show overall an increase in backbone dynamics, when compared to the dynamics of the complexes at saturating Ca²⁺ concentrations. Specifically, the N-lobe of CaM in the CaM-iNOS complex displays a lower internal mobility (higher S²) and higher exchange protection compared to those of the CaM-eNOS complex. In contrast, the C-lobe of CaM in the CaM-eNOS complex is less dynamic. These results illustrate that structures of CaM-NOS complexes determined at saturated Ca²⁺ concentrations cannot provide a complete picture because the differences in intramolecular dynamics become visible only at physiological Ca²⁺ levels.
Collapse
Affiliation(s)
- Michael Piazza
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - J Guy Guillemette
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Thorsten Dieckmann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
14
|
Abstract
Real innovations in medicine and science are historic and singular; the stories behind each occurrence are precious. At Molecular Medicine we have established the Anthony Cerami Award in Translational Medicine to document and preserve these histories. The monographs recount the seminal events as told in the voice of the original investigators who provided the crucial early insight. These essays capture the essence of discovery, chronicling the birth of ideas that created new fields of research; and launched trajectories that persisted and ultimately influenced how disease is prevented, diagnosed, and treated. In this volume, the first Cerami Award Monograph, by Carl Nathan, MD, chairman of the Department of Microbiology and Immunology at Weill Cornell Medical College, reflects towering genius and soaring inspiration.
Collapse
Affiliation(s)
- Carl Nathan
- Weill Cornell Medical College, New York, New York, United States of America
| |
Collapse
|
15
|
Lowe M, Park SJ, Nurse CA, Campanucci VA. Purinergic stimulation of carotid body efferent glossopharyngeal neurones increases intracellular Ca2+ and nitric oxide production. Exp Physiol 2013; 98:1199-212. [PMID: 23525247 DOI: 10.1113/expphysiol.2013.072058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The mammalian carotid body (CB) is a peripheral chemosensory organ that controls ventilation and is innervated by both afferent and efferent nerve fibres. The afferent pathway is stimulated by chemoexcitants, such as hypoxia, hypercapnia and acidosis. The efferent pathway causes inhibition of the sensory discharge via release of NO that originates mainly from neuronal nitric oxide synthase (nNOS)-positive autonomic neurones within the glossopharyngeal nerve (GPN). Recent studies in the rat indicate that these inhibitory GPN neurones and their processes express purinergic P2X receptors and can be activated by ATP, a key excitatory CB neurotransmitter. Here we tested the hypothesis that purinergic agonists stimulate a rise in [Ca(2+)]i, leading to nNOS activation and NO production in isolated GPN neurones, using the fluorescent probes fura-2 and 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM DA), respectively. ATP caused a dose-dependent increase in [Ca(2+)]i in GPN neurones (EC50 ≈ 1.92 μm) that was markedly inhibited by a combination of 100 μm suramin (a non-specific P2X blocker) and 100 nm Brilliant Blue G (a selective P2X7 blocker). ATP also stimulated NO production in GPN neurones, as revealed by an increase in DAF fluorescence; this NO signal was inhibited by purinergic blockers, chelators of extracellular Ca(2+), the nNOS inhibitor l-NAME and the NO scavenger carboxy-PTIO. The P2X2/3 and P2X7 agonists α,β,-methylene ATP and benzoyl ATP mimicked the effects of ATP. Taken together, these data indicate that ATP may contribute to negative feedback inhibition of CB sensory discharge via purinergic stimulation of NO production in efferent fibres.
Collapse
Affiliation(s)
- Michael Lowe
- Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 4K1
| | | | | | | |
Collapse
|
16
|
Abstract
Diflavin reductases are essential proteins capable of splitting the two-electron flux from reduced pyridine nucleotides to a variety of one electron acceptors. The primary sequence of diflavin reductases shows a conserved domain organization harboring two catalytic domains bound to the FAD and FMN flavins sandwiched by one or several non-catalytic domains. The catalytic domains are analogous to existing globular proteins: the FMN domain is analogous to flavodoxins while the FAD domain resembles ferredoxin reductases. The first structural determination of one member of the diflavin reductases family raised some questions about the architecture of the enzyme during catalysis: both FMN and FAD were in perfect position for interflavin transfers but the steric hindrance of the FAD domain rapidly prompted more complex hypotheses on the possible mechanisms for the electron transfer from FMN to external acceptors. Hypotheses of domain reorganization during catalysis in the context of the different members of this family were given by many groups during the past twenty years. This review will address the recent advances in various structural approaches that have highlighted specific dynamic features of diflavin reductases.
Collapse
Affiliation(s)
- Louise Aigrain
- Gene Machines Group, Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK; E-Mail:
| | - Fataneh Fatemi
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Oriane Frances
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, UPR 2301, Centre de Recherche de Gif, 1 Av. de la Terrasse, 91198 Gif-sur-Yvette Cedex, France; E-Mails: (F.F.); (O.F.); (E.L.)
| | - Gilles Truan
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
- INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France
- CNRS, UMR5504, F-31400 Toulouse, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-567048813; Fax: +33-567048814
| |
Collapse
|
17
|
Fructose-1,6-bisphosphate Protects against Zymosan-induced Acute Lung Injury in Mice. Inflammation 2012; 35:1198-203. [DOI: 10.1007/s10753-012-9429-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Wu G, Berka V, Tsai AL. Binding kinetics of calmodulin with target peptides of three nitric oxide synthase isozymes. J Inorg Biochem 2011; 105:1226-37. [PMID: 21763233 PMCID: PMC3155652 DOI: 10.1016/j.jinorgbio.2011.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/09/2011] [Accepted: 06/15/2011] [Indexed: 11/17/2022]
Abstract
Efficient electron transfer from reductase domain to oxygenase domain in nitric oxide synthase (NOS) is dependent on the binding of calmodulin (CaM). Rate constants for the binding of CaM to NOS target peptides was only determined previously by surface plasmon resonance (SPR) (Biochemistry 35, 8742-8747, 1996) suggesting that the binding of CaM to NOSs is slow and does not support the fast electron transfer in NOSs measured in previous and this studies. To resolve this contradiction, the binding rates of holo Alexa 350 labeled T34C/T110W CaM (Alexa-CaM) to target peptides from three NOS isozymes were determined using fluorescence stopped-flow. All three target peptides exhibited fast k(on) constants at 4.5°C: 6.6×10(8)M(-1)s(-1) for nNOS(726-749), 2.9×10(8)M(-1)s(-1) for eNOS(492-511) and 6.1×10(8)M(-1)s(-1) for iNOS(507-531), 3-4 orders of magnitude faster than those determined previously by SPR. Dissociation rates of NOS target peptides from Alexa-CaM/peptide complexes were measured by Ca(2+) chelation with ETDA: 3.7s(-1) for nNOS(726-749), 4.5s(-1) for eNOS(492-511), and 0.063s(-1) for iNOS(507-531). Our data suggest that the binding of CaM to NOS is fast and kinetically competent for efficient electron transfer and is unlikely rate-limiting in NOS catalysis. Only iNOS(507-531) was able to bind apo Alexa-CaM, but in a very different conformation from its binding to holo Alexa-CaM.
