1
|
Johnson JL, Ramadass M, Rahman F, Meneses-Salas E, Zgajnar NR, Carvalho Gontijo R, Zhang J, Kiosses WB, Zhu YP, Hedrick CC, Perego M, Gunton JE, Pestonjamasp K, Napolitano G, Catz SD. The atypical small GTPase GEM/Kir is a negative regulator of the NADPH oxidase and NETs production through macroautophagy. J Leukoc Biol 2021; 110:629-649. [PMID: 34085299 DOI: 10.1002/jlb.2hi0421-123r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.
Collapse
Affiliation(s)
- Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Mahalakshmi Ramadass
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Farhana Rahman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Elsa Meneses-Salas
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Nadia R Zgajnar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Jinzhong Zhang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - William B Kiosses
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | - Marta Perego
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jenny E Gunton
- Center for Diabetes, Obesity, and Endocrinology (CDOE), The Westmead Institute for Medical Research (WIMR), The University of Sydney, Sydney, NSW, Australia
| | - Kersi Pestonjamasp
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | | | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Pleiotropic Roles of Calmodulin in the Regulation of KRas and Rac1 GTPases: Functional Diversity in Health and Disease. Int J Mol Sci 2020; 21:ijms21103680. [PMID: 32456244 PMCID: PMC7279331 DOI: 10.3390/ijms21103680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
Calmodulin is a ubiquitous signalling protein that controls many biological processes due to its capacity to interact and/or regulate a large number of cellular proteins and pathways, mostly in a Ca2+-dependent manner. This complex interactome of calmodulin can have pleiotropic molecular consequences, which over the years has made it often difficult to clearly define the contribution of calmodulin in the signal output of specific pathways and overall biological response. Most relevant for this review, the ability of calmodulin to influence the spatiotemporal signalling of several small GTPases, in particular KRas and Rac1, can modulate fundamental biological outcomes such as proliferation and migration. First, direct interaction of calmodulin with these GTPases can alter their subcellular localization and activation state, induce post-translational modifications as well as their ability to interact with effectors. Second, through interaction with a set of calmodulin binding proteins (CaMBPs), calmodulin can control the capacity of several guanine nucleotide exchange factors (GEFs) to promote the switch of inactive KRas and Rac1 to an active conformation. Moreover, Rac1 is also an effector of KRas and both proteins are interconnected as highlighted by the requirement for Rac1 activation in KRas-driven tumourigenesis. In this review, we attempt to summarize the multiple layers how calmodulin can regulate KRas and Rac1 GTPases in a variety of cellular events, with biological consequences and potential for therapeutic opportunities in disease settings, such as cancer.
Collapse
|
3
|
Garrido E, Lázaro J, Jaumot M, Agell N, Rubio-Martinez J. Modeling and subtleties of K-Ras and Calmodulin interaction. PLoS Comput Biol 2018; 14:e1006552. [PMID: 30376570 PMCID: PMC6226203 DOI: 10.1371/journal.pcbi.1006552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
K-Ras, one of the most common small GTPases of the cell, still presents many riddles, despite the intense efforts to unveil its mysteries. Such is the case of its interaction with Calmodulin, a small acidic protein known for its role as a calcium ion sensor. Although the interaction between these two proteins and its biological implications have been widely studied, a model of their interaction has not been performed. In the present work we analyse this intriguing interaction by computational means. To do so, both conventional molecular dynamics and scaled molecular dynamics have been used. Our simulations suggest a model in which Calmodulin would interact with both the hypervariable region and the globular domain of K-Ras, using a lobe to interact with each of them. According to the presented model, the interface of helixes α4 and α5 of the globular domain of K-Ras would be relevant for the interaction with a lobe of Calmodulin. These results were also obtained when bringing the proteins together in a step wise manner with the umbrella sampling methodology. The computational results have been validated using SPR to determine the relevance of certain residues. Our results demonstrate that, when mutating residues of the α4-α5 interface described to be relevant for the interaction with Calmodulin, the interaction of the globular domain of K-Ras with Calmodulin diminishes. However, it is to be considered that our simulations indicate that the bulk of the interaction would fall on the hypervariable region of K-Ras, as many more interactions are identified in said region. All in all our simulations present a suitable model in which K-Ras could interact with Calmodulin at membrane level using both its globular domain and its hypervariable region to stablish an interaction that leads to an altered signalling. K-Ras is one of the most mutated oncogenes in human cancer. Although several studies validate K-Ras protein as good candidate for direct therapeutic targeting, pharmacologic targeting has not been successful. During the last years increasing evidences demonstrate that oncogenic K-Ras activity can be modulated in vivo by dimerization, nanoclustering at the plasma membrane or interaction with non-effector proteins, consequently opening new therapeutic strategies. We have previously demonstrated that Calmodulin, an ubiquitous Ca2+-binding protein, is one of this K-Ras interacting proteins and that it negatively modulates K-Ras signaling. Although experimental data were available showing the relevant regions for this interaction, a model of K-Ras and Calmodulin interaction was missing. In the present work by using different computational modeling techniques we obtained a model for this interaction that agrees with the experimental data. We believe the present model will help to better understand K-Ras regulation, and to design new inhibitors. For instance, base on our model, we can predict that the interaction can take place at the plasma membrane, and that since the surface of K-Ras that interact with Calmodulin is the same that it uses for dimerization, that Calmodulin could be inhibiting K-Ras dimerization.
Collapse
Affiliation(s)
- Eduardo Garrido
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Juan Lázaro
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Montserrat Jaumot
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
| | - Neus Agell
- Department de Biomedicina, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, IDIBAPS, Barcelona, Spain
- * E-mail: (NA); (JRM)
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, Universitat de Barcelona, Institut de Recerca en Química Teòrica i Computacional (IQTCUB), Barcelona, Spain
- * E-mail: (NA); (JRM)
| |
Collapse
|
4
|
Huang X, Cong X, Yang D, Ji L, Liu Y, Cui X, Cai J, He S, Zhu C, Ni R, Zhang Y. Identification of Gem as a new candidate prognostic marker in hepatocellular carcinoma. Pathol Res Pract 2014; 210:719-25. [PMID: 25155751 DOI: 10.1016/j.prp.2014.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/11/2014] [Accepted: 07/01/2014] [Indexed: 11/17/2022]
Abstract
GTP binding protein overexpressed in skeletal muscle (Gem) is a Ras-related protein whose expression is induced in several cell types upon activation by extracellular stimuli. To investigate the potential roles of Gem in hepatocellular carcinoma (HCC), expression of Gem was examined in human HCC samples. Western blot analysis showed that compared with primary human hepatocytes and adjacent noncancerous tissue, significant down-regulation of Gem was found in HCC cells and tumor tissues. In addition, immunohistochemical analysis of Gem expression was investigated in 108 specimens of HCC tissues. Clinicopathological data were collected to analyze the association with Gem expression. Expression of Gem was significantly negatively correlated with histological grade (P=0.001), tumor size (P=0.020), and vascular invasion (P=0.005), and Gem was also negatively correlated with proliferation marker Ki-67 (P<0.01). More importantly, the Kaplan-Meier survival curves analysis revealed that low expression of Gem was associated with poor prognosis in HCC patients. Univariate analysis showed that Gem expression was associated with poor prognosis (P=0.006). Multivariate analysis indicated that Gem expression was an independent prognostic marker for HCC (P=0.007). Finally, serum starvation and release experiments showed that Gem expression was negatively related with cell proliferation. In the conclusion, our results suggested that down regulation of Gem expression was involved in the pathogenesis of hepatocellular carcinoma, and it might be a favorable independent prognostic parameter for HCC.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China; Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xia Cong
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Dunpeng Yang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Lili Ji
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Yanhua Liu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Xiaopeng Cui
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Jing Cai
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Song He
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China
| | - Changyun Zhu
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China
| | - Runzhou Ni
- Department of Digestion, Affiliated Hospital of Nantong University, Medical College of Nantong University, Nantong, Jiangsu 226001, PR China.
| | - Yixin Zhang
- Department of Pathology, Nantong University Cancer Hospital, Nantong, Jiangsu 226001, PR China.
| |
Collapse
|
5
|
Puhl HL, Lu VB, Won YJ, Sasson Y, Hirsch JA, Ono F, Ikeda SR. Ancient origins of RGK protein function: modulation of voltage-gated calcium channels preceded the protostome and deuterostome split. PLoS One 2014; 9:e100694. [PMID: 24992013 PMCID: PMC4081519 DOI: 10.1371/journal.pone.0100694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022] Open
Abstract
RGK proteins, Gem, Rad, Rem1, and Rem2, are members of the Ras superfamily of small GTP-binding proteins that interact with Ca2+ channel β subunits to modify voltage-gated Ca2+ channel function. In addition, RGK proteins affect several cellular processes such as cytoskeletal rearrangement, neuronal dendritic complexity, and synapse formation. To probe the phylogenetic origins of RGK protein–Ca2+ channel interactions, we identified potential RGK-like protein homologs in genomes for genetically diverse organisms from both the deuterostome and protostome animal superphyla. RGK-like protein homologs cloned from Danio rerio (zebrafish) and Drosophila melanogaster (fruit flies) expressed in mammalian sympathetic neurons decreased Ca2+ current density as reported for expression of mammalian RGK proteins. Sequence alignments from evolutionarily diverse organisms spanning the protostome/deuterostome divide revealed conservation of residues within the RGK G-domain involved in RGK protein – Cavβ subunit interaction. In addition, the C-terminal eleven residues were highly conserved and constituted a signature sequence unique to RGK proteins but of unknown function. Taken together, these data suggest that RGK proteins, and the ability to modify Ca2+ channel function, arose from an ancestor predating the protostomes split from deuterostomes approximately 550 million years ago.
