1
|
The protective role of MnTBAP in oxidant-mediated injury and inflammation in a rat model of lung contusion. Surgery 2013; 154:980-90. [PMID: 24139490 DOI: 10.1016/j.surg.2013.05.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/10/2013] [Indexed: 12/21/2022]
Abstract
BACKGROUND Lung contusion (LC) is a unique direct and focal insult that is considered a major risk factor for the initiation of acute lung injury and acute respiratory distress syndrome. We have shown recently that consumption of nitric oxide (due to excess superoxide) resulting in peroxynitrite formation leads to decreased vascular reactivity after LC. In this study, we set out to determine whether the superoxide scavenger Mn (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) plays a protective role in alleviating acute inflammatory response and injury in LC. METHODS Nonlethal, closed-chest, bilateral LC was induced in a rodent model. Administration of the superoxide dismutase mimetic MnTBAP concurrently in LC in rats was performed, and bronchoalveolar lavage (BAL) and lung samples were analyzed for degree of injury and inflammation at 5 and 24 h after the insult. The extent of injury was assessed by the measurement of cells and albumin with cytokine levels in the BAL and lungs. Lung samples were subjected to H&E and superoxide staining with dihydro-ethidium. Protein-bound dityrosine and nitrotyrosine levels were quantified in lung tissue by tandem mass spectrometry. RESULTS The degrees of lung injury after LC as determined by BAL albumin levels were significantly decreased in the MnTBAP-administered rats at all the time points when compared to the corresponding controls. The release of proinflammatory cytokines and BAL neutrophils was significantly less in the rats administered MnTBAP after LC. Administration of MnTBAP decreased tissue damage and decreased necrosis and neutrophil-rich exudate at the 24-h time point. Staining for superoxide anions showed significantly greater intensity in the lung samples from the LC group compared to the LC+ MnTBAP group. High-performance liquid chromatography/tandem mass spectrometry revealed that MnTBAP treatment significantly attenuated dityrosine and nitrotyrosine levels, consistent with decreased oxidant injury. CONCLUSION Superoxide dismutase mimetic-MnTBAP reduced permeability and oxidative injury in LC and may have a therapeutic role in diminishing inflammation in LC.
Collapse
|
2
|
Mangerich A, Dedon PC, Fox JG, Tannenbaum SR, Wogan GN. Chemistry meets biology in colitis-associated carcinogenesis. Free Radic Res 2013; 47:958-86. [PMID: 23926919 PMCID: PMC4316682 DOI: 10.3109/10715762.2013.832239] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD)-a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology, and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.
Collapse
Affiliation(s)
- Aswin Mangerich
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Biology, Molecular Toxicology Group, University of Konstanz, D-78457 Konstanz, Germany
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - James G. Fox
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Steven R. Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| | - Gerald N. Wogan
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
- Center for Environmental Health Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
| |
Collapse
|
3
|
Park WC, Lim DY. Synthesis and SOD Activity of Manganese Complexes of Pentaaza Macrocycles Containing Amino- and Guanidino-auxiliary. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.10.3787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Lee H, Park W, Lim D. Synthesis and SOD activity of manganese complexes of substituted pyridino pentaaza macrocycles that contain axial auxiliary. Bioorg Med Chem Lett 2010; 20:2421-4. [DOI: 10.1016/j.bmcl.2010.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 11/30/2022]
|
5
|
Zadrozny LM, Stauffer SH, Armstrong MU, Jones SL, Gookin JL. Neutrophils do not mediate the pathophysiological sequelae of Cryptosporidium parvum infection in neonatal piglets. Infect Immun 2006; 74:5497-505. [PMID: 16988224 PMCID: PMC1594902 DOI: 10.1128/iai.00153-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cryptosporidium parvum is a minimally invasive protozoal pathogen of intestinal epithelium that results in villus atrophy, mucosal lipid peroxidation, diarrhea, and diminished barrier function. Influx of neutrophils is a consistent feature of human and animal cryptosporidiosis, and yet their contribution to the pathological sequelae of infection has not been investigated. Accordingly, we used an established neonatal piglet model of C. parvum infection to examine the role of neutrophils in disease pathogenesis by inhibiting their recruitment and activation in vivo using a monoclonal anti-CD18 antibody. Infected piglets were treated daily with anti-CD18 or isotype control immunoglobulin G and euthanized at peak infection, at which time neutrophil infiltrates, lipid peroxidation, severity of infection, and intestinal barrier function were quantified. C. parvum infection resulted in a significant increase in mucosal neutrophil myeloperoxidase activity that was prevented by treatment of piglets with anti-CD18 antibody. Neutrophil recruitment was dependent on mucosal superoxide formation (prevented by treatment of infected piglets with superoxide dismutase). Neutrophils did not contribute to peroxynitrite formation or peroxidative injury of C. parvum-infected mucosa and had no impact on the severity of epithelial infection, villus atrophy, or diarrhea. The presence of neutrophils in C. parvum-infected mucosa was associated with enhanced barrier function that could not be attributed to mucosal elaboration of prostaglandins or stimulation of their synthesis. These studies are the first to demonstrate that neutrophilic inflammation arising in response to infection by a noninvasive epithelial pathogen results in physiologic rather than pathological effects in vivo.
