1
|
Kwathai M, Taemaitree L, Roytrakul S, Daduang S, Klaynongsruang S, Jangpromma N. Siamese crocodile serum hydrolysate peptides: Potent tyrosinase inhibitors and melanogenesis regulators for hyperpigmentation. Int J Biol Macromol 2025; 303:140582. [PMID: 39900149 DOI: 10.1016/j.ijbiomac.2025.140582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Melanin safeguards cells from UV radiation, while also giving them colour (pigmentation). However, excessive melanin production (hyperpigmentation) can cause unwanted side effects such as skin freckles and food browning. As a result, there is a desire to control and in particular reduce melanin production. This study aims to identify bioactive peptides derived from Crocodylus siamensis serum that inhibit tyrosinase, which is a key enzyme in melanin production. We demonstrate hydrolysis of Crocodylus siamensis serum produces peptides that are potent inhibitors of tyrosinase. We demonstrate that alkaline hydrolysis is the most effective method (IC50 = 0.4323 ± 0.049 μg/μL) and use peptidomic analysis to identify two peptides, HG8 (HIVGRGAG) and RI10 (RNIKASHILI), that are as effective alone as the serum hydrolysate. Our results show that both peptides could inhibit cellular tyrosinase activity and reduce melanin accumulation by down-regulating the expression levels of MITF, TYR, TRP1 and TRP2, which are key regulators of melanogenesis. The peptides also reduce the expression levels of Rab27A, MLPH, Myosin Va, Rab17 and gp100, suggesting they suppress melanosome maturation and transport. Furthermore, both peptides show antioxidant properties in B16F10 cells. These findings hold significant promise for the development of tyrosinase inhibitory peptides as therapeutic agents for hyperpigmentation.
Collapse
Affiliation(s)
- Mintra Kwathai
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Forensic Science Program, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisachon Jangpromma
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
2
|
Patil AS, Patil AS, Ugare P, Jain E, Masareddy RS. Advancements in hyperpigmentation management: exploring conventional methods, phytoconstituents, novel approaches, and instrumental techniques. J COSMET LASER THER 2025; 27:1-16. [PMID: 39871800 DOI: 10.1080/14764172.2025.2455157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Hyperpigmentation is a common dermatological condition characterized by the darkening of patches of skin compared to the surrounding areas. It can occur in individuals of all skin types and ethnicities, and is caused by an overproduction or accumulation of melanin, the pigment responsible for the color of our skin, hair, and eyes. This comprehensive overview aims to delve into the various types, causes, risk factors, clinical manifestations, diagnosis, and treatment options for hyperpigmentation. Additionally, it explores the global and national prevalence of hyperpigmentation, its etiology, pathophysiology and diagnosis and treatment strategies. Furthermore, examines the formulations and dosage forms used to treat hyperpigmentation, including their side effects. It also discusses combination drugs and their associated side effects, as well as novel drug delivery systems and nanocarriers employed in the treatment of hyperpigmentation, providing insight into future prospects in this field.
Collapse
Affiliation(s)
- Arpana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Archana S Patil
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Pratik Ugare
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Esha Jain
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Rajashree S Masareddy
- Department of Pharmaceutics, KLE College of Pharmacy Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| |
Collapse
|
3
|
Jujjavarapu SE, Mishra A. Unravelling the Role of Tyrosine and Tyrosine Hydroxylase in Parkinson's Disease: Exploring Nanoparticle-based Gene Therapies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:325-339. [PMID: 39812066 DOI: 10.2174/0118715273336139241211071748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 01/16/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that results from the progressive loss of neurons in the brain followed by symptoms such as slowness and rigidity in movement, sleep disorders, dementia and many more. The different mechanisms due to which the neuronal degeneration occurs have been discussed, such as mutation in PD related genes, formation of Lewy bodies, oxidation of dopamine. This review discusses current surgical treatment and gene therapies with novel developments proposed for PD. Gene therapy based on novel approaches will possess more potential advantages over the conventional methods. Currently, gene therapy for such disorders is still under the process of clinical trials and approval. The pathogenesis comes from the breakdown of dopaminergic neurons within substantia nigra (SN) by the action of tyrosinase enzyme and subsequent accumulation of α-synuclein within the neurons. These dopaminergic neurons are the main source of dopamine, the decline of which is responsible for the symptoms. So, gene therapy can possibly provide more stable supplementation and regulate the expression of tyrosinase enzyme, providing better symptomatic relief and lesser side effects. Dopamine replacement therapy is a wellstudied gene therapy method for PD. Another approach involves introducing functional genes for enzymes such as tyrosine hydroxylase, cyclohydrolases, and decarboxylases with the help of engineered vectors such as AAV and LV. Further, the potential application of nanoparticles in gene therapy as an efficient gene delivery and imaging system has been discussed. Among these, lipidbased nanoparticles such as PILs offer important benefits in terms of enhanced bioavailability, permeability to the cells, and solubility. So, this review paper summarizes some of the advanced gene therapy approaches for PD and the current status of clinical research in the development of gene therapy using nanoparticles.
Collapse
Affiliation(s)
| | - Arnav Mishra
- Department of Biotechnology, National Institute of Technology, Raipur, 492001, India
| |
Collapse
|
4
|
Kim JH, Kang DJ, Seok JY, Kim MH, Kim DS, Jeon SB, Choi HD, Moon JI, Kim N, Kim HR. Exposure to Radiofrequency Electromagnetic Fields Enhances Melanin Synthesis by Activating the P53 Signaling Pathway in Mel-Ab Melanocytes. Int J Mol Sci 2024; 25:12457. [PMID: 39596520 PMCID: PMC11595227 DOI: 10.3390/ijms252212457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
The skin is the largest body organ that can be physiologically affected by exposure to radiofrequency electromagnetic fields (RF-EMFs). We investigated the effect of RF-EMFs on melanogenesis; Mel-Ab melanocytes were exposed to 1760 MHz radiation with a specific absorption rate of 4.0 W/kg for 4 h/day over 4 days. Exposure to the RF-EMF led to skin pigmentation, with a significant increase in melanin production in Mel-Ab melanocytes. The phosphorylation level of cAMP response element binding protein (CREB) and the expression of microphthalmia-associated transcription factor (MITF), which regulate the expression of tyrosinase, were significantly increased in Mel-Ab after RF-EMF exposure. Interestingly, the expression of tyrosinase was significantly increased, but tyrosinase activity was unchanged in the RF-EMF-exposed Mel-Ab cells. Additionally, the expression of p53 and melanocortin 1 receptor (MC1R), which regulate MITF expression, was significantly increased. These results suggest that the RF-EMF induces melanogenesis by increasing phospho-CREB and MITF activity. Importantly, when Mel-Ab cells were incubated at 38 °C, the melanin production and the levels of tyrosinase significantly decreased, indicating that the increase in melanin synthesis by RF-EMF exposure is not due to a thermal effect. In conclusion, RF-EMF exposure induces melanogenesis in Mel-Ab cells through the increased expression of tyrosinase via the activation of MITF or the phosphorylation of CREB, which are initiated by the activation of p53 and MC1R.
Collapse
Affiliation(s)
- Ju Hwan Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Dong-Jun Kang
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Jun Young Seok
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| | - Mi-Hye Kim
- Department of Medical Laser, Graduate School, Dankook University, Cheonan 31116, Republic of Korea;
| | - Dong-Seok Kim
- Department of Biochemistry, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea;
| | - Sang-Bong Jeon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Hyung-Do Choi
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Jung Ick Moon
- Radio and Broadcasting Technology Laboratory, ETRI, Daejeon 34129, Republic of Korea; (S.-B.J.); (H.-D.C.); (J.I.M.)
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Hak Rim Kim
- Department of Pharmacology, College of Medicine, Dankook University, Cheonan 31116, Republic of Korea; (J.H.K.); (D.-J.K.); (J.Y.S.)
| |
Collapse
|
5
|
Saito R, Shinozaki Y, Tabata K, Nishinaka Y, Yokoyama K, Kon R, Sakai H, Hosoe T, Ikarashi N. Tokishakuyakusan alleviates ultraviolet-induced skin pigmentation by decreasing the expression of melanogenesis-related enzymes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118348. [PMID: 38762211 DOI: 10.1016/j.jep.2024.118348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tokishakuyakusan (TSS), a traditional Kampo medicine, can effectively alleviate symptoms unique to women, such as menstrual pain and menopausal symptoms, and this effect is believed to be related to its ability to increase the secretion of female hormones. TSS is also believed to be effective against skin pigmentation. However, no studies have examined the effect of TSS on pigmentation. AIM OF THE STUDY In this study, we conducted basic research to determine the effects of TSS on pigmentation. MATERIALS AND METHODS Female HRM-2 mice were given free access to a normal diet or a TSS-containing diet for 7 weeks. For 3 weeks starting from the 4th week of treatment, the back of the skin was irradiated with ultraviolet (UV) light, and the melanin level was measured. The expression levels of melanogenesis-related genes and inflammatory markers in the skin were analyzed. RESULTS The melanin level in the skin of the mice exposed to UV radiation was approximately three times greater than that in the skin of the mice in the non-UV-irradiated group, confirming pigmentation due to UV irradiation. The protein expression levels of tyrosinase (Tyr), tyrosinase-related protein-1 (Tyrp1), and dopachrome tautomerase (Dct), which are important for melanin production, were significantly greater in the UV irradiation group than in the non-UV irradiation group. In contrast, the amount of skin melanin in the mice treated with TSS was significantly lower than that in the UV-irradiated group, and the expression levels of melanogenesis-related enzymes were also lower. Furthermore, TSS significantly decreased the expression of microphthalmia transcription factor (Mitf), a transcription factor for melanogenesis-related enzymes, and the inflammatory cytokines interleukin-1β and interleukin-6. CONCLUSIONS TSS inhibits melanin production in melanocytes by suppressing the increase in the expression of melanogenesis-related enzymes caused by UV irradiation. These findings suggested that this effect of TSS is exerted through the combined regulation of MITF expression and anti-inflammatory responses.