Collapse
Affiliation(s)
- Henry L. Puhl
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Van B. Lu
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yu-Jin Won
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yehezkel Sasson
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Joel A. Hirsch
- Department of Biochemistry & Molecular Biology, Faculty of Life Sciences, Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Fumihito Ono
- Laboratory of Molecular Physiology, Section on Model Synaptic Systems, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen R. Ikeda
- Laboratory of Molecular Physiology, Section on Transmitter Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hsiao BY, Chang TK, Wu IT, Chen MY. Rad GTPase inhibits the NFκB pathway through interacting with RelA/p65 to impede its DNA binding and target gene transactivation. Cell Signal 2014; 26:1437-44. [PMID: 24632303 DOI: 10.1016/j.cellsig.2014.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
Rad is a Ras-related small GTPase shown to inhibit cancer cell migration, and its expression is frequently lost in lung cancer cells. Here we provide evidence that Rad can negatively regulate the NFκB pathway. Overexpressing Rad in cells lowered both the basal and TNFα-stimulated transcriptional activity of NFκB. Compared with control cells, Rad-overexpressing cells displayed more cytoplasmic distribution of the NFκB subunit RelA/p65, while Rad-knockdown cells had higher levels of nuclear RelA/p65. Depleting Rad did not affect the kinetics of TNFα-induced IκB degradation, suggesting that Rad-mediated regulation of NFκB was through an IκB-independent mechanism. Expression of a nucleus-localized mutant Rad was sufficient to inhibit the NFκB transcriptional activity, whereas expressing the scaffolding protein 14-3-3γ to retain Rad in the cytoplasm alleviated the suppressive effect of Rad on NFκB. GST pull-down assays showed that Rad could directly bind to RelA/p65, and co-immunoprecipitation demonstrated that the Rad-p65 interaction primarily occurred in the nucleus. Adding Rad-containing nuclear extracts or purified GST-Rad in the electrophoretic mobility shift assays dose-dependently decreased the binding of RelA/p65 to an oligonucleotide probe containing the NFκB response element, suggesting that Rad may directly impede the interaction between RelA/p65 and DNA. Rad depletion altered the expression of an array of NFκB target genes, including upregulating MMP9. Knockdown of Rad expression in cells increased both basal and TNFα-stimulated MMP9 activities and cell invasion. Collectively, our results disclose a novel role of nuclear Rad in inhibiting the NFκB pathway function.
Collapse
Affiliation(s)
- Bo-Yuan Hsiao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| | - Tsun-Kai Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - I-Ting Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan
| | - Mei-Yu Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No. 155, Section 2, Li-Nong Street, Taipei 11221, Taiwan.
| |
Collapse
|
7
|
Berchtold MW, Villalobo A. The many faces of calmodulin in cell proliferation, programmed cell death, autophagy, and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:398-435. [PMID: 24188867 DOI: 10.1016/j.bbamcr.2013.10.021] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/24/2013] [Accepted: 10/26/2013] [Indexed: 12/21/2022]
Abstract
Calmodulin (CaM) is a ubiquitous Ca(2+) receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.
Collapse
Key Words
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-ethyl]-4,5-dihydro-pyrazol-1-yl]-benzoic acid
- (4-[3,5-bis-[2-(4-hydroxy-3-methoxy-phenyl)-vinyl]-4,5-dihydro-pyrazol-1-yl]-phenyl)-(4-methyl-piperazin-1-yl)-methanone
- (−) enantiomer of dihydropyrine 3-methyl-5-3-(4,4-diphenyl-1-piperidinyl)-propyl-1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-piridine-3,5-dicarboxylate-hydrochloride (niguldipine)
- 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine
- 12-O-tetradecanoyl-phorbol-13-acetate
- 2-chloro-(ε-amino-Lys(75))-[6-(4-(N,N′-diethylaminophenyl)-1,3,5-triazin-4-yl]-CaM adduct
- 3′-(β-chloroethyl)-2′,4′-dioxo-3,5′-spiro-oxazolidino-4-deacetoxy-vinblastine
- 7,12-dimethylbenz[a]anthracene
- Apoptosis
- Autophagy
- B859-35
- CAPP(1)-CaM
- Ca(2+) binding protein
- Calmodulin
- Cancer biology
- Cell proliferation
- DMBA
- EBB
- FL-CaM
- FPCE
- HBC
- HBCP
- J-8
- KAR-2
- KN-62
- KN-93
- N-(4-aminobutyl)-2-naphthalenesulfonamide
- N-(4-aminobutyl)-5-chloro-2-naphthalenesulfonamide
- N-(6-aminohexyl)-1-naphthalenesulfonamide
- N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide
- N-8-aminooctyl-5-iodo-naphthalenesulfonamide
- N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl]phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide
- O-(4-ethoxyl-butyl)-berbamine
- RITC-CaM
- TA-CaM
- TFP
- TPA
- W-12
- W-13
- W-5
- W-7
- fluorescein-CaM adduct
- fluphenazine-N-2-chloroethane
- norchlorpromazine-CaM adduct
- rhodamine isothiocyanate-CaM adduct
- trifluoperazine
Collapse
Affiliation(s)
- Martin W Berchtold
- Department of Biology, University of Copenhagen, Copenhagen Biocenter 4-2-09 Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | - Antonio Villalobo
- Instituto de Investigaciones Biomédicas, Department of Cancer Biology, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Arturo Duperier 4, E-28029 Madrid, Spain.
| |
Collapse
|
8
|
Reymond P, Coquard A, Chenon M, Zeghouf M, El Marjou A, Thompson A, Ménétrey J. Structure of the GDP-bound G domain of the RGK protein Rem2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:626-31. [PMID: 22684057 PMCID: PMC3370897 DOI: 10.1107/s1744309112013541] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/28/2012] [Indexed: 11/10/2022]
Abstract
RGK proteins are atypical small GTP-binding proteins that are involved in the regulation of voltage-dependent calcium channels and actin cytoskeleton remodelling. The structure of the Rem2 G domain bound to GDP is reported here in a monoclinic crystal form at 2.66 Å resolution. It is very similar to the structure determined previously from an orthorhombic crystal form. However, differences in the crystal-packing environment revealed that the switch I and switch II regions are flexible and not ordered as previously reported. Comparison of the available RGK protein structures along with those of other small GTP-binding proteins highlights two structural features characteristic of this atypical family and suggests that the conserved tryptophan residue in the DXWEX motif may be a structural determinant of the nucleotide-binding affinity.