Collapse
Affiliation(s)
- Leah M Zadrozny
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
6
|
Han W, Mercenier A, Ait-Belgnaoui A, Pavan S, Lamine F, van Swam II, Kleerebezem M, Salvador-Cartier C, Hisbergues M, Bueno L, Theodorou V, Fioramonti J. Improvement of an experimental colitis in rats by lactic acid bacteria producing superoxide dismutase. Inflamm Bowel Dis 2006; 12:1044-52. [PMID: 17075345 DOI: 10.1097/01.mib.0000235101.09231.9e] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of superoxide dismutases (SODs) in inflammatory diseases is hampered by their short circulatory half-life. To determine whether a bacterial supply of SOD into the colon might improve an experimental colitis, the effects of oral treatment with live recombinant lactic acid bacteria producing different amounts of SOD and those of colonic infusion of SOD were compared. Wistar rats were fitted with a catheter in the proximal colon through which TNBS was administered to induce colitis. Animals received a continuous intracolonic infusion of bovine SOD (40 U per rat per day) for 4 days after TNBS or were treated orally with live recombinant Lactococcus lactis or Lactobacillus plantarum strains (10 colony-forming units (CFU)/d), producing or not producing SOD, for 4 days before and after TNBS. SOD activity of bacterial extracts was 0, 26, 74, and 624 units/10 CFU for L. plantarum, L. lactis, L. lactis SOD, and L. plantarum SOD, respectively. Four days after TNBS, macroscopic and microscopic damage, myeloperoxidase (MPO) activity, and nitrotyrosine immunostaining were evaluated. TNBS induced macroscopic and microscopic damages, an increase in MPO activity, and intense immunostaining for nitrotyrosine. Macroscopic damage and MPO activity were reduced by bovine SOD. These parameters and microscopic damages also were reduced by L. lactis, L. lactis SOD, and L. plantarum SOD, but not by L. plantarum. Nitrotyrosine immunostaining was attenuated after treatment with the 4 bacterial strains. Although not all of the anti-inflammatory effects could be attributed directly to SOD, our results suggest that SOD-producing lactic acid bacteria open a novel approach in inflammatory bowel disease treatment.
Collapse
Affiliation(s)
- Wei Han
- Neurogastroenterology and Nutrition Unit, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Schwartz EA, Reaven PD. Molecular and signaling mechanisms of atherosclerosis in insulin resistance. Endocrinol Metab Clin North Am 2006; 35:525-49, viii. [PMID: 16959584 DOI: 10.1016/j.ecl.2006.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the prevalence of cardiovascular complications is increased in insulin-resistant individuals, the underlying causes of this link have been elusive. Recent work suggests that several intracellular signal transduction pathways are inappropriately activated by hyperinsulinemia, hyperglycemia, increased free fatty acids, dyslipidemia, various inflammatory cytokines and adipokines--factors that are increased in insulin resistance. Once activated, substantial cross talk occurs between these pathways, especially a self-reinforcing cascade of vascular inflammation and cell dysfunction, greatly increasing the risk and severity of atherosclerosis in the insulin-resistant individual. We review several key cell-signalling pathways, describe how they are activated in they insulin-resistant state and the damage they induce, and discusses possible therapeutic approaches to limit vascular damage.
Collapse
Affiliation(s)
- Eric A Schwartz
- Division of Research, Carl T. Hayden VA Medical Center, 650 East Indian School Road, Phoenix, AZ 85012, USA
| | | |
Collapse
|
8
|
Krasowska A, Piasecki A, Polinceusz A, Prescha A, Sigler K. Amphiphilic amine-N-oxides with aliphatic alkyl chain act as efficient superoxide dismutase mimics, antioxidants and lipid peroxidation blockers in yeast. Folia Microbiol (Praha) 2006; 51:99-107. [PMID: 16821718 DOI: 10.1007/bf02932163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amphiphilic 3-(alkanoylamino)propyldimethylamine-N-oxides with different length of the alkyl chain, i.e. different hydrophilic-lipophilic balance, act in micromolar concentrations as SOD mimics by lifting the inhibition of aerobic growth caused by SOD deletions in Saccharomyces cerevisiae. They also enhance the survival of sod mutants of S. cerevisiae exposed to the hydrophilic superoxide-generating prooxidant paraquat and the amphiphilic hydroperoxide-producing tert-butylhydroperoxide (TBHP), and largely prevent TBHP-induced peroxidation of isolated yeast plasma membrane lipids. Unlike the SOD-mimicking effect, the magnitude of these effects depends on the alkyl chain length of the amine-N-oxides, which incorporate into S. cerevisiae membranes, causing fluidity changes in both the hydrophilic surface part of the membrane and the membrane lipid matrix. Unlike wild-type strains, the membranes of sod mutants were found to contain polyunsaturated fatty acids; the sensitivity of the mutants to lipophilic pro-oxidants was found to increase with increasing content of these acids. sod mutants are useful in assessing pro- and antioxidant properties of different compounds.