Collapse
Affiliation(s)
- Rinka Saito
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Yui Shinozaki
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Keito Tabata
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Yui Nishinaka
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Koki Yokoyama
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Risako Kon
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Hiroyasu Sakai
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | - Tomoo Hosoe
- Department of Biomolecular Pharmacology, Hoshi University, Japan
| | | |
Collapse
|
6
|
Fan F, Chen L, Chen C, Ang S, Gutkowski J, Seeram NP, Ma H, Li D. Prenylated flavonoids from Sophora flavescens inhibit mushroom tyrosinase activity and modulate melanogenesis in murine melanoma cells and zebrafish. Front Pharmacol 2024; 15:1422310. [PMID: 39050754 PMCID: PMC11266098 DOI: 10.3389/fphar.2024.1422310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Sophora flavescens, a traditional Chinese medicine for treating conditions associated with abnormal skin pigmentation, contains flavonoids with inhibitory effects on tyrosinase. However, their mechanisms of action and their modulatory effects on melanogenesis remain unclear. Methods: Herein, a group of prenylated flavonoids was identified from S. flavescens extracts and their inhibitory activities on mushroom tyrosinase were evaluated. The anti-melanogenesis effects of these prenylated flavonoids were investigated in cellular (with murine melanoma cells) and animal (with zebrafish) models. Results: Prenylated flavonoids including isoanhydroicaritin (IAI), kurarinone (KR), and sophoraflavanone G (SG) were the major active constituents in S. flavescens extracts with anti-tyrosinase activity (IC50 = 0.7, 7.1, and 6.7 μM, respectively). Enzyme kinetic assays showed that IAI, KR, and SG had a mixed type of tyrosinase inhibition, supported by data from computational docking. Notably, KR at concentrations of 5 and 10 μM enhanced intracellular tyrosinase activity and stimulated melanin production in B16F10 cells, whereas SG and IAI did not exhibit significant activity. Further studies with the zebrafish model showed that IAI (80 and 160 μM) inhibited melanin biosynthesis by about 30.0% while KR (20 μM) stimulated melanogenesis by 36.9%. Furthermore, a zebrafish depigmentation model supported the anti-melanogenesis effect of IAI (80 and 160 μM) by 33.0% and 34.4%, respectively. Conclusion: In summary, IAI was identified as a tyrosinase inhibitor with an anti-melanogenic effect and KR was an enhancer for melanin production in B16F10 cells and zebrafish. Findings from the current study suggest that IAI and KR from S. flavescens may exert contrasting effects in the modulation of melanin production, providing important insights into the development of S. flavescens as a cosmeceutical or medicinal ingredient.
Collapse
Affiliation(s)
- Fenling Fan
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Lanqing Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Caihong Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Song Ang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
| | - Justin Gutkowski
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Dongli Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, Guangdong, China
| |
Collapse
|
7
|
Kim M, Lim KM. DEHP (di(2-ethylhexyl)phthalate) stimulates skin pigmentation by perturbing cytoskeletal homeostasis. Toxicol Res 2024; 40:487-497. [PMID: 38911535 PMCID: PMC11187019 DOI: 10.1007/s43188-024-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Phthalates are extensively employed plasticizers crucial for conferring flexibility and plasticity to polyvinyl chloride. Phthalates, including DEHP (di(2-ethylhexyl)phthalate), present in diverse products, have been identified in fine dust and are capable of infiltrating the body, potentially posing health hazards. Importantly, melanocytes, existing at the basal layer of the epidermis, are susceptible to toxic substances. In our study, we employed the 3D human pigmented epidermis model, MelanoDerm™, along with the B16F10 murine melanoma cell line, to examine the influence of DEHP exposure on melanocytes. The exposure to low concentrations of DEHP (~ 5 μM), resulted in the extension of melanocyte dendrites, indicating the stimulation of melanocytes. Analysis of gene expression and protein profiles unveiled the up-regulation of MITF, Arpc2, and TRP1 genes subsequent to DEHP exposure, indicating alterations in cytoskeletal and melanosome-related genetic and protein components in melanocytes. Notably, increased pigmentation was observed in MelanoDerm™ following DEHP exposure. DEHP-stimulated reactive oxygen species generation appeared to be involved in these events since the antioxidant, ascorbic acid attenuated ROS generation and MITF upregulation. Collectively, our study demonstrated that DEHP exposure can induce cytoskeletal disturbance and skin pigmentation through oxidative stress.
Collapse
Affiliation(s)
- Minjeong Kim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
8
|
Bae S, Lee JN, Hyun CG. Anti-Melanogenic and Anti-Inflammatory Effects of 2'-Hydroxy-4',6'-dimethoxychalcone in B16F10 and RAW264.7 Cells. Curr Issues Mol Biol 2024; 46:6018-6040. [PMID: 38921030 PMCID: PMC11202956 DOI: 10.3390/cimb46060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Chalcone is a type of flavonoid compound that is widely biosynthesized in plants. Studies have shown that consuming flavonoids from fruits and vegetables or applying individual ingredients reduces the risk of skin disease. However, the effects of chalcone on melanogenesis and inflammation have not been fully investigated. The aim of this study was to evaluate the anti-melanogenic and anti-inflammatory effects of 2'-hydroxy-3,4'-dimethoxychalcone (3,4'-DMC), 2'-hydroxy-4,4'-dimethoxychalcone (4,4'-DMC), 2'-hydroxy-3',4'-dimethoxychalcone (3',4'-DMC), and 2'-hydroxy-4',6'-dimethoxychalcone (4',6'-DMC). Among the derivatives of 2'-hydroxy-4'-methoxychalcone, 4',6'-DMC demonstrated the most potent melanogenesis-inhibitory and anti-inflammatory effects. As evidenced by various biological assays, 4',6'-DMC showed no cytotoxicity and notably decreased the expression of tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2 enzymes. Furthermore, it reduced cellular melanin content and intracellular tyrosinase activity in B16F10 melanoma cells by downregulating microphthalmia-associated transcription factor (MITF), cAMP-dependent protein kinase (PKA), cAMP response element-binding protein (CREB), p38, c-Jun N-terminal kinase (JNK), β-catenin, glycogen synthase kinase-3β (GSK3β), and protein kinase B (AKT) proteins, while upregulating extracellular signal-regulated kinase (ERK) and p-β-catenin. Additionally, treatment with 4',6'-DMC significantly mitigated the lipopolysaccharide (LPS)-induced expression of NO, PGE2, inflammatory cytokines, COX-2, and iNOS proteins. Overall, 4',6'-DMC treatment notably alleviated LPS-induced damage by reducing nuclear factor kappa B (NF-κB), p38, JNK protein levels, and NF-kB/p65 nuclear translocation. Finally, the topical applicability of 4',6'-DMC was evaluated in a preliminary human skin irritation test and no adverse effects were found. These findings suggest that 4',6'-DMC may offer new possibilities for use as functional ingredients in cosmeceuticals and ointments.
Collapse
Affiliation(s)
- Sungmin Bae
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jung-No Lee
- Bio Convergence R&D Center, CoSeedBioPharm Corporation, Heungdeok-gu, Cheongju 28161, Republic of Korea;
| | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea;
| |
Collapse
|
9
|
Choi YS, Hong JG, Lim DY, Kim MS, Park SH, Kang HC, Seo WS, Lee J. Small Peptide Derived from SFRP5 Suppresses Melanogenesis by Inhibiting Wnt Activity. Curr Issues Mol Biol 2024; 46:5420-5435. [PMID: 38920996 PMCID: PMC11201734 DOI: 10.3390/cimb46060324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Melanocytes, located in the epidermis' basal layer, are responsible for melanin pigment production, crucial for skin coloration and protection against UV radiation-induced damage. Melanin synthesis is intricately regulated by various factors, including the Wnt signaling pathway, particularly mediated by the microphthalmia-associated transcription factor (MITF). While MITF is recognized as a key regulator of pigmentation, its regulation by the Wnt pathway remains poorly understood. This study investigates the role of Sfrp5pepD, a peptide antagonist of the Wnt signaling pathway, in modulating melanogenesis and its potential therapeutic implications for pigmentary disorders. To tackle this issue, we investigated smaller peptides frequently utilized in cosmetics or pharmaceuticals. Nevertheless, there is a significant scarcity of reports on peptides associated with melanin-related signal modulation or inhibiting melanin production. Results indicate that Sfrp5pepD effectively inhibits Wnt signaling by disrupting the interaction between Axin-1 and β-catenin, thus impeding downstream melanogenic processes. Additionally, Sfrp5pepD suppresses the interaction between MITF and β-catenin, inhibiting their nuclear translocation and downregulating melanogenic enzyme expression, ultimately reducing melanin production. These inhibitory effects are validated in cell culture models suggesting potential clinical applications for hyperpigmentation disorders. Overall, this study elucidates the intricate interplay between Wnt signaling and melanogenesis, highlighting Sfrp5pepD as a promising therapeutic agent for pigmentary disorders. Sfrp5pepD, with a molecular weight of less than 500 Da, is anticipated to penetrate the skin unlike SFRPs. This suggests a strong potential for their use as cosmetics or transdermal absorption agents. Additional investigation into its mechanisms and clinical significance is necessary to enhance its effectiveness in addressing melanin-related skin conditions.
Collapse
Affiliation(s)
- Yoon-Seo Choi
- Graduate School-Interdisciplinary Program in Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jin-Gwen Hong
- Research and Development Department, Benex Co., Ltd., Cheongju 28118, Republic of Korea;
| | - Dong-Young Lim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Min-Seo Kim
- R&D Center, Supadelixir Co., Ltd., Chuncheon 24232, Republic of Korea; (D.-Y.L.); (M.-S.K.)
| | - Sang-Hoon Park
- Department of Plastic Surgery, ID Hospital, Gangnam 06039, Republic of Korea;
| | - Hee-Cheol Kang
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Won-Sang Seo
- Materials Division Affiliated Research Center, GFC Life Science Co., Ltd., Hwaseong 18471, Republic of Korea;
| | - Jongsung Lee
- Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
10
|
Zhu Y, Li Q. Mitf involved in shell pigmentation by activating tyrosinase-mediated melanin synthesis in Pacific oyster (Crassostrea gigas). Gene 2024; 897:148086. [PMID: 38104952 DOI: 10.1016/j.gene.2023.148086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
Pigmentation is frequently observed in the molluscan shells, whereas the molecular regulation about these shell pigments formation is not clear. The microphthalmia-associated transcription factor (Mitf) is an important transactivator in melanin synthesis in vertebrates. Here, the Mitf containing a highly conserved basic helix-loop-helixleucine zipper (bHLH-LZ) domain was identified in an economically important marine bivalve Pacific oyster Crassostrea gigas. The Mitf was found to widespread tissue distribution and the expression was higher in the marginal mantle than in the central mantle. Particularly, the expression level of Mitf was high in black shell color oysters compared with white shell oysters. After injecting siRNA, the expression of Mitf decreased significantly, and the efficiency of RNA interference reached 53%. Besides, knockdown Mitf obviously decreased expression of tyrosinase family genes and tyrosinase activity of mantles, indicating a potential regulatory relationship between Mitf and Tyr or Typs. Simultaneously, there was a sharply reduce in the number of the melanosomes in the outer fold of mantle by silencing of Mitf. Luciferase assays in cell culture further verified that Mitf was involved in transcriptional regulation of Typ-2 and Typ-3 genes through binding to their specific promoter regions. These data argue that Mitf is involved in shell pigmentation through activating tyrosinase-mediated melanin synthesis in C. gigas.
