1
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Jo YN, Park YJ, Cho JY, Cho YJ, Chae SH, Lee MR, Oh JS. ROCK and PDE-5 Inhibitors for the Treatment of Dementia: Literature Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10061348. [PMID: 35740369 PMCID: PMC9219677 DOI: 10.3390/biomedicines10061348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Dementia is a disease in which memory, thought, and behavior-related disorders progress gradually due to brain damage caused by injury or disease. It is mainly caused by Alzheimer’s disease or vascular dementia and several other risk factors, including genetic factors. It is difficult to treat as its incidence continues to increase worldwide. Many studies have been performed concerning the treatment of this condition. Rho-associated kinase (ROCK) and phosphodiesterase-5 (PDE-5) are attracting attention as pharmacological treatments to improve the symptoms. This review discusses how ROCK and PDE-5 affect Alzheimer’s disease, vascular restructuring, and exacerbation of neuroinflammation, and how their inhibition helps improve cognitive function. In addition, the results of the animal behavior analysis experiments utilizing the Morris water maze were compared through meta-analysis to analyze the effects of ROCK inhibitors and PDE-5 inhibitors on cognitive function. According to the selection criteria, 997 publications on ROCK and 1772 publications on PDE-5 were screened, and conclusions were drawn through meta-analysis. Both inhibitors showed good improvement in cognitive function tests, and what is expected of the synergy effect of the two drugs was confirmed in this review.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yu Na Jo
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yu Jin Park
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Jae Young Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Yoo Jin Cho
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Su Hyun Chae
- Department of Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea; (Y.N.J.); (Y.J.P.); (J.Y.C.); (Y.J.C.); (S.H.C.)
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea; (D.-H.L.); (J.Y.L.); (D.-Y.H.); (E.C.L.); (S.-W.P.)
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (M.R.L.); (J.S.O.)
| |
Collapse
|
2
|
Ma P, Li S, Yang H, Yuan J, Zhang Z, Li X, Fang N, Lin M, Hou Q. Comparative RNA-Seq Transcriptome Analysis on Pulmonary Inflammation in a Mouse Model of Asthma-COPD Overlap Syndrome. Front Cell Dev Biol 2021; 9:628957. [PMID: 33869177 PMCID: PMC8044804 DOI: 10.3389/fcell.2021.628957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/23/2021] [Indexed: 12/30/2022] Open
Abstract
Asthma–chronic obstructive pulmonary disease (COPD) overlap (ACO) is a severe clinical syndrome characterized to describe patients with both asthma and COPD clinical characteristics, which has posed a serious threat to patients’ quality of life and life safety. However, there are many difficulties and uncertainties in its diagnosis and treatment in clinic; especially, its animal model has not been fully and thoroughly established, and the evaluation of therapeutic drugs is still in its infancy. Here, we used ovalbumin (OVA), lipopolysaccharide (LPS), and smoke costimulation to establish an ACO mouse model and then used RNA-seq technology to detect gene expression in mouse lung tissue. The results showed that ACO mice showed an overlap syndrome of asthma and COPD in lung histological changes and the levels of inflammatory cytokines in bronchoalveolar lavage fluid. The RNA-seq analysis results showed that 6,324 differentially expressed genes (DEGs) were screened between the ACO group and the control group, of which 2,717 (42.7%) were downregulated, and 3,607 (57.3%) were upregulated. Metascape analysis results showed that in the ACO model we established, due to the damage of the respiratory system, the accumulated diseased tissue involves lung, spleen, blood, bone marrow, thymus, etc. It has certain characteristics of pneumonia, pulmonary fibrosis, and chronic obstructive airway disease, lung tumors, rheumatoid arthritis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis showed that DEGs were enriched in inflammation, immune system activation and imbalance, cell proliferation, and adhesion migration, and the upstream signaling pathways of inflammation were mainly affected by HLA-DRA, SYK, CTLA4, VAV1, NRAS, and JAK3. In short, our research established a mouse model that can better simulate the clinicopathological characteristics of ACO and suggested the foundations in elucidating the molecular mechanisms for pulmonary inflammation and fibrosis in ACO. This work may help further research and contribute substantially to prevention and clinical treatment of ACO in the future.
