1
|
Gandhi S, Puravankara S, Mondal AK, Chauhan A, Yadav SP, Chattopadhyay K, Mukhopadhaya A. Vibrio cholerae cytolysin induces pro-inflammatory and death signals through novel TLR assembly. PLoS Pathog 2025; 21:e1013033. [PMID: 40184418 PMCID: PMC12002540 DOI: 10.1371/journal.ppat.1013033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 04/16/2025] [Accepted: 03/10/2025] [Indexed: 04/06/2025] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a potent exotoxin secreted by Vibrio cholerae, the etiological agent of the severe diarrheal disease cholera. VCC is a membrane-damaging pore-forming toxin by nature, and is well known for its ability to cause host cell death. Using wild type V. cholerae and VCC-deleted mutant variant of the bacteria, we show that VCC plays an important role in the inflammatory responses during infection in mice. This observation supports that VCC can function as a pathogen-associated molecular pattern (PAMP). Toll-like receptors (TLRs) are the key initiators of inflammation. Upon ligand recognition, TLR1 and TLR6 generally form heterodimers with TLR2 for triggering pro-inflammatory signals. In the present study, we show that VCC engages novel TLR1/4 heterodimer assembly, and elicits pro-inflammatory responses in both dendritic cells (DCs) and macrophages. Along with TLR1/4, VCC-induced pro-inflammatory response in macrophages also involves TLR2. It has been shown earlier that VCC is implicated in the V. cholerae-mediated killing of the immune cells following biofilm formation. Here we show that TLRs play an important role in VCC-mediated killing of DCs and macrophages following V. cholerae infection. Interestingly, we find that TLR1/4 signalling is specifically crucial for the VCC-induced inflammatory and death responses in DCs, as well as in mice. Additionally, we observe that similar to DCs and macrophages, TLR1/4-MyD88 play an important role in VCC-mediated inflammatory responses in another crucial immune cell type, neutrophils. Taken together, our study shows novel TLR heterodimer formation, differential recognition of the same ligand by different TLR combination in cell type-dependent manner, and their implications in the context of V. cholerae and VCC-induced immune cell death and mortality.
Collapse
Affiliation(s)
- Shraddha Gandhi
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sindhoora Puravankara
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Aakanksha Chauhan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Shashi Prakash Yadav
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| |
Collapse
|
2
|
Wang XY, Cai DZ, Li X, Bai SF, Yan FM. Identification and Physicochemical Properties of the Novel Hemolysin(s) From Oral Secretions of Helicoverpa armigera (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34750634 PMCID: PMC8575691 DOI: 10.1093/jisesa/ieab082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 06/13/2023]
Abstract
Hemolysins cause the lysis of invading organisms, representing major humoral immunity used by invertebrates. Hemolysins have been discovered in hemolymph of Helicoverpa armigera larvae as immune factors. As oral immunity is great important to clear general pathogens, we presumed that hemolysins may be present in oral secretions (OS). To confirm this hypothesis, we conducted four testing methods to identify hemolysin(s) in larval OS of H. armigera, and analyzed physicochemical properties of the hemolysin in comparison with hemolytic melittin of Apis mellifera (L.) (Hymenoptera: Apidae) venom. We found hemolysin(s) from OS of H. armigera for the first time, and further identified in other lepidopteran herbivores. It could be precipitated by ammonium sulfate, which demonstrates that the hemolytic factor is proteinaceous. Labial gland showed significantly higher hemolytic activity than gut tissues, suggesting that hemolysin of OS is mainly derived from saliva secreted by labial glands. Physicochemical properties of hemolysin in caterpillar's OS were different from bee venom. It was noteworthy that hemolytic activity of OS was only partially inhibited even at 100°C. Hemolytic activity of OS was not inhibited by nine tested carbohydrates contrary to bee venom melittin. Moreover, effects of metal ions on hemolytic activity were different between OS and bee venom. We conclude that there is at least a novel hemolysin in OS of herbivorous insects with proposed antibacterial function, and its hemolytic mechanism may be different from melittin. Our study enriches understanding of the potential role of hemolysins in insect immunity and provides useful data to the field of herbivorous insect-pathogen research.
Collapse
Affiliation(s)
- Xiong-Ya Wang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Dong-Zhang Cai
- Department of Conservation of Natural Resources, National Nature Reserve Administration of Henan Jigongshan Mountain, Xinyang, Henan, 464000, China
| | - Xin Li
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Su-Fen Bai
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| | - Feng-Ming Yan
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
3
|
Mondal AK, Verma P, Sengupta N, Dutta S, Bhushan Pandit S, Chattopadhyay K. Tyrosine in the hinge region of the pore-forming motif regulates oligomeric β-barrel pore formation by Vibrio cholerae cytolysin. Mol Microbiol 2020; 115:508-525. [PMID: 33089544 DOI: 10.1111/mmi.14631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Indexed: 01/27/2023]
Abstract
β-barrel pore-forming toxins perforate cell membranes by forming oligomeric β-barrel pores. The most crucial step is the membrane-insertion of the pore-forming motifs that create the transmembrane β-barrel scaffold. Molecular mechanism that regulates structural reorganization of these pore-forming motifs during β-barrel pore-formation still remains elusive. Using Vibrio cholerae cytolysin as an archetypical example of the β-barrel pore-forming toxin, we show that a key tyrosine residue (Y321) in the hinge region of the pore-forming motif plays crucial role in this process. Mutation of Y321 abrogates oligomerization of the membrane-bound toxin protomers, and blocks subsequent steps of pore-formation. Our study suggests that the presence of Y321 in the hinge region of the pore-forming motif is crucial for the toxin molecule to sense membrane-binding, and to trigger essential structural rearrangements required for the subsequent oligomerization and pore-formation process. Such a regulatory mechanism of pore-formation by V. cholerae cytolysin has not been documented earlier in the structurally related β-barrel pore-forming toxins.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Paras Verma
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Shashi Bhushan Pandit
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
4
|
|
5
|
Ruenchit P, Reamtong O, Siripanichgon K, Chaicumpa W, Diraphat P. New facet of non-O1/non-O139 Vibrio cholerae hemolysin A: a competitive factor in the ecological niche. FEMS Microbiol Ecol 2018; 93:4107107. [PMID: 28961768 DOI: 10.1093/femsec/fix113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/05/2017] [Indexed: 11/15/2022] Open
Abstract
Different serogroups of Vibrio cholerae may inhabit the same ecological niche. However, serogroup O1/O139 strains are rarely isolated from their ecological sources. Quite plausibly, the non-O1/non-O139 vibrios and other bacterial species suppress growth of O1/O139 strains that share the same niche. Our bacterial inhibition assay data indicated that certain non-O1/non-O139 strains used a contact-dependent type VI secretion system (T6SS) to suppress growth of the O1 El Tor, N16961 pandemic strain. Comparative proteomics of the O1 and the suppressive non-O1/non-O139 strains co-cultured in a simulated natural aquatic microcosm showed that SecB and HlyD were upregulated in the latter. The HlyD-related effective factor was subsequently found to be hemolysin A (HlyA). However, not all hlyA-positive non-O1/non-O139 strains mediated growth suppression of the N16961 V. cholerae; only strains harboring intact cluster I HlyA could exert this activity. The key feature of the HlyA is located in the ricin-like lectin domain (β-trefoil) that plays an important role in target cell binding. In conclusion, the results of this study indicated that non-O1/non-O139 V. cholerae suppressed the growth of the O1 pandemic strain by using contact-dependent T6SS as well as by secreting the O1-detrimental hemolysin A during their co-persistence in the aquatic habitat.