Collapse
Affiliation(s)
- Yijing Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Marine Science Research Institute of Shandong Province (National Oceanographic Center, Qingdao), Qingdao 266104, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
11
|
Tanaka Y, Sato-Matsubara M, Tsuruta D, Tanaka H, Kadono C, Sugawara K, Kawada N, Wakamatsu K, Ito S, Yoshizato K. Cytoglobin functions as a redox regulator of melanogenesis in normal epidermal melanocytes. Pigment Cell Melanoma Res 2024; 37:276-285. [PMID: 37920136 DOI: 10.1111/pcmr.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023]
Abstract
Epidermal melanocytes are continuously exposed to sunlight-induced reactive oxygen species (ROS) and oxidative stress generated during the synthesis of melanin. Therefore, they have developed mechanisms that maintain normal redox homeostasis. Cytoglobin (CYGB), a ubiquitously expressed intracellular iron hexacoordinated globin, exhibits antioxidant activity and regulates the redox state of mammalian cells through its activities as peroxidase and nitric oxide (NO) dioxygenase. We postulated that CYGB functions in the melanogenic process as a regulator that maintains oxidative stress within a physiological level. This was examined by characterizing normal human melanocytes with the knockdown (KD) of CYGB using morphological and molecular biological criteria. CYGB-KD cells were larger, had more dendrites, and generated more melanin granules in the advanced stages of melanogenesis than control cells. The expression levels of major melanogenesis-associated genes and proteins were higher in CYGB-KD melanocytes than in wild type (WT) cells. As expected, CYGB-KD melanocytes generated more ROS and NO than WT cells. In conclusion, CYGB physiologically contributes to maintaining redox homeostasis in the melanogenic activity of normal melanocytes by controlling the intracellular levels of ROS and NO.
Collapse
Affiliation(s)
- Yo Tanaka
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Misako Sato-Matsubara
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Donated Synthetic Biology Laboratory, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Tanaka
- Research Laboratories, Nippon Menard Cosmetic Co., Ltd., Nagoya, Japan
| | - Chiho Kadono
- Donated Synthetic Biology Laboratory, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Japan
| | - Katsutoshi Yoshizato
- Donated Synthetic Biology Laboratory, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
12
|
Kim HY, Do HY, Park S, Kim KW, Min D, Lee EY, Shim D, Cho SY, Park JO, Lee CS, Nam SJ, Ko J. 2,4,6-Triphenyl-1-hexene, an Anti-Melanogenic Compound from Marine-Derived Bacillus sp. APmarine135. Mar Drugs 2024; 22:72. [PMID: 38393043 PMCID: PMC10890162 DOI: 10.3390/md22020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Although melanin protects against ultraviolet radiation, its overproduction causes freckles and senile lentigines. Recently, various biological effects of metabolites derived from marine microorganisms have been highlighted due to their potential for biological and pharmacological applications. In this study, we discovered the anti-melanogenic effect of Bacillus sp. APmarine135 and verified the skin-whitening effect. Fractions of APmarine135 showed the melanin synthesis inhibition effect in B16 melanoma cells, and 2,4,6-triphenyl-1-hexene was identified as an active compound. The melanogenic capacity of 2,4,6-triphenyl-1-hexene (1) was investigated by assessing the intracellular melanin content in B16 cells. Treatment with 5 ppm of 2,4,6-triphenyl-1-hexene (1) for 72 h suppressed the α-melanocyte-stimulating hormone (α-MSH)-induced intracellular melanin increase to the same level as in the untreated control group. Additionally, 2,4,6-triphenyl-1-hexene (1) treatment suppressed the activity of tyrosinase, the rate-limiting enzyme for melanogenesis. Moreover, 2,4,6-triphenyl-1-hexene (1) treatment downregulated tyrosinase, Tyrp-1, and Tyrp-2 expression by inhibiting the microphthalmia-associated transcription factor (MITF). Furthermore, 2,4,6-triphenyl-1-hexene (1) treatment decreased the melanin content in the three-dimensional (3D) human-pigmented epidermis model MelanoDerm and exerted skin-whitening effects. Mechanistically, 2,4,6-triphenyl-1-hexene (1) exerted anti-melanogenic effects by suppressing tyrosinase, Tyrp-1, and Tyrp-2 expression and activities via inhibition of the MITF. Collectively, these findings suggest that 2,4,6-triphenyl-1-hexene (1) is a promising anti-melanogenic agent in the cosmetic industry.
Collapse
Affiliation(s)
- Hye Yeon Kim
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Hye-Yeon Do
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Saitbyul Park
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Keon Woo Kim
- Department of Natural Product Laboratory, Daebong LS Co., Ltd., Incheon 21697, Republic of Korea; (K.W.K.); (J.O.P.)
| | - Daejin Min
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Eun-Young Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Dabin Shim
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Sung Yeon Cho
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| | - Jin Oh Park
- Department of Natural Product Laboratory, Daebong LS Co., Ltd., Incheon 21697, Republic of Korea; (K.W.K.); (J.O.P.)
| | - Chang Seok Lee
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam 13135, Republic of Korea; (H.Y.K.); (D.S.)
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea; (H.-Y.D.); (E.-Y.L.)
| | - Jaeyoung Ko
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Yongin 17074, Republic of Korea; (S.P.); (D.M.); (S.Y.C.)
| |
Collapse
|
13
|
McFadden A, Martin K, Foster G, Vierra M, Lundquist EW, Everts RE, Martin E, Volz E, McLoone K, Brooks SA, Lafayette C. Two Novel Variants in MITF and PAX3 Associated With Splashed White Phenotypes in Horses. J Equine Vet Sci 2023; 128:104875. [PMID: 37406837 DOI: 10.1016/j.jevs.2023.104875] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Mutations causing depigmentation are relatively common in Equus caballus (horse). Over 40 alleles in multiple genes are associated with increased white spotting (as of February 2023). The splashed white phenotype, a coat spotting pattern described as appearing like the horse has been splashed with white paint, was previously associated with variants in the PAX3 and MITF genes. Both genes encode transcription factors known to control melanocyte migration and pigmentation. We report two novel mutations, a stop-gain mutation in PAX3 (XM_005610643.3:c.927C>T, ECA6:11,196,181, EquCab3.0) and a missense mutation in a binding domain of MITF (NM_001163874.1:c.993A>T, ECA16:21,559,940, EquCab3.0), each with a strong association with increased depigmentation in Pura Raza Española horses (P = 1.144E-11, N = 30, P = 4.441E-16, N = 39 respectively). Using a quantitative method to score depigmentation, the PAX3 and MITF mutations were found to have average white scores of 25.50 and 24.45, respectively, compared to the average white coat spotting score of 1.89 in the control set. The functional impact for each mutation was predicted to be moderate to extreme (I-TASSER, SMART, Variant Effect Predictor, SIFT). We propose to designate the MITF mutant allele as Splashed White 9 and the PAX3 mutant allele as Splashed White 10 per convention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Samantha A Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL
| | | |
Collapse
|
14
|
Rus AA, Militaru IV, Popa I, Munteanu CVA, Sima LE, Platt N, Platt FM, Petrescu ȘM. NPC1 plays a role in the trafficking of specific cargo to melanosomes. J Biol Chem 2023; 299:105024. [PMID: 37423302 PMCID: PMC10407747 DOI: 10.1016/j.jbc.2023.105024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.
Collapse
Affiliation(s)
- Alina Adriana Rus
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana V Militaru
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Ioana Popa
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Cristian V A Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Bucharest, Romania
| | - Livia Elena Sima
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania
| | - Nick Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Ștefana M Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Bucharest, Romania.
| |
Collapse
|
15
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
16
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
17
|
SMILE Downregulation during Melanogenesis Induces MITF Transcription in B16F10 Cells. Int J Mol Sci 2022; 23:ijms232315094. [PMID: 36499416 PMCID: PMC9738925 DOI: 10.3390/ijms232315094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
SMILE (small heterodimer partner-interacting leucine zipper protein) is a transcriptional corepressor that potently regulates various cellular processes such as metabolism and growth in numerous tissues. However, its regulatory role in skin tissue remains uncharacterized. Here, we demonstrated that SMILE expression markedly decreased in human melanoma biopsy specimens and was inversely correlated with that of microphthalmia-associated transcription factor (MITF). During melanogenesis, α-melanocyte-stimulating hormone (α-MSH) induction of MITF was mediated by a decrease in SMILE expression in B16F10 mouse melanoma cells. Mechanistically, SMILE was regulated by α-MSH/cAMP/protein kinase A signaling and suppressed MITF promoter activity via corepressing transcriptional activity of the cAMP response element-binding protein. Moreover, SMILE overexpression significantly reduced α-MSH-induced MITF and melanogenic genes, thereby inhibiting melanin production in melanocytes. Conversely, SMILE inhibition increased the transcription of melanogenic genes and melanin contents. These results indicate that SMILE is a downstream effector of cAMP-mediated signaling and is a critical factor in the regulation of melanogenic transcription; in addition, they suggest a potential role of SMILE as a corepressor in skin pigmentation.
Collapse
|
18
|
Kline CD, Anderson M, Bassett JW, Kent G, Berryman R, Honeggar M, Ito S, Wakamatsu K, Indra AK, Moos PJ, Leachman SA, Cassidy PB. MITF Is Regulated by Redox Signals Controlled by the Selenoprotein Thioredoxin Reductase 1. Cancers (Basel) 2022; 14:5011. [PMID: 36291795 PMCID: PMC9600194 DOI: 10.3390/cancers14205011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
TR1 and other selenoproteins have paradoxical effects in melanocytes and melanomas. Increasing selenoprotein activity with supplemental selenium in a mouse model of UV-induced melanoma prevents oxidative damage to melanocytes and delays melanoma tumor formation. However, TR1 itself is positively associated with progression in human melanomas and facilitates metastasis in melanoma xenografts. Here, we report that melanocytes expressing a microRNA directed against TR1 (TR1low) grow more slowly than control cell lines and contain significantly less melanin. This phenotype is associated with lower tyrosinase (TYR) activity and reduced transcription of tyrosinase-like protein-1 (TYRP1). Melanoma cells in which the TR1 gene (TXNRD1) was disrupted using Crispr/Cas9 showed more dramatic effects including the complete loss of the melanocyte-specific isoform of MITF; other MITF isoforms were unaffected. We provide evidence that TR1 depletion results in oxidation of MITF itself. This newly discovered mechanism for redox modification of MITF has profound implications for controlling both pigmentation and tumorigenesis in cells of the melanocyte lineage.