Collapse
Affiliation(s)
- Gang Wu
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
19
|
Isozumi N, Iida Y, Nakatomi A, Nemoto N, Yazawa M, Ohki S. Conformation of the calmodulin-binding domain of metabotropic glutamate receptor subtype 7 and its interaction with calmodulin. J Biochem 2011; 149:463-74. [PMID: 21258069 DOI: 10.1093/jb/mvr006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Calmodulin (CaM), a Ca(2+)-binding protein, is a well-known regulator of various cellular functions. One of the targets of CaM is metabotropic glutamate receptor 7 (mGluR7), which serves as a low-pass filter for glutamate in the pre-synaptic terminal to regulate neurotransmission. Surface plasmon resonance (SPR), circular dichroism (CD) spectroscopy and nuclear magnetic spectroscopy (NMR) were performed to study the structure of the peptides corresponding to the CaM-binding domain of mGluR7 and their interaction with CaM. Unlike well-known CaM-binding peptides, mGluR7 has a random coil structure even in the presence of trifluoroethanol. Moreover, NMR data suggested that the complex between Ca(2+)/CaM and the mGluR7 peptide has multiple conformations. The mGluR7 peptide has been found to interact with CaM even in the absence of Ca(2+), and the binding is directed toward the C-domain of apo-CaM rather than the N-domain. We propose a possible mechanism for the activation of mGluR7 by CaM. A pre-binding occurs between apo-CaM and mGluR7 in the resting state of cells. Then, the Ca(2+)/CaM-mGluR7 complex is formed once Ca(2+) influx occurs. The weak interaction at lower Ca(2+) concentrations is likely to bind CaM to mGluR7 for the fast complex formation in response to the elevation of Ca(2+) concentration.
Collapse
Affiliation(s)
- Noriyoshi Isozumi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Dagher R, Peng S, Gioria S, Fève M, Zeniou M, Zimmermann M, Pigault C, Haiech J, Kilhoffer MC. A general strategy to characterize calmodulin-calcium complexes involved in CaM-target recognition: DAPK and EGFR calmodulin binding domains interact with different calmodulin-calcium complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1059-67. [PMID: 21115073 DOI: 10.1016/j.bbamcr.2010.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/07/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) sensor regulating many biochemical processes in eukaryotic cells. Its interaction with a great variety of different target proteins has led to the fundamental question of its mechanism of action. CaM exhibits four "EF hand" type Ca(2+) binding sites. One way to explain CaM functioning is to consider that the protein interacts differently with its target proteins depending on the number of Ca(2+) ions bound to it. To test this hypothesis, the binding properties of three entities known to interact with CaM (a fluorescent probe and two peptide analogs to the CaM binding sites of death associated protein kinase (DAPK) and of EGFR) were investigated using a quantitative approach based on fluorescence polarization (FP). Probe and peptide interactions with CaM were studied using a titration matrix in which both CaM and calcium concentrations were varied. Experiments were performed with SynCaM, a hybrid CaM able to activate CaM dependent enzymes from mammalian and plant cells. Results show that the interaction between CaM and its targets is regulated by the number of calcium ions bound to the protein, namely one for the DAPK peptide, two for the probe and four for the EGFR peptide. The approach used provides a new tool to elaborate a typology of CaM-targets, based on their recognition by the various CaM-Ca(n) (n=0-4) complexes. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
Affiliation(s)
- Rania Dagher
- Therapeutic Innovation Laboratory, UMR CNRS 7200, University Strasbourg, Faculty of Pharmacy, 74, route de Rhin, 67401 Illkirch Cedrex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Feairheller DL, Sturgeon KM, Diaz KM, Veerabhadrappa P, Williamson ST, Crabbe DL, Brown MD. Prehypertensive African-American women have preserved nitric oxide and renal function but high cardiovascular risk. Kidney Blood Press Res 2010; 33:282-90. [PMID: 20628261 PMCID: PMC3214938 DOI: 10.1159/000317944] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/21/2010] [Indexed: 11/19/2022] Open
Abstract
AIMS African-Americans, in particular women, exhibit disproportionate levels of hypertension, inflammation, and oxidative stress compared to other ethnic groups. The relationship between prehypertension, renal function, inflammation, and oxidative stress was examined. METHODS Twenty-eight African-American women (53.5 +/- 1.1 years) followed an AHA diet and then underwent 24-hour ambulatory BP (ABP) monitoring. Urinary albumin (uAlb), serum and urinary creatinine, glomerular filtration rate (GFR), 24-hour urinary Na(+) excretion, plasma superoxide dismutase, total antioxidant capacity (TAC), urinary (uNOx) and plasma (pNOx) nitric oxide levels, and high-sensitivity C-reactive protein (hsCRP) were measured. RESULTS When the group was divided by average 24-hour ABP into optimal and nonoptimal groups, a significant difference existed between the groups for uNOx (p = 0.001; nonoptimal: 933.5 +/- 140.4, optimal: 425.0 +/- 52.6 mumol/gCr), and for hsCRP (p = 0.018, nonoptimal: 3.9 +/- 0.7, optimal: 1.9 +/- 0.6 mg/l). Significant inverse relationships existed between hsCRP and uNOx and between uAlb and pNOx in the non-optimal group, between GFR and pNOx in the entire group, and positive association existed between TAC and uNOx in the optimal group. CONCLUSIONS These results suggest that in African-American women as BP levels rise toward hypertension, the NO/NOS balance may be associated with renal function, and may have implications for CV risk based on their hsCRP levels.
Collapse
Affiliation(s)
- Deborah L Feairheller
- Hypertension, Molecular and Applied Physiology Laboratory, Department of Kinesiology, Temple University, Philadelphia, PA 19122, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010; 12:657-74. [PMID: 19719386 PMCID: PMC2861541 DOI: 10.1089/ars.2009.2842] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.