Collapse
Affiliation(s)
- Pei Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuyi Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hui Yang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiqiao Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ziqian Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuyu Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Nan Fang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Mingbao Lin
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Hou
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Park YH, Kim DK, Kim HS, Lee D, Lee MB, Min KY, Jo MG, Lee JE, Kim YM, Choi WS. WZ3146 inhibits mast cell Lyn and Fyn to reduce IgE-mediated allergic responses in vitro and in vivo. Toxicol Appl Pharmacol 2019; 383:114763. [PMID: 31526816 DOI: 10.1016/j.taap.2019.114763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
Abstract
Mast cells (MCs) play an important role as effector cells that cause allergic responses in allergic diseases. For these reasons, MC is considered an attractive therapeutic target for allergic disease treatment. In this study, we investigated the inhibitory effect of WZ3146, N-[3-[5-chloro-2-[4-(4-methylpiperazin-1-yl)anilino]pyrimidin-4-yl]oxyphenyl]prop-2-enamide, and the mechanisms of its actions on the MC activation and IgE-mediated allergic response by using three types of MCs such as rat basophilic leukemia (RBL)-2H3 cells, mouse bone marrow mast cells (BMMCs), and human Laboratory of Allergic Diseases 2 (LAD2) cells. WZ3146 inhibited antigen-stimulated degranulation in a dose-dependent manner (IC50, ~ 0.35 μM for RBL-2H3 cells; ~ 0.39 μM for BMMCs; ~ 0.41 for LAD2 cells). WZ3146 also suppressed the production of histamine, tumor necrosis factor (TNF)-α and interleukin (IL)-6, which mediate various allergic responses, in a dose-dependent manner. As the mechanism of WZ3146 to inhibit MCs, it inhibited the activation of spleen tyrosine kinase (Syk) and the downstream signaling proteins of Syk such as linker for activation of T cell (LAT) and phospholipase (PL) Cγ1 in the signaling pathway of FcεRI. In addition, WZ3146 inhibited the activation of Akt, extracellular signal-regulated kinase (ERK)1/2, p38, and c-Jun N-terminal kinase (JNK). However, WZ3146 did not inhibit degranulation of MCs by thapsigargin or ionomycin, which increase calcium concentration in cytosol. Notably, WZ3146 inhibited the activity of Lyn and Fyn, but not Syk. In an following animal experiment, WZ3146 inhibited IgE-dependent passive cutaneous anaphylaxis (PCA) in a dose-dependent manner (ED50, ~ 20 mg/kg). Taken together, in this study we show that the pyrimidine derivative, WZ3146, inhibits the IgE-mediated allergic response by inhibiting Lyn and Fyn Src-family kinases, which are initially activated by antigen stimulation in MCs. Therefore, we propose that WZ3146 could be used as a new therapeutic agent for the treatment of allergic diseases.
Collapse
Affiliation(s)
- Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Do Kyun Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Bum Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.
| |
Collapse
|
4
|
Abstract
INTRODUCTION Stroke is a major cause of disability and the fifth leading cause of death. Currently, the only approved acute medical treatment of ischemic stroke is tissue plasminogen activator (tPA), but its effectiveness is greatly predicated upon early administration of the drug. There is, therefore, an urgent need to find new therapeutic options for acute stroke. Areas covered: In this review, we summarize the role of Rho-associated coiled-coil containing kinase (ROCK) and its potential as a therapeutic target in stroke pathophysiology. ROCK is a major regulator of cell contractility, motility, and proliferation. Many of these ROCK-mediated processes in endothelial cells, vascular smooth muscle cells, pericytes, astrocytes, glia, neurons, leukocytes, and platelets are important in stroke pathophysiology, and the inhibition of such processes could improve stroke outcome. Expert commentary: ROCK is a potential therapeutic target for cardiovascular disease and ROCK inhibitors have already been approved for human use in Japan and China for the treatment of acute stroke. Further studies are needed to determine the role of ROCK isoforms in the pathophysiology of cerebral ischemia and whether there are further therapeutic benefits with selective ROCK inhibitors.
Collapse
Affiliation(s)
- Nikola Sladojevic
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| | - Brian Yu
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| | - James K Liao
- a Department of Medicine, Section of Cardiology , University of Chicago , Chicago , IL , USA
| |
Collapse
|
5
|
Cutucache CE, Herek TA. Burrowing through the Heterogeneity: Review of Mouse Models of PTCL-NOS. Front Oncol 2016; 6:206. [PMID: 27725924 PMCID: PMC5035739 DOI: 10.3389/fonc.2016.00206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 09/12/2016] [Indexed: 12/19/2022] Open
Abstract
Currently, there are 19 different peripheral T-cell lymphoma (PTCL) entities recognized by the World Health Organization; however, ~70% of PTCL diagnoses fall within one of three subtypes [i.e., peripheral T-cell lymphoma not otherwise specified (PTCL-NOS), anaplastic large-cell lymphoma, and angioimmunoblastic T-cell lymphoma]. PTCL-NOS is a grouping of extra-thymic neoplasms that represent a challenging and heterogeneous subset of non-Hodgkin’s lymphomas. Research into peripheral T-cell lymphomas has been cumbersome as the lack of defining cytogenetic, histological, and molecular features has stymied diagnosis and treatment of these diseases. Similarly, the lacks of genetically manipulated murine models that faithfully recapitulate disease characteristics were absent prior to the turn of the century. Herein, we review the literature concerning existing mouse models for PTLC-NOS, while paying particular attention to the etiology of this heterogeneous disease.