Collapse
Affiliation(s)
- Chelsey D. Kline
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Madeleine Anderson
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John W. Bassett
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Gail Kent
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Berryman
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Matthew Honeggar
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake 470-1192, Japan
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, USA
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Philip J. Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sancy A. Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pamela B. Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
19
|
Hong C, Yang L, Zhang Y, Li Y, Wu H. Epimedium brevicornum Maxim. Extract exhibits pigmentation by melanin biosynthesis and melanosome biogenesis/transfer. Front Pharmacol 2022; 13:963160. [PMID: 36249817 PMCID: PMC9557186 DOI: 10.3389/fphar.2022.963160] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
Epimedium brevicornum Maxim. (Epimedii Folium) is a traditional medicine widely utilized in China for sexual dysfunction and osteoporosis treatment. Recently, studies have reported that Epimedium flavonoid icariin displayed hair growth and melanogenic ability by targeting tyrosinase activity. Nevertheless, icariin hydrolysate icariside II and icaritin cause depigmentation due to their tyrosinase inhibition. These pigment functional discrepancies from Epimedium constituents arouse our great interest. Then, this study focused on the pigmentation effects of Epimedii Folium extract (EFE) on melanin synthesis and melanosome biogenesis/transfer, and further identified the bioactive constituents. First, in in vitro systemic studies, we discovered that the potent melanogenic and repigmented effects of EFE were dependent on concentration and amount of time in multi-melanocytes, normal human skin tissue, and vitiligo perilesional areas. In vivo, EFE exhibited repigmented effect on two kinds of depigmented models of N-phenylthiourea-induced zebrafish and hydroquinone-induced mice. Mechanistically, EFE strongly promoted tyrosinase activity and upregulated the protein expression of tyrosinase families which finally contribute to melanin biosynthesis by activating the MAPK/ERK1/2 signal pathway. In addition, EFE effectively increased melanosome number, accelerated melanosome maturity and cytoplasmic transport through the growth/extension of melanocyte dendrites, and induced melanosome transfer from melanocyte to keratinocyte for pigmentation. The six main flavonoid ingredients were identified among EFE. Compared to others, epimedin B (EB) was confirmed as a high-content, low-toxicity, and effective melanogenic compound in EFE. Taking all these together, this study systematically demonstrates the potential pigmentation effect of Epimedium brevicornum Maxim., and clarifies its related molecular mechanisms and melanogenesis basis. These results give additional insight into Epimedium herb pharmacology and may provide a novel therapy basis for hypopigmentation disorders.
Collapse
Affiliation(s)
- Chen Hong
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Department of Dermatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifan Zhang
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Li
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| | - Huali Wu
- Department of TCM Chemistry, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Wu, ; Yiming Li,
| |
Collapse
|
20
|
Baek EJ, Ha YB, Kim JH, Lee KW, Lim SS, Kang NJ. Dehydroglyasperin D Suppresses Melanin Synthesis through MITF Degradation in Melanocytes. J Microbiol Biotechnol 2022; 32:982-988. [PMID: 35909194 PMCID: PMC9628959 DOI: 10.4014/jmb.2207.07043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022]
Abstract
Licorice (Glycyrrhiza) has been used as preventive and therapeutic material for hyperpigmentation disorders. Previously, we isolated noble compounds including dehydroglyasperin C (DGC), dehydroglyasperin D (DGD) and isoangustone A (IAA) from licorice hexane/ethanol extracts. However, their anti-melanogenic effects and underlying molecular mechanisms are unknown. The present study compared effects of DGC, DGD and IAA on pigmentation in melan-a melanocytes and human epidermal melanocytes (HEMn). DGD exerted the most excellent anti-melanogenic effect, followed by DGC and IAA at non-cytotoxic concentrations. In addition, DGD significantly inhibited tyrosinase activity in vitro cell-free system and cell system. Western blot result showed that DGD decreased expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein-1 (TRP-1) in melan-a cells and HEMn cells. DGD induced phosphorylation of MITF, ERK and Akt signal pathway promoting MITF degradation system. However, DGD did not influence p38 and cAMP-dependent protein kinase (PKA)/CREB signal pathway in melan-a cells. These result indicated that DGD inhibited melanogenesis not only direct regulation of tyrosinase but also modulating intracellular signaling related with MITF level. Collectively, these results suggested a protective role for DGD against melanogenesis.
Collapse
Affiliation(s)
- Eun Ji Baek
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu-Bin Ha
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji Hye Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, Republic of Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5753 Fax: +82-53-950-6750 E-mail:
| |
Collapse
|
21
|
Oh E, Kim HJ, Lee D, Kang JH, Kim HG, Han SH, Baek NI, Kim KT. 8-Methoxybutin inhibits α-MSH induced melanogenesis and proliferation of skin melanoma by suppression of the transactivation activity of microphthalmia-associated transcription factor. Biomed Pharmacother 2022; 152:113272. [PMID: 35716437 DOI: 10.1016/j.biopha.2022.113272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is highly expressed in melanocytes and is the main regulator of melanogenesis and melanocyte cell fate. Although MITF is important for the differentiation and development of melanocytes, it is also considered an oncogene of skin melanoma. Based on these findings, MITF could be an attractive therapeutic target for skin cancer intervention. This study identified 8-methoxybutin as an inhibitor of MITF and investigated the underlying mechanism. 8-Methoxybutin inhibited α-MSH-induced melanogenesis in murine melanoma cells (B16F10) and skin melanoma proliferation by reducing melanogenic gene expression via blockade of the transactivation activity of MITF. In silico docking analysis and pull-down analysis suggested that 8-methoxybutin binds to the DNA-binding domain of MITF and further inhibits its binding to the E-box in the promoter of target genes, including tyrosinase. In addition, 8-methoxybutin suppressed growth of skin melanoma in a xenograft mouse model. These results indicate that 8-methoxybutin has potential as a therapeutic agent for hyperpigmentation disorder and skin cancer. SIGNIFICANCE STATEMENT: 8-Methoxybutin inhibits MITF transactivation activity resulting suppression of melanogenesis and skin melanoma growth.
Collapse
Affiliation(s)
- Eunji Oh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Hyo Jin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Jeong Hwa Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Hyung Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Seung Hyun Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Nam In Baek
- Graduate School of Biotechnology and Department of Oriental Medicine Biotechnology, Kyung Hee University, Yongin, South Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, South Korea.
| |
Collapse
|
22
|
Amorphigenin from Amorpha fruticosa L. Root Extract Induces Autophagy-Mediated Melanosome Degradation in mTOR-Independent- and AMPK-Dependent Manner. Curr Issues Mol Biol 2022; 44:2856-2867. [PMID: 35877420 PMCID: PMC9318381 DOI: 10.3390/cimb44070196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the depigmentation effect of Amorpha fruticosa L. root extract (RE), an herbal medicine. A. fruticosa RE significantly induced depigmentation in α-MSH-treated B16F10 cells at noncytotoxic concentrations. Further, the RE decreased the protein levels of the melanosomal proteins Tyr and Pmel without decreasing their transcript levels. We found that MG132, a proteasome complex inhibitor, was unable to rescue the protein levels, but PepA/E-64D (a lysosomal enzyme inhibitor), 3-MA (a representative autophagy inhibitor), and ATG5 knockdown effectively rescued the protein levels and inhibited the depigmentation effect following RE treatment. Among rotenoids, amorphigenin composed in the RE was identified as a functional chemical that could induce depigmentation; whereas rapamycin, an mTOR inhibitor and a nonselective autophagy inducer, could not induce depigmentation, and amorphigenin effectively induced depigmentation through the degradation of melanosomal proteins. Amorphigenin activated AMPK without affecting mTOR, and knockdown of AMPK offset the whitening effect through degradation of melanosome proteins by amorphigenin. Results from this study suggested that amorphigenin can induce degradation of the melanosome through an AMPK-dependent autophagy process, and has the potential to be used as a depigmentation agent for the treatment of hyperpigmentation.
Collapse
|
23
|
Al Robaee AA, Alzolibani AA, Rasheed Z. MicroRNA-183-5p regulates MITF expression in vitiligo skin depigmentation. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:703-723. [PMID: 35442159 DOI: 10.1080/15257770.2022.2066126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a master regulatory factor for melanocytes. MITF regulates multiple pigmentary genes for maintaining cellular homeostasis. MicroRNAs (miRNAs) play crucial roles in numerous biological processes however their molecular/cellular mechanisms to regulate pigmentation have not been fully explored. This study was undertaken to investigate the role of miRNAs in skin depigmentation via regulation of MITF gene. Depigmentation in C57BL/6 black mice was induced by an autoimmune response against tyrosinase. Bioinformatics approach was used to detect miRNAs conserved in 3'untraslated region (3'UTR) of MITF mRNA. The iMC23 mouse melanocytes were used for transfection experiments. The data demonstrated that the MITF mRNA/protein was markedly low in lesional skin of depigmented mice (p < 0.05). Targetscan genomic database determined that 3'UTR of mouse MITF constitutes 4819 nucleotide bases and has 23 conserved sites for different miRNAs To validate the pairing of these predicted miRNAs with MITF mRNA, five miRNAs were deregulated in lesional skin (p < 0.05). Among them, mmu-miR-181a-5p and mmu-miR-183-5p were up-regulated, whereas mmu-miR-26a-5p, mmu-miR-26b-5p and mmu-miR-32-5p were down-regulated (p < 0.05). To verify these results, the iMC23 mouse melanocytes were used. Transfection of iMC23 cells with specific miRNAs mimics or inhibitors or with 3'UTR reporter clone of MITF, showed only mmu-miR-183-5p binds to 3'UTR of MITF mRNA and regulates its expression in iMC23 melanocytes. In conclusions, this is the first study shows that miR-183-5p is a direct regulator of MITF in iMC23 melanocytes. Thus, miR-183-5p is an important regulator of melanocytes homeostasis and may be a novel target for autoimmune depigmentation therapy.
Collapse
Affiliation(s)
- Ahmad A Al Robaee
- Department of Dermatology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
24
|
Wang Y, Duan T, Hong M, Zhou Y, Huang H, Xiao X, Zheng J, Zhou H, Lu Z. Quantitative proteomic analysis uncovers inhibition of melanin synthesis by silk fibroin via MITF/tyrosinase axis in B16 melanoma cells. Life Sci 2021; 284:119930. [PMID: 34480938 DOI: 10.1016/j.lfs.2021.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022]
Abstract
AIMS Silk fibroin (SF), a natural product from silkworms, has been used to promote anti-inflammation, induce wound healing, and reduce melanin production. However, the underlying regulatory mechanism of SF on melanin production remains unknown. The aim of this study was to investigate the distinct regulatory mechanism of SF in B16 melanoma cells by applying quantitative proteomic approach. MATERIALS AND METHODS B16 melanoma cells were treated with PBS, KA or SF for 48 h, respectively. Cell viability, melanin content, and tyrosinase activity were examined. A label-free quantitative proteomic approach was utilized to investigate the regulatory mechanism of SF. The differentially expressed proteins and their related biological processes were subsequently identified by bioinformatics methods. Furthermore, the identified differentially expressed proteins were validated by western blot. KEY FINDINGS Both SF and KA were able to suppress the melanin synthesis of B16 melanoma cells without appreciable toxicity; yet, SF had a distinct effect on mushroom tyrosinase activity in vitro. Moreover, quantitative proteomic approach identified 141 proteins differentially expressed only in SF/Con group. Bioinformatic analysis of these proteins revealed that oxidation-reduction process, RNA processing, fatty acid degradation, as well as melanin biosynthetic process were enriched with SF treatment. The proteins associated with melanin biosynthetic process, including microphthalmia-associated transcription factor (MITF) and tyrosinase, were down-regulated in SF group, which was confirmed by western blot. SIGNIFICANCE SF inhibited melanin synthesis in B16 melanoma cells via down-regulation of MITF and tyrosinase expression, which provides a rationale for future utilization of SF.