Collapse
Affiliation(s)
- Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, New York, USA
| | | | | | | |
Collapse
|
23
|
Free intracellular Ca2+ regulates bacterial lipopolysaccharide induction of iNOS in human macrophages. Immunobiology 2009; 214:143-52. [DOI: 10.1016/j.imbio.2008.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 05/15/2008] [Accepted: 06/06/2008] [Indexed: 11/23/2022]
|
24
|
Spratt DE, Taiakina V, Palmer M, Guillemette JG. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes. Biochemistry 2008; 47:12006-17. [PMID: 18947187 DOI: 10.1021/bi801418s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
25
|
Spratt DE, Israel OK, Taiakina V, Guillemette JG. Regulation of mammalian nitric oxide synthases by electrostatic interactions in the linker region of calmodulin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2008; 1784:2065-70. [PMID: 18845278 DOI: 10.1016/j.bbapap.2008.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 08/29/2008] [Accepted: 09/04/2008] [Indexed: 11/29/2022]
Abstract
Calmodulin (CaM), the ubiquitous Ca(2+)-sensing protein, consists of two globular domains separated by a flexible central linker that properly orients CaM's globular domains to bind and regulate various intracellular proteins, including the nitric oxide synthase (NOS) enzymes. In the present study we determined that the charge and length of the central linker of CaM has an effect on the binding and activation of the NOS isozymes by using a variety of charge CaM mutants (T79D, S81D, T79D/S81D, S101D and E84R/E87K) and CaM mutants with residues removed (Delta84, Delta83-84, and Delta81-84). Our kinetic and spectropolarimetry results demonstrate that the NOS enzymes are not adversely affected by the CaM mutants with the exceptions of S101D, E84R/E87K and the deletion of residue 84. Electrostatic interactions in the central linker between residues 82-87 in combination with hydrophobic interactions in the globular domains of CaM are important for its tight association to inducible NOS.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | |
Collapse
|
26
|
Spratt DE, Taiakina V, Guillemette JG. Calcium-deficient calmodulin binding and activation of neuronal and inducible nitric oxide synthases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1351-8. [PMID: 17890165 DOI: 10.1016/j.bbapap.2007.07.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/25/2007] [Accepted: 07/23/2007] [Indexed: 11/17/2022]
Abstract
The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
27
|
Naureckiene S, Edris W, Ajit SK, Katz AH, Sreekumar K, Rogers KE, Kennedy JD, Jones PG. Use of a murine cell line for identification of human nitric oxide synthase inhibitors. J Pharmacol Toxicol Methods 2007; 55:303-13. [PMID: 16990017 DOI: 10.1016/j.vascn.2006.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 08/13/2006] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Nitric oxide (NO) has been implicated in a wide range of physiological and pathological processes. Low concentrations of this mediator play homeostatic roles, whereas many acute and chronic responses are associated with excessive production of NO. This upregulation is due in part to the induction of inducible nitric oxide synthase (iNOS) by proinflammatory cytokines in several different cell types, including macrophages and their CNS derivative, microglia. METHODS The crystal structures of the oxygenase domains of mouse and human iNOS were superimposed using the "align by homology" feature in Sybyl (SYBYL 7.0, Tripos Inc.). NOS isoform expression was assessed by TaqMan, Western blotting, and activity assays. RESULTS We demonstrate that there is a high degree of three-dimensional overlap between the mouse and human iNOS active centers and propose that the murine isoform can serve as a suitable substitute for the human in assays. We also demonstrate that LPS stimulation of the mouse macrophage cell line RAW 264.7 induces the expression of iNOS, but not nNOS or eNOS, at the levels of mRNA transcription and protein expression. Furthermore, the pharmacology and calcium dependency of the NO formation support the finding that it is due to iNOS alone. Also reported is the demonstration of LPS-induced RAW 264.7 macrophages in simple cell-based and cell-free screening assays for iNOS inhibitors. Both assays were reproducible, as demonstrated by Z' factors of 0.69 and 0.71, and had high signal to noise ratios of 11- and 6-fold for the cell-based and cell-free assay, respectively. DISCUSSION Our computational analyses indicate that there is a high degree of three-dimensional overlap between the oxygenase domains of human and murine iNOS. This observation together with the selective induction of murine iNOS in RAW 264.7 macrophages demonstrates the potential utility of the mouse iNOS assay to identify inhibitors of the human enzyme.
Collapse
Affiliation(s)
- Saule Naureckiene
- Neuroscience Discovery Research, Wyeth Research, CN8000, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wu X, Bers DM. Free and bound intracellular calmodulin measurements in cardiac myocytes. Cell Calcium 2006; 41:353-64. [PMID: 16999996 PMCID: PMC1868497 DOI: 10.1016/j.ceca.2006.07.011] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/12/2006] [Accepted: 07/17/2006] [Indexed: 10/24/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca2+ binding protein and Ca2+-CaM activates many cellular targets and functions. While much of CaM is thought to be protein bound, quantitative data in cardiac myocytes is lacking regarding CaM location, [CaM]free and CaM redistribution during changes in [Ca2+]i. Here, we demonstrated that in adult rabbit cardiac myocytes, CaM is highly concentrated at Z-lines (confirmed by Di-8-ANEPPS staining of transverse tubules) using three different approaches: immunocytochemistry (endogenous CaM), Alexa Fluor 488 conjugate CaM (F-CaM) in both permeabilized cells (exogenous CaM) and in patch clamped intact cells (via pipette dialysis). Using 100 nM [CaM]free we washed F-CaM into permeabilized myocytes and saw a two-phase (fast and slow) CaM binding curve with a plateau after 40 min of F-CaM wash-in. We also measured myocyte [CaM]free using two modified null-point titration methods, finding [CaM]free to be 50-75 nM (which is only 1% of total [CaM]). Higher [Ca2+]i increased CaM binding especially in the nucleus and at Z-lines and significantly slowed F-CaM dissociation rate when F-CaM was washed out of permeabilized myocytes. Additionally, in both permeabilized and intact myocytes, CaM moved into the nucleus when [Ca2+]i was elevated, and this was reversible. We conclude that [CaM]free is very low in myocytes even at resting [Ca2+]i, indicating intense competition of CaM targets for free CaM. Bound CaM is relatively concentrated at Z-lines at rest but translocates significantly to the nucleus upon elevation of [Ca2+]i, which may influence activation of different targets and cellular functions.