Collapse
Affiliation(s)
- A Krasowska
- Institute of Genetics and Microbiology, Wrocław University, 51-148 Wrocław, Poland.
| | | | | | | | | |
Collapse
|
9
|
Nefzi A, Hoesl CE, Pinilla C, Kauffman GB, Maggiora GM, Pasquale E, Houghten RA. Synthesis of Platinum(II) Chiral Tetraamine Coordination Complexes. ACTA ACUST UNITED AC 2006; 8:780-3. [PMID: 16961414 DOI: 10.1021/cc060045h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The individual and combinatorial syntheses of individual as well as a mixture-based diversity of 195 112 platinum(II) coordination complexes of chiral tetraamines are described. The use of both solid-phase synthesis and solution phase follow-on approaches were found to best afford the title compounds.
Collapse
Affiliation(s)
- Adel Nefzi
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Hsieh WY, Liu S. Novel biscapped and monocapped tris(dioxime) Mn(II) complexes: x-ray crystal structure of the first cationic tris(dioxime) Mn(II) complex [Mn(CDOH)3BPh]OH (CDOH2= 1,2-cyclohexanedione dioxime). Inorg Chem 2006; 45:5034-43. [PMID: 16780325 PMCID: PMC2593905 DOI: 10.1021/ic060216n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This report describes the synthesis and characterization of a series of novel biscapped and monocapped tris(dioxime) Mn(II) complexes [Mn(dioxime)3(BR)2] and [Mn(dioxime)3BR]+ (dioxime = cyclohexanedione dioxime (CDOH2) and 1,2-dimethylglyoxyl dioxime (DMGH(2)); R = Me, n-Bu, and Ph). All tris(dioxime) Mn(II) complexes have been characterized by elemental analysis, IR, UV/vis, cyclic voltammetry, ESI-MS, and, in the cases of [Mn(CDOH)3BPh]OH.CHCl3 and [Mn(CDO)(CDOH)2(BBu(OC2H5))2], X-ray crystallography. It was found that biscapped Mn(II) complexes [Mn(dioxime)3(BR)2] are not stable in the presence of water and readily hydrolyze to form monocapped cationic complexes [M(dioxime)3BR]+. This instability is most likely caused by mismatch between the size of Mn(II) and the coordination cavity of the biscapped tris(dioxime) ligands. In contrast, monocapped cationic complexes [M(dioxime)3BR]+ are very stable in aqueous solution even in the presence of PDTA (1,2-diaminopropane-N,N,N',N'-tetraacetic acid) because of the kinetic inertness imposed by the monocapped tris(dioxime) chelators that are able to completely "wrap" Mn(II) into their N6 coordination cavity. [Mn(CDO)3BPh]OH has a distorted trigonal prismatic coordination geometry, with the Mn(II) being bonded by six imine-N donors. The hydroxyl groups from three dioxime chelating arms form very strong intramolecular hydrogen bonds with the hydroxide counterion so that the structure of [Mn(CDOH)3BPh]OH can be considered as being the clathrochelate with the hydroxide counterion as a "cap".
Collapse
Affiliation(s)
- Wen-Yuan Hsieh
- Department of Industrial & Physical Pharmacy, School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
11
|
Structure–Activity Studies and the Design of Synthetic Superoxide Dismutase (SOD) Mimetics as Therapeutics. ADVANCES IN INORGANIC CHEMISTRY 2006. [DOI: 10.1016/s0898-8838(06)59007-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Barik A, Mishra B, Shen L, Mohan H, Kadam RM, Dutta S, Zhang HY, Priyadarsini KI. Evaluation of a new copper(II)-curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic Biol Med 2005; 39:811-22. [PMID: 16109310 DOI: 10.1016/j.freeradbiomed.2005.05.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.