Collapse
Affiliation(s)
- Yuqiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tianbi Duan
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Minhua Hong
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China
| | - Yanting Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Huang
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jing Zheng
- School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China; School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Hu Zhou
- Department of Analytical Chemistry, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Number 19A Yuquan Road, Beijing 100049, China.
| | - Zhi Lu
- Technology Center, Shanghai Inoherb Co. Ltd, 121 Chengyin Road, Shanghai 200083, China.
| |
Collapse
|
25
|
Park JS, Ko K, Kim SH, Lee JK, Park JS, Park K, Kim MR, Kang K, Oh DC, Kim SY, Yumnam S, Kwon HC, Shin J. Tropolone-Bearing Sesquiterpenes from Juniperus chinensis: Structures, Photochemistry and Bioactivity. JOURNAL OF NATURAL PRODUCTS 2021; 84:2020-2027. [PMID: 34236881 DOI: 10.1021/acs.jnatprod.1c00321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The tropolone-bearing sesquiterpenes juniperone A (1) and norjuniperone A (2) were isolated from the folk medicinal plant Juniperus chinensis, and their structures were determined by a combination of spectroscopic and crystallographic methods. Photojuniperones A1 (3) and A2 (4), bearing bicyclo[3,2,0]heptadienones derived from tropolone, were photochemically produced and structurally identified by spectroscopic methods. Predicted by the machine learning-based assay, 1 significantly inhibited the action of tyrosinase. The new compounds also inhibited lipid accumulation and enhanced the extracellular glycerol excretion.
Collapse
Affiliation(s)
- Jae Sung Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seong-Hwan Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jae Kyun Lee
- Neuro-Medicine, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jin-Soo Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Mi Ri Kim
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Silvia Yumnam
- Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Hak Cheol Kwon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST) Gangneung Institute, Gangneung 25451, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
26
|
Abstract
Melanoma is the deadliest form of skin cancer. While clinical developments have significantly improved patient prognosis, effective treatment is often obstructed by limited response rates, intrinsic or acquired resistance to therapy, and adverse events. Melanoma initiation and progression are associated with transcriptional reprogramming of melanocytes to a cell state that resembles the lineage from which the cells are specified during development, that is the neural crest. Convergence to a neural crest cell (NCC)-like state revealed the therapeutic potential of targeting developmental pathways for the treatment of melanoma. Neural crest cells have a unique sensitivity to metabolic dysregulation, especially nucleotide depletion. Mutations in the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) particularly affect neural crest-derived tissues and cause Miller syndrome, a genetic disorder characterized by craniofacial malformations in patients. The developmental susceptibility of the neural crest to nucleotide deficiency is conserved in melanoma and provides a metabolic vulnerability that can be exploited for therapeutic purposes. We review the current knowledge on nucleotide stress responses in neural crest and melanoma and discuss how the recent scientific advances that have improved our understanding of transcriptional regulation during nucleotide depletion can impact melanoma treatment.
Collapse
Affiliation(s)
- Audrey Sporrij
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Leonard I Zon
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.,Harvard Stem Cell Institute, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
27
|
Boo YC. Arbutin as a Skin Depigmenting Agent with Antimelanogenic and Antioxidant Properties. Antioxidants (Basel) 2021; 10:antiox10071129. [PMID: 34356362 PMCID: PMC8301119 DOI: 10.3390/antiox10071129] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 12/27/2022] Open
Abstract
Arbutin is a compound of hydroquinone and D-glucose, and it has been over 30 years since there have been serious studies on the skin lightening action of this substance. In the meantime, there have been debates and validation studies about the mechanism of action of this substance as well as its skin lightening efficacy and safety. Several analogs or derivatives of arbutin have been developed and studied for their melanin synthesis inhibitory action. Formulations have been developed to improve the stability, transdermal delivery, and release of arbutin, and device usage to promote skin absorption has been developed. Substances that inhibit melanin synthesis synergistically with arbutin have been explored. The skin lightening efficacy of arbutin alone or in combination with other active ingredients has been clinically evaluated. Combined therapy with arbutin and laser could give enhanced depigmenting efficacy. The use of arbutin causes dermatitis rarely, and caution is recommended for the use of arbutin-containing products, especially from the viewpoint that hydroquinone may be generated during product use. Studies on the antioxidant properties of arbutin are emerging, and these antioxidant properties are proposed to contribute to the skin depigmenting action of arbutin. It is hoped that this review will help to understand the pros and cons of arbutin as a cosmetic ingredient, and will lead to future research directions for developing advanced skin lightening and protecting cosmetic products.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
28
|
Park CH, Kim G, Lee Y, Kim H, Song MJ, Lee DH, Chung JH. A natural compound harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway. J Dermatol Sci 2021; 103:16-24. [PMID: 34030962 DOI: 10.1016/j.jdermsci.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Melanin plays important roles in determining human skin color and protecting human skin cells against harmful ultraviolet light. However, abnormal hyperpigmentation in some areas of the skin may become aesthetically unpleasing, resulting in the need for effective agents or methods to regulate undesirable hyperpigmentation. OBJECTIVE We investigated the effect of harmine, a natural harmala alkaloid belonging to the beta-carboline family, on melanin synthesis and further explored the signaling pathways involved in its mechanism of action. METHODS Human MNT-1 melanoma cells and human primary melanocytes were treated with harmine, chemical inhibitors, small interfering RNAs, or mammalian expression vectors. Cell viability, melanin content, and expression of various target molecules were assessed. RESULTS Harmine decreased melanin synthesis and tyrosinase expression in human MNT-1 melanoma cells. Inhibition of DYRK1A, a harmine target, decreased melanin synthesis and tyrosinase expression. Further studies revealed that nuclear translocation of NFATC3, a potential DYRK1A substrate, was induced via the harmine/DYRK1A pathway and that NFATC3 knockdown increased melanin synthesis and tyrosinase expression. Suppression of melanin synthesis and tyrosinase expression via the harmine/DYRK1A pathway was significantly attenuated by NFATC3 knockdown. Furthermore, harmine also decreased melanin synthesis and tyrosinase expression through regulation of NFATC3 in human primary melanocytes. CONCLUSION Our results indicate that harmine decreases melanin synthesis through regulation of the DYRK1A/NFATC3 pathway and suggest that the DYRK1A/NFATC3 pathway may be a potential target for the development of depigmenting agents.
Collapse
Affiliation(s)
- Chi-Hyun Park
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Goeun Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Yuri Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Haesoo Kim
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Min Ji Song
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University Graduate School, Seoul Republic of Korea; Institute on Aging, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. Human TYRP1: Two functions for a single gene? Pigment Cell Melanoma Res 2021; 34:836-852. [PMID: 33305505 DOI: 10.1111/pcmr.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Mélodie Migault
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Bachelot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Sébastien Corre
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,CHU Rennes, Génétique Moléculaire et Génomique, UMR 6290, F-35000, Rennes, France
| | - David Gilot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,INSERM U1242, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
30
|
Kim JH, Lee JE, Kim T, Yeom MH, Park JS, di Luccio E, Chen H, Dong Z, Lee KW, Kang NJ. 7,3',4'-Trihydroxyisoflavone, a Metabolite of the Soy Isoflavone Daidzein, Suppresses α-Melanocyte-Stimulating Hormone-Induced Melanogenesis by Targeting Melanocortin 1 Receptor. Front Mol Biosci 2020; 7:577284. [PMID: 33344501 PMCID: PMC7747307 DOI: 10.3389/fmolb.2020.577284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 11/13/2022] Open
Abstract
7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is a metabolite of daidzein which is a representative isoflavone found in soybean. Recent studies suggested that 7,3',4'-THIF exerts a hypopigmentary effect in B16F10 cells, however, its underlying molecular mechanisms and specific target protein remain unknown. Here, we found that 7,3',4'-THIF, but not daidzein, inhibited α-melanocyte-stimulating hormone (MSH)-induced intracellular and extracellular melanin production in B16F10 cells by directly targeting melanocortin 1 receptor (MC1R). Western blot data showed that 7,3',4'-THIF inhibited α-MSH-induced tyrosinase, tyrosinase-related protein-1 (TYRP-1), and tyrosinase-related protein-2 (TYRP-2) expressions through the inhibition of Microphthalmia-associated transcription factor (MITF) expression and cAMP response element-binding (CREB) phosphorylation. 7,3',4'-THIF also inhibited α-MSH-induced dephosphorylation of AKT and phosphorylation of p38 and cAMP-dependent protein kinase (PKA). cAMP and Pull-down assays indicated that 7,3',4'-THIF strongly inhibited forskolin-induced intracellular cAMP production and bound MC1R directly by competing with α-MSH. Moreover, 7,3',4'-THIF inhibited α-MSH-induced intracellular melanin production in human epidermal melanocytes (HEMs). Collectively, these results demonstrate that 7,3',4'-THIF targets MC1R, resulting in the suppression of melanin production, suggesting a protective role for 7,3',4'-THIF against melanogenesis.