Collapse
Affiliation(s)
- Xu Wu
- Department of Physiology, Loyola University Chicago, 2160 S First Ave., Maywood, IL 60153, United States
| | | |
Collapse
|
29
|
Stuehr DJ, Wei CC, Wang Z, Hille R. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Dalton Trans 2005:3427-35. [PMID: 16234921 DOI: 10.1039/b506355h] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The NO synthases (NOSs) catalyze a two-step oxidation of L-arginine (Arg) to generate nitric oxide (NO) plus L-citrulline. Because NOSs are the only hemeproteins known to contain tetrahydrobiopterin (H4B) as a bound cofactor, the function and role of H4B in their heme-based oxygen activation and catalysis is of current interest. Distinct oxidative and reductive transitions of bound H4B cofactor occur during catalysis and are associated with distinct redox transitions of the NOS heme and flavin prosthetic groups. In this perspective, we discuss the redox transitions of H4B and heme with regard to their kinetics, regulation, role in the catalytic mechanism, and how and why they may be linked.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Lerner Research Institute, Cleveland Clinic, Ohio State University, USA
| | | | | | | |
Collapse
|
30
|
Jagnandan D, Sessa WC, Fulton D. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am J Physiol Cell Physiol 2005; 289:C1024-33. [PMID: 15917301 DOI: 10.1152/ajpcell.00162.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mislocalization of endothelial nitric oxide (NO) synthase (eNOS) in response to oxidized low-density lipoprotein, cholesterol depletion, elevated blood pressure, and bound eNOS interacting protein/NOS traffic inducer is associated with reduced NO release via unknown mechanisms. The proper targeting of eNOS to the plasma membrane or intracellular organelles is an important regulatory step controlling enzyme activity. Previous studies have shown that plasma membrane eNOS is constitutively phosphorylated on serine 1179 and highly active. In contrast, the activity of eNOS targeted to intracellular organelles is more complex. The cis-Golgi eNOS is fully activated by Akt-dependent phosphorylation. However, eNOS targeted to the trans-Golgi is decidedly less active in response to all modes of activation, including mutation to the phosphomimetic aspartic acid. In this study, we establish that when expressed within other intracellular organelles, such as the mitochondria and nucleus, the activity of eNOS is also greatly reduced. To address the mechanisms underlying the impaired catalytic activity of eNOS within these locations, we generated subcellular-targeted constructs that express a calcium-independent NOS isoform, iNOS. With the use of organelle specific (plasma membrane, cis- vs. trans-Golgi, plasma membrane, and Golgi, nucleus, and mitochondria) targeting motifs fused to the wild-type iNOS, we measured NO release from intact cells. With the exception of the Golgi lumen, our results showed no impairment in the ability of targeted iNOS to synthesize NO. Confirmation of correct targeting was obtained through confocal microscopy using identical constructs fused to the green fluorescent protein. We conclude that the reduced activation of eNOS within discrete cytoplasmic regions of the Golgi, the mitochondria and the nucleus is primarily due to insufficient access to calcium-calmodulin.
Collapse
Affiliation(s)
- Davin Jagnandan
- Vascular Biology Center and Department of Pharmacology, Medical College of Georgia, 1459 Laney Walker Blvd., Augusta Georgia 30912, USA
| | | | | |
Collapse
|
31
|
Kumar U, Chen J, Sapoznikhov V, Canteros G, White BH, Sidhu A. Overexpression of inducible nitric oxide synthase in the kidney of the spontaneously hypertensive rat. Clin Exp Hypertens 2005; 27:17-31. [PMID: 15773227 DOI: 10.1081/ceh-200044249] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In kidney, nitric oxide (NO) produced by nitric oxide synthase (NOS) regulates sodium and water excretion and renal medullary blood flow. However, excessive NO production causes nitrative damage and oxidative stress. Since oxidative stress may be linked to hypertension, we examined the expression and activity of inducible NOS (iNOS) in the kidney of the spontaneously hypertensive rat (SHR) and compared our findings to control normtotensive Wistar Kyoto (WKY) rat. Compared with WKY rat, there was significant (p < .05) overexpression (by 96%) and increased (2-fold) activity of iNOS in the cortex but not in the outer medulla, of SHR kidney; in the inner medulla, there was a 6.9-fold increase in iNOS activity in SHR. Increased expression (by 104%) and activity (3.3-fold) of iNOS was specifically observed in proximal tubules (PTs) of the cortex, accompanied by higher (2-fold) tissue nitrite levels. Although certain antioxidant enzymes such as catalase and Mn-superoxide dismutase were overexpressed, glutathione peroxidase was underexpressed in SHR PTs. Overexpression of the inducer of the iNOS promoter, nuclear factor-kappaB (NF-kappaB), with elevated nitrotyrosinylated proteins, further confirmed an elevated state of iNOS-induced oxidative stress in SHR kidneys, possibly signifying its role in the maintenance of essential hypertension seen in these animals.
Collapse
Affiliation(s)
- Ujendra Kumar
- Fraser Laboratories for Diabetes Research, Royal Victoria Hospital, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Yamniuk AP, Vogel HJ. Calmodulin's flexibility allows for promiscuity in its interactions with target proteins and peptides. Mol Biotechnol 2004; 27:33-57. [PMID: 15122046 DOI: 10.1385/mb:27:1:33] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1-14 and 1-10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM's central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly alpha-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.
Collapse
Affiliation(s)
- Aaron P Yamniuk
- Structural Biology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada
| | | |
Collapse
|
33
|
Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004; 75:639-53. [PMID: 15172174 DOI: 10.1016/j.lfs.2003.10.042] [Citation(s) in RCA: 976] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 10/24/2003] [Indexed: 12/18/2022]
Abstract
This review focuses on the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and its regulation under physiological and pathophysiological conditions. NO is an important biological mediator in the living organism that is synthesized from L-arginine using NADPH and molecular oxygen. However, the overproduction of NO which is catalyzed by iNOS, a soluble enzyme and active in its dimeric form, is cytotoxic. Immunostimulating cytokines or bacterial pathogens activate iNOS and generate high concentrations of NO through the activation of inducible nuclear factors, including NFkB. iNOS activation is regulated mainly at the transcriptional level, but also at posttranscriptional, translational and postranslational levels through effects on protein stability, dimerization, phosphorylation, cofactor binding and availability of oxygen and L-arginine as substrates. The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO.
Collapse
Affiliation(s)
- Fugen Aktan
- Faculty of Pharmacy, Building A15, Room N257, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
34
|
Abstract
Nitric oxide (NO) is a gaseous free radical that serves cell signaling, cellular energetics, host defense, and inflammatory functions in virtually all cells. In the kidney and vasculature, NO plays fundamental roles in the control of systemic and intrarenal hemodynamics, the tubuloglomerular feedback response, pressure natriuresis, release of sympathetic neurotransmitters and renin, and tubular solute and water transport. NO is synthesized from L-arginine by NO synthases (NOS). Because of its high chemical reactivity and high diffusibility, NO production by each of the 3 major NOS isoforms is regulated tightly at multiple levels from gene transcription to spatial proximity near intended targets to covalent modification and allosteric regulation of the enzyme itself. Many of these regulatory mechanisms have yet to be tested in renal cells. The NOS isoforms are distributed differentially and regulated in the kidney, and there remains some controversy over the specific expression of functional protein for the NOS isoforms in specific renal cell populations. Mice with targeted deletion of each of the NOS isoforms have been generated, and these each have unique phenotypes. Studies of the renal and vascular phenotypes of these mice have yielded important insights into certain vascular diseases, ischemic acute renal failure, the tubuloglomerular feedback response, and some mechanisms of tubular fluid and electrolyte transport, but thus far have been underexploited. This review explores the collective knowledge regarding the structure, regulation, and function of the NOS isoforms gleaned from various tissues, and highlights the progress and gaps in understanding in applying this information to renal and vascular physiology.