Collapse
Affiliation(s)
- Atanu Barik
- Radiation Chemistry and Chemical Dynamics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Cuzzocrea S, Mazzon E, Di Paola R, Genovese T, Serraino I, Dugo L, Cuzzocrea E, Fulia F, Caputi AP, Salvemini D. Protective effects of M40401, a selective superoxide dismutase mimetic, on zymosan-induced nonseptic shock. Crit Care Med 2004; 32:157-67. [PMID: 14707575 DOI: 10.1097/01.ccm.0000098859.67006.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Zymosan enhances formation of reactive oxygen species, which contributes to the pathophysiology of organ failure during nonseptic shock. Here we have investigated the effects of M40401, a new superoxide dismutase mimetic, on the organ failure associated with nonseptic shock caused by zymosan in rats. DESIGN Experimental study. SETTING Laboratory. SUBJECTS Male Sprague-Dawley rats. INTERVENTIONS We investigated the effects of M40401 on the organ failure associated with nonseptic shock caused by zymosan (500 mg/kg, administered intraperitoneally as a suspension in saline) in rats. MEASUREMENTS AND MAIN RESULTS Organ failure and systemic inflammation in rats were assessed 18 hrs after administration of zymosan and/or M40401 and were monitored for 12 days (for loss of body weight and mortality). Treatment of rats with M40401 (10 mg/kg intraperitoneally, 1 and 6 hrs after zymosan) attenuated the peritoneal exudation and the migration of polymorphonuclear cells caused by zymosan. M40401 administration also attenuated the lung and intestinal injury (histology) as well as the increase in myeloperoxidase activity and malondialdehyde concentrations caused by zymosan in lung and intestine. Immunohistochemical analysis for nitrotyrosine and for poly(adenosine 5'-diphosphate-ribose) revealed positive staining in lung and intestine from zymosan-treated rats. The degree of staining for nitrotyrosine and poly(adenosine 5'-diphosphate-ribose) was markedly reduced in tissue sections obtained from zymosan-treated rats administered with M40401. CONCLUSION This study provides the first evidence that M40401 attenuates the degree of zymosan-induced nonseptic shock in the rat.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vajragupta O, Boonchoong P, Sumanont Y, Watanabe H, Wongkrajang Y, Kammasud N. Manganese-based complexes of radical scavengers as neuroprotective agents. Bioorg Med Chem 2003; 11:2329-37. [PMID: 12713845 DOI: 10.1016/s0968-0896(03)00070-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Manganese was incorporated in the structure of the selected antioxidants to mimic the superoxide dismutase (SOD) and to increase radical scavenging ability. Five manganese complexes (1-5) showed potent SOD activity in vitro with IC(50) of 1.18-1.84 microM and action against lipid peroxidation in vitro with IC(50) of 1.97-8.00 microM greater than their ligands and trolox. The manganese complexes were initially tested in vivo at 50 mg/kg for antagonistic activity on methamphetamine (MAP)-induced hypermotility resulting from dopamine release in the mice brain. Only manganese complexes of kojic acid (1) and 7-hydroxyflavone (3) exhibited the significant suppressions on MAP-induced hypermotility and did not significantly decrease the locomotor activity in normal condition. Manganese complex 3 also showed protective effects against learning and memory impairment in transient cerebral ischemic mice. These results supported the brain delivery and the role of manganese in SOD activity as well as in the modulation of brain neurotransmitters in the aberrant condition. Manganese complex 3 from 7-hydroxyflavone was the promising candidate for radical implicated neurodegenerative diseases.
Collapse
Affiliation(s)
- Opa Vajragupta
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayudhya Road, Bangkok 10400, Thailand.
| | | | | | | | | | | |
Collapse
|
16
|
Czapski G, Samuni A, Goldstein S. Superoxide dismutase mimics: antioxidative and adverse effects. Methods Enzymol 2002; 349:234-42. [PMID: 11912913 DOI: 10.1016/s0076-6879(02)49338-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gidon Czapski
- Department of Physical Chemistry, Hebrew University of Jerusalem, Jerusalem 91940, Israel
| | | | | |
Collapse
|
17
|
Pong K, Doctrow SR, Huffman K, Adinolfi CA, Baudry M. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp Neurol 2001; 171:84-97. [PMID: 11520123 DOI: 10.1006/exnr.2001.7747] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuronal apoptosis induced by staurosporine (STS) involves multiple cellular and molecular events, such as the production of reactive oxygen species (ROS). In this study, we tested the efficacy of two synthetic superoxide dismutase/catalase mimetics (EUK-134 and EUK-189) on neuronal apoptosis, oxidative stress, and mitochondrial dysfunction produced by STS in primary cortical neuronal cultures. Exposure of cultures to STS for 24 h increased lactate dehydrogenase (LDH) release, the number of apoptotic cells, and decreased trypan blue exclusion. Pretreatment with 20 microM EUK-134 or 0.5 microM EUK-189 significantly attenuated STS-induced neurotoxicity, as did pretreatment with the caspase-1 inhibitor, Ac-YVAD-CHO, but not the caspase-3 inhibitor, Ac-DEVD-CHO. Posttreatment (1-3 h following STS exposure) with 20 microM EUK-134 or 0.5 microM EUK-189 significantly reduced STS-induced LDH release, in a time-dependent manner. Exposure of cultures to STS for 1 h produced an elevation of ROS, as determined by increased levels of 2,7-dichlorofluorescein (DCF). This rapid elevation of ROS was followed by an increase in lipid peroxidation, and both the increase in DCF fluorescence and in lipid peroxidation were significantly blocked by pretreatment with EUK-134. STS treatment for 3-6 h increased cytochrome c release from mitochondria into the cytosol, an effect also blocked by pretreatment with EUK-134. These results indicate that intracellular oxidative stress and mitochondrial dysfunction are critically involved in STS-induced neurotoxicity. However, there are additional cellular responses to STS, which are insensitive to treatment with radical scavengers that also contribute to its neurotoxicity.