Collapse
Affiliation(s)
- Ji Hye Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea.,Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Taewon Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Myung Hun Yeom
- Amorepacific Corporation R&D Center, Skin Research Institute, Yongin, South Korea
| | - Jun Seong Park
- Amorepacific Corporation R&D Center, Skin Research Institute, Yongin, South Korea
| | - Eric di Luccio
- Department of Genetic Engineering, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ki Won Lee
- World Class University Biomodulation Major, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea.,Advanced Institutes of Convergence Technology, Seoul National University, Suwon, South Korea.,Research Institute of Bio Food Industry, Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
31
|
CMT-308, a Nonantimicrobial Chemically-Modified Tetracycline, Exhibits Anti-Melanogenic Activity by Suppression of Melanosome Export. Biomedicines 2020; 8:biomedicines8100411. [PMID: 33066033 PMCID: PMC7601524 DOI: 10.3390/biomedicines8100411] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
CMT-308 is a nonantimicrobial chemically-modified tetracycline (CMT), which we have previously shown exhibits antifungal activity and pleiotropic anti-inflammatory activities, including inhibition of the enzymatic activity of matrix metalloproteinases (MMPs). Based on its chemical structure, we hypothesized that CMT-308 could inhibit melanogenesis and might be a candidate for the treatment of skin hyperpigmentation disorders which occur due to unregulated melanin biosynthesis and/or transport. CMT-308 was first studied for any effects on activity of the enzyme tyrosinase in vitro using a purified preparation of mushroom tyrosinase; the mode of inhibition of the soluble fungal enzyme was evaluated by Lineweaver-Burk and Dixon plots as well as by non-linear least squares fitting. Next, the effects of CMT-308 were tested in mammalian cell cultures using B16F10 mouse melanoma cells and further validated in darkly-pigmented human melanocytes (HEMn-DP). Our results showed that micromolar concentrations of CMT-308 inhibited mushroom tyrosinase enzyme activity, using the first two substrates in the melanogenesis pathway (l-tyrosine and l-3,4-dihydroxyphenylalanine (l-DOPA)); CMT-308 inhibited mushroom tyrosinase primarily via a mixed mode of inhibition, with the major contribution from a competitive mode. In B16F10 cell cultures, CMT-308 (10 µM) significantly diminished total melanin levels with a selective reduction of extracellular melanin levels, under both basal and hormone-stimulated conditions without any cytotoxicity over a duration of 72 h. Studies of potential mechanisms of inhibition of melanogenesis in B16F10 cells showed that, in mammalian cells, CMT-308 did not inhibit intracellular tyrosinase activity or the activity of α-glucosidase, an enzyme that regulates maturation of tyrosinase. However, CMT-308 suppressed MITF protein expression in B16F10 cells and showed copper chelating activity and antioxidant activity in a cell-free system. The significantly lower extracellular melanin levels obtained at 10 µM indicate that CMT-308’s anti-melanogenic action may be attributed to a selective inhibition of melanosome export with the perinuclear aggregation of melanosomes, rather than a direct effect on the tyrosinase-catalyzed steps in melanin biosynthesis. These results were validated in HEMn-DP cells where CMT-308 suppressed dendricity in a fully reversible manner without affecting intracellular melanin synthesis. Furthermore, the capacity of CMT-308 to inhibit melanosome export was retained in cocultures of HEMn-DP and HaCaT. In summary, our results offer promise for therapeutic strategies to combat the effects of hyperpigmentation by use of CMT-308 at low micromolar concentrations.
Collapse
|
32
|
Boo YC. Up- or Downregulation of Melanin Synthesis Using Amino Acids, Peptides, and Their Analogs. Biomedicines 2020; 8:biomedicines8090322. [PMID: 32882959 PMCID: PMC7555855 DOI: 10.3390/biomedicines8090322] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 08/30/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Harmonious synthesis and distribution of melanin in the skin contribute to the expression of beauty and the maintenance of health. When skin pigmentary disorders occur because of internal or external factors or, when there is a need to artificially increase or reduce the pigmentation level of the skin for aesthetic or therapeutic purposes, various pharmacological therapies are applied but the results are not always satisfactory. Studies have been conducted to improve the efficacy and safety of these treatment strategies. In this review, we present the latest studies regarding peptides and related compounds that may be useful in artificially increasing or reducing skin melanin levels. Certain analogs of α-melanocyte stimulating hormone (MSH) and oligopeptides with the sequences derived from the hormone were shown to promote melanin synthesis in cells and in vivo models. Various amino acids, peptides, their analogs, and their hybrid compounds with other chemical moieties were shown to inhibit tyrosinase (TYR) catalytic activity or downregulate TYR gene expression. Certain peptides were shown to inhibit melanosome biogenesis or induce autophagy, leading to decreased pigmentation. In vivo and clinical evidence are available for some compounds, including [Nle4-D-Phe7]-α-MSH, glutathione disulfide, and glycinamide hydrochloride. For many other compounds, additional studies are required to verify their efficacy and safety in vivo and in clinical trials. The accumulating information regarding pro- and antimelanogenic activity of peptides and related compounds will lead to the development of novel drugs for the treatment of skin pigmentary disorders.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 41944, Korea; ; Tel.: +82-53-420-4946
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
33
|
Anti-Melanogenesis Activity of 6- O-Isobutyrylbritannilactone from Inula britannica on B16F10 Melanocytes and In Vivo Zebrafish Models. Molecules 2020; 25:molecules25173887. [PMID: 32858952 PMCID: PMC7504228 DOI: 10.3390/molecules25173887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
A potential natural melanogenesis inhibitor was discovered in the form of a sesquiterpene isolated from the flowers of Inula britannica, specifically 6-O-isobutyrylbritannilactone (IBL). We evaluated the antimelanogenesis effects of IBL on B16F10 melanocytes and zebrafish embryos. As a result, we found that 3-isobutyl-1-methylxanthine (IBMX)-induced melanin production was reduced in a dose-dependent manner in B16F10 cells by IBL. We also analyzed B16F10 cells that were and were not treated with IBMX, investigating the melanin concentration, tyrosinase activity, mRNA levels. We also studied the protein expressions of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related proteins (TRP1, and TRP2). Furthermore, we found that melanin synthesis and tyrosinase expression were also inhibited by IBL through the modulation of the following signaling pathways: ERK, phosphoinositide 3-kinase (PI3K)/AKT, and CREB. In addition, we studied antimelanogenic activity using zebrafish embryos and found that the embryos had significantly reduced pigmentation in the IBL-treated specimens compared to the untreated controls.
Collapse
|
34
|
Sun L, Guo C, Yan L, Li H, Sun J, Huo X, Xie X, Hu J. Syntenin regulates melanogenesis via the p38 MAPK pathway. Mol Med Rep 2020; 22:733-738. [PMID: 32626944 PMCID: PMC7339447 DOI: 10.3892/mmr.2020.11139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/16/2020] [Indexed: 11/06/2022] Open
Abstract
Melanogenesis is the synthesis of the skin pigment melanin, which serves a critical role in the study of pigmentary skin diseases. Syntenin has been identified as a melanosome protein, but its role in melanogenesis is not completely understood. The present study aimed to investigate the effects and mechanisms underlying syntenin on melanogenesis in immortalized human melanocytes. Depletion of syntenin expression increased both tyrosinase (Tyr) activity and melanin content. Syntenin silencing also increased the protein expression levels of Tyr, pre‑melanosomal protein and microphthalmia‑associated transcription factor. In addition, the results indicated that syntenin regulated melanogenesis by upregulating the phosphorylation of p38 mitogen‑activated protein kinase (p38 MAPK). Taken together, these findings suggested that the regulation of melanogenesis by syntenin may be mediated by the activation of p38 MAPK and that syntenin might provide new insights into the pathogenesis of pigmented diseases.
Collapse
Affiliation(s)
- Lijun Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chunyan Guo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Liting Yan
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Huijin Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an, Shaanxi 710021, P.R. China
| | - Jingying Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xueping Huo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Jun Hu
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
35
|
Hu S, Chen Y, Zhao B, Yang N, Chen S, Shen J, Bao G, Wu X. KIT is involved in melanocyte proliferation, apoptosis and melanogenesis in the Rex Rabbit. PeerJ 2020; 8:e9402. [PMID: 32596061 PMCID: PMC7306216 DOI: 10.7717/peerj.9402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/01/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Melanocytes play an extremely important role in the process of skin and coat colors in mammals which is regulated by melanin-related genes. Previous studies have demonstrated that KIT is implicated in the process of determining the color of the coat in Rex rabbits. However, the effect of KIT on the proliferation and apoptosis of melanocytes and melanogenesis has not been clarified. METHODS The mRNA and protein expression levels of KIT were quantified in different coat colored rabbits by qRT-PCR and a Wes assay. To identify whether KIT functions by regulating of melanogenesis, KIT overexpression and knockdown was conducted in melanocytes, and KIT mRNA expression and melanin-related genes TYR, MITF, PMEL and DCT were quantified by qRT-PCR. To further confirm whether KIT influences melanogenesis in melanocytes, melanin content was quantified using NaOH lysis after overexpression and knockdown of KIT. Melanocyte proliferation was estimated using a CCK-8 assay at 0, 24, 48 and 72 h after transfection, and the rate of apoptosis of melanocytes was measured by fluorescence-activated cell sorting. RESULTS KITmRNA and protein expression levels were significantly different in the skin of Rex rabbits with different color coats (P < 0.05), the greatest levels observed in those with black skin. The mRNA expression levels of KIT significantly affected the mRNA expression of the pigmentation-related genes TYR, MITF, PMEL and DCT (P < 0.01). Melanin content was evidently regulated by the change in expression patterns of KIT (P < 0.01). In addition, KIT clearly promoted melanocyte proliferation, but inhibited apoptosis. CONCLUSIONS Our results reveal that KIT is a critical gene in the regulation of melanogenesis, controlling proliferation and apoptosis in melanocytes, providing additional evidence for the mechanism of pigmentation of animal fur.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinyu Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Guolian Bao
- Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
36
|
Park KY, Kim J. Synthesis and Biological Evaluation of the Anti-Melanogenesis Effect of Coumaric and Caffeic Acid-Conjugated Peptides in Human Melanocytes. Front Pharmacol 2020; 11:922. [PMID: 32625101 PMCID: PMC7311773 DOI: 10.3389/fphar.2020.00922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
Excessive pigmentation and reduced elasticity are the major skin problems that dermatologists and cosmetologists address. Compounds that inhibit melanin production might contribute to improving skin problems. In this study, we investigated whether coumaric acid- and caffeic acid-conjugated peptides might affect alpha-melanocyte stimulating hormone-induced melanin production, tyrosinase activity, and melanin synthesis-related gene expression in SK-MEL-2 human melanoma cells. Coumaric acid and caffeic acid showed no significant cytotoxicity, and they inhibited melanin production. In addition, coumaric acid- and caffeic acid-conjugated peptides suppressed tyrosinase activity more than arbutin, a known tyrosinase inhibitor. Quantitative real-time PCR (qRT-PCR) results also showed that both peptides inhibited the expression of melanin synthesis-related genes, TYR, TYRP1, TYRP2, and MITF. In particular, among the nine conjugated peptides tested, caffeic acid linked to a Gly-Gly-Gly linker and conjugated to the tripeptide, ARP, showed the greatest inhibition of gene expression in the qRT-PCR analysis. These results suggested that the inhibition of melanin exerted by coumaric acid- and caffeic acid-conjugated peptides might provide important information for the development of pigmentation-related skin diseases and cosmetic products.