Collapse
Affiliation(s)
- Pichet Ruenchit
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand.,Faculty of Graduate Studies, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170 Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Kanokrat Siripanichgon
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglung Road, Bangkok-noi, Bangkok, 10700 Thailand
| | - Pornphan Diraphat
- Department of Microbiology, Faculty of Public Health, Mahidol University, 420/1 Ratchawithi Road, Ratchathewi, Bangkok, 10400 Thailand
| |
Collapse
|
6
|
Yap WY, Hwang JS. Response of Cellular Innate Immunity to Cnidarian Pore-Forming Toxins. Molecules 2018; 23:E2537. [PMID: 30287801 PMCID: PMC6222686 DOI: 10.3390/molecules23102537] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
A group of stable, water-soluble and membrane-bound proteins constitute the pore forming toxins (PFTs) in cnidarians. They interact with membranes to physically alter the membrane structure and permeability, resulting in the formation of pores. These lesions on the plasma membrane causes an imbalance of cellular ionic gradients, resulting in swelling of the cell and eventually its rupture. Of all cnidarian PFTs, actinoporins are by far the best studied subgroup with established knowledge of their molecular structure and their mode of pore-forming action. However, the current view of necrotic action by actinoporins may not be the only mechanism that induces cell death since there is increasing evidence showing that pore-forming toxins can induce either necrosis or apoptosis in a cell-type, receptor and dose-dependent manner. In this review, we focus on the response of the cellular immune system to the cnidarian pore-forming toxins and the signaling pathways that might be involved in these cellular responses. Since PFTs represent potential candidates for targeted toxin therapy for the treatment of numerous cancers, we also address the challenge to overcoming the immunogenicity of these toxins when used as therapeutics.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Department of Biological Sciences, School of Science and Technology, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| |
Collapse
|
7
|
Kathuria R, Chattopadhyay K. Vibrio choleraecytolysin: Multiple facets of the membrane interaction mechanism of aβ-barrel pore-forming toxin. IUBMB Life 2018; 70:260-266. [DOI: 10.1002/iub.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Reema Kathuria
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| |
Collapse
|
8
|
Mondal AK, Sreekumar A, Kundu N, Kathuria R, Verma P, Gandhi S, Chattopadhyay K. Structural Basis and Functional Implications of the Membrane Pore-Formation Mechanisms of Bacterial Pore-Forming Toxins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1112:281-291. [DOI: 10.1007/978-981-13-3065-0_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Charles RC, Nakajima R, Liang L, Jasinskas A, Berger A, Leung DT, Kelly M, Xu P, Kovác P, Giffen SR, Harbison JD, Chowdhury F, Khan AI, Calderwood SB, Bhuiyan TR, Harris JB, Felgner PL, Qadri F, Ryan ET. Plasma and Mucosal Immunoglobulin M, Immunoglobulin A, and Immunoglobulin G Responses to the Vibrio cholerae O1 Protein Immunome in Adults With Cholera in Bangladesh. J Infect Dis 2017; 216:125-134. [PMID: 28535267 PMCID: PMC5853614 DOI: 10.1093/infdis/jix253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background. Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. Methods. We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Results. Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O–specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate–2-oxoglutarate aminotransferase. Conclusions. This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine.
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rie Nakajima
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Li Liang
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Al Jasinskas
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Amanda Berger
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Daniel T Leung
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kovác
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samantha R Giffen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Ashraful I Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | | | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
10
|
Kashimoto T, Akita T, Kado T, Yamazaki K, Ueno S. Both polarity and aromatic ring in the side chain of tryptophan 246 are involved in binding activity of Vibrio vulnificus hemolysin to target cells. Microb Pathog 2017; 109:71-77. [PMID: 28546115 DOI: 10.1016/j.micpath.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/13/2017] [Accepted: 05/19/2017] [Indexed: 11/26/2022]
Abstract
Vibrio vulnificus secretes a hemolysin/cytolysin (VVH) that induces cytolysis against a variety of mammalian cells by forming pores on the cellular membrane. VVH is known to bind to the cellular membrane as a monomer, and then convert to a pore-forming oligomer. However, the structural basis for binding of this toxin to target cells remains unknown. We show here that the polarity and indole ring on the side chain of Trp 246 (W246) of VVH, which sits on a bottom loop, participates in binding to cellular membrane. To clarify the binding mechanisms of VVH, we generated a series of W246 point mutants that were substituted with Arg (W246R), Ala (W246A), or Tyr (W246Y), and tested their binding and cytotoxicity on Chinese hamster ovary (CHO) cells. At a final concentration of 1 μg/ml of VVH, wild type (Wt), W246A and W246Y could bind and induce cytotoxicity to CHO cells, whereas W246R could not. The cytotoxic activity of W246A was significantly lower than that of Wt. These findings indicate that both the polarity and indole ring on the side chain of W246 were involved in the binding of this toxin to the target cellular membrane. The indole ring plays a particularly important role in toxin binding.
Collapse
Affiliation(s)
- Takashige Kashimoto
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan.
| | - Tomoe Akita
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Takehiro Kado
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Kohei Yamazaki
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| | - Shunji Ueno
- Laboratory of Veterinary Public Health, School of Veterinary Medicine, Kitasato University, Higashi 23-35-1, Towada, Aomori, Japan
| |
Collapse
|
11
|
Mukherjee A, Ganguly S, Chatterjee NS, Banerjee KK. Vibrio cholerae hemolysin: The β-trefoil domain is required for folding to the native conformation. Biochem Biophys Rep 2016; 8:242-248. [PMID: 28955962 PMCID: PMC5614477 DOI: 10.1016/j.bbrep.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/04/2016] [Accepted: 09/17/2016] [Indexed: 11/16/2022] Open
Abstract
Vibrio cholerae cytolysin/hemolysin (VCC) is a 65 kDa β-pore-forming toxin causing lysis and death of eukaryotic cells. Apart from the core cytolysin domain, VCC has two lectin domains with β-trefoil and β-prism folds. The β-prism domain binds to cell surface carbohydrate receptors; the role of the β-trefoil domain is unknown. Here, we show that the pro-VCC mutant without the β-trefoil domain formed aggregates highly susceptible to proteolysis, suggesting lack of a properly folded compact structure. The VCC variants with Trp532Ala or Trp534Ala mutation in the β-trefoil domain formed hemolytically inactive, protease-resistant, ring-shaped SDS-labile oligomers with diameters of ~19 nm. The Trp mutation induced a dramatic change in the global conformation of VCC, as indicated by: (a) the change in surface polarity from hydrophobic to hydrophilic; (b) movement of core Trp residues to the protein-water interface; and (c) decrease in reactivity to the anti-VCC antibody by >100-fold. In fact, the mutant VCC had little similarity to the wild toxin. However, the association constant for the carbohydrate-dependent interaction mediated by the β-prism domain decreased marginally from ~3×108 to ~5×107 M-1. We interpret the observations by proposing: (a) the β-trefoil domain is critical to the folding of the cytolysin domain to its active conformation; (b) the β-prism domain is an autonomous folding unit.