Collapse
Affiliation(s)
- Bruce C Kone
- University of Texas Health Sciences Center at Houston, 77030, USA.
| |
Collapse
|
35
|
Panda K, Adak S, Konas D, Sharma M, Stuehr DJ. A conserved aspartate (Asp-1393) regulates NADPH reduction of neuronal nitric-oxide synthase: implications for catalysis. J Biol Chem 2004; 279:18323-33. [PMID: 14966111 DOI: 10.1074/jbc.m310391200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) are flavo-heme enzymes whose electron transfer reactions are controlled by calmodulin (CaM). The NOS flavoprotein domain includes a ferredoxin-NADP(+) reductase (FNR)-like module that contains NADPH- and FAD-binding sites. FNR-like modules in related flavoproteins have three conserved residues that regulate electron transfer between bound NAD(P)H and FAD. To investigate the function of one of these residues in neuronal NOS (nNOS), we generated and characterized mutants that had Val, Glu, or Asn substituted for the conserved Asp-1393. All three mutants exhibited normal composition, spectral properties, and binding of cofactors, substrates, and CaM. All had slower NADPH-dependent cytochrome c and ferricyanide reductase activities, which were associated with proportionally slower rates of NADPH-dependent flavin reduction in the CaM-free and CaM-bound states. Rates of NO synthesis were also proportionally slower in the mutants and were associated with slower rates of CaM-dependent ferric heme reduction. However, a D1393V mutant whose flavins had been prereduced with NADPH had a normal rate of heme reduction. This indicated that the kinetic defect was restricted to flavin reduction step(s) in the mutants and suggested that this limited their catalytic activities. Together, our results show the following. 1) The presence and positioning of the Asp-1393 carboxylate side chain are critical to enable NADPH-dependent reduction of the nNOS flavoprotein. 2) Control of flavin reduction is important because it ensures that the rate of heme reduction is sufficiently fast to enable NO synthesis by nNOS.
Collapse
Affiliation(s)
- Koustubh Panda
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
36
|
Kitamura T, Kimura K, Makondo K, Furuya DT, Suzuki M, Yoshida T, Saito M. Proinsulin C-peptide increases nitric oxide production by enhancing mitogen-activated protein-kinase-dependent transcription of endothelial nitric oxide synthase in aortic endothelial cells of Wistar rats. Diabetologia 2003; 46:1698-705. [PMID: 14586499 DOI: 10.1007/s00125-003-1232-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 07/22/2003] [Indexed: 02/07/2023]
Abstract
AIMS/HYPOTHESIS Recent studies have suggested that proinsulin C-peptide improves vascular functions, possibly through nitric oxide (NO) production. To clarify the molecular mechanisms of vascular NO production induced by C-peptide, we examined the effects of C-peptide on NO production and NO synthase expression in rat aortic endothelial cells in connection with mitogen-activated protein kinase (MAPK) activation. METHODS Aortic endothelial cells were isolated from female Wistar rats, cultured to confluence, and serum-starved for 24 h before treatment with C-peptide. Nitric oxide production was measured by the DAF-2 fluorescence dye method and relative amounts of endothelial nitric oxide synthase (eNOS) protein and its mRNA were semi-quantified by western blot and RT-PCR analyses respectively. Activation of MAPK was estimated by western blot detection of activity-related phosphorylation and in vitro kinase assay. RESULTS Stimulation of cells with C-peptide for 3 h doubled NO production, which was suppressed by the NO synthase inhibitor, N(G)-nitro- L-arginine methyl ester (L-NAME). Stimulation also increased mRNA and protein contents of eNOS in a manner sensitive to the transcription inhibitor actinomycin D. It did not affect inducible NO synthase mRNA. C-peptide also induced rapid phosphorylation and activation of extracellular signal-regulated kinase (ERK, also known as p44/42MAPK), but not of p38MAPK. In cells pretreated with the ERK inhibitor PD98059 the C-peptide-elicited increase of NO production and eNOS was abrogated in a dose-dependent manner; suppression of ERK phosphorylation induced by C-peptide also occurred. CONCLUSIONS/INTERPRETATION Our results show that C-peptide increases NO production by increasing eNOS protein contents through ERK-dependent up-regulation of eNOS gene transcription. This could explain some actions of C-peptide on the vasculature, indicating a pivotal role for C-peptide in vascular homeostasis.
Collapse
Affiliation(s)
- T Kitamura
- Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Nitric oxide (NOz.rad;) is a diatomic mediator liberated on oxidation of L-arginine by the nitric oxide synthase (NOS) family of enzymes. It has complex and wide ranging functions in vivo and has been implicated in the development of the profound inflammatory response that occurs as a result of cutaneous burn injury. In addition, dysregulation of NOS activity has been associated with multiple organ failure in human burn patients and may therefore represent a novel therapeutic target in such circumstances. This review focuses on the role of NOz.rad; in inflammation, with particular emphasis on the acute post-burn inflammatory response. Specific areas of discussion include the maintenance of microvascular haemostasis, leukocyte recruitment and remote organ dysfunction following thermal injury.
Collapse
Affiliation(s)
- Andrew Rawlingson
- Centre for Cardiovascular Biology & Medicine, King's College London, Guy's Campus, SE1 1UL, London, UK.