Collapse
Affiliation(s)
- Philippe Reymond
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
- ED 387 iViv, Université Pierre et Marie Curie, 75005 Paris, France
| | - Aline Coquard
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Mélanie Chenon
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| | - Ahmed El Marjou
- Institut Curie, Centre de Recherche, 75248 Paris, France
- CNRS UMR144, 26 Rue d’Ulm, 75248 Paris, France
| | - Andrew Thompson
- Synchrotron SOLEIL, L’Orme des Merisiers, BP 48 St Aubin, 91192 Gif-sur-Yvette, France
| | - Julie Ménétrey
- Laboratoire d’Enzymologie et Biochimie Structurales, Centre de Recherche de Gif, CNRS, 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Fan M, Zhang WK, Buraei Z, Yang J. Molecular determinants of Gem protein inhibition of P/Q-type Ca2+ channels. J Biol Chem 2012; 287:22749-58. [PMID: 22589533 DOI: 10.1074/jbc.m111.291872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The RGK family of monomeric GTP-binding proteins potently inhibits high voltage-activated Ca(2+) channels. The molecular mechanisms of this inhibition are largely unclear. In Xenopus oocytes, Gem suppresses the activity of P/Q-type Ca(2+) channels on the plasma membrane. This is presumed to occur through direct interactions of one or more Gem inhibitory sites and the pore-forming Ca(v)2.1 subunit in a manner dependent on the Ca(2+) channel subunit β (Ca(v)β). In this study we investigated the molecular determinants in Gem that are critical for this inhibition. Like other RGK proteins, Gem contains a conserved Ras-like core and extended N and C termini. A 12-amino acid fragment in the C terminus was found to be crucial for and sufficient to produce Ca(v)β-dependent inhibition, suggesting that this region forms an inhibitory site. A three-amino acid motif in the core was also found to be critical, possibly forming another inhibitory site. Mutating either site individually did not hamper Gem inhibition, but mutating both sites together completely abolished Gem inhibition without affecting Gem protein expression level or disrupting Gem interaction with Ca(v)2.1 or Ca(v)β. Mutating Gem residues that are crucial for interactions with previously demonstrated RGK modulators such as calmodulin, 14-3-3, and phosphatidylinositol lipids did not significantly affect Gem inhibition. These results suggest that Gem contains two candidate inhibitory sites, each capable of producing full inhibition of P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Mingming Fan
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
10
|
Sasson Y, Navon-Perry L, Huppert D, Hirsch JA. RGK family G-domain:GTP analog complex structures and nucleotide-binding properties. J Mol Biol 2011; 413:372-89. [PMID: 21903096 DOI: 10.1016/j.jmb.2011.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 11/26/2022]
Abstract
The RGK family of small G-proteins, including Rad, Gem, Rem1, and Rem2, is inducibly expressed in various mammalian tissues and interacts with voltage-dependent calcium channels and Rho kinase. Many questions remain regarding their physiological roles and molecular mechanism. Previous crystallographic studies reported RGK G-domain:guanosine di-phosphate structures. To test whether RGK proteins undergo a nucleotide-induced conformational change, we determined the crystallographic structures of Rad:GppNHp and Rem2:GppNHp to 1.7 and 1.8 Å resolutions, respectively. Also, we characterized the nucleotide-binding properties and conformations for Gem, Rad, and several structure-based mutants using fluorescence spectroscopy. The results suggest that RGK G-proteins may not behave as Ras-like canonical nucleotide-induced molecular switches. Further, the RGK proteins have differing structures and nucleotide-binding properties, which may have implications for their varied action on effectors.
Collapse
Affiliation(s)
- Yehezkel Sasson
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
11
|
Both the C-terminal polylysine region and the farnesylation of K-RasB are important for its specific interaction with calmodulin. PLoS One 2011; 6:e21929. [PMID: 21750741 PMCID: PMC3130059 DOI: 10.1371/journal.pone.0021929] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/09/2011] [Indexed: 02/03/2023] Open
Abstract
Background Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood. Methodology/Principal Findings Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca2+/CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca2+/CaM formed a 1∶1 complex with an equilibrium association constant around 105 M−1, whereas no binding reaction of K-RasB-(DESGPC) with Ca2+/CaM is detected. Furthermore, the interaction of K-RasB with Ca2+/CaM is found to be enhanced by the farnesylation of K-RasB. Conclusions/Significance We demonstrate that the polylysine region of K-RasB not only contributes importantly to the interaction of K-RasB with Ca2+/CaM, but also defines its isoform specific interaction with Ca2+/CaM. The farnesylation of K-RasB is also important for its specific interaction with Ca2+/CaM. Information obtained here can enhance our understanding of how CaM interacts with K-RasB in physiological environments.
Collapse
|
12
|
Abstract
Calcium regulates a wide spectrum of physiological processes such as heartbeat, muscle contraction, neuronal communication, hormone release, cell division, and gene transcription. Major entryways for Ca(2+) in excitable cells are high-voltage activated (HVA) Ca(2+) channels. These are plasma membrane proteins composed of several subunits, including α(1), α(2)δ, β, and γ. Although the principal α(1) subunit (Ca(v)α(1)) contains the channel pore, gating machinery and most drug binding sites, the cytosolic auxiliary β subunit (Ca(v)β) plays an essential role in regulating the surface expression and gating properties of HVA Ca(2+) channels. Ca(v)β is also crucial for the modulation of HVA Ca(2+) channels by G proteins, kinases, and the Ras-related RGK GTPases. New proteins have emerged in recent years that modulate HVA Ca(2+) channels by binding to Ca(v)β. There are also indications that Ca(v)β may carry out Ca(2+) channel-independent functions, including directly regulating gene transcription. All four subtypes of Ca(v)β, encoded by different genes, have a modular organization, consisting of three variable regions, a conserved guanylate kinase (GK) domain, and a conserved Src-homology 3 (SH3) domain, placing them into the membrane-associated guanylate kinase (MAGUK) protein family. Crystal structures of Ca(v)βs reveal how they interact with Ca(v)α(1), open new research avenues, and prompt new inquiries. In this article, we review the structure and various biological functions of Ca(v)β, with both a historical perspective as well as an emphasis on recent advances.
Collapse
Affiliation(s)
- Zafir Buraei
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
13
|
Leyris JP, Gondeau C, Charnet A, Delattre C, Rousset M, Cens T, Charnet P. RGK GTPase-dependent CaV2.1 Ca2+ channel inhibition is independent of CaVbeta-subunit-induced current potentiation. FASEB J 2009; 23:2627-38. [PMID: 19332647 DOI: 10.1096/fj.08-122135] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
RGK (Rad-Gem-Rem) GTPases have been described as potent negative regulators of the Ca(2+) influx via high-threshold voltage-activated Ca(2+) channels. Recent work, mostly performed on Ca(V)1.2 Ca(2+) channels, has highlighted the crucial role played by the channel auxiliary Ca(V)beta subunits and identified several GTPase and beta-subunit protein domains involved in this regulation. We now extend these conclusions by producing the first complete characterization of the effects of Gem, Rem, and Rem2 on the neuronal Ca(V)2.1 Ca(2+) channels expressed with Ca(V)beta(1) or Ca(V)beta(2) subunits. Current inhibition is limited to a decrease in amplitude with no modification in the voltage dependence or kinetics of the current. We demonstrate that this inhibition can occur for Ca(V)beta constructs with impaired capacity to induce current potentiation, but that it is lost for Ca(V)beta constructs deleted for their beta-interaction domain. The RGK C-terminal last approximately 80 amino acids are sufficient to allow potent current inhibition and in vivo beta-subunit/Gem interaction. Interestingly, although Gem and Gem carboxy-terminus induce a completely different pattern of beta-subunit cellular localization, they both potently inhibit Ca(V)2.1 channels. These data therefore set the status of neuronal Ca(V)2.1 Ca(2+) channel inhibition by RGK GTPases, emphasizing the role of short amino acid sequences of both proteins in beta-subunit binding and channel inhibition and revealing a new mechanism for channel inhibition.
Collapse
Affiliation(s)
- J-P Leyris
- CRBM, CNRS UMR 5237, Université de Montpellier 1, 34293 Montpellier cedex, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Lopez-Alcalá C, Alvarez-Moya B, Villalonga P, Calvo M, Bachs O, Agell N. Identification of Essential Interacting Elements in K-Ras/Calmodulin Binding and Its Role in K-Ras Localization. J Biol Chem 2008; 283:10621-31. [DOI: 10.1074/jbc.m706238200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
15
|
Correll RN, Pang C, Niedowicz DM, Finlin BS, Andres DA. The RGK family of GTP-binding proteins: regulators of voltage-dependent calcium channels and cytoskeleton remodeling. Cell Signal 2008; 20:292-300. [PMID: 18042346 PMCID: PMC2254326 DOI: 10.1016/j.cellsig.2007.10.028] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 10/30/2007] [Indexed: 02/05/2023]
Abstract
RGK proteins constitute a novel subfamily of small Ras-related proteins that function as potent inhibitors of voltage-dependent (VDCC) Ca(2+) channels and regulators of actin cytoskeletal dynamics. Within the larger Ras superfamily, RGK proteins have distinct regulatory and structural characteristics, including nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains conserved regulatory sites which control both subcellular localization and function. RGK GTPases interact with the VDCC beta-subunit (Ca(V)beta) and inhibit Rho/Rho kinase signaling to regulate VDCC activity and the cytoskeleton respectively. Binding of both calmodulin and 14-3-3 to RGK proteins, and regulation by phosphorylation controls cellular trafficking and the downstream signaling of RGK proteins, suggesting that a complex interplay between interacting protein factors and trafficking contribute to their regulation.