Collapse
Affiliation(s)
| | | | | | - Kalyan K. Banerjee
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India
| |
Collapse
|
12
|
Rai AK, Chattopadhyay K. Revisiting the oligomerization mechanism of Vibrio cholerae cytolysin, a beta-barrel pore-forming toxin. Biochem Biophys Res Commun 2016; 474:421-427. [DOI: 10.1016/j.bbrc.2016.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 01/10/2023]
|
13
|
Park SA, Park YS, Bong SM, Lee KS. Structure-based functional studies for the cellular recognition and cytolytic mechanism of pneumolysin from Streptococcus pneumoniae. J Struct Biol 2016; 193:132-40. [DOI: 10.1016/j.jsb.2015.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/01/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023]
|
14
|
De S, Bubnys A, Alonzo F, Hyun J, Lary JW, Cole JL, Torres VJ, Olson R. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin. J Biol Chem 2015; 290:28402-28415. [PMID: 26416894 DOI: 10.1074/jbc.m115.675967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Indexed: 12/19/2022] Open
Abstract
Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions.
Collapse
Affiliation(s)
- Swastik De
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Adele Bubnys
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Francis Alonzo
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Jinsol Hyun
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459
| | - Jeffrey W Lary
- Biotechnology-Bioservices Center, University of Connecticut, Storrs, Connecticut 06269
| | - James L Cole
- Biotechnology-Bioservices Center, University of Connecticut, Storrs, Connecticut 06269; Department of Molecular and Cell Biology and Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Molecular Biophysics Program, Wesleyan University, Middletown, Connecticut 06459.
| |
Collapse
|
15
|
Physicochemical constraints of elevated pH affect efficient membrane interaction and arrest an abortive membrane-bound oligomeric intermediate of the beta-barrel pore-forming toxin Vibrio cholerae cytolysin. Arch Biochem Biophys 2015; 583:9-17. [PMID: 26235489 DOI: 10.1016/j.abb.2015.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/24/2015] [Accepted: 07/24/2015] [Indexed: 11/21/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytotoxic protein. VCC causes permeabilization of the target cell membranes by forming transmembrane oligomeric beta-barrel pores. Membrane pore formation by VCC involves following key steps: (i) membrane binding, (ii) formation of a pre-pore oligomeric intermediate, (iii) membrane insertion of the pore-forming motifs, and (iv) formation of the functional transmembrane pore. Membrane binding, oligomerization, and subsequent pore-formation process of VCC appear to be facilitated by multiple regulatory mechanisms that are only partly understood. Here, we have explored the role(s) of the physicochemical constraints, specifically imposed by the elevated pH conditions, on the membrane pore-formation mechanism of VCC. Elevated pH abrogates efficient interaction of VCC with the target membranes, and blocks its pore-forming activity. Under the elevated pH conditions, membrane-bound fractions of VCC remain trapped in the form of abortive oligomeric species that fail to generate the functional transmembrane pores. Such an abortive oligomeric assembly appears to represent a distinct, more advanced intermediate state than the pre-pore state. The present study offers critical insights regarding the implications of the physicochemical constraints for regulating the efficient membrane interaction and pore formation by VCC.
Collapse
|
16
|
Rai AK, Chattopadhyay K. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxinVibrio choleraecytolysin. Mol Microbiol 2015; 97:1051-62. [DOI: 10.1111/mmi.13084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anand Kumar Rai
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| |
Collapse
|
17
|
Ros U, García-Sáez AJ. More Than a Pore: The Interplay of Pore-Forming Proteins and Lipid Membranes. J Membr Biol 2015; 248:545-61. [PMID: 26087906 DOI: 10.1007/s00232-015-9820-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/12/2015] [Indexed: 01/09/2023]
Abstract
Pore-forming proteins (PFPs) punch holes in their target cell membrane to alter their permeability. Permeabilization of lipid membranes by PFPs has received special attention to study the basic molecular mechanisms of protein insertion into membranes and the development of biotechnological tools. PFPs act through a general multi-step mechanism that involves (i) membrane partitioning, (ii) insertion into the hydrophobic core of the bilayer, (iii) oligomerization, and (iv) pore formation. Interestingly, PFPs and membranes show a dynamic interplay. As PFPs are usually produced as soluble proteins, they require a large conformational change for membrane insertion. Moreover, membrane structure is modified upon PFPs insertion. In this context, the toroidal pore model has been proposed to describe a pore architecture in which not only protein molecules but also lipids are directly involved in the structure. Here, we discuss how PFPs and lipids cooperate and remodel each other to achieve pore formation, and explore new evidences of protein-lipid pore structures.
Collapse
Affiliation(s)
- Uris Ros
- Center for Protein Studies, Faculty of Biology, Calle 25 # 455, Plaza de la Revolución, Havana, Cuba
| | | |
Collapse
|
18
|
Morante K, Caaveiro JMM, Tanaka K, González-Mañas JM, Tsumoto K. A pore-forming toxin requires a specific residue for its activity in membranes with particular physicochemical properties. J Biol Chem 2015; 290:10850-61. [PMID: 25759390 DOI: 10.1074/jbc.m114.615211] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Indexed: 12/29/2022] Open
Abstract
The physicochemical landscape of the bilayer modulates membrane protein function. Actinoporins are a family of potent hemolytic proteins from sea anemones acting at the membrane level. This family of cytolysins preferentially binds to target membranes containing sphingomyelin, where they form lytic pores giving rise to cell death. Although the cytolytic activity of the actinoporin fragaceatoxin C (FraC) is sensitive to vesicles made of various lipid compositions, it is far from clear how this toxin adjusts its mechanism of action to a broad range of physiochemical landscapes. Herein, we show that the conserved residue Phe-16 of FraC is critical for pore formation in cholesterol-rich membranes such as those of red blood cells. The interaction of a panel of muteins of Phe-16 with model membranes composed of raft-like lipid domains is inactivated in cholesterol-rich membranes but not in cholesterol-depleted membranes. These results indicate that actinoporins recognize different membrane environments, resulting in a wider repertoire of susceptible target membranes (and preys) for sea anemones. In addition, this study has unveiled promising candidates for the development of protein-based biosensors highly sensitive to the concentration of cholesterol within the membrane.
Collapse
Affiliation(s)
- Koldo Morante
- From the Department of Bioengineering, Graduate School of Engineering and the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Jose M M Caaveiro
- From the Department of Bioengineering, Graduate School of Engineering and
| | - Koji Tanaka
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Juan Manuel González-Mañas
- the Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain, and
| | - Kouhei Tsumoto
- From the Department of Bioengineering, Graduate School of Engineering and Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, the Medical Proteomics Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan
| |
Collapse
|
19
|
Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6–dependent proinflammatory responses in monocytes and macrophages. Biochem J 2015; 466:147-61. [DOI: 10.1042/bj20140718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We show that the transmembrane oligomeric form of VCC evokes potent proinflammatory responses in the monocytes and macrophages of the innate immune system. VCC oligomer-induced proinflammatory responses depend critically on the TLR2/TLR6-dependent signalling pathways.