| |
Collapse
|
38
|
Chen PF, Wu KK. Structural elements contribute to the calcium/calmodulin dependence on enzyme activation in human endothelial nitric-oxide synthase. J Biol Chem 2003; 278:52392-400. [PMID: 14561757 DOI: 10.1074/jbc.m305469200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two regions, located at residues 594-606/614-645 and residues 1165-1178, are present in the reductase domain of human endothelial nitric-oxide synthase (eNOS) but absent in its counterpart, inducible nitric-oxide synthase (iNOS). We previously demonstrated that removing residues 594-606/614-645 resulted in an enzyme (Delta45) containing an intrinsic calmodulin (CaM) purified from an Sf9/baculovirus expression system (Chen, P.-F., and Wu, K.K. (2000) J. Biol. Chem. 275, 13155-13163). Here we have further elucidated the differential requirement of Ca2+/CaM for enzyme activation between eNOS and iNOS by either deletion of residues 1165-1178 (Delta14) or combined deletions of residues 594-606/614-645 and 1165-1178 (Delta45/ Delta14) from eNOS to mimic iNOS. We measured the catalytic rates using purified proteins completely free of CaM. Steady-state analysis indicated that the Delta45 supported NO synthesis in the absence of CaM at 60% of the rate in its presence, consistent with our prior result that CaM-bound Delta45 retained 60% of its activity in the presence of 10 mm EGTA. Mutant Delta14 displayed a 1.5-fold reduction of EC50 for Ca2+/CaM-dependence in l-citrulline formation, and a 2-4-fold increase in the rates of NO synthesis, NADPH oxidation, and cytochrome c reduction relative to the wild type. The basal rates of double mutant Delta45/Delta14 in NO production, NADPH oxidation, and cytochrome c reduction were 3-fold greater than those of CaM-stimulated wild-type eNOS. Interestingly, all three activities of Delta45/ Delta14 were suppressed rather than enhanced by Ca2+/CaM, indicating a complete Ca2+/CaM independence for those reactions. The results suggest that the Ca2+/CaM-dependent catalytic activity of eNOS appears to be conferred mainly by these two structural elements, and the interdomain electron transfer from reductase to oxygenase domain does not require Ca2+/CaM when eNOS lacks these two segments.
Collapse
Affiliation(s)
- Pei-Feng Chen
- Vascular Biology Research Center and Division of Hematology, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas 77225, USA.
| | | |
Collapse
|
39
|
Zhang AY, Chen YF, Zhang DX, Yi FX, Qi J, Andrade-Gordon P, de Garavilla L, Li PL, Zou AP. Urotensin II is a nitric oxide-dependent vasodilator and natriuretic peptide in the rat kidney. Am J Physiol Renal Physiol 2003; 285:F792-8. [PMID: 12783779 DOI: 10.1152/ajprenal.00342.2002] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent studies have indicated that urotensin II (UII), a cyclic peptide, is vasoactive and may be involved in cardiovascular dysfunctions. It remains unknown, however, whether UII plays a role in the control of renal vascular tone and tubular function. In the present study, a continuous infusion of synthetic human UII (hUII) into the renal artery (RA) in anesthetized rats was found to increase renal blood flow (RBF) and urinary water and sodium excretion (UV and UNaV) in a dose-dependent manner. At a dose of 20 ng. kg-1. min-1, it increased RBF by 20% and UV and UNaV by 94 and 109%, respectively. Nitric oxide (NO) synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME) completely abolished hUII-induced increases in RBF and water/sodium excretion. In isolated, pressurized, and phenylephrine-precontracted small RA with internal diameter of approximately 200 microm, hUII produced a concentration-dependent vasodilation with a maximal response of 55% at 1.5 microM. l-NAME significantly blocked this hUII-induced vasodilation by 60%. In denuded RA, hUII had neither vasodilator nor vasoconstrictor effect. With the use of 4,5-diaminofluorescein diacetate-based fluorescence imaging analysis of NO levels, hUII (1 microM) was shown to double the NO levels within the endothelium of freshly dissected small RA, and l-NAME blocked this UII-induced production of endothelial NO. These results indicate that UII produces vasodilator and natriuretic effects in the kidney and that UII-induced vasodilation is associated with increased endothelial NO in the RA.
Collapse
Affiliation(s)
- Andrew Y Zhang
- Deptartment of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Knudsen GM, Nishida CR, Mooney SD, Ortiz de Montellano PR. Nitric-oxide synthase (NOS) reductase domain models suggest a new control element in endothelial NOS that attenuates calmodulin-dependent activity. J Biol Chem 2003; 278:31814-24. [PMID: 12805387 DOI: 10.1074/jbc.m303267200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inducible (iNOS) and constitutive (eNOS, nNOS) nitric-oxide synthases differ in their Ca2+-calmodulin (CaM) dependence. iNOS binds CaM irreversibly but eNOS and nNOS, which bind CaM reversibly, have inserts in their reductase domains that regulate electron transfer. These include the 43-45-amino acid autoinhibitory element (AI) that attenuates electron transfer in the absence of CaM, and the C-terminal 20-40-amino acid tail that attenuates electron transfer in a CaM-independent manner. We constructed models of the reductase domains of the three NOS isoforms to predict the structural basis for CaM-dependent regulation. We have identified and characterized a loop (CD2A) within the NOS connecting domain that is highly conserved by isoform and that, like the AI element, is within direct interaction distance of the CaM binding region. The eNOS CD2A loop (eCD2A) has the sequence 834KGSPGGPPPG843, and is truncated to 809ESGSY813 (iCD2A) in iNOS. The eCD2A contributes to the Ca2+ dependence of CaM-bound activity to a level similar to that of the AI element. The eCD2A plays an autoinhibitory role in the control of NO, and CaM-dependent and -independent reductase activity, but this autoinhibitory function is masked by the dominant AI element. Finally, the iCD2A is involved in determining the salt dependence of NO activity at a post-flavin reduction level. Electrostatic interactions between the CD2A loop and the CaM-binding region, and CaM itself, provide a structural means for the CD2A to mediate CaM regulation of intra-subunit electron transfer within the active NOS complex.
Collapse
Affiliation(s)
- Giselle M Knudsen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA
| | | | | | | |
Collapse
|
41
|
Chen J, Wersinger C, Sidhu A. Chronic stimulation of D1 dopamine receptors in human SK-N-MC neuroblastoma cells induces nitric-oxide synthase activation and cytotoxicity. J Biol Chem 2003; 278:28089-100. [PMID: 12738794 DOI: 10.1074/jbc.m303094200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated synaptic levels of dopamine may induce striatal neurodegeneration in l-DOPA-unresponsive parkinsonism subtype of multiple system atrophy (MSA-P subtype), multiple system atrophy, and methamphetamine addiction. We examined the participation of dopamine and D1 dopamine receptors in the genesis of postsynaptic neurodegeneration. Chronic treatment of human SK-N-MC neuroblastoma cells with dopamine or H2O2 increased NO production and accelerated cytotoxicity, as indexed by enhanced nitrite levels and cell death. The antioxidant sodium metabisulfite or SCH 23390, a D1 dopamine receptor-selective antagonist, partially blocked dopamine effects but together ablated dopamine-mediated cytotoxicity, indicating the participation of both autoxidation and D1 receptor stimulation. Direct activation of D1 dopamine receptors with SKF R-38393 caused cytotoxicity, which was refractory to sodium metabisulfite. Dopamine and SKF R-38393 induced overexpression of the nitric-oxide synthase (NOS) isoforms neuronal NOS, inducible NOS (iNOS), and endothelial NOS in a protein kinase A-dependent manner. Functional studies showed that approximately 60% of total NOS activity was due to activation of iNOS. The NOS inhibitor N(G)-nitro-l-arginine methyl ester and genistein, wortmannin, or NF-kappaB SN50, inhibitors of protein tyrosine kinases phosphatidylinositol 3-kinase and NF-kappaB, respectively, reduced nitrite production by dopamine and SKF R-38393 but were less effective in attenuating H2O2-mediated effects. In rat striatal neurons, dopamine and SKF R-38393, but not H2O2, accelerated cell death through increased expression of neuronal NOS and iNOS but not endothelial NOS. These data demonstrate a novel pathway of dopamine-mediated postsynaptic oxidative stress and cell death through direct activation of NOS enzymes by D1 dopamine receptors and its associated signaling pathways.