Collapse
Affiliation(s)
- Robert N Correll
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
16
|
Correll RN, Pang C, Niedowicz DM, Satin J, Andres DA. Calmodulin binding is dispensable for Rem-mediated Ca2+ channel inhibition. Mol Cell Biochem 2007; 310:103-10. [DOI: 10.1007/s11010-007-9670-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 11/22/2007] [Indexed: 10/25/2022]
|
17
|
Correll RN, Pang C, Finlin BS, Dailey AM, Satin J, Andres DA. Plasma membrane targeting is essential for Rem-mediated Ca2+ channel inhibition. J Biol Chem 2007; 282:28431-28440. [PMID: 17686775 PMCID: PMC3063359 DOI: 10.1074/jbc.m706176200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rem is a potent negative regulator of high voltage-activated Ca(2+) channels and a known interacting partner for Ca(2+) channel accessory beta subunits. The mechanism for Rem-mediated channel inhibition remains controversial, although it has been proposed that Ca(V)beta association is required. Previous work has shown that a C-terminal truncation of Rem (Rem-(1-265)) displays reduced in vivo binding to membrane-localized beta 2a and lacks channel regulatory function. In this paper, we describe a role for the Rem C terminus in plasma membrane localization through association with phosphatidylinositol lipids. Moreover, Rem-(1-265) can associate with beta 2a in vitro and beta 1b in vivo, suggesting that the C terminus does not directly participate in Ca(V)beta association. Despite demonstrated beta 1b binding, Rem-(1-265) was not capable of regulating a Ca(V)1.2-beta 1b channel complex, indicating that beta subunit binding is not sufficient for channel regulation. However, fusion of the CAAX domain from K-Ras4B or H-Ras to the Rem-(1-265) C terminus restored membrane localization and Ca(2+) channel regulation, suggesting that beta binding and membrane localization are independent events required for channel inhibition.
Collapse
Affiliation(s)
| | - Chunyan Pang
- Departments of Molecular and Cellular Biochemistry
| | | | | | - Jonathan Satin
- Departments of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509
| | | |
Collapse
|
18
|
Hatzoglou A, Ader I, Splingard A, Flanders J, Saade E, Leroy I, Traver S, Aresta S, de Gunzburg J. Gem associates with Ezrin and acts via the Rho-GAP protein Gmip to down-regulate the Rho pathway. Mol Biol Cell 2007; 18:1242-52. [PMID: 17267693 PMCID: PMC1839077 DOI: 10.1091/mbc.e06-06-0510] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Gem is a protein of the Ras superfamily that plays a role in regulating voltage-gated Ca2+ channels and cytoskeletal reorganization. We now report that GTP-bound Gem interacts with the membrane-cytoskeleton linker protein Ezrin in its active state, and that Gem binds to active Ezrin in cells. The coexpression of Gem and Ezrin induces cell elongation accompanied by the disappearance of actin stress fibers and collapse of most focal adhesions. The same morphological effect is elicited when cells expressing Gem alone are stimulated with serum and requires the expression of ERM proteins. We show that endogenous Gem down-regulates the level of active RhoA and actin stress fibers. The effects of Gem downstream of Rho, i.e., ERM phosphorylation as well as disappearance of actin stress fibers and most focal adhesions, require the Rho-GAP partner of Gem, Gmip, a protein that is enriched in membranes under conditions in which Gem induced cell elongation. Our results suggest that Gem binds active Ezrin at the plasma membrane-cytoskeleton interface and acts via the Rho-GAP protein Gmip to down-regulate the processes dependent on the Rho pathway.
Collapse
Affiliation(s)
| | - Isabelle Ader
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Anne Splingard
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - James Flanders
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Evelyne Saade
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Ingrid Leroy
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sabine Traver
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Sandra Aresta
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| | - Jean de Gunzburg
- *Institut Curie–Centre de Recherche and
- Inserm U528, Paris F-75248, France
| |
Collapse
|
19
|
Splingard A, Ménétrey J, Perderiset M, Cicolari J, Regazzoni K, Hamoudi F, Cabanié L, El Marjou A, Wells A, Houdusse A, de Gunzburg J. Biochemical and structural characterization of the gem GTPase. J Biol Chem 2006; 282:1905-15. [PMID: 17107948 DOI: 10.1074/jbc.m604363200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RGK proteins, encompassing Rad, Gem, Rem1, and Rem2, constitute an intriguing branch of the Ras superfamily; their expression is regulated at the transcription level, they exhibit atypical nucleotide binding motifs, and they carry both large N- and C-terminal extensions. Biochemical and structural studies are required to better understand how such proteins function. Here, we report the first structure for a RGK protein: the crystal structure of a truncated form of the human Gem protein (G domain plus the first part of the C-terminal extension) in complex with Mg.GDP at 2.1 A resolution. It reveals that the G-domain fold and Mg.GDP binding site of Gem are similar to those found for other Ras family GTPases. The first part of the C-terminal extension adopts an alpha-helical conformation that extends along the alpha5 helix and interacts with the tip of the interswitch. Biochemical studies show that the affinities of Gem for GDP and GTP are considerably lower (micromolar range) compared with H-Ras, independent of the presence or absence of N- and C-terminal extensions, whereas its GTPase activity is higher than that of H-Ras and regulated by both extensions. We show how the bulky DXWEX motif, characteristic of the switch II of RGK proteins, affects the conformation of switch I and the phosphate-binding site. Altogether, our data reveal that Gem is a bona fide GTPase that exhibits striking structural and biochemical features that should impact its regulation and cellular activities.
Collapse
Affiliation(s)
- Anne Splingard
- Institut Curie, Centre de Recherche, Paris F-75248, France, INSERM U528, Paris F-75248, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Finlin BS, Correll RN, Pang C, Crump SM, Satin J, Andres DA. Analysis of the complex between Ca2+ channel beta-subunit and the Rem GTPase. J Biol Chem 2006; 281:23557-66. [PMID: 16790445 DOI: 10.1074/jbc.m604867200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Voltage-gated calcium channels are multiprotein complexes that regulate calcium influx and are important contributors to cardiac excitability and contractility. The auxiliary beta-subunit (CaV beta) binds a conserved domain (the alpha-interaction domain (AID)) of the pore-forming CaV alpha1 subunit to modulate channel gating properties and promote cell surface trafficking. Recently, members of the RGK family of small GTPases (Rem, Rem2, Rad, Gem/Kir) have been identified as novel contributors to the regulation of L-type calcium channel activity. Here, we describe the Rem-association domain within CaV beta2a. The Rem interaction module is located in a approximately 130-residue region within the highly conserved guanylate kinase domain that also directs AID binding. Importantly, CaV beta mutants were identified that lost the ability to bind AID but retained their association with Rem, indicating that the AID and Rem association sites of CaV beta2a are structurally distinct. In vitro binding studies indicate that the affinity of Rem for CaV beta2a interaction is lower than that of AID for CaV beta2a. Furthermore, in vitro binding studies indicate that Rem association does not inhibit the interaction of CaV beta2a with AID. Instead, CaV beta can simultaneously associate with both Rem and CaV alpha1-AID. Previous studies had suggested that RGK proteins may regulate Ca2+ channel activity by blocking the association of CaV beta subunits with CaV alpha1 to inhibit plasma membrane trafficking. However, surface biotinylation studies in HIT-T15 cells indicate that Rem can acutely modulate channel function without decreasing the density of L-type channels at the plasma membrane. Together these data suggest that Rem-dependent Ca2+ channel modulation involves formation of a Rem x CaV beta x AID regulatory complex without the need to disrupt CaV alpha1 x CaV beta association or alter CaV alpha1 expression at the plasma membrane.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0509, USA
| | | | | | | | | | | |
Collapse
|
21
|
Béguin P, Mahalakshmi RN, Nagashima K, Cher DHK, Ikeda H, Yamada Y, Seino Y, Hunziker W. Nuclear Sequestration of β-Subunits by Rad and Rem is Controlled by 14-3-3 and Calmodulin and Reveals a Novel Mechanism for Ca2+ Channel Regulation. J Mol Biol 2006; 355:34-46. [PMID: 16298391 DOI: 10.1016/j.jmb.2005.10.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 09/27/2005] [Accepted: 10/04/2005] [Indexed: 10/25/2022]
Abstract
Voltage-gated Ca2+ channels (VDCCs) are heteromultimeric proteins that mediate Ca2+ influx into cells upon membrane depolarization. These channels are involved in various cellular events, including gene expression, regulation of hormone secretion and synaptic transmission. Kir/Gem, Rad, Rem, and Rem2 belong to the RGK family of Ras-related small G proteins. RGK proteins interact with the beta-subunits and downregulate VDCC activity. Kir/Gem was proposed to prevent surface expression of functional Ca2+ channels, while for Rem2 the mechanism remains controversial. Here, we have analyzed the mechanism by which Rad and Rem regulate VDCC activity. We show that, similar to Kir/Gem and Rem2, 14-3-3 and CaM binding regulate the subcellular distribution of Rad and Rem, which both inhibit Ca2+ channel activity by preventing its expression on the cell surface. This function is regulated by calmodulin and 14-3-3 binding only for Rad and not for Rem. Interestingly, nuclear targeting of Rad and Rem can relocalize and sequester the beta-subunit to the nucleus, thus providing a novel mechanism for Ca2+ channel downregulation.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, Singapore 138673.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Gem is a member of the RGK family of GTP-binding proteins within the Ras superfamily possessing a ras-like core and terminal extensions. We have used a variety of cell-based assays to investigate the physiological role of Gem and combined these assays with site-directed mutagenesis of Gem protein to identify the sites responsible for regulation of Gem activity. One function of Gem that has been explained is the inhibition of Rho kinase (ROK)-mediated cytoskeletal rearrangement. Transient expression of Gem in endothelial cells and stable transfection of fibroblasts resulted in decreased stress fiber formation and focal adhesion assembly. A neurite extension model using N1E-115 murine neuroblastoma showed that Gem inhibits actinomyosin-related contractility by specifically opposing ROKbeta activity. Phospho-specific antibodies were used in Western blot analysis to show that Gem prevents phosphorylation of the regulatory subunit of myosin light chain and myosin phosphatase by ROKbeta. On the contrary, LIMK, another substrate of ROKbeta, was unaffected by Gem expression as demonstrated by an in vitro kinase assay, suggesting that Gem exerts its effect by changing the substrate specificity of ROKbeta rather than by blocking its catalytic activity. Point mutations of Gem at serines 261 and 289 in the carboxyl-terminus inhibited Gem function, indicating that posttranslational phosphorylation of these serines regulates Gem's effect on cytoskeletal reorganization. Another biological role of Gem is inhibition of voltage-gated calcium channel activity. By use of a PC12 cell model combined with site-directed mutagenesis, we demonstrated that Gem inhibits growth hormone secretion stimulated by calcium influx through L-type calcium channels and that this function is dependent on GTP and calmodulin binding to Gem. The theory and method for the assays discussed previously are reviewed here.