Collapse
|
20
|
Vibrio cholerae Cytolysin: Structure–Function Mechanism of an Atypical β-Barrel Pore-Forming Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:109-25. [DOI: 10.1007/978-3-319-11280-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Ganguly S, Mukherjee A, Mazumdar B, Ghosh AN, Banerjee KK. The β-prism lectin domain of Vibrio cholerae hemolysin promotes self-assembly of the β-pore-forming toxin by a carbohydrate-independent mechanism. J Biol Chem 2013; 289:4001-8. [PMID: 24356964 DOI: 10.1074/jbc.m113.522284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae cytolysin/hemolysin (VCC) is an amphipathic 65-kDa β-pore-forming toxin with a C-terminal β-prism lectin domain. Because deletion or point mutation of the lectin domain seriously compromises hemolytic activity, it is thought that carbohydrate-dependent interactions play a critical role in membrane targeting of VCC. To delineate the contributions of the cytolysin and lectin domains in pore formation, we used wild-type VCC, 50-kDa VCC (VCC(50)) without the lectin domain, and mutant VCC(D617A) with no carbohydrate-binding activity. VCC and its two variants with no carbohydrate-binding activity moved to the erythrocyte stroma with apparent association constants on the order of 10(7) M(-1). However, loss of the lectin domain severely reduced the efficiency of self-association of the VCC monomer with the β-barrel heptamer in the synthetic lipid bilayer from ∼83 to 27%. Notably, inactivation of the carbohydrate-binding activity by the D617A mutation marginally reduced oligomerization to ∼77%. Oligomerization of VCC(50) was temperature-insensitive; by contrast, VCC self-assembly increased with increasing temperature, suggesting that the process is driven by entropy and opposed by enthalpy. Asialofetuin, the β1-galactosyl-terminated glycoprotein inhibitor of VCC-induced hemolysis, promoted oligomerization of 65-kDa VCC to a species that resembled the membrane-inserted heptamer in stoichiometry and morphology but had reduced global amphipathicity. In conclusion, we propose (i) that the β-prism lectin domain facilitated toxin assembly by producing entropy during relocation in the heptamer and (ii) that glycoconjugates inhibited VCC by promoting its assembly to a water-soluble, less amphipathic oligomer variant with reduced ability to penetrate the bilayer.
Collapse
|
22
|
Ikigai H, Otsuru H, Yamamoto K, Shimamura T. Structural Requirements of Cholesterol for Binding toVibrio choleraeHemolysin. Microbiol Immunol 2013; 50:751-7. [PMID: 17053310 DOI: 10.1111/j.1348-0421.2006.tb03848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.
Collapse
Affiliation(s)
- Hajime Ikigai
- Department of Chemistry and Biochemistry, Suzuka National College of Technology, Suzuka, Mie 510-0294, Japan.
| | | | | | | |
Collapse
|
23
|
Dutta S, Banerjee KK, Ghosh AN. Cryo-electron microscopy reveals the membrane insertion mechanism of V. cholerae hemolysin. J Biomol Struct Dyn 2013; 32:1434-42. [PMID: 24102290 DOI: 10.1080/07391102.2013.823564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vibrio cholerae hemolysin (HlyA) is a 65 kDa pore-forming toxin which causes lysis of target eukaryotic cells by forming heptameric channels in the plasma membrane. Deletion of the 15 kDa C-terminus β-prism carbohydrate-binding domain generates a 50 kDa truncated variant (HlyA50) with 1000-fold-reduced pore-forming activity. Previously, we showed by cryo-electron microscopy that the two toxin oligomers have central channels, but the 65 kDa toxin oligomer is a seven-fold symmetric structure with bowl-, ring-, and arm-like domains, whereas the 50 kDa oligomer is an asymmetric jar-like heptamer. In the present study, we determined three-dimensional(3D) structures of HlyA and HlyA50 in presence of erythrocyte stroma and observed that interaction of the 65 kDa toxin with the stroma induced a significant decrease in the height of the β-barrel oligomer with a change in conformation of the ring- and arm-like domains of HlyA. These features were absent in interaction of HlyA50 with stroma. We propose that this conformational transition is critical for membrane-insertion of the toxin.
Collapse
Affiliation(s)
- Somnath Dutta
- a Division of Electron Microscopy , National Institute of Cholera and Enteric Diseases , P-33, C.I.T. Road, Scheme-XM, Beleghata, Kolkata , 700010 , India
| | | | | |
Collapse
|
24
|
Levan S, De S, Olson R. Vibrio cholerae cytolysin recognizes the heptasaccharide core of complex N-glycans with nanomolar affinity. J Mol Biol 2013; 425:944-57. [PMID: 23274141 PMCID: PMC3578121 DOI: 10.1016/j.jmb.2012.12.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/30/2023]
Abstract
Pathogens selectively target host cells using adhesion molecules and secreted virulence factors that may utilize protein, lipid, or carbohydrate ligands on the cell surface. The human intestinal pathogen Vibrio cholerae secretes a pore-forming toxin, V.cholerae cytolysin (VCC), which contains two domains that are structurally similar to known carbohydrate-binding proteins. These tandem domains are attached to the carboxy-terminus of the cytolytic domain and contain a β-trefoil fold and a β-prism fold. VCC has been shown to bind glycosylated proteins, and removal of the β-prism domain leads to a large decrease in lytic activity against rabbit erythrocytes. Despite these clues, the identity of the glycan receptors of VCC and the role of glycan binding in toxin activity remain unknown. To better understand this specificity, we used a combination of structural and functional approaches to characterize the carbohydrate-binding activity of the VCC toxin. We first probed the monosaccharide-binding activity of VCC and demonstrated that the toxin exhibits millimolar affinity for aldohexoses. To understand this specificity, we solved the crystal structure of the VCC β-prism domain bound to methyl-α-mannose. Next, we utilized a mammalian glycan screen to determine that the β-prism domain preferentially binds complex N-glycans with a heptasaccharide GlcNAc(4)Man(3) core (NGA2). Fluorescence anisotropy and surface plasmon resonance indicated an approximately 100-nM affinity of the β-prism domain for the heptasaccharide core. Our results suggest that carbohydrate-binding domains on the VCC toxin facilitate high-affinity targeting of mammalian cell membranes, which may contribute to the ability of VCC to lyse cells at picomolar concentrations.
Collapse
Affiliation(s)
- Sophia Levan
- Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut, USA
| | - Swastik De
- Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut, USA
| | - Rich Olson
- Department of Molecular Biology and Biochemistry, Wesleyan University, 52 Lawn Avenue, Middletown, Connecticut, USA
| |
Collapse
|
25
|
Rai AK, Paul K, Chattopadhyay K. Functional mapping of the lectin activity site on the β-prism domain of vibrio cholerae cytolysin: implications for the membrane pore-formation mechanism of the toxin. J Biol Chem 2012; 288:1665-73. [PMID: 23209283 DOI: 10.1074/jbc.m112.430181] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a prominent member in the family of β-barrel pore-forming toxins. It induces lysis of target eukaryotic cells by forming transmembrane oligomeric β-barrel channels. VCC also exhibits prominent lectin-like activity in interacting with β1-galactosyl-terminated glycoconjugates. Apart from the cytolysin domain, VCC harbors two lectin-like domains: the β-Trefoil and the β-Prism domains; however, precise contribution of these domains in the lectin property of VCC is not known. Also, role(s) of these lectin-like domains in the mode of action of VCC remain obscure. In the present study, we show that the β-Prism domain of VCC acts as the structural scaffold to determine the lectin activity of the protein toward β1-galactosyl-terminated glycoconjugates. Toward exploring the physiological implication of the β-Prism domain, we demonstrate that the presence of the β-Prism domain-mediated lectin activity is crucial for an efficient interaction of the toxin toward the target cells. Our results also suggest that such lectin activity may act to regulate the oligomerization ability of the membrane-bound VCC toxin. Based on the data presented here, and also consistent with the existing structural information, we propose a novel mechanism of regulation imposed by the β-Prism domain's lectin activity, implicated in the process of membrane pore formation by VCC.