Collapse
Affiliation(s)
- K Pong
- Neuroscience Program, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | |
Collapse
|
18
|
Inoue S, Suzuki M, Nagashima Y, Suzuki S, Hashiba T, Tsuburai T, Ikehara K, Matsuse T, Ishigatsubo Y. Transfer of heme oxygenase 1 cDNA by a replication-deficient adenovirus enhances interleukin 10 production from alveolar macrophages that attenuates lipopolysaccharide-induced acute lung injury in mice. Hum Gene Ther 2001; 12:967-79. [PMID: 11387061 DOI: 10.1089/104303401750195926] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
By using a direct, intratracheal inoculation of an adenovirus encoding heme oxygenase 1 (Ad.HO-1), model gene therapy for acute lung injury induced by inhaled pathogen was performed. Data demonstrated that Ad.HO-1 administration is as effective as the pharmacologic upregulation of the endogenous HO-1 gene expression by hemin to attenuate neutrophilic inflammations of the lung after aerosolized lipopolysaccharide (LPS) exposure. Interestingly, immunohistochemical analysis revealed that the HO-1 gene was transferred not only to the airway epithelium, but to the alveolar macrophages (AMs). Moreover, overexpression of exogenous HO-1 in the macrophages provided a high level of endogenous interleukin 10 (IL-10) production from the macrophages, and additional experiments using IL-10 knockout mice demonstrated that the increase in IL-10 in the macrophages was critical for the resolution of neutrophilic migration in the lung after LPS exposure. These results suggest that AMs not only are barriers for efficient gene transfer to the respiratory epithelium, but also represent logical targets for Ad-mediated, direct, in vivo gene therapy strategies for inflammatory disorders in humans.
Collapse
Affiliation(s)
- S Inoue
- First Department of Internal Medicine, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa, Yokohama, Kanagawa, 236-0004, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Reactive Oxygen Species (ROS) are produced during normal cellular function. ROS include hydroxyl radicals, superoxide anion, hydrogen peroxide and nitric oxide. They are very transient species due to their high chemical reactivity that leads to lipid peroxidation and oxidation of DNA and proteins. Under normal conditions, antioxidant systems of the cell minimize the perturbations caused by ROS. When ROS generation is increased to an extent that overcomes the cellular antioxidants, the result is oxidative stress. It is now clear that several biological molecules, which are involved in cell signaling and gene regulation systems are very sensitive to redox statue of the cell. Antioxidants are substances that delay or prevent the oxidation of cellular oxidizable substrates. The various antioxidants exert their effect by scavenging superoxide, or by activating of a battery of detoxifying/defensive proteins. The prevention of oxidation is an essential process in all the aerobic organisms, as decreased antioxidant protection may lead to cytotoxicity, mutagenicity and/or carcinogenicity. This article also focuses on the mechanisms by which antioxidants and xenobiotics induce the gene expression of detoxifying enzymes. On the other hand, small molecules that mimic antioxidant enzymes are becoming new tools for the treatment of many diseases.
Collapse
Affiliation(s)
- J M Matés
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Campus de Teatinos, s/n, 29071, Málaga, Spain.
| |
Collapse
|
20
|
Choi DH, Na BK, Seo MS, Song HR, Song CY. Purification and characterization of iron superoxide dismutase and copper-zinc superoxide dismutase from Acanthamoeba castellanii. J Parasitol 2000; 86:899-907. [PMID: 11128508 DOI: 10.1645/0022-3395(2000)086[0899:pacois]2.0.co;2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Two superoxide dismutases (SOD I and SOD II) were purified from Acanthamoeba castellanii and characterized for several biochemical properties. Analysis of the primary structure and inhibition studies revealed that SOD I is iron SOD (Fe-SOD), with a molecular mass of 50 kDa, and SOD II is copper-zinc SOD (Cu,Zn-SOD), with a molecular mass of 38 kDa. Both enzymes have a homodimeric structure consisting of 2 identical subunits, each with a molecular mass of 26 and 19 kDa for SOD I and SOD II, respectively. The isoelectric points of SOD I and SOD II were 6.4 and 3.5, respectively, and there were no isoenzyme forms detected. Both enzymes show a broad optimal pH of 7.0-11.0. Because no differences were observed in the apparent molecular weight of SOD I after addition of the reducing agent 2-mercaptoethanol, the subunits do not appear to be linked covalently by disulfide bonds. However, the subunits of SOD II were covalently linked by intra- and interdisulfide bonds. Western blot analyses showed that the 2 enzymes have different antigenicity. Both enzymes occur as cytoplasmic and detergent-extractable fractions. These enzymes may be potential virulence factors of A. castellanii by acting both as antioxidants and antiinflammatory agents. These enzymes may be attractive targets for chemotherapy and immunodiagnosis of acanthamoebiasis.