Collapse
Affiliation(s)
- Yvona Ward
- Cell and Cancer Biology Branch Center for Cancer Research, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
23
|
Andres DA, Crump SM, Correll RN, Satin J, Finlin BS. Analyses of Rem/RGK Signaling and Biological Activity. Methods Enzymol 2006; 407:484-98. [PMID: 16757347 DOI: 10.1016/s0076-6879(05)07039-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Rem (Rad and Gem related) is a member of the RGK family of Ras-related GTPases that also includes Rad, Rem2, and Gem/Kir. All RGK proteins share structural features that are distinct from other Ras-related proteins, including several nonconservative amino acid substitutions within regions known to participate in nucleotide binding and hydrolysis and a C-terminal extension that contains regulatory sites that seem to control both subcellular location and function. Rem is known to modulate two distinct signal transduction pathways, regulating both cytoskeletal reorganization and voltage-gated Ca2+ channel activity. In this chapter, we summarize the experimental approaches used to characterize the interaction of Rem with 14-3-3 proteins and Ca2+ channel beta-subunits and describe electrophysiological analyses for characterizing Rem-mediated regulation of L-type Ca2+ channel activity.
Collapse
Affiliation(s)
- Douglas A Andres
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | | | | | |
Collapse
|
24
|
Béguin P, Mahalakshmi R, Nagashima K, Cher D, Kuwamura N, Yamada Y, Seino Y, Hunziker W. Roles of 14-3-3 and calmodulin binding in subcellular localization and function of the small G-protein Rem2. Biochem J 2005; 390:67-75. [PMID: 15862114 PMCID: PMC1184563 DOI: 10.1042/bj20050414] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
kir/Gem, Rad, Rem and Rem2 comprise the RGK (Rad/Gem/kir) family of Ras-related small G-proteins. Two important functions of RGK proteins are the regulation of the VDCC (voltage-dependent Ca2+ channel) activity and cell-shape remodelling. RGK proteins interact with 14-3-3 and CaM (calmodulin), but their role on RGK protein function is poorly understood. In contrast with the other RGK family members, Rem2 has been reported to bind neither 14-3-3 nor induce membrane extensions. Furthermore, although Rem2 inhibits VDCC activity, it does not prevent cell-surface transport of Ca2+ channels as has been shown for kir/Gem. In the present study, we re-examined the functions of Rem2 and its interaction with 14-3-3 and CaM. We show that Rem2 in fact does interact with 14-3-3 and CaM and induces dendrite-like extensions in COS cells. 14-3-3, together with CaM, regulates the subcellular distribution of Rem2 between the cytoplasm and the nucleus. Rem2 also interacts with the beta-subunits of VDCCs in a GTP-dependent fashion and inhibits Ca2+ channel activity by blocking the alpha-subunit expression at the cell surface. Thus Rem2 shares many previously unrecognized features with the other RGK family members.
Collapse
Affiliation(s)
- Pascal Béguin
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
- Correspondence may be addressed to either of the authors (email or )
| | - Ramasubbu Narayanan Mahalakshmi
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Kazuaki Nagashima
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Damian Hwee Kiat Cher
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Naomitsu Kuwamura
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuichiro Yamada
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yutaka Seino
- †Department of Diabetes and Clinical Nutrition, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Walter Hunziker
- *Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Singapore
- Correspondence may be addressed to either of the authors (email or )
| |
Collapse
|
25
|
Béguin P, Mahalakshmi RN, Nagashima K, Cher DHK, Takahashi A, Yamada Y, Seino Y, Hunziker W. 14-3-3 and calmodulin control subcellular distribution of Kir/Gem and its regulation of cell shape and calcium channel activity. J Cell Sci 2005; 118:1923-34. [PMID: 15860732 DOI: 10.1242/jcs.02321] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual members of the RGK family of Ras-related GTPases, which comprise Rad, Gem/Kir, Rem and Rem2, have been implicated in important functions such as the regulation of voltage-gated calcium channel activity and remodeling of cell shape. The GTPase Kir/Gem inhibits the activity of calcium channels by interacting with the beta-subunit and also regulates cytoskeleton dynamics by inhibiting the Rho-Rho kinase pathway. In addition, Kir/Gem interacts with 14-3-3 and calmodulin, but the significance of this interaction on Kir/Gem function is poorly understood. Here, we present a comprehensive analysis of the binding of 14-3-3 and calmodulin to Kir/Gem. We show that 14-3-3, in conjunction with calmodulin, regulates the subcellular distribution of Kir/Gem between the cytoplasm and the nucleus. In addition, 14-3-3 and calmodulin binding modulate Kir/Gem-mediated cell shape remodeling and downregulation of calcium channel activity. Competition experiments show that binding of 14-3-3, calmodulin and calcium channel beta-subunits to Kir/Gem is mutually exclusive, providing a rationale for the observed regulatory effects of 14-3-3 and calmodulin on Kir/Gem localization and function.
Collapse
Affiliation(s)
- Pascal Béguin
- Epithelial Cell Biology Laboratory, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673, Republic of Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Harrison SMW, Rudolph JL, Spencer ML, Wes PD, Montell C, Andres DA, Harrison DA. Activated RIC, a small GTPase, genetically interacts with the Ras pathway and calmodulin during Drosophila development. Dev Dyn 2005; 232:817-26. [PMID: 15712277 DOI: 10.1002/dvdy.20346] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian Rit and Rin proteins, along with the Drosophila homologue RIC, comprise a distinct and evolutionarily conserved subfamily of Ras-related small GTP-binding proteins. Unlike other Ras superfamily members, these proteins lack a signal for prenylation, contain a conserved but distinct effector domain, and, in the case of Rin and RIC, contain calmodulin-binding domains. To address the physiological role of this Ras subfamily in vivo, activated forms of the Drosophila Ric gene were introduced into flies. Expression of activated RIC proteins altered the development of well-characterized adult structures, including wing veins and photoreceptors of the compound eye. The effects of activated RIC could be mitigated by a reduction in dosage of several genes in the Drosophila Ras cascade, including Son of sevenless (Sos), Dsor (MEK), rolled (MAPK), and Ras itself. On the other hand, reduction of calmodulin exacerbated the defects caused by activated RIC, thus providing the first functional evidence for interaction of these molecules. We conclude that the activation of the Ras cascade may be an important in vivo requisite to the transduction of signals through RIC and that the binding of calmodulin to RIC may negatively regulate this small GTPase.
Collapse
Affiliation(s)
- Susan M W Harrison
- T.H. Morgan School of Biological Sciences, University of Kentucky, Lexington, Kentucky 40506-0225, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Balijepalli RC, Foell JD, Kamp TJ. Blocking the L-type Ca2+ channel with a gem: a paradigm for a more specific Ca2+ channel blocker. Circ Res 2005; 95:337-9. [PMID: 15321942 DOI: 10.1161/01.res.0000141018.33292.21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Aspenström P. Integration of signalling pathways regulated by small GTPases and calcium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:51-8. [PMID: 15590055 DOI: 10.1016/j.bbamcr.2004.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/21/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
The Ras superfamily of small GTPases constitutes a large group of structurally and functionally related proteins. They function as signalling switches in numerous signalling cascades in the cell. During the recent years, an increased awareness of a communication between signalling systems employing Ras-like GTPases and signalling systems employing calcium has emerged. For instance, the intensity of the activation of Ras-like GTPases is regulated by calcium-dependent mechanisms, acting on proteins that facilitate the activation or inactivation of the small GTPases. Other Ras-like GTPases have a direct influence on calcium signalling by regulating the activity of certain calcium channels. In addition, several small GTPases collaborate with calcium signalling in regulating cellular processes, such as cell adhesion, cell migration and exocytosis.