Collapse
Affiliation(s)
- Anand Kumar Rai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, SAS Nagar, Manauli, 140306, Punjab, India
| | | | | |
Collapse
|
26
|
Characterization of pneumolysin from Streptococcus pneumoniae, interacting with carbohydrate moiety and cholesterol as a component of cell membrane. Biochem Biophys Res Commun 2012; 430:659-63. [PMID: 23211600 DOI: 10.1016/j.bbrc.2012.11.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/20/2012] [Indexed: 11/20/2022]
Abstract
The cytolytic mechanism of cholesterol-dependent cytolysins (CDCs) requires the presence of cholesterol in the target cell membrane. Membrane cholesterol was thought to serve as the common receptor for these toxins, but not all CDCs require cholesterol for binding. One member of this toxin family, pneumolysin (PLY) is a major virulence factor of Streptococcus pneumoniae, and the mechanism via which PLY binds to its putative receptor or cholesterol on the cell membrane is still poorly understood. Here, we demonstrated that PLY interacted with carbohydrate moiety and cholesterol as a component of the cell membrane, using the inhibitory effect of hemolytic activity. The hemolytic activity of PLY was inhibited by cholesterol-MβCD, which is in a 3β configuration at the C3-hydroxy group, but is not in a 3α-configuration. In the interaction between PLY and carbohydrate moiety, the mannose showed a dose-dependent increase in the inhibition of PLY hemolytic activity. The binding ability of mannose with truncated PLYs, as determined by the pull-down assay, showed that mannose might favor binding to domain 4 rather than domains 1-3. These studies provide a new model for the mechanism of cellular recognition by PLY, as well as a foundation for future investigations into whether non-sterol molecules can serve as receptors for other members of the CDC family of toxins.
Collapse
|
27
|
Paul K, Chattopadhyay K. Single point mutation inVibrio choleraecytolysin compromises the membrane pore-formation mechanism of the toxin. FEBS J 2012; 279:4039-51. [DOI: 10.1111/j.1742-4658.2012.08809.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Karan Paul
- Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; SAS Nagar; Manauli; 140306; Punjab; India
| | - Kausik Chattopadhyay
- Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; SAS Nagar; Manauli; 140306; Punjab; India
| |
Collapse
|
28
|
Chakraborty DC, Mukherjee G, Banerjee P, Banerjee KK, Biswas T. Hemolysin induces Toll-like receptor (TLR)-independent apoptosis and multiple TLR-associated parallel activation of macrophages. J Biol Chem 2011; 286:34542-51. [PMID: 21846723 DOI: 10.1074/jbc.m111.241851] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae hemolysin (HlyA) displays bipartite property while supervising macrophages (MΦ). The pore-forming toxin causes profound apoptosis within 3 h of exposure and in parallel supports activation of the defying MΦ. HlyA-induced apoptosis of MΦ remains steady for 24 h, is Toll-like receptor (TLR)-independent, and is driven by caspase-9 and caspase-7, thus involving the mitochondrial or intrinsic pathway. Cell activation is carried forward by time dependent up-regulation of varying TLRs. The promiscuous TLR association of HlyA prompted investigation, which revealed the β-prism lectin domain of HlyA simulated TLR4 up-regulation by jacalin, a plant lectin homologue besides expressing CD86 and type I cytokines TNF-α and IL-12. However, HlyA cytolytic protein domain up-regulated TLR2, which controlled CD40 for continuity of cell activation. Expression of TOLLIP before TLR2 and TLR6 abrogated TLR4, CD40, and CD86. We show that the transient expression of TOLLIP leading to curbing of activation-associated capabilities is a plausible feedback mechanism of MΦ to deploy TLR2 and prolong activation involving CD40 to encounter the HlyA cytolysin domain.
Collapse
Affiliation(s)
- Deep Chandan Chakraborty
- Division of Immunology, National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India
| | | | | | | | | |
Collapse
|
29
|
Crystal structure of the Vibrio cholerae cytolysin heptamer reveals common features among disparate pore-forming toxins. Proc Natl Acad Sci U S A 2011; 108:7385-90. [PMID: 21502531 DOI: 10.1073/pnas.1017442108] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pore-forming toxins (PFTs) are potent cytolytic agents secreted by pathogenic bacteria that protect microbes against the cell-mediated immune system (by targeting phagocytic cells), disrupt epithelial barriers, and liberate materials necessary to sustain growth and colonization. Produced by gram-positive and gram-negative bacteria alike, PFTs are released as water-soluble monomeric or dimeric species, bind specifically to target membranes, and assemble transmembrane channels leading to cell damage and/or lysis. Structural and biophysical analyses of individual steps in the assembly pathway are essential to fully understanding the dynamic process of channel formation. To work toward this goal, we solved by X-ray diffraction the 2.9-Å structure of the 450-kDa heptameric Vibrio cholerae cytolysin (VCC) toxin purified and crystallized in the presence of detergent. This structure, together with our previously determined 2.3-Å structure of the VCC water-soluble monomer, reveals in detail the architectural changes that occur within the channel region and accessory lectin domains during pore formation including substantial rearrangements of hydrogen-bonding networks in the pore-forming amphipathic loops. Interestingly, a ring of tryptophan residues forms the narrowest constriction in the transmembrane channel reminiscent of the phenylalanine clamp identified in anthrax protective antigen [Krantz BA, et al. (2005) Science 309:777-781]. Our work provides an example of a β-barrel PFT (β-PFT) for which soluble and assembled structures are available at high-resolution, providing a template for investigating intermediate steps in assembly.
Collapse
|
30
|
Dutta S, Mazumdar B, Banerjee KK, Ghosh AN. Three-dimensional structure of different functional forms of the Vibrio cholerae hemolysin oligomer: a cryo-electron microscopic study. J Bacteriol 2010; 192:169-78. [PMID: 19854900 PMCID: PMC2798276 DOI: 10.1128/jb.00930-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 10/12/2009] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae hemolysin (HlyA) is a 65-kDa water-soluble pore-forming toxin that causes lysis of eukaryotic cells by destroying selective permeability of the plasma membrane bilayer. The HlyA monomer self-assembles on the target cell surface to the more stable beta-barrel amphipathic heptamer, which inserts into the membrane bilayer to form a diffusion channel. Deletion of the 15-kDa beta-prism lectin domain at the C terminus generates a 50-kDa hemolysin variant (HlyA50) with an approximately 1,000-fold decrease in hemolytic activity. Because functional differences are eventually dictated by structural differences, we determined three-dimensional structures of 65- and 50-kDa HlyA oligomers, using cryo-electron microscopy and single-particle methods. Our study clearly shows that the HlyA oligomer has sevenfold symmetry but that the HlyA50 oligomer is an asymmetric molecule. The HlyA oligomer has bowl-like, arm-like, and ring-like domains. The bowl-like domain is coupled with the ring-like domain, and seven side openings are present just beneath the ring-like domain. Although a central channel is present in both HlyA and HlyA50 oligomers, they differ in pore size as well as in shape of the molecules and channel. These structural differences may be relevant to the striking difference in efficiencies of functional channel formation by the two toxin forms.