Collapse
Affiliation(s)
- D H Choi
- Department of Biology, College of Natural Science, Chung-Ang University, Seoul, Korea
| | | | | | | | | |
Collapse
|
21
|
Udipi K, Ornberg RL, Thurmond KB, Settle SL, Forster D, Riley D. Modification of inflammatory response to implanted biomedical materials in vivo by surface bound superoxide dismutase mimics. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2000; 51:549-60. [PMID: 10880102 DOI: 10.1002/1097-4636(20000915)51:4<549::aid-jbm2>3.0.co;2-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The healing response to implanted biomedical materials involves varying degrees and stages of inflammation and healing which in some cases leads to device failure. In this article, we describe synthetic methods and in vivo results of a novel surface treatment for biomedical materials involving covalent conjugation of a low molecular weight superoxide dismutase mimic (SODm), which imparts anti-inflammatory character to the material. SODm investigated in this study are a new class of anti-inflammatory drugs consisting of a Mn(II) complex of a macrocyclic polyamine ring that catalyze the dismutation of superoxide at rates equivalent to that of native enzyme. The SODms were covalently linked to small disks of ultra-high molecular weight polyethylene, poly(etherurethane urea), and tantalum metal at two concentrations and implanted in a subcutaneous rat implant model for 3, 7, 14, and 28 days. Histological examination of the implant tissue performed at 3 and 28 days revealed striking anti-inflammatory effects on both acute and chronic inflammatory responses. At 3 days, the formation of a neutrophil-rich acute inflammatory infiltrate seen in control implants was inhibited for all three materials treated with SODm. At 28 days, foreign body giant cell formation (number of FBGCs per field) and fibrous capsule formation (mean thickness of implant capsule) were also significantly inhibited over untreated control implants. A mechanism based on our current understanding of superoxide as an inflammatory mediator at implanted biomedical materials is proposed.
Collapse
Affiliation(s)
- K Udipi
- MetaPhore Pharmaceuticals, Inc., 1910 Innerbelt Business Center Drive, St. Louis, Missouri 63114, USA
| | | | | | | | | | | |
Collapse
|
22
|
Zhang JY, Fast DM, Schoenhard GL, Arora VK, Belas FJ, Blair IA. Quantitative determination of SC-68328 in dog plasma using flow injection and tandem mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2000; 35:354-360. [PMID: 10767764 DOI: 10.1002/(sici)1096-9888(200003)35:3<354::aid-jms942>3.0.co;2-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A flow injection/tandem mass spectrometric assay was developed to quantitate SC-68328 in dog plasma using its stable isotopic analog [13C4]SC-68328 as an internal standard (IS). Since SC-68328, a manganese-based superoxide dismutase mimetic, is very unstable, very polar and adheres to silica-based high-performance liquid chromatographic columns, the analyte and IS were derivatized to their bis-isothiocyanate forms followed by a liquid-liquid extraction with methylene chloride and analyzed using positive ion electrospray mass spectrometric detection. SC-68328 was quantitated using the peak-height ratio of SC-68328 to its IS using MS/MS in the multiple reaction monitoring mode. The lower limit of quantitation of the assay was 0.25 microg ml(-1) SC-68328 in dog plasma with an inter-day precision of 11.8% and an accuracy of 113% (n = 12). Acceptable precision and accuracy were also obtained for concentrations in the calibration curve range (0.25-10 microg ml(-1) SC-68328 in dog plasma).
Collapse
Affiliation(s)
- J Y Zhang
- Metabolism and Safety Evaluation, Searle R&D, Skokie, Illinois 60077, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Riley DP. Rational design of synthetic enzymes and their potential utility as human pharmaceuticals. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1068-7459(00)80007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
|
24
|
Salvemini D, Wang ZQ, Zweier JL, Samouilov A, Macarthur H, Misko TP, Currie MG, Cuzzocrea S, Sikorski JA, Riley DP. A nonpeptidyl mimic of superoxide dismutase with therapeutic activity in rats. Science 1999; 286:304-6. [PMID: 10514375 DOI: 10.1126/science.286.5438.304] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many human diseases are associated with the overproduction of oxygen free radicals that inflict cell damage. A manganese(II) complex with a bis(cyclohexylpyridine)-substituted macrocyclic ligand (M40403) was designed to be a functional mimic of the superoxide dismutase (SOD) enzymes that normally remove these radicals. M40403 had high catalytic SOD activity and was chemically and biologically stable in vivo. Injection of M40403 into rat models of inflammation and ischemia-reperfusion injury protected the animals against tissue damage. Such mimics may result in better clinical therapies for diseases mediated by superoxide radicals.