Collapse
Affiliation(s)
- Pontus Aspenström
- Biomedical Center, Ludwig Institute for Cancer Research, Box 595, S-751 24 Uppsala, Sweden.
| |
Collapse
|
29
|
Wood RJ, Tchack L, Angelo G, Pratt RE, Sonna LA. DNA microarray analysis of vitamin D-induced gene expression in a human colon carcinoma cell line. Physiol Genomics 2004; 17:122-9. [PMID: 14996990 DOI: 10.1152/physiolgenomics.00002.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The full extent to which 1,25-dihydroxyvitamin D3 affects gene expression in human intestinal epithelial cells is unknown. We used oligonucleotide arrays to catalog vitamin D-induced changes in gene expression in Caco-2 cells, a human colon carcinoma cell line. Five paired sets of Caco-2 cell cultures were subjected to either control conditions or 1,25-dihydroxyvitamin D (10−7 mol/l × 24 h), and RNA was analyzed on an Affymetrix cDNA array containing 12,625 human sequences. Only 13 sequences representing 12 distinct genes exhibited statistically significant changes in expression of twofold or greater and were also called as “present” or “marginal” by the array-reading software in all five experiments. Genes regulated by 1,25-dihydroxyvitamin D included two previously known genes (25-hydroxyvitamin D-24-hydroxylase and amphiregulin) and 10 genes (sorcin, Gem, adaptin-γ, TIG1, CEACAM6, carbonic anhydrase XII, junB, ceruloplasmin, and two unidentified sequences) that were novel. We tested and independently confirmed the effect of 1,25-dihydroxyvitamin D on 11 of these genes by RT-PCR. Increased protein expression was tested and confirmed in two of the novel 1,25-dihydroxyvitamin D-regulated genes, ceruloplasmin and sorcin. The known function of these genes suggests that many of them could be involved in the antiproliferative effects of 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- Richard J Wood
- Mineral Bioavailability Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston 02111, USA.
| | | | | | | | | |
Collapse
|
30
|
Ward Y, Spinelli B, Quon MJ, Chen H, Ikeda SR, Kelly K. Phosphorylation of critical serine residues in Gem separates cytoskeletal reorganization from down-regulation of calcium channel activity. Mol Cell Biol 2004; 24:651-61. [PMID: 14701738 PMCID: PMC343818 DOI: 10.1128/mcb.24.2.651-661.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gem is a small GTP-binding protein that has a ras-like core and extended chains at each terminus. The primary structure of Gem and other RGK family members (Rad, Rem, and Rem2) predicts a GTPase deficiency, leading to the question of how Gem functional activity is regulated. Two functions for Gem have been demonstrated, including inhibition of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. These functions for Gem have been ascribed to its interaction with the calcium channel beta subunit and Rho kinase beta, respectively. We show here that these functions are separable and regulated by distinct structural modifications to Gem. Phosphorylation of serines 261 and 289, located in the C-terminal extension, is required for Gem-mediated cytoskeletal reorganization, while GTP and possibly calmodulin binding are required for calcium channel inhibition. In addition to regulating cytoskeletal reorganization, phosphorylation of serine 289 in conjunction with serine 23 results in bidentate 14-3-3 binding, leading to increased Gem protein half-life. Evidence presented shows that phosphorylation of serine 261 is mediated via a cdc42/protein kinase Czeta-dependent pathway. These data demonstrate that phosphorylation of serines 261 and 289, outside the GTP-binding region of Gem, controls its inhibition of Rho kinase beta and associated changes in the cytoskeleton.
Collapse
Affiliation(s)
- Y Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute/NIH, Building 10, Room 3B43, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
31
|
Finlin BS, Crump SM, Satin J, Andres DA. Regulation of voltage-gated calcium channel activity by the Rem and Rad GTPases. Proc Natl Acad Sci U S A 2003; 100:14469-74. [PMID: 14623965 PMCID: PMC283615 DOI: 10.1073/pnas.2437756100] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rem, Rem2, Rad, and Gem/Kir (RGK) represent a distinct GTPase family with largely unknown physiological functions. We report here that both Rem and Rad bind directly to Ca2+ channel beta-subunits (CaV beta) in vivo. No calcium currents are recorded from human embryonic kidney 293 cells coexpressing the L type Ca2+ channel subunits CaV1.2, CaV beta 2a, and Rem or Rad, but CaV1.2 and CaV beta 2a transfected cells elicit Ca2+ channel currents in the absence of these small G proteins. Importantly, CaV3 (T type) Ca2+ channels, which do not require accessory subunits for ionic current expression, are not inhibited by expression of Rem. Rem is expressed in primary skeletal myoblasts and, when overexpressed in C2C12 myoblasts, wild-type Rem inhibits L type Ca2+ channel activity. Deletion analysis demonstrates a critical role for the Rem C terminus in both regulation of functional Ca2+ channel expression and beta-subunit association. These results suggest that all members of the RGK GTPase family, via direct interaction with auxiliary beta-subunits, serve as regulators of L type Ca2+ channel activity. Thus, the RGK GTPase family may provide a mechanism for achieving cross talk between Ras-related GTPases and electrical signaling pathways.
Collapse
Affiliation(s)
- Brian S Finlin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Abstract
Gem GTPase is a member of a protein family that includes Rad, Rem and Rem2. Although until recently precious little was known about the function of Gem, recent studies have revealed that Gem may influence cell morphology by antagonising the actions of the Rho GTPase effector protein ROCK I.
Collapse
Affiliation(s)
- Michael F Olson
- Abramson Family Cancer Research Institute, BRB II/III, 421 Curie Blvd., University of Pennsylvania, Philadelphia 19104, USA.
| |
Collapse
|
34
|
Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K. The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway. J Cell Biol 2002; 157:291-302. [PMID: 11956230 PMCID: PMC2199248 DOI: 10.1083/jcb.200111026] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) alpha and beta. Gem binds ROKbeta independently of RhoA in the ROKbeta coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKbeta-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKbeta. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKbeta- and Rad opposed ROKalpha-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKbeta containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKbeta is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.
Collapse
Affiliation(s)
- Yvona Ward
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Trimmer JS. Unexpected cross talk: small GTPase regulation of calcium channel trafficking. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe2. [PMID: 11784890 DOI: 10.1126/stke.2002.114.pe2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Calcium ions can serve as both charge carriers and second messengers. Most cells have voltage-dependent calcium channels that control the membrane permeability to calcium. These channels at the membrane open in response to changes in membrane potential. Their activity is further modulated by phosphorylation by various kinases, such as protein kinase A and protein kinase C, and by changes in intracellular calcium concentration through the action of calcium calmodulin (Ca(2+)/CaM). Trimmer discusses a potential mechanism by which the expression of these channels can be regulated through an interaction with a small guanosine triphosphatase (GTPase), kir/Gem, that influences trafficking of the channels through effects on assembly with auxiliary subunits that occurs in the biosynthetic pathway.
Collapse
Affiliation(s)
- James S Trimmer
- Department of Biochemistry and Cell Biology and Institute for Cell and Developmental Biology, State University of New York at Stony Brook, Stony Brook, NY 11794 USA.
| |
Collapse
|
36
|
Bayer KU, Schulman H. Regulation of signal transduction by protein targeting: the case for CaMKII. Biochem Biophys Res Commun 2001; 289:917-23. [PMID: 11741277 DOI: 10.1006/bbrc.2001.6063] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein targeting is increasingly being recognized as a mechanism to ensure speed and specificity of intracellular signal transduction in a variety of biological systems. Conceptually, this is of particular importance for second-messenger-regulated protein kinases with a broad spectrum of substrates, such as the serine/threonine protein kinases PKA, PKC, and CaMKII (cyclic-AMP-dependent protein kinase, Ca(2+)-phospholipid-dependent protein kinase, and Ca(2+)/calmodulin-dependent protein kinase II). The activating second messengers of these enzymes can be produced or released in response to a large variety of "upstream" signals, and they can, in turn, regulate a large variety of "downstream" proteins. Targeting, e.g., via anchoring proteins, can link certain incoming stimuli with specific outgoing signals by restricting the subcellular compartment at which activation and/or action of a signaling molecule can take place. Elegant research on PKA and PKC reinforced the biological importance of such mechanisms. We will focus here on CaMKII, as recent advances in the understanding of its targeting have some significant general implications for signal transduction. The interaction of CaMKII with the NMDA receptor, for instance, shows that a targeting protein can not only specify the subcellular localization of a signaling effector, but can also directly influence its regulation.