Collapse
Affiliation(s)
- Somnath Dutta
- Division of Electron Microscopy, Division of Biochemistry, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700010, India
| | - Budhaditya Mazumdar
- Division of Electron Microscopy, Division of Biochemistry, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700010, India
| | - Kalyan K. Banerjee
- Division of Electron Microscopy, Division of Biochemistry, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700010, India
| | - Amar N. Ghosh
- Division of Electron Microscopy, Division of Biochemistry, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Beleghata, Kolkata 700010, India
| |
Collapse
|
31
|
Characterization and studies of the cellular interaction of native colonization factor CS6 purified from a clinical isolate of enterotoxigenic Escherichia coli. Infect Immun 2009; 77:2125-35. [PMID: 19237522 DOI: 10.1128/iai.01397-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CS6 is a widely expressed colonization factor of enterotoxigenic Escherichia coli (ETEC). To date, CS6 has not been well characterized in its native state. Here, we purified CS6 for the first time from an ETEC clinical isolate. Purified CS6 was composed of two structural subunits, CssA and CssB, which were present in equal amounts and tightly linked through noncovalent, detergent-stable association. The CssA subunit was poorly immunogenic, whereas CssB was highly immunogenic. Although the predicted molecular mass of CssA is 15 kDa, the purified CssA has an effective molecular mass of 18.5 kDa due to fatty acid modification. When purified CS6 was screened for its ability to bind with different extracellular matrix proteins, fibronectin (Fn) was found to interact with CS6 as well as CssA in a dose-dependent and saturable manner. This interaction was inhibited both by a synthetic peptide corresponding to the C-terminal hydrophilic, surface-exposed region of CssA (positions 112 to 126) and by the antibody derived against this region. Enzyme-linked immunosorbent assay results showed that CssA interacted with the 70-kDa N-terminal domain of Fn. The modifications on CssA probably do not play a role in Fn binding. Preincubation of INT 407 cells with CssA, but not CssB, inhibited ETEC binding to these cells. The results suggested that CS6-expressing ETEC binds to Fn of INT 407 cells through the C-terminal region of CssA. Purified CS6 was found to colocalize with Fn along the junctions of INT 407 cells. Based on the results obtained, we propose that CS6-expressing ETEC binds to the intestinal cells through Fn for colonization.
Collapse
|
32
|
Mizuno T, Sultan SZ, Kaneko Y, Yoshimura T, Maehara Y, Nakao H, Tsuchiya T, Shinoda S, Miyoshi SI. Modulation of Vibrio mimicus hemolysin through limited proteolysis by an endogenous metalloprotease. FEBS J 2009; 276:825-34. [DOI: 10.1111/j.1742-4658.2008.06827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Mukherjee G, Biswas A, Banerjee KK, Biswas T. Vibrio cholerae hemolysin is apoptogenic to peritoneal B-1a cells but its oligomer shepherd the cells for IgA response. Mol Immunol 2008; 45:266-70. [PMID: 17570527 DOI: 10.1016/j.molimm.2007.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/16/2022]
Abstract
Vibrio cholerae hemolysin (HlyA) can exist as a monomer with hemolytic activity and an oligomer that agglutinates erythrocytes. Biochemical differences accompanying the change in state of aggregation led us to weigh possible differences between the two forms from mucosal immunoregulation perspective. HlyA oligomer-treated murine B-1a cells up-regulated TLR2 and involved the signaling molecules MyD88, TRAF6 and NF-kappaB. The cells subsequently expressed IgM and IgA. HlyA monomer treatment although resulted in TLR2 up-regulation, could not induce these effects. Apoptosis was detected in majority of the monomer-treated cells that involved caspase-9 and caspase-3. This study shows for the first time that two forms of the same protein could drive the host immune cell to two different outcomes, one of death and the other towards activation.
Collapse
Affiliation(s)
- Gayatri Mukherjee
- Division of Immunology and Vaccine Development, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme XM, Kolkata-700 010, West Bengal, India
| | | | | | | |
Collapse
|
34
|
Olson R, Gouaux E. Crystal Structure of the Vibrio cholerae Cytolysin (VCC) Pro-toxin and its Assembly into a Heptameric Transmembrane Pore. J Mol Biol 2005; 350:997-1016. [PMID: 15978620 DOI: 10.1016/j.jmb.2005.05.045] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 05/10/2005] [Accepted: 05/12/2005] [Indexed: 11/25/2022]
Abstract
Pathogenic Vibrio cholerae secrete V. cholerae cytolysin (VCC), an 80 kDa pro-toxin that assembles into an oligomeric pore on target cell membranes following proteolytic cleavage and interaction with cell surface receptors. To gain insight into the activation and targeting activities of VCC, we solved the crystal structure of the pro-toxin at 2.3A by X-ray diffraction. The core cytolytic domain of VCC shares a fold similar to the staphylococcal pore-forming toxins, but in VCC an amino-terminal pro-domain and two carboxy-terminal lectin domains decorate the cytolytic domain. The pro-domain masks a protomer surface that likely participates in inter-protomer interactions in the cytolytic oligomer, thereby explaining why proteolytic cleavage and movement of the pro-domain is necessary for toxin activation. A single beta-octyl glucoside molecule outlines a possible receptor binding site on one lectin domain, and removal of this domain leads to a tenfold decrease in lytic activity toward rabbit erythrocytes. VCC activated by proteolytic cleavage assembles into an oligomeric species upon addition of soybean asolectin/cholesterol liposomes and this oligomer was purified in detergent micelles. Analytical ultracentrifugation and crystallographic analysis indicate that the resulting VCC oligomer is a heptamer. Taken together, these studies define the architecture of a pore forming toxin and associated lectin domains, confirm the stoichiometry of the assembled oligomer as heptameric, and suggest a common mechanism of assembly for staphylococcal and Vibrio cytolytic toxins.
Collapse
Affiliation(s)
- Rich Olson
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 W. 168th Street, New York, NY 10032, USA
| | | |
Collapse
|
35
|
Valeva A, Walev I, Boukhallouk F, Wassenaar TM, Heinz N, Hedderich J, Lautwein S, Möcking M, Weis S, Zitzer A, Bhakdi S. Identification of the membrane penetrating domain of Vibrio cholerae cytolysin as a β-barrel structure. Mol Microbiol 2005; 57:124-31. [PMID: 15948954 DOI: 10.1111/j.1365-2958.2005.04684.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is an oligomerizing pore-forming toxin that is related to cytolysins of many other Gram-negative organisms. VCC contains six cysteine residues, of which two were found to be present in free sulphydryl form. The positions of two intramolecular disulphide bonds were mapped, and one was shown to be essential for correct folding of protoxin. Mutations were created in which the two free cysteines were deleted, so that single cysteine substitution mutants could be generated for site-specific labelling. Employment of polarity-sensitive fluorophores identified amino acid side-chains that formed part of the pore-forming domain of VCC. The sequence commenced at residue 311, and was deduced to form a beta-barrel in the assembled oligomer with the subsequent odd-numbered residues facing the lipid bilayer and even-numbered residues facing the lumen. Pro328/Lys329 were tentatively identified as the position at which the sequence turns back into the membrane and where the antiparallel beta-strand commences. This was deduced from fluorimetric analyses combined with experiments in which the pore was reversibly occluded by derivatization of sulphydryl groups with a bulky moiety. Our data support computer-based predictions that the membrane-permeabilizing amino acid sequence of VCC is homologous to the beta-barrel-forming sequence of staphylococcal cytolysins and identify the beta-barrel as a membrane-perforating structure that is highly conserved in evolution.
Collapse
Affiliation(s)
- Angela Valeva
- Institute of Medical Microbiology and Hygiene, University of Mainz, Augustusplatz, D55101 Mainz, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chattopadhyay K, Banerjee KK. Unfolding of Vibrio cholerae hemolysin induces oligomerization of the toxin monomer. J Biol Chem 2003; 278:38470-5. [PMID: 12878594 DOI: 10.1074/jbc.m305965200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae hemolysin (HlyA) is a pore-forming toxin that exists in two stable forms: a hemolytically active water-soluble monomer with a native molecular weight of 65,000 and a hemolytically inactive SDS-stable heptamer with the configuration of a transmembrane diffusion channel. Transformation of the monomer into the oligomer is spontaneous but very slow in the absence of interaction with specific membrane components like cholesterol and sphingolipids. In this report, we show that mild disruption of the native tertiary structure of HlyA by 1.75 M urea triggered rapid and quantitative conversion of the monomer to an oligomer. Furthermore, the HlyA monomer when unfolded in 8 M urea refolded and reconstituted on renaturation into the oligomer biochemically and functionally similar to the heptamer formed in target lipid bilayer, suggesting that the HlyA polypeptide had a strong propensity to adopt the oligomer as the stable native state in preference to the monomer. On the basis of our results, we propose that (a) the hemolytically active HlyA monomer represents a quasi-stable conformation corresponding to a local free energy minimum and the transmembrane heptameric pore represents a stable conformation corresponding to an absolute free energy minimum and (b) any perturbation of the native tertiary structure of the HlyA monomer causing relaxation of conformational constraints tends to promote self-assembly to the oligomer with membrane components playing at most an accessory role.