Collapse
Affiliation(s)
- Jun Chen
- Department of Pediatrics, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
42
|
Aoyagi M, Arvai AS, Tainer JA, Getzoff ED. Structural basis for endothelial nitric oxide synthase binding to calmodulin. EMBO J 2003; 22:766-75. [PMID: 12574113 PMCID: PMC145438 DOI: 10.1093/emboj/cdg078] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The enzyme nitric oxide synthase (NOS) is exquisitely regulated in vivo by the Ca(2+) sensor protein calmodulin (CaM) to control production of NO, a key signaling molecule and cytotoxin. The differential activation of NOS isozymes by CaM has remained enigmatic, despite extensive research. Here, the crystallographic structure of Ca(2+)-loaded CaM bound to a 20 residue peptide comprising the endothelial NOS (eNOS) CaM-binding region establishes their individual conformations and intermolecular interactions, and suggests the basis for isozyme-specific differences. The alpha-helical eNOS peptide binds in an antiparallel orientation to CaM through extensive hydrophobic interactions. Unique NOS interactions occur with: (i). the CaM flexible central linker, explaining its importance in NOS activation; and (ii). the CaM C-terminus, explaining the NOS-specific requirement for a bulky, hydrophobic residue at position 144. This binding mode expands mechanisms for CaM-mediated activation, explains eNOS deactivation by Thr495 phosphorylation, and implicates specific hydrophobic residues in the Ca(2+) independence of inducible NOS.
Collapse
Affiliation(s)
| | | | | | - Elizabeth D. Getzoff
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
Corresponding author e-mail:
| |
Collapse
|
43
|
Yi FX, Zhang AY, Campbell WB, Zou AP, Van Breemen C, Li PL. Simultaneous in situ monitoring of intracellular Ca2+ and NO in endothelium of coronary arteries. Am J Physiol Heart Circ Physiol 2002; 283:H2725-32. [PMID: 12388315 DOI: 10.1152/ajpheart.00428.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We developed an in situ assay system to simultaneously monitor intracellular Ca(2+) concentration ([Ca(2+)](i), fura 2 as indicator) and nitric oxide (NO) levels [4,5-diaminofluorescein as probe] in the intact endothelium of small bovine coronary arteries by using a fluorescent microscopic imaging technique with high-speed wavelength switching. Bradykinin (BK; 1 microM) stimulated a rapid increase in [Ca(2+)](i) followed by an increase in NO production in the endothelial cells. The protein tyrosine phosphatase inhibitor phenylarsine oxide (PAO; 10 microM) induced a gradual, small increase in [Ca(2+)](i) and a slow increase in intracellular NO levels. Removal of extracellular Ca(2+) and depletion of Ca(2+) stores completely blocked BK-induced increase in NO production but had no effect on PAO-induced NO production. However, a further reduction of [Ca(2+)](i) by application of BAPTA-AM or EGTA with ionomycin abolished the PAO-induced NO increase. These results indicate that a simultaneous monitoring of [Ca(2+)](i) and intracellular NO production in the intact endothelium is a powerful tool to study Ca(2+)-dependent regulation of endothelial nitric oxide synthase, which provides the first direct evidence for a permissive role of Ca(2+) in tyrosine phosphorylation-induced NO production.
Collapse
Affiliation(s)
- Fu-Xian Yi
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | |
Collapse
|
44
|
Nishida CR, Knudsen G, Straub W, Ortiz de Montellano PR. Electron supply and catalytic oxidation of nitrogen by cytochrome P450 and nitric oxide synthase. Drug Metab Rev 2002; 34:479-501. [PMID: 12214661 DOI: 10.1081/dmr-120005648] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 and nitric oxide synthase (NOS) oxidize nitrogen atoms, although the substrates and transformations are highly restricted for NOS. The first reaction catalyzed by NOS is mediated by a P450-like ferryl species, although it is generated by a distinct process in which a tetrahydrobiopterin molecule in NOS serves as a transient electron donor. The second NOS reaction appears to be mediated by an iron dioxygen precursor of the ferryl species. The transient tetrahydrobiopterin radical formed in these reactions is quenched by electron transfer from the NOS flavin domain. Electron transfer from the flavins is controlled by the binding of calmodulin, the presence of peptide inserts in the flavin domain, the substrate structure, and phosphorylation of the enzyme.
Collapse
Affiliation(s)
- Clinton R Nishida
- Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-0446, USA
| | | | | | | |
Collapse
|
45
|
Hayashi Y, Ueda Y, Nakajima A, Yokoyama H, Mitsuyama Y, Ohya-Nishiguchi H, Kamada H. Nitric oxide and hydroxyl radicals initiate lipid peroxidation by NMDA receptor activation. Brain Res 2002; 941:107-12. [PMID: 12031552 DOI: 10.1016/s0006-8993(02)02614-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this experiment, we used direct electron paramagnetic resonance (EPR) spectra to measure lipid peroxidation by hydroxyl radical (.OH), nitric oxide (.NO) and lipid radical (.L). NMDA-receptor associated lipid peroxidation is thought to act through .OH in induction of neurotoxicity. The origin of .OH generation was found to arise mainly from peroxynitrite anion produced from O(2)(-) and .NO rather than from Fenton's reaction. This study verified that .OH generation from interactive reactions between .NO and O(2)(-) initiates NMDA-induced lipid peroxidation of PC12 cells.