Collapse
Affiliation(s)
- Kyeong-Yong Park
- Department of Integrated Material's Development, CHA Meditech Co., Ltd, Daejeon, South Korea
| | - Jiyeon Kim
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan, South Korea
| |
Collapse
|
37
|
Bruders R, Van Hollebeke H, Osborne EJ, Kronenberg Z, Maclary E, Yandell M, Shapiro MD. A copy number variant is associated with a spectrum of pigmentation patterns in the rock pigeon (Columba livia). PLoS Genet 2020; 16:e1008274. [PMID: 32433666 PMCID: PMC7239393 DOI: 10.1371/journal.pgen.1008274] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 04/09/2020] [Indexed: 12/15/2022] Open
Abstract
Rock pigeons (Columba livia) display an extraordinary array of pigment pattern variation. One such pattern, Almond, is characterized by a variegated patchwork of plumage colors that are distributed in an apparently random manner. Almond is a sex-linked, semi-dominant trait controlled by the classical Stipper (St) locus. Heterozygous males (ZStZ+ sex chromosomes) and hemizygous Almond females (ZStW) are favored by breeders for their attractive plumage. In contrast, homozygous Almond males (ZStZSt) develop severe eye defects and often lack plumage pigmentation, suggesting that higher dosage of the mutant allele is deleterious. To determine the molecular basis of Almond, we compared the genomes of Almond pigeons to non-Almond pigeons and identified a candidate St locus on the Z chromosome. We found a copy number variant (CNV) within the differentiated region that captures complete or partial coding sequences of four genes, including the melanosome maturation gene Mlana. We did not find fixed coding changes in genes within the CNV, but all genes are misexpressed in regenerating feather bud collar cells of Almond birds. Notably, six other alleles at the St locus are associated with depigmentation phenotypes, and all exhibit expansion of the same CNV. Structural variation at St is linked to diversity in plumage pigmentation and gene expression, and thus provides a potential mode of rapid phenotypic evolution in pigeons. The genetic changes responsible for different animal color patterns are poorly understood, due in part to a paucity of research organisms that are both genetically tractable and phenotypically diverse. Domestic pigeons (Columba livia) have been artificially selected for many traits, including an enormous variety of color patterns that are variable both within and among different breeds of this single species. We investigated the genetic basis of a sex-linked color pattern in pigeons called Almond that is characterized by a sprinkled pattern of plumage pigmentation. Pigeons with one copy of the Almond allele have desirable color pattern; however, male pigeons with two copies of the Almond mutation have severely depleted pigmentation and congenital eye defects. By comparing the genomes of Almond and non-Almond pigeons, we discovered that Almond pigeons have extra copies of a chromosome region that contains a gene that is critical for the formation of pigment granules. We also found that different numbers of copies of this region are associated with varying degrees of pigment reduction. The Almond phenotype in pigeons bears a remarkable resemblance to Merle coat color mutants in dogs, and our new results from pigeons suggest that similar genetic mechanisms underlie these traits in both species. Our work highlights the role of gene copy number variation as a potential driver of rapid phenotypic evolution.
Collapse
Affiliation(s)
- Rebecca Bruders
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Hannah Van Hollebeke
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Edward J. Osborne
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Zev Kronenberg
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Emily Maclary
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Michael D. Shapiro
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
38
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
39
|
Abstract
In this study, we examined the effect of a hot-water extract of coccolithophore Pleurochrysis carterae on melanogenesis in B16F1 and B16F10 melanoma cells. P. carterae extract inhibited the α-melanocyte-stimulating hormone (α-MSH)-enhanced melanin synthesis in B16F1 melanoma cells. P. carterae also inhibited unstimulated melanin synthesis in B16F10 melanoma cells. Western blotting showed that the P. carterae extract inhibited tyrosinase and microphthalmia-associated transcription factor (MITF) in a dose-dependent manner. The reporter assay also revealed a decline in the tyrosinase promoter activity in the presence of P. carterae extract. Furthermore, quantitative real-time RT-PCR analysis showed that P. carterae extract downregulated the mRNA levels of tyrosinase and MITF. Finally, our study demonstrated that the hot-water extract of P. carterae inhibits melanin synthesis via the down-regulation of MITF mRNA level. Our findings indicate that P. carterae extract could be a possible cosmetic ingredient.
Collapse
|
40
|
Boo YC. p-Coumaric Acid as An Active Ingredient in Cosmetics: A Review Focusing on its Antimelanogenic Effects. Antioxidants (Basel) 2019; 8:E275. [PMID: 31382682 PMCID: PMC6720745 DOI: 10.3390/antiox8080275] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/16/2022] Open
Abstract
Controlling unwanted hyperpigmentation is a major challenge in dermatology and cosmetology, and safe and efficacious antimelanogenic agents are deemed useful for this purpose. p-Coumaric acid is a natural metabolite contained in many edible plants, and its antioxidant activities in reducing oxidative stress and inflammatory reactions have been demonstrated in various experimental models. p-Coumaric acid has the optimal structure to be a competitive inhibitor of tyrosinase that catalyzes key reactions in the melanin biosynthetic pathway. Experimental evidence supports this notion as it was found to be a more potent inhibitor of tyrosinase, especially toward human enzymes, than other well-known tyrosinase inhibitors such as arbutin and kojic acid. p-Coumaric acid inhibited melanin synthesis in murine melanoma cells, human epidermal melanocytes, and reconstituted three-dimensional human skin models. Ex-vivo skin permeation experiments and in-vivo efficacy tests for p-coumaric acid confirmed its efficient transdermal delivery and functional efficacy in reducing erythema development and skin pigmentation due to ultraviolet radiation exposure. Human studies further supported its effectiveness in hypopigmentation and depigmentation. These findings suggest that p-coumaric acid has good potential to be used as a skin-lightening active ingredient in cosmetics. Future studies are needed to extensively examine its safety and efficacy and to develop an optimized cosmetic formulation for the best performance in skin lightening.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea.
- BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea.
| |
Collapse
|
41
|
Dual role of laminin‑511 in regulating melanocyte migration and differentiation. Matrix Biol 2019; 80:59-71. [DOI: 10.1016/j.matbio.2018.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/22/2022]
|
42
|
Kim JH, Seok JK, Kim YM, Boo YC. Identification of small peptides and glycinamide that inhibit melanin synthesis using a positional scanning synthetic peptide combinatorial library. Br J Dermatol 2019; 181:128-137. [PMID: 30637717 DOI: 10.1111/bjd.17634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Antimelanogenic peptides are potentially useful to treat hyperpigmentation, but many peptides have limited application because of high cost and/or low activity. OBJECTIVES To identify small and potent peptide inhibitors of cellular melanin synthesis that are useful for cosmetic and medical applications. METHODS A positional scanning synthetic tetrapeptide combinatorial library was used for screening of potentially active peptides. Antimelanogenic activities of the peptide pools and individual peptides were evaluated in B16-F10 melanoma cells and human epidermal melanocytes treated with alpha-melanocyte-stimulating hormone (α-MSH). RESULTS Predicted active tetrapeptide sequences were R-(F/L)-(C/W)-(G/R)-NH2 . Of the individual tetrapeptides tested, D3 (RFWG-NH2 ) and D5 (RLWG-NH2 ) exhibited high antimelanogenic activities. Tetrapeptide D9 (FRWG-NH2 ) with a sequence identical to that of a portion of α-MSH also showed antimelanogenic activity. Of the tripeptides tested, E5 (FWG-NH2 ), E6 (LWG-NH2 ) and E7 (RWG-NH2 ) were relatively more active. Dipeptide F1 (WG-NH2 ) and monopeptide G1 (G-NH2 , glycinamide) retained activity, but G2 (Ac-G-NH2 ) and G3 (glycine) did not. The antimelanogenic activities of peptides D3, E5, F1 and G1 were verified in α-MSH-stimulated human epidermal melanocytes. Commercially available G-NH2 ·HCl suppressed the phosphorylation levels of cAMP-responsive element binding protein, protein levels of microphthalmia-associated transcription factor and tyrosinase, l-tyrosine hydroxylase activity of tyrosinase, and the melanin levels in stimulated cells. CONCLUSIONS Small peptides, including glycinamide and tryptophanyl glycinamide, are potent antimelanogenic agents with potential value for the treatment of skin hyperpigmentation.
Collapse
Affiliation(s)
- J H Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - J K Seok
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Y M Kim
- Ruby Crown Co., Ltd., Suite 505, Korea, Mediventure Center, 76 Dongnae-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Y C Boo
- Department of Molecular Medicine, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.,Ruby Crown Co., Ltd., Suite 505, Korea, Mediventure Center, 76 Dongnae-ro, Dong-gu, Daegu, 41061, Republic of Korea
| |
Collapse
|
43
|
Liu Y, Xue L, Gao H, Chang L, Yu X, Zhu Z, He X, Geng J, Dong Y, Li H, Zhang L, Wang H. Exosomal miRNA derived from keratinocytes regulates pigmentation in melanocytes. J Dermatol Sci 2019; 93:159-167. [PMID: 30904353 DOI: 10.1016/j.jdermsci.2019.02.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/28/2019] [Accepted: 02/12/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Pigmentation is controlled by complex mechanisms. Evidence suggests that miRNAs can regulate pigmentation. However, the mechanism has not been fully elucidated. Objective In this study, we revealed a novel mechanism that regulates pigmentation involving exosomes, miRNAs and the crosstalk between keratinocytes and melanocytes. METHODS The expression and localization of exosome specific marker TSG101 in keratinocytes and melanocytes; Changes of melanin content in melanocytes after co-culture of exosome and melanocytes; Expression changes of target gene TYR and its related genes and inhibitory effect of miR-330-5p on pigmentation were studied by using various molecular biological techniques. RESULTS In this experiment, we used miR-330-5p in keratinocytes to verify the effect of keratinocyte derived exosome on melanocyte pigmentation. First, we found that keratinocytes secrete exosomes carrying miR-330-5p; moreover, greater miR-330-5p expression was found in exosomes derived from keratinocytes that overexpressed miR-330-5p. Second, we found that exosomes derived from keratinocytes with overexpression of miR-330-5p caused a significant increase in miR-330-5p in melanocytes. Finally, exosomes derived from keratinocytes that overexpressed miR-330-5p induced a significant decrease in the production of melanin and expression of TYR in melanocytes. Meanwhile, we overexpressed miR-330-5p in melanocytes, which also proved the inhibitory effect of miR-330-5p on pigmentation. CONCLUSION These findings suggest that keratinocytes crosstalk with melanocytes in the epidermal melanin unit via exosomal miRNAs. These studies reveal an important role of exosomes in melanocyte pigmentation, which opens a new pathway of melanogenesis.