Collapse
Affiliation(s)
- K U Bayer
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA
| | | |
Collapse
|
37
|
Piddini E, Schmid JA, de Martin R, Dotti CG. The Ras-like GTPase Gem is involved in cell shape remodelling and interacts with the novel kinesin-like protein KIF9. EMBO J 2001; 20:4076-87. [PMID: 11483511 PMCID: PMC149163 DOI: 10.1093/emboj/20.15.4076] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gem belongs to the Rad/Gem/Kir (RGK) subfamily of Ras-related GTPases, which also comprises Rem, Rem2 and Ges. The RGK family members Ges and Rem have been shown to produce endothelial cell sprouting and reorganization of the actin cytoskeleton upon overexpression. Here we show that high intracellular Gem levels promote profound changes in cell morphology and we investigate how this phenotype arises dynamically. We also show that this effect requires intact microtubules and microfilaments, and that Gem is associated with both cytoskeletal components. In order to investigate the mechanisms of Gem recruitment to the cytoskeleton, we performed a yeast two-hybrid screen and identified a novel kinesin-like protein, termed KIF9, as a new Gem interacting partner. We further show that Gem and KIF9 interact by co-immunoprecipitation. Furthermore, Gem and KIF9 display identical patterns of gene expression in different tissues and developmental stages. The Gem- KIF9 interaction reported here is the first molecular link between RGK family members and the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Eugenia Piddini
- EMBL, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna International Research Cooperation Centre, A-1235 Vienna, Austria and Cavaliere Ottolenghi Scientific Institute, Università degli Studi di Torino A.O. San Luigi Gonzaga Regione Gonzole, 10, I-10043 Orbassano (TO), Italy Corresponding authors e-mail: or
E.Piddini and J.A.Schmid contributed equally to this work
| | - Johannes A. Schmid
- EMBL, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna International Research Cooperation Centre, A-1235 Vienna, Austria and Cavaliere Ottolenghi Scientific Institute, Università degli Studi di Torino A.O. San Luigi Gonzaga Regione Gonzole, 10, I-10043 Orbassano (TO), Italy Corresponding authors e-mail: or
E.Piddini and J.A.Schmid contributed equally to this work
| | - Rainer de Martin
- EMBL, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna International Research Cooperation Centre, A-1235 Vienna, Austria and Cavaliere Ottolenghi Scientific Institute, Università degli Studi di Torino A.O. San Luigi Gonzaga Regione Gonzole, 10, I-10043 Orbassano (TO), Italy Corresponding authors e-mail: or
E.Piddini and J.A.Schmid contributed equally to this work
| | - Carlos G. Dotti
- EMBL, Cell Biology and Biophysics Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany, Department of Vascular Biology and Thrombosis Research, University of Vienna, Vienna International Research Cooperation Centre, A-1235 Vienna, Austria and Cavaliere Ottolenghi Scientific Institute, Università degli Studi di Torino A.O. San Luigi Gonzaga Regione Gonzole, 10, I-10043 Orbassano (TO), Italy Corresponding authors e-mail: or
E.Piddini and J.A.Schmid contributed equally to this work
| |
Collapse
|
38
|
Béguin P, Nagashima K, Gonoi T, Shibasaki T, Takahashi K, Kashima Y, Ozaki N, Geering K, Iwanaga T, Seino S. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 2001; 411:701-6. [PMID: 11395774 DOI: 10.1038/35079621] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions, and are controlled by intracellular signals such as heterotrimeric G-proteins, protein kinases and calmodulin (CaM). However, the direct role of small G-proteins in the regulation of Ca2+ channels is unclear. We report here that the GTP-bound form of kir/Gem, identified originally as a Ras-related small G-protein that binds CaM, inhibits high-voltage-activated Ca2+ channel activities by interacting directly with the beta-subunit. The reduced channel activities are due to a decrease in alpha1-subunit expression at the plasma membrane. The binding of Ca2+/CaM to kir/Gem is required for this inhibitory effect by promoting the cytoplasmic localization of kir/Gem. Inhibition of L-type Ca2+ channels by kir/Gem prevents Ca2+-triggered exocytosis in hormone-secreting cells. We propose that the small G-protein kir/Gem, interacting with beta-subunits, regulates Ca2+ channel expression at the cell surface.
Collapse
Affiliation(s)
- P Béguin
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Deavours BE, Reddy AS, Walker RA. Ca2+/calmodulin regulation of the Arabidopsis kinesin-like calmodulin-binding protein. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:408-16. [PMID: 9712269 DOI: 10.1002/(sici)1097-0169(1998)40:4<408::aid-cm8>3.0.co;2-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The kinesin family motor protein KCBP (kinesin-like calmodulin binding protein) was identified during a screen for Arabidopsis calmodulin-binding proteins [Reddy, et al., 1996b: J. Biol Chem. 271:7052-7060]. KCBP contains a C-terminal motor domain and is unique among kinesin motors in that it has a calmodulin-binding site. We expressed the KCBP motor domain in Escherichia coli and examined its microtubule (MT) binding and ATPase activity. KCBP bound MTs in an ATP-dependent manner and exhibited MT-stimulated ATPase activity. Ca2+/ calmodulin inhibited binding of KCBP to MTs under conditions that normally favor tight motor-MT interactions, and the extent of inhibition was dependent on the concentration of calcium and calmodulin. Ca2+/calmodulin did not affect KCBP's basal ATPase activity, but reduced the motor's MT-stimulated ATPase activity. The substantial reduction in affinity of KCBP for MTs in the presence of Ca2+/calmodulin suggests that Ca2+/calmodulin may modulate the activity of KCBP in vivo by regulating the motor's association with MTs. KCBP is the first MT-dependent motor protein found to be regulated by direct binding of Ca2+/calmodulin to its motor subunit.
Collapse
Affiliation(s)
- B E Deavours
- Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg 24061-0406, USA
| | | | | |
Collapse
|
40
|
Pan JY, Fieles WE, White AM, Egerton MM, Silberstein DS. Ges, A human GTPase of the Rad/Gem/Kir family, promotes endothelial cell sprouting and cytoskeleton reorganization. J Cell Biol 2000; 149:1107-16. [PMID: 10831614 PMCID: PMC2174817 DOI: 10.1083/jcb.149.5.1107] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2000] [Accepted: 04/21/2000] [Indexed: 11/22/2022] Open
Abstract
Rad, Gem/Kir, and mRem (RGK) represent a unique GTPase family with largely unknown functions (Reynet, C., and C.R. Kahn. 1993. Science. 262:1441-1444; Cohen, L., R. Mohr, Y. Chen, M. Huang, R. Kato, D. Dorin, F. Tamanoi, A. Goga, D. Afar, N. Rosenberg, and O. Witte. Proc. Natl. Acad. Sci. USA. 1994. 91:12448-12452; Maguire, J., T. Santoro, P. Jensen, U. Siebenlist, J. Yewdell, and K. Kelly. 1994. Science. 265:241-244; Finlin, B.S., and D.A. Andres. 1997. J. Biol. Chem. 272:21982-21988). We report that Ges (GTPase regulating endothelial cell sprouting), a human RGK protein expressed in the endothelium, functions as a potent morphogenic switch in endothelial cells (ECs). Ges function is sufficient to substitute for angiogenic growth factor/extracellular matrix (ECM) signals in promoting EC sprouting, since overexpression of Ges in ECs cultured on glass leads to the development of long cytoplasmic extensions and reorganization of the actin cytoskeleton. Ges function is also necessary for Matrigel-induced EC sprouting, since this event is blocked by its dominant negative mutant, Ges(T94N), predicted to prevent the activation of endogenous Ges through sequestration of its guanine nucleotide exchange factor. Thus, Ges appears to be a key transducer linking extracellular signals to cytoskeleton/morphology changes in ECs.
Collapse
MESH Headings
- Actins/analysis
- Actins/metabolism
- Base Sequence
- Biocompatible Materials
- Blotting, Northern
- Blotting, Western
- Cells, Cultured
- Collagen
- Cytoskeleton/metabolism
- Drug Combinations
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Extracellular Matrix/metabolism
- GTP Phosphohydrolases/analysis
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Gene Expression Regulation, Enzymologic/physiology
- Growth Substances/pharmacology
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Laminin
- Molecular Sequence Data
- Monomeric GTP-Binding Proteins/genetics
- Monomeric GTP-Binding Proteins/metabolism
- Neovascularization, Physiologic/physiology
- Proteoglycans
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transfection
- Umbilical Arteries/cytology
- Vinculin/analysis
- Vinculin/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Julie Y. Pan
- Enabling Science and Technology-Biology, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19850-5437
| | - William E. Fieles
- Enabling Science and Technology-Biology, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19850-5437
| | - Anne M. White
- Department of Cancer and Infection, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, SK10 4TG United Kingdom
| | - Mark M. Egerton
- Department of Cancer and Infection, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, SK10 4TG United Kingdom
| | - David S. Silberstein
- Enabling Science and Technology-Biology, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19850-5437
| |
Collapse
|
41
|
Wang KL, Roufogalis BD. Ca2+/calmodulin stimulates GTP binding to the ras-related protein ral-A. J Biol Chem 1999; 274:14525-8. [PMID: 10329639 DOI: 10.1074/jbc.274.21.14525] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ral-A is a Ras-related GTP-binding protein that has been suggested to be the downstream target of Ras proteins and is involved in the tyrosine kinase-mediated, Ras-dependent activation of phospholipase D. We reported recently that Ral-A purified from human erythrocyte membrane binds to calmodulin in a Ca2+-dependent manner at a calmodulin binding domain identified near its C-terminal region (Wang, K. L., Khan, M. T., and Roufogalis, B. D. (1997) J. Biol. Chem. 272, 16002-16009). In this study we show the enhancement of GTP binding to Ral-A by Ca2+/calmodulin. The stimulation up to 3-fold by calmodulin was Ca2+-dependent, with half-maximum activation occurring at 180 nM calmodulin and 80 nM free Ca2+ concentration. The present work supports a regulatory role of Ca2+/calmodulin for the activation of Ral-A and suggests a possible direct link between signal transduction pathways of Ca2+/calmodulin and Ral-A proteins.