Collapse
Affiliation(s)
- Yoshihito Hayashi
- Department of Psychiatry, Miyazaki Medical College, 5200 Kihara, Kiyotake-cho, Miyazaki 889-1692, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Roman LJ, Martásek P, Masters BSS. Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev 2002; 102:1179-90. [PMID: 11942792 DOI: 10.1021/cr000661e] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linda J Roman
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | |
Collapse
|
47
|
Weissman BA, Jones CL, Liu Q, Gross SS. Activation and inactivation of neuronal nitric oxide synthase: characterization of Ca(2+)-dependent [125I]Calmodulin binding. Eur J Pharmacol 2002; 435:9-18. [PMID: 11790373 DOI: 10.1016/s0014-2999(01)01560-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Constitutive isoforms of nitric oxide synthase (NOS) are activated by transient binding of Ca(2+)/Calmodulin. Here, we characterize the binding of Calmodulin to purified neuronal NOS (nNOS). [125I]Calmodulin bound to a single class of non-interacting and high affinity sites on nNOS. [125I]Calmodulin binding achieved rapid saturation, was linear with nNOS concentration, and exhibited a strict dependence on [Ca(2+)]. Neither affinity nor extent of [125I]Calmodulin binding was affected by L-arginine, NADPH or Tetrahydrobiopterin. Native Calmodulin and engineered Calmodulin homologs [i.e., duplicated N-terminal (CaMNN)] potently displaced [125I]Calmodulin. CaMNN supported nNOS catalysis, but required approximately five-fold more Ca(2+) for comparable activity with native Calmodulin. Taken with results from kinetic analyses of [125I]Calmodulin association and dissociation, our findings suggest four sequential steps in activation of nNOS by Calmodulin: (1) Ca(2+) binds to Calmodulin's C-lobe, (2) the C-lobe of Calmodulin binds NOS, (3) Ca(2+) binds to the N-lobe of Calmodulin, and (4) the N-lobe binds to nNOS. Activation of nNOS only occurs after completion of step (4), with the displacement of nNOS's autoinhibitory insert. Upon intracellular Ca(2+) sequestration, deactivation of nNOS would proceed in reverse order.
Collapse
Affiliation(s)
- Ben A Weissman
- Department of Pharmacology, Cornell University Medical College, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
48
|
Walker G, Pfeilschifter J, Otten U, Kunz D. Proteolytic cleavage of inducible nitric oxide synthase (iNOS) by calpain I. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1568:216-24. [PMID: 11786228 DOI: 10.1016/s0304-4165(01)00223-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Proteolytic degradation of inducible nitric oxide synthase (iNOS or NOS2; EC 1.14.13.39) is one of the key steps by which the synthetic glucocorticoid dexamethasone controls the amount of iNOS protein and thus the production of nitric oxide (NO) in interferon-gamma-stimulated RAW 264.7 cells. In the present study we examined the role of the calmodulin (CaM)-binding site present within iNOS protein for the proteolytic degradation by the calcium-dependent neutral cysteine protease calpain I (EC 3.4.22.17). Using pulse chase experiments as well as cell-free degradation assays we show that the iNOS monomer is a direct substrate for cleavage by calpain I. Two structural determinants are involved in proteolytic cleavage, the canonical CaM-binding domain present at amino acids 501-532 and a conformational determinant located within iNOS. The access of the CaM-binding region appears to be critical for substrate cleavage as incubation of in vitro synthesized iNOS with purified CaM inhibits iNOS degradation by calpain I. Moreover, cytosolic CaM levels are decreased upon treatment of RAW 264.7 cells with dexamethasone as assessed by immunoprecipitation. The data shown herein provide novel insights into the underlying mechanisms involved in the anti-inflammatory actions of glucocorticoids.
Collapse
Affiliation(s)
- G Walker
- Department of Physiology, University of Basel, Switzerland
| | | | | | | |
Collapse
|
49
|
Nishida CR, de Montellano PR. Control of electron transfer in nitric-oxide synthases. Swapping of autoinhibitory elements among nitric-oxide synthase isoforms. J Biol Chem 2001; 276:20116-24. [PMID: 11264292 DOI: 10.1074/jbc.m101548200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To clarify the role of the autoinhibitory insert in the endothelial (eNOS) and neuronal (nNOS) nitric-oxide synthases, the insert was excised from nNOS and chimeras with its reductase domain; the eNOS and nNOS inserts were swapped and put into the normally insertless inducible (iNOS) isoform and chimeras with the iNOS reductase domain; and an RRKRK sequence in the insert suggested by earlier peptide studies to be important (Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L., Weissman, B. A., Lane, P., Liu, Q., and Gross, S. S. (1997) J. Biol. Chem. 272, 29769-29777) was mutated. Insertless nNOS required calmodulin (CaM) for normal NOS activity, but the Ca(2+) requirement for this activity was relaxed. Furthermore, insert deletion enhanced CaM-free electron transfer within nNOS and chimeras with the nNOS reductase, emphasizing the involvement of the insert in modulating electron transfer. Swapping the nNOS and eNOS inserts gave proteins with normal NOS activities, and the nNOS insert acted normally in raising the Ca(2+) dependence when placed in eNOS. Insertion of the eNOS insert into iNOS and chimeras with the iNOS reductase domain significantly lowered NOS activity, consistent with inhibition of electron transfer by the insert. Mutation of the eNOS RRKRK to an AAAAA sequence did not alter the eNOS Ca(2+) dependence but marginally inhibited electron transfer. The salt dependence suggests that the insert modulates electron transfer within the reductase domain prior to the heme/reductase interface. The results clarify the role of the reductase insert in modulating the Ca(2+) requirement, electron transfer rate, and overall activity of nNOS and eNOS.
Collapse
Affiliation(s)
- C R Nishida
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | |
Collapse
|
50
|
Lee SJ, Beckingham K, Stull JT. Mutations at lysine 525 of inducible nitric-oxide synthase affect its Ca2+-independent activity. J Biol Chem 2000; 275:36067-72. [PMID: 10978319 DOI: 10.1074/jbc.m003935200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calmodulin binding to inducible nitric-oxide synthase may play an important role in its Ca(2+)-independent activity. Studies of inducible nitric-oxide synthase chimeras containing the calmodulin binding sequence of neuronal or endothelial nitric-oxide synthases show that the calmodulin binding sequence of inducible nitric-oxide synthase is necessary but not sufficient for the Ca(2+)-independent activity. The mutations at lysine 525 located at the C terminus of the calmodulin binding sequence of inducible nitric-oxide synthase were examined for the effects on the Ca(2+)-independent activity with chimeras containing the oxygenase or reductase domains of inducible or neuronal nitric-oxide synthases. Results show that the Ca(2+)-independent binding of calmodulin is not solely responsible for maximal Ca(2+)-independent activity of inducible nitric-oxide synthase. Lysine 525 of inducible nitric-oxide synthase may also play an important role in coordinating the maximal Ca(2+)-independent activity.
Collapse
Affiliation(s)
- S J Lee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9040, USA.
| | | | | |
Collapse
|