Collapse
Affiliation(s)
- Ying Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Linli Xue
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Hang Gao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Lucheng Chang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiuju Yu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Zhiwei Zhu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Xiaoyan He
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Jianjun Geng
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Yanjun Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, PR China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | - Liping Zhang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China; Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Haidong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China.
| |
Collapse
|
44
|
Na JI, Shin JW, Choi HR, Kwon SH, Park KC. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int J Mol Sci 2019; 20:ijms20040956. [PMID: 30813264 PMCID: PMC6412432 DOI: 10.3390/ijms20040956] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Melanin is produced in melanocytes and stored in melanosomes, after which it is transferred to keratinocytes and, thus, determines skin color. Despite its beneficial sun-protective effects, abnormal accumulation of melanin results in esthetic problems. A range of topical hypopigmenting agents have been evaluated for their use in the treatment of pigmentary disorders with varying degrees of success. Hydroquinone (HQ), which competes with tyrosine, is the main ingredient in topical pharmacological agents. However, frequent occurrence of adverse reactions is an important factor that limits its use. Thus, efforts to discover effective topical hypopigmenting agents with less adverse effects continue. Here, we describe the potential of resveratrol to function as an effective hypopigmenting agent based on its mechanism of action. Resveratrol is not only a direct tyrosinase inhibitor but an indirect inhibitor as well. Additionally, it can affect keratinocytes, which regulate the function of melanocytes. Resveratrol regulates the inflammatory process of keratinocytes and protects them from oxidative damage. In this way, it prevents keratinocyte-induced melanocyte stimulation. Furthermore, it has a rescuing effect on the stemness of interfollicular epidermal cells that can repair signs of photoaging in the melasma, a typical pigmentary skin disorder. Overall, resveratrol is a promising potent hypopigmenting agent.
Collapse
Affiliation(s)
- Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
45
|
Qiu W, Chuong CM, Lei M. Regulation of melanocyte stem cells in the pigmentation of skin and its appendages: Biological patterning and therapeutic potentials. Exp Dermatol 2019; 28:395-405. [PMID: 30537004 DOI: 10.1111/exd.13856] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Abstract
Skin evolves essential appendages and indispensable types of cells that synergistically insulate the body from environmental insults. Residing in the specific regions in the skin such as epidermis, dermis and hair follicle, melanocytes perform an array of vital functions including defending the ultraviolet radiation and diversifying animal appearance. As one of the adult stem cells, melanocyte stem cells in the hair follicle bulge niche can proliferate, differentiate and keep quiescence to control and coordinate tissue homeostasis, repair and regeneration. In synchrony with hair follicle stem cells, melanocyte stem cells in the hair follicles undergo cyclic activation, degeneration and resting phases, to pigment the hairs and to preserve the stem cells. Disorder of melanocytes results in severe skin problems such as canities, vitiligo and even melanoma. Here, we compare and summarize recent discoveries about melanocyte in the skin, particularly in the hair follicle. A better understanding of the physiological and pathological regulation of melanocyte and melanocyte stem cell behaviours will help to guide the clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Weiming Qiu
- Department of Dermatology, Wuhan General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, California.,Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Mingxing Lei
- Integrative Stem Cell Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
46
|
Jiang L, Xu Y, Zhang P, Zhang Y, Li H, Chen J, Liu S, Zeng Q. Functional MoS2 nanosheets inhibit melanogenesis to enhance UVB/X-ray induced damage. J Mater Chem B 2019. [DOI: 10.1039/c9tb00419j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We produced highly dispersed MoS2 nanosheets in water with the assistance of tryptophan (Trp) to inhibit melanogenesis by suppressing ROS production.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| | - Yanyan Xu
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Pei Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Yi Zhang
- Hunan Key Lab of Mineral Materials and Application
- Central South University
- Changsha
- China
- School of Minerals Processing and Bioengineering
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Jing Chen
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Biology
- College of Chemistry and Chemical Engineering
- Hunan University
| | - Qinghai Zeng
- Department of Dermatology
- Third Xiangya Hospital
- Central South University
- Changsha
- China
| |
Collapse
|
47
|
Liu L, Fu M, Pei S, Zhou L, Shang J. R-Fluoxetine Increases Melanin Synthesis Through a 5-HT1A/2A Receptor and p38 MAPK Signaling Pathways. Int J Mol Sci 2018; 20:ijms20010080. [PMID: 30585252 PMCID: PMC6337216 DOI: 10.3390/ijms20010080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/02/2022] Open
Abstract
Fluoxetine, a member of the class of selective serotonin reuptake inhibitors, is a racemic mixture and has an anxiolytic effect in rodents. Previously, we have shown that fluoxetine can up-regulate melanin synthesis in B16F10 melanoma cells and normal human melanocytes (NMHM). However, the role of r-fluoxetine and s-fluoxetine, in the regulation of melanin synthesis, is still unknown. Here, we show how r-fluoxetine plays a critical role in fluoxetine enhancing melanogenesis, both in vivo and vitro, by up-regulating tyrosinase (TYR) and the microphthalmia-associated transcription factor (MITF) expression, whereas, s-fluoxetine does not show any effect in the vivo and vitro systems. In addition, we found that r-fluoxetine induced melanin synthesis through the serotonin1A receptor (5-HT1A) and serotonin 2A receptor (5-HT2A). Furthermore, r-fluoxetine increased the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), without affecting the phosphorylation of extracellularly responsive kinase (ERK1/2) and c-Jun N-terminal kinase (JNK). These data suggest that r-fluoxetine may be used as a drug for skin hypopigmentation disorders.
Collapse
Affiliation(s)
- Li Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Mengsi Fu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Siran Pei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Liangliang Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
48
|
Mao J, Zhang X, Zhang W, Tian Y, Wang X, Hao Z, Chang Y. Genome-wide identification, characterization and expression analysis of the MITF gene in Yesso scallops (Patinopecten yessoensis) with different shell colors. Gene 2018; 688:155-162. [PMID: 30552980 DOI: 10.1016/j.gene.2018.11.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023]
Abstract
The microphthalmia-associated transcription factor (MITF) is the center of the regulator network of melanin synthesis in vertebrates. However, the role of MITF in shell color formation is poorly studied in mollusks. In the present study, an MITF gene, PyMITF, was first identified at the whole-genome level in Yesso scallop (Patinopecten yessoensis), an evolutionarily and economically important species, the shell color of which shows polymorphism. The PyMITF is a large gene spanning ~37 kb in the genome with 7 introns and 8 exons. A basic helix-loop-helix leucine zipper (bHLH-LZ) domain was detected in the PyMITF protein sequence, which can bind the canonical E-box sequence in the promoter region of the downstream genes. Phylogenetic analysis of the MITFs among vertebrates and invertebrates revealed that the molecular evolution of MITFs was consistent with the species taxonomy. Different expression levels of PyMITF were detected among different shell color strains, indicating the important role of PyMITF involved in shell pigmentation. Besides, PyMITF was expressed at a significantly higher level in the central mantle than that in the edge mantle, proving the participation of the central mantle in shell color formation in molecular level for the first time. The work provides valuable information for the molecular mechanism study of shell color formation.
Collapse
Affiliation(s)
- Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xiaosen Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Wenjing Zhang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
49
|
Byeon JH, Alam MB, Kim KC, Heo S, Lim JY, Kwon YG, Zhao P, Cha YH, Choi HJ, Lee SH. Anti-Melanogenic Effect of Chestnut Spike Extract through Downregulation of Tyrosinase-Related Proteins and Activation of ERK 1/2. Nat Prod Commun 2018; 13. [DOI: 10.1177/1934578x1801300825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Melanin has been reported to be the key factor for skin homeostasis. Besides defining an important human phenotypic trait, melanin overproduction may cause various disorders such as vitiligo, Addison's disease, Cushing's syndrome, and melasma. In this study, we aimed to investigate the anti-melanogenic potential of dried spike extract of chestnut. The extract inhibited tyrosinase (TYR) activity in a dose-dependent manner. Cellular melanin content decreased markedly after treatment with the extract. The spike extract inhibited microphthalmia-associated transcription factor (MITF) expression and downregulated TYR, TYRP-1, and TYRP-2 protein expression by increasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 signalling pathway in melan-a cells. In addition, treatment with U0126, a specific inhibitor of ERK, restored melanin content. Collectively, these results suggest that the chestnut spike extract attenuated melanogenesis by inhibiting MITF expression and downregulating TYR, TYRP-1, and TYRP-2 protein expressions via activation of ERK1/2 pathway.
Collapse
Affiliation(s)
- Jung-Hee Byeon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Md Badrul Alam
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Chan Kim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangsun Heo
- School of Bioconvergence, Jungbu University, Gumsan 32713, Republic of Korea
| | - Ji-young Lim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Gyung Kwon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Peijun Zhao
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong-Ho Cha
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Jeong Choi
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
50
|
Ha JH, Park SN. Mechanism underlying inhibitory effect of six dicaffeoylquinic acid isomers on melanogenesis and the computational molecular modeling studies. Bioorg Med Chem 2018; 26:4201-4208. [PMID: 30030001 DOI: 10.1016/j.bmc.2018.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/01/2018] [Accepted: 07/07/2018] [Indexed: 12/27/2022]
Abstract
Dicaffeoylquinic acid (DCQA), which contain 2 caffeic acids and a quinic acid, is 6 isomeric compounds (1,3-, 1,4-, 1,5-, 3,4-, 3,5-, and 4,5-DCQA). In this study, the mechanism underlying the inhibitory effect of DCQA isomers on melanogenesis in B16F1 murine melanoma cells stimulated by melanocyte stimulating hormone (α-MSH) was evaluated. DCQA isomers showed inhibitory effects on melanogenesis in α-MSH-stimulated B16F1 cells. Furthermore, the anti-melanogenesis activities of 1,5-DCQA and 4,5-DCQA were 61% and 84%, respectively, which were greater than that of arbutin (35%). For cell-free tyrosinase, 3,4-DCQA and 4,5-DCQA indicated high inhibitory effects, similar to the activity to arbutin (35%) at 25 μM. DCQA isomers inhibited the melanogenic enzymes including tyrosinase and dopachrome tautomerase (DCT) on α-MSH-stimulated B16F1 cells. Interestingly, 4,5-DCQA, the most potent inhibitor of melanogenesis among the six DCQA isomers, significantly downregulated the expression of microphthalmia-associated transcription factor (MITF), tyrosinase-related protein 1 (TRP1) containing tyrosinase, and DCT. In particular, the inhibitory mechanism of 4,5-DCQA on MITF expression was elucidated, revealing that 4,5-DCQA inhibits the phosphorylation of cAMP response element-binding protein (CREB) by attenuating cAMP generation during melanogenesis. A molecular docking study was conducted to elucidate the inhibitory mechanism of 4,5-DCQA on cAMP production. DCQA isomers dock to the residues of adenylyl cyclase with a distance of <3 Å, except for 1,3-DCQA. Especially, 4,5-DCQA showed Full Fitness of -1304.68 kcal/mol and △G of -8.33 kcal/mol, as well as H-bonding with adenylyl cyclase at ILE953 and LYS930 residues. In conclusion, DCQA isomers have different effects on melanogenesis depending on their structure. Especially, 4,5-DCQA has depigmentation activity through the inhibitory effect on cellular tyrosinase directly and binding effect on adenylyl cyclase, resulting in the downregulation of MITF protein, thereby reducing the expression of melanogenic enzymes.
Collapse
Affiliation(s)
- Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology 232, Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Seoul National University of Science and Technology 232, Gongneung-ro, Nowon-gu, Seoul 139-743, Republic of Korea.
| |
Collapse
|