Collapse
Affiliation(s)
- D Salvemini
- MetaPhore Pharmaceuticals, 1910 Innerbelt Business Center Drive, St. Louis, MO 63114, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Riley DP. Functional mimics of superoxide dismutase enzymes as therapeutic agents. Chem Rev 1999; 99:2573-88. [PMID: 11749493 DOI: 10.1021/cr980432g] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- D P Riley
- MetaPhore Pharmaceuticals, Incorporated, 3655 Vista Avenue, St. Louis, Missouri 63110
| |
Collapse
|
26
|
Riley DP, Henke SL, Lennon PJ, Aston K. Computer-Aided Design (CAD) of Synzymes: Use of Molecular Mechanics (MM) for the Rational Design of Superoxide Dismutase Mimics. Inorg Chem 1999; 38:1908-1917. [PMID: 11670965 DOI: 10.1021/ic981319b] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mn(II) complexes of C-substituted macrocyclic 1,4,7,10,13-pentaazacyclopentadecane ligands have been shown to be excellent functional mimics (Synzymes) of the native enzyme manganese superoxide dismutase (Mn SOD). To better understand the profound effects that substituents exert on the SOD catalytic activity, we have utilized molecular mechanics (MM) calculations employing the CAChe system. Such a conformational analysis has made it possible to develop a consistent model that correlates catalytic rate with the ability of the ligand to adopt a folded geometry about the high-spin d(5) spherically symmetrical Mn(II) ion, thus affording a six-coordinate pseudo-octahedral geometry (the geometry required by Mn(III)). This conformational analysis is consistent with the model that one of the nitrogen donors of the pentaaza crown ligand folds to occupy a pseudo-axial coordination position of an octahedron. The DeltaE between the lowest energy folded ligand structure about Mn(II) and its corresponding Mn(III) structure correlates with catalytic activity; i.e., for a large series of complexes an excellent correlation is obtained for both the inner-sphere and outer-sphere rate constants for oxidation of Mn(II)-the rate-determining step in the catalytic cycle for these SOD mimics. From single-crystal X-ray structure determinations on several different members of this class of 7-coordinate dichloro(pentaaza crown) Mn(II) complexes, we have observed that the arrangement of NH's of the secondary amine donors is such that they alternate in their relative orientation to the plane generated by the five nitrogens and the Mn; i.e., the NH's are arranged in an up-down-up-down-up stereochemistry. Thus, one side of the plane of the macrocyclic ring possesses two nonadjacent NH's, while the opposite side has three NH's. Two unique folding motifs generated from MM calculations are found to correlate with the two pathways for Mn(II) oxidation: (1) the inner-sphere path correlates with an NH from the side of the two NH's folding into the axial octahedral coordination site, and (2) the outer-sphere path correlates with an NH from the side of the three NH's folded into an axial O(h) site. MM calculations allow one to probe the effect that substituents on the macrocyclic ring carbons have on the relative energies of the Mn(II) and Mn(III) complexes with these ligands in the various potential folded geometries. The details of this modeling paradigm and the results of MM calculations utilizing the folding motif for a large number complexes are described. Of particular significance is the ability of the MM tool to predict correctly that certain substituent patterns and substituents enhance or reduce the contribution of one or the other pathway to the overall catalytic rate. The syntheses of several new complexes are reported and the rate constants for the two pathways of Mn(II) oxidation have been measured and found to correlate with the predictions arising from the energetics of folding as calculated by MM calculations.
Collapse
Affiliation(s)
- Dennis P. Riley
- The Monsanto Company, 800 North Lindbergh Boulevard, St. Louis, Missouri 63167
| | | | | | | |
Collapse
|
27
|
Moldovan L, Irani K, Moldovan NI, Finkel T, Goldschmidt-Clermont PJ. The actin cytoskeleton reorganization induced by Rac1 requires the production of superoxide. Antioxid Redox Signal 1999; 1:29-43. [PMID: 11225730 DOI: 10.1089/ars.1999.1.1-29] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The small GTPase rac1 controls actin redistribution to membrane ruffles in fibroblasts and other cell types, as well as the activation of the NADPH oxidase in phagocytes. We explored the possibility that these two processes could be related. We used a replication-deficient adenoviral vector to overexpress the constitutively active form of rac1, racV12, in human and mouse aortic endothelial cells. We show here that, in addition to membrane ruffle formation, racV12 induced an increase in the total amount of F-actin within endothelial cells. Concurrently, racV12-overexpressing cells produced significantly higher amounts of free radicals, as detected by the fluorescent probe 5-(and-6)-chloromethyl-2',7'-dichloro-dihydrofluorescein diacetate, than cells infected with a control virus encoding the bacterial beta-galactosidase (Ad-betaGal). To assess the specific role of superoxide in racV12-induced actin reorganization, we co-expressed the human enzyme Cu,Zn-superoxide dismutase (SOD), by means of another adenoviral vector construct. Overexpressed SOD reduced the concentration of superoxide detected in Ad-racV12-transfected cells and reversed the effects of Ad-racV12 on the content of filamentous actin. MnTMPyP, an SOD mimetic, as well as the antioxidant N-acetyl cysteine, had similar effects, in that they reduced not only the free radicals production, but also ruffle formation and the concentration of F-actin within racV12-overexpressing endothelial cells. Our data support the hypothesis that superoxide is one of the important mediators acting downstream of rac1 on the pathway of actin cytoskeleton remodeling in endothelial cells.