Collapse
Affiliation(s)
- Kausik Chattopadhyay
- Division of Immunology and Vaccine Development, National Institute of Cholera And Enteric Diseases, Kolkata 700010, India
| | | |
Collapse
|
37
|
Ray A, Chattopadhyay K, Banerjee KK, Biswas T. Macrophage distinguishes Vibrio cholerae hemolysin from its protease insensitive oligomer by time dependent and selective expression of CD80–CD86. Immunol Lett 2003; 89:143-7. [PMID: 14556971 DOI: 10.1016/s0165-2478(03)00135-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The monomeric and oligomeric forms of Vibrio cholerae hemolysin (HlyA), a membrane damaging toxin that forms transmembrane pentameric diffusion channels in target eukaryotic membrane, show a pronounced difference in protease susceptibility, presumably due to masking of sensitive peptide bonds during oligomerization. In this work, we examined if resistance of a protein to proteolytic processing affects the expression of costimulatory molecules, CD80 and CD86, on macrophage exposed to the same antigen. The murine peritoneal cavity macrophages expressed both CD80 and CD86 after 24 h of incubation with HlyA monomer but failed to express the costimulatory molecules when treated with the HlyA oligomer. The expression of CD80 molecule on macrophage after 48 h by the HlyA oligomer that failed to express the costimulatory molecules after 24 h indicates that proteolytic processing plays a decisive role in expression of CD80 and CD86 on cell surface.
Collapse
Affiliation(s)
- Avijit Ray
- Division of Immunology and Vaccine Development, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, 700 010, Kolkata, India
| | | | | | | |
Collapse
|
38
|
Abstract
The enteric pathogen Vibrio cholerae secretes a water-soluble 80-kD cytolysin, Vibrio cholerae cytolysin (VCC) that assembles into pentameric channels following proteolytic activation by exogenous proteases. Until now, VCC has been placed in a unique class of pore-forming toxins, distinct from paradigms such as Staphyloccal alpha-hemolysin. However, as reported here, amino acid sequence analysis and three-dimensional structure modeling indicate that the core component of the VCC toxin is related in sequence and structure to a family of hemolysins from Staphylococcus aureus that include leukocidin F and alpha-hemolysin. Furthermore, our analysis has identified the channel-forming region of VCC and a potential lipid head-group binding site, and suggests a conserved mechanism of assembly and lysis. An additional domain in the VCC toxin is related to plant lectins, conferring additional target cell specificity to the toxin.
Collapse
Affiliation(s)
- Rich Olson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
39
|
Chattopadhyay K, Bhattacharyya D, Banerjee KK. Vibrio cholerae hemolysin. Implication of amphiphilicity and lipid-induced conformational change for its pore-forming activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4351-8. [PMID: 12199714 DOI: 10.1046/j.1432-1033.2002.03137.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vibrio cholerae hemolysin (HlyA), a water-soluble protein with a native monomeric relative molecular mass of 65 000, forms transmembrane pentameric channels in target biomembranes. The HlyA binds to lipid vesicles nonspecifically and without saturation; however, self-assembly is triggered specifically by cholesterol. Here we show that the HlyA partitioned quantitatively to amphiphilic media irrespective of their compositions, indicating that the toxin had an amphiphilic surface. Asialofetuin, a beta1-galactosyl-terminated glycoprotein, which binds specifically to the HlyA in a lectin-glycoprotein type of interaction and inhibits carbohydrate-independent interaction of the toxin with lipid, reduced effective amphiphilicity of the toxin significantly. Resistance of the HlyA to proteases together with the tryptophan fluorescence emission spectrum suggested a compact structure for the toxin. Fluorescence energy transfer from the HlyA to dansyl-phosphatidylethanolamine required the presence of cholesterol in the lipid bilayer and was synchronous with oligomerization. Phospholipid bilayer without cholesterol caused a partial unfolding of the HlyA monomer as indicated by the transfer of tryptophan residues from the nonpolar core of the protein to a more polar region. These observations suggested: (a) partitioning of the HlyA to lipid vesicles is driven by the tendency of the amphiphilic toxin to reduce energetically unfavorable contacts with water and is not affected significantly by the composition of the vesicles; and (b) partial unfolding of the HlyA at the lipid-water interface precedes and promotes cholesterol-induced oligomerization to an insertion-competent configuration.
Collapse
Affiliation(s)
- Kausik Chattopadhyay
- National Institute of Cholera and Enteric Diseases, Kolkata 700 010, India; Indian Institute of Chemical Biology, Kolkata 700 032, India
| | | | | |
Collapse
|
40
|
Harris JR, Bhakdi S, Meissner U, Scheffler D, Bittman R, Li G, Zitzer A, Palmer M. Interaction of the Vibrio cholerae cytolysin (VCC) with cholesterol, some cholesterol esters, and cholesterol derivatives: a TEM study. J Struct Biol 2002; 139:122-35. [PMID: 12406694 DOI: 10.1016/s1047-8477(02)00563-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Vibrio cholerae cytolysin (VCC) 63-kDa monomer has been shown to interact in aqueous suspension with cholesterol microcystals to produce a ring/pore-like heptameric oligomer approximately 8 nm in outer diameter. Transmission electron microscopy data were produced from cholesterol samples adsorbed to carbon support films, spread across the holes of holey carbon films, and negatively stained with ammonium molybdate. The VCC oligomers initially attach to the edge of the stacked cholesterol bilayers and with increasing time cover the two planar surfaces. VCC oligomers are also released into solution, with some tendency to cluster, possibly via the hydrophobic membrane-spanning domain. At the air/water interface, the VCC oligomers are likely to be selectively oriented with the hydrophobic domain facing the air. Despite some molecular disorder/plasticity within the oligomers, multivariate statistical analysis and rotational self-correlation using IMAGIC-5 strongly suggest the presence of sevenfold rotational symmetry. To correlate the electron microscopy data with on-going biochemical and permeability studies using liposomes of varying lipid composition, the direct interaction of VCC with several cholesterol derivatives and other steroids has been examined. 19-Hydroxycholesterol and 7 beta-hydroxycholesterol both induce VCC oligomerization. beta-Estradiol, which does not possess an aliphatic side chain, also efficiently induces VCC oligomer formation, as does cholesteryl acetate. Cholesteryl stearate and oleate and the C22 (2-trifluoroacetyl)naphthyloxy analogue of cholesterol fail to induce VCC oligomerization, but binding of the monomer to the surface of these steroids does occur. Stigmasterol has little tendency to induce oligomer formation, and oligomers are largely confined to the edge of the bilayers; ergosterol has even less oligomerization ability. Attempts to solubilize and stabilize the VCC oligomers from cholesterol suspensions have been pursued using the neutral surfactant octylglucoside. Although individual solubilized oligomers have been defined which exhibit a characteristic cytolysin channel conformation in the side-on orientation, a tendency remains for the oligomers to cluster via their hydrophobic domains.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, 55099 Mainz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Zitzer A, Harris JR, Kemminer SE, Zitzer O, Bhakdi S, Muething J, Palmer M. Vibrio cholerae cytolysin: assembly and membrane insertion of the oligomeric pore are tightly linked and are not detectably restricted by membrane fluidity. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1509:264-74. [PMID: 11118538 DOI: 10.1016/s0005-2736(00)00303-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemolytic strains of Vibrio cholerae secrete a cytolysin that, upon binding as a monomer, forms pentameric pores in animal cell membranes. Pore formation is inhibited at low temperature and in the absence of cholesterol. We here posed the following questions: firstly, can oligomerization be observed in the absence of pore formation? Secondly, is membrane fluidity responsible for the effect of temperature or of cholesterol upon pore formation? The first issue was approached by chemical cross-linking, by electrophoretic heteromer analysis, and by electron microscopy. None of these methods yielded any evidence of a non-lytic pre-pore oligomer. The second question was addressed by the use of two susceptible liposome models, consisting of cholesterol admixed to bovine brain lipids and to asolectin, respectively. The two liposome species clearly differed in membrane fluidity as judged by diphenylhexatriene fluorescence polarization. Nevertheless, their permeabilization by the cytolysin decreased with temperature in a closely parallel fashion, virtually vanishing at 5 degrees C. Omission of cholesterol from the liposomes uniformly led to an increase in membrane fluidity but prevented permeabilization by the cytolysin. The effects of temperature and of cholesterol upon cytolysin activity are thus not mediated by fluidization of the target membrane. The findings of our study distinguish V. cholerae cytolysin from several previously characterized pore-forming toxins.