Collapse
Affiliation(s)
- K L Wang
- Department of Pharmacy, University of Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
42
|
Arbuzova A, Murray D, McLaughlin S. MARCKS, membranes, and calmodulin: kinetics of their interaction. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:369-79. [PMID: 9804991 DOI: 10.1016/s0304-4157(98)00011-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
It is well documented that membrane binding of MARCKS (Myristoylated Alanine-Rich C-Kinase Substrate) requires both hydrophobic insertion of the N-terminal myristate into the bilayer and electrostatic interaction of the basic effector region with acidic lipids. The structure of a membrane-bound peptide corresponding to the effector region, residues 151-175 of bovine MARCKS, was recently determined using spin-labeled peptides and EPR. The kinetics of the peptide-membrane interaction were determined from stopped-flow fluorescence measurements; the adsorption of the peptide onto phospholipid vesicles is a diffusion-limited process. Five microM Ca2+-calmodulin decreases the lifetime of the peptide on a 100 nm diameter 10:1 PC/PS vesicle from 0.1 s to 0.01 s by rapidly pulling the peptide off the membrane. We propose a molecular mechanism, based on previous work by M. Eigen and colleagues, by which calmodulin may remove MARCKS(151-175) from the membrane at a diffusion-limited rate. Calmodulin may also use this mechanism to remove the pseudosubstrate region from the substrate binding site of enzymes such as calmodulin kinase II and myosin light chain kinase.
Collapse
Affiliation(s)
- A Arbuzova
- Department of Physiology and Biophysics, HSC, SUNY - State University of New York, Stony Brook, NY 11794-8661, USA
| | | | | |
Collapse
|
43
|
Fischer R, Julsgart J, Berchtold MW. High affinity calmodulin target sequence in the signalling molecule PI 3-kinase. FEBS Lett 1998; 425:175-7. [PMID: 9541031 DOI: 10.1016/s0014-5793(98)00225-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study we report that phosphatidylinositol 3-kinase (PI 3-kinase), a lipid kinase which participates in downstream signalling events of heterotrimeric G protein-coupled receptors and receptor tyrosine kinases, contains a high affinity binding site for calmodulin (CaM). The putative CaM-binding peptide derived from the p110gamma isoform interacts with CaM in a calcium-dependent way. Using gel shift analysis and fluorescence spectrophotometry we discovered that the peptide forms a high affinity complex with CaM. Titration experiments using dansylated CaM gave an affinity constant of 5 nM. Furthermore, a sequence comparison among different PI 3-kinase isoforms revealed that the sequence which can bind CaM is highly conserved within different PI 3-kinase isoforms. These results indicate a novel mechanism for regulating PI 3-kinase and provide a new direct link between Ca2+ and phospholipid signalling pathways.
Collapse
Affiliation(s)
- R Fischer
- Institute of Molecular Cell Biology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
44
|
Liu M, Yu B, Nakanishi O, Wieland T, Simon M. The Ca2+-dependent binding of calmodulin to an N-terminal motif of the heterotrimeric G protein beta subunit. J Biol Chem 1997; 272:18801-7. [PMID: 9228054 DOI: 10.1074/jbc.272.30.18801] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ca2+ ion concentration changes are critical events in signal transduction. The Ca2+-dependent interactions of calmodulin (CaM) with its target proteins play an essential role in a variety of cellular functions. In this study, we investigated the interactions of G protein betagamma subunits with CaM. We found that CaM binds to known betagamma subunits and these interactions are Ca2+-dependent. The CaM-binding domain in Gbetagamma subunits is identified as Gbeta residues 40-63. Peptides derived from the Gbeta protein not only produce a Ca2+-dependent gel mobility shifting of CaM but also inhibit the CaM-mediated activation of CaM kinase II. Specific amino acid residues critical for the binding of Gbetagamma to CaM were also identified. We then investigated the potential function of these interactions and showed that binding of CaM to Gbetagamma inhibits the pertussis toxin-catalyzed ADP-ribosylation of Galphao subunits, presumably by inhibiting heterotrimer formation. Furthermore, we demonstrated that interaction with CaM has little effect on the activation of phospholipase C-beta2 by Gbetagamma subunits, supporting the notion that different domains of Gbetagamma are responsible for the interactions of different effectors. These findings shed light on the molecular basis for the interactions of Gbetagamma with Ca2+-CaM and point to the potential physiological significance of these interactions in cellular functions.
Collapse
Affiliation(s)
- M Liu
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
45
|
Faux MC, Scott JD. Regulation of the AKAP79-protein kinase C interaction by Ca2+/Calmodulin. J Biol Chem 1997; 272:17038-44. [PMID: 9202019 DOI: 10.1074/jbc.272.27.17038] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The A kinase-anchoring protein AKAP79 coordinates the location of the cAMP-dependent protein kinase (protein kinase A), calcineurin, and protein kinase C (PKC) at the postsynaptic densities in neurons. Individual enzymes in the AKAP79 signaling complex are regulated by distinct second messenger signals; however, both PKC and calcineurin are inhibited when associated with the anchoring protein, suggesting that additional regulatory signals must be required to release active enzyme. This report focuses on the regulation of AKAP79-PKC interaction by calmodulin. AKAP79 binds calmodulin with high affinity (KD of 28 +/- 4 nM (n = 3)) in a Ca2+-dependent manner. Immunofluorescence staining shows that both proteins exhibit overlapping staining patterns in cultured hippocampal neurons. Calmodulin reversed the inhibition of PKCbetaII by the AKAP79(31-52) peptide and reduced inhibition by the full-length AKAP79 protein. The effect of calmodulin on inhibition of a constitutively active PKC fragment by the AKAP79(31-52) peptide was shown to be partially dependent on Ca2+. Ca2+/calmodulin reduced PKC coimmunoprecipitated with AKAP79 and resulted in a 2.6 +/- 0.5-fold (n = 6) increase in PKC activity in a preparation of postsynaptic densities. Collectively, these findings suggest that Ca2+/calmodulin competes with PKC for binding to AKAP79, releasing the inhibited kinase from its association with the anchoring protein.
Collapse
Affiliation(s)
- M C Faux
- Vollum Institute, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
46
|
Wang KL, Khan MT, Roufogalis BD. Identification and characterization of a calmodulin-binding domain in Ral-A, a Ras-related GTP-binding protein purified from human erythrocyte membrane. J Biol Chem 1997; 272:16002-9. [PMID: 9188503 DOI: 10.1074/jbc.272.25.16002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A 28-kDa protein (p28) has been purified from Triton X-100 extracts of human erythrocyte plasma membrane by calmodulin affinity chromatography. Based on internal peptide sequencing and its protein amino acid composition, this protein has been shown to be highly related, if not identical to, Ral-A, a Ras-related GTP-binding protein. This protein assignment is consistent with the findings that p28 binds [32P]GTP specifically and has low GTPase activity. In this study we describe the identification and characterization of a calmodulin-binding domain in Ral-A. The Ca2+-dependent interaction of p28 with calmodulin was first detected by a calmodulin affinity column. Gel overlay experiments of both p28 and recombinant Ral-A with biotinylated calmodulin provided strong evidence that Ral-A is a calmodulin-binding protein. A peptide of 18 residues (P18) with the sequence SKEKNGKKKRKSLAKRIR has been identified as a putative calmodulin-binding domain in Ral-A, because it comprises a basic/hydrophobic composition with the propensity to form an amphiphilic helix. P18 was synthesized, and its interaction with calmodulin by gel overlay was shown to be Ca2+-dependent. Circular dichroism analysis demonstrated that this interaction results in less alpha-helical content upon calmodulin complex formation. These results indicate that Ral-A is a calmodulin-binding protein, raising the possibility that it may be associated with Ca2+-dependent intracellular signaling pathways.
Collapse
Affiliation(s)
- K L Wang
- Department of Pharmacy, University of Sydney, New South Wales 2006, Australia
| | | | | |
Collapse
|