Collapse
Affiliation(s)
- L Moldovan
- Heart and Lung Institute, Department of Internal Medicine, The Ohio State University, Columbus 43210, USA
| | | | | | | | | |
Collapse
|
28
|
Offer T, Mohsen M, Samuni A. An SOD-mimicry mechanism underlies the role of nitroxides in protecting papain from oxidative inactivation. Free Radic Biol Med 1998; 25:832-8. [PMID: 9823549 DOI: 10.1016/s0891-5849(98)00162-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nitroxide stable free radicals have previously been found to afford protection in various biological systems against diverse types of oxidative stress, including, ischemia/reperfusion, hyperoxia, mechanical trauma, toxic xenobiotics, ionizing radiation, gastric and colonic irritants or strong oxidants. Dismutation of superoxide has originally been suggested to be one of the mechanisms that underlie the anti-oxidant effect of nitroxides. However, no direct evidence has been found, so far, to support this assumption. In the present study, superoxide and H2O2, generated enzymatically, were used to directly inactivate papain, a sulfhydryl enzyme, in vitro. The rate of papain inactivation served to assess the damage. The reaction mixtures contained a chelate in order to prevent the effect of adventitious redox-active metal ions, pre-empt the Fenton reaction and avoid hydroxyl-induced damage. Catalase or SOD alone partially protected the papain from inactivation. The protective effect of nitroxides resembled that of SOD in several aspects: a) nitroxides provided partial protection; b) the protective effect of nitroxides did not increase with the elevation of their concentration (above 0.5 mM); c) the combined addition of SOD and the nitroxide did not provide greater protection than that demonstrated by nitroxides or SOD separately; d) the effects of catalase with the nitroxide were additive; e) the nitroxide, like SOD itself, did not protect papain from H2O2-induced inactivation; f) the nitroxide was found not to be consumed in the course of the reaction but rather to be recycled. The results indicate that: (a) the main species responsible for the papain inactivation in a system in which the effect of transition metals is pre-empted, are O2-. and H2O2; (b) nitroxides inhibit the oxidative damage by removing superoxide not stoichiometrically, but rather catalytically as SOD-mimics; (c) nitroxides do not afford protection when the oxidative damage is induced directly by H2O2 (and not mediated by redox-active metals).
Collapse
Affiliation(s)
- T Offer
- Department of Molecular Biology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
29
|
Lee J, Hunt JA, Groves JT. Manganese Porphyrins as Redox-Coupled Peroxynitrite Reductases. J Am Chem Soc 1998. [DOI: 10.1021/ja9801036] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinbo Lee
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Julianne A. Hunt
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - John T. Groves
- Contribution from the Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
30
|
Valentine JS, Wertz DL, Lyons TJ, Liou LL, Goto JJ, Gralla EB. The dark side of dioxygen biochemistry. Curr Opin Chem Biol 1998; 2:253-62. [PMID: 9667937 DOI: 10.1016/s1367-5931(98)80067-7] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cellular biochemistry of dioxygen is Janus-faced. The good side includes numerous enzyme-catalyzed reactions of dioxygen that occur in respiration and normal metabolism, while the dark side encompasses deleterious reactions of species derived from dioxygen that lead to damage of cellular components. These reactive oxygen species have historically been perceived almost exclusively as agents of the dark side, but it has recently become clear that they play beneficial roles as well.
Collapse
Affiliation(s)
- J S Valentine
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Granger BL, Warwood SJ, Hayai N, Hayashi H, Owhashi M. Identification of a neutrophil chemotactic factor from Tritrichomonas foetus as superoxide dismutase. Mol Biochem Parasitol 1997; 89:85-95. [PMID: 9297703 DOI: 10.1016/s0166-6851(97)00105-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibodies to a neutrophil chemotactic factor from Tritrichomonas foetus were used to screen a T. foetus cDNA expression library in lambda gt11. All positive clones were identified as homologs of iron-containing superoxide dismutase (SOD). Native gel electrophoresis showed that the antibodies indeed recognized T. foetus antigens with SOD activity. Two SOD genes were found in T. foetus, and cloned and sequenced as parts of larger genomic segments of 3844 and 4089 base pairs. Transcription initiated between the first and second methionine codons of each genomic open reading frame, generating mRNAs with 5' untranslated regions of 11-15 bases, and encoding proteins of 195 amino acids. The two SOD coding sequences lacked obvious introns. They were 79% identical at both the nucleotide and amino acid levels. Both SOD genes were inserted into a eukaryotic expression vector and stably expressed in mammalian cells; both proteins were recognized by the antibodies, and both assumed a cytosolic, extranuclear distribution in these cells. Histidine-tagged forms of both T. foetus SODs were expressed in E. coli and after purification, found to have neutrophil chemotactic activity similar to the non-recombinant factor purified from T. foetus. Identification of this neutrophil chemotactic factor as SOD provides additional insight into the host-parasite interaction.
Collapse
Affiliation(s)
- B L Granger
- Veterinary Molecular Biology Laboratory, Montana State University, Bozeman 59717-3610, USA.
| | | | | | | | | |
Collapse
|