Collapse
Affiliation(s)
- A Zitzer
- Institute of Medical Microbiology, University of Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Mitra R, Figueroa P, Mukhopadhyay AK, Shimada T, Takeda Y, Berg DE, Nair GB. Cell vacuolation, a manifestation of the El tor hemolysin of Vibrio cholerae. Infect Immun 2000; 68:1928-33. [PMID: 10722584 PMCID: PMC97368 DOI: 10.1128/iai.68.4.1928-1933.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Culture supernatants of nontoxigenic nonepidemic clinical strains of Vibrio cholerae belonging to diverse serogroups were found to induce vacuolation of nonconfluent HeLa cells. The vacuoles became prominent 18 h after introduction of culture supernatant, and vacuolated cells survived for 48 h and then died. Only a fraction of the vacuolated cells took up neutral red dye, implying that there were differences in the vacuolar microenvironment. Further tests showed that the factor responsible for vacuolation was heat labile and proteinaceous. Vacuolating activity was completely neutralized by antibody to hemolysin of V. cholerae but not by antibody to vacuolating cytotoxin of Helicobacter pylori. Partial purification of the vacuolating factor led to elution of fractions, which showed both hemolytic and vacuolating activity. PCR amplification and cloning of the hemolysin structural gene (hlyA) into Escherichia coli DH5alpha led to isolation of clones producing cell vacuolating factor in a cell-associated form. Further, a null insertion mutation in the hlyA gene of a high-vacuolating-factor-producing strain led to complete abolition of both cell vacuolating and hemolytic activities. These analyses establish vacuolation as a potentially important but previously unrecognized property of V. cholerae El Tor hemolysin.
Collapse
Affiliation(s)
- R Mitra
- National Institute of Cholera and Enteric Diseases, Calcutta, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Zitzer A, Zitzer O, Bhakdi S, Palmer M. Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane. J Biol Chem 1999; 274:1375-80. [PMID: 9880509 DOI: 10.1074/jbc.274.3.1375] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vibrio cholerae cytolysin permeabilizes animal cell membranes. Upon binding to the target lipid bilayer, the protein assembles into homo-oligomeric pores of an as yet unknown stoichiometry. Pore formation has been observed with model liposomes consisting of phosphatidylcholine and cholesterol, but the latter were much less susceptible to the cytolysin than were erythrocytes or intestinal epithelial cells. We here show that liposome permeabilization is strongly promoted if cholesterol is combined with sphingolipids, whereby the most pronounced effects are observed with monohexosylceramides and free ceramide. These two lipid species are prevalent in mammalian intestinal brush border membranes. We therefore propose that, on its natural target membranes, the cytolysin has a dual specificity for both cholesterol and ceramides. To assess the stoichiometry of the pore, we generated hybrid oligomers of two naturally occurring variants of the toxin that differ in molecular weight. On SDS-polyacrylamide gel electrophoresis, the mixed oligomers formed a pattern of six distinct bands. Ordered by decreasing electrophoretic mobility, the six oligomer species must comprise 0 to 5 subunits of the larger form; the pore thus is a pentamer. Due to both lipid specificity and pore stoichiometry, V. cholerae cytolysin represents a novel prototype in the class of bacterial pore-forming toxins.
Collapse
Affiliation(s)
- A Zitzer
- Institute of Medical Microbiology, University of Mainz, Augustusplatz, D55101 Germany
| | | | | | | |
Collapse
|
44
|
Pande AH, Sumati N, Hajela N, Hajela K. Carbohydrate induced modulation of cell membrane VII. Binding of exogenous lectin increases osmofragility of erythrocytes. FEBS Lett 1998; 427:21-4. [PMID: 9613592 DOI: 10.1016/s0014-5793(98)00384-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Due to their multivalent binding character, lectins when added exogenously will cross-link membrane surface receptors leading to lateral molecular reorganizations in the plane of the bilayer. This study reports for the first time that agglutination of rabbit erythrocytes by lentil lectin and concanavalin A increases their osmofragility. Increase in osmofragility was detected by measuring the hemolysis of erythrocytes in hypotonic as well as in isotonic solutions. It was also found that agglutination per se does not increase osmofragility but the binding of legume lectin is essential since human Rh+ cells agglutinated by a monoclonal antibody do not exhibit hemolysis.
Collapse
Affiliation(s)
- A H Pande
- School of Life Sciences, Devi Ahilya Vishwavidyalaya Vigyan Bhawan, Khandwa Road Campus, Indore, M.P., India
| | | | | | | |
Collapse
|
45
|
Khoo HE, Chen D, Yuen R. Role of free thiol groups in the biological activities of stonustoxin, a lethal factor from stonefish (Synanceja horrida) venom. Toxicon 1998; 36:469-76. [PMID: 9637366 DOI: 10.1016/s0041-0101(97)00152-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stonustoxin (SNTX) is a two-subunit protein purified from the venom of a stonefish, Synanceia horrida. It has potent lethal activity and is also a membrane pore-forming cytolysin. The role of thiol groups in the biological activities of SNTX was investigated. Both the hemolytic and lethal activities of SNTX were potentiated by the reducing agent, dithiothreitol (DTT). The hemolytic activity of SNTX was sensitive to the modification of thiol groups by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB). The loss of haemolytic activity correlated with the number of thiol groups that were titrated with DTNB. Thiol modification of SNTX with DTNB also inhibited its lethality. These inhibitory effects of thiol modification could be reversed by reduction with DTT. It was also found that the haemolytic activity of SNTX could not be inhibited by cholesterol. These observations indicate that free thiol groups play an important role in the haemolytic activity and lethality of SNTX but unlike other thiol-activated cytolysins, SNTX was not inhibited by cholesterol. Thus, SNTX may represent a new class of cytolytic toxin.
Collapse
Affiliation(s)
- H E Khoo
- Department of Biochemistry, Faculty of Medicine, National University of Singapore, Kent Ridge, Singapore
| | | | | |
Collapse
|