Collapse
|
6
|
Wang D, Zheng M, Qiu Y, Guo C, Ji J, Lei L, Zhang X, Liang J, Lou J, Huang W, Dong B, Wu S, Wang J, Ke Y, Cao X, Zhou YT, Lu L. Tespa1 negatively regulates FcεRI-mediated signaling and the mast cell-mediated allergic response. ACTA ACUST UNITED AC 2014; 211:2635-49. [PMID: 25422497 PMCID: PMC4267239 DOI: 10.1084/jem.20140470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in their degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. We show that the activation of mast cells is negatively regulated by the newly identified adaptor protein Tespa1. Loss of Tespa1 in mouse mast cells led to hyper-responsiveness to stimulation via FcεRI. Mice lacking Tespa1 also displayed increased sensitivity to IgE-mediated allergic responses. The dysregulated signaling in KO mast cells was associated with increased activation of Grb2-PLC-γ1-SLP-76 signaling within the LAT1 (linker for activation of T cells family, member 1) signalosome versus the LAT2 signalosome. Collectively, these findings show that Tespa1 orchestrates mast cell activation by tuning the balance of LAT1 and LAT2 signalosome assembly.
Collapse
Affiliation(s)
- Di Wang
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingzhu Zheng
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuanjun Qiu
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chuansheng Guo
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jian Ji
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lei Lei
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xue Zhang
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jingjing Liang
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jun Lou
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wei Huang
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Bowen Dong
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Songquan Wu
- Medical College of Lishui University, Lishui, Zhejiang 323000, China
| | - Jianli Wang
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuehai Ke
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xuetao Cao
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology and National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai 200433, China
| | - Yi Ting Zhou
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China Institute of Immunology, Program in Molecular and Cellular Biology, Department of Pathology and Pathophysiology, and Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
7
|
Ahn KB, Jeon JH, Kang SS, Chung DK, Yun CH, Han SH. IgE in the absence of allergen induces the expression of monocyte chemoattractant protein-1 in the rat basophilic cell-line RBL-2H3. Mol Immunol 2014; 62:114-21. [DOI: 10.1016/j.molimm.2014.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/28/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
|
8
|
Sato K, Suzuki T, Yamaguchi Y, Kitade Y, Nagase T, Ueda H. PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor, is tyrosine phosphorylated via the EphB2/cSrc signaling pathway. Cell Signal 2014; 26:691-6. [PMID: 24378532 DOI: 10.1016/j.cellsig.2013.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
PLEKHG2/FLJ00018, a Rho family-specific guanine nucleotide exchange factor (RhoGEF), is activated by heterotrimeric GTP-binding protein (G protein) Gβγ subunits, and in turn activates the small G protein Rac and Cdc42, which have been shown to mediate signaling pathways leading to actin cytoskeletal reorganization. In the present study, we show that co-expression of the constitutively active mutant of cSrc, a non-receptor tyrosine kinase, and PLEKHG2 induced the tyrosine phosphorylation of PLEKHG2 in HEK293 cells. Through deletion and base substitution mutagenesis we have identified Tyr489 of PLEKHG2 as the site phosphorylated by cSrc. Furthermore, using a high-throughput src homology 2 (SH2) domain binding assay, the SH2 domain of ABL1 and the PI 3-kinse regulator subunit (PIK3R3) were identified as candidates for the binding partner of tyrosine-phosphorylated PLEKHG2. The interaction between PLEKHG2 and the full-length of PIK3R3, but not ABL1, occurs in a tyrosine-phosphorylation-dependent manner. Furthermore, PLEKHG2 is tyrosine phosphorylated at Tyr489 by ephrinB2 receptor signaling via cSrc. Investigation of the physiological function of tyrosine phosphorylation at Tyr489 in PLEKHG2 remains a subject for future studies.
Collapse
Affiliation(s)
- Katsuya Sato
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Takahiro Suzuki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | | | - Yukio Kitade
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan
| | - Takahiro Nagase
- Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
9
|
Abstract
INTRODUCTION Stroke is the third leading cause of death and a major cause of long-term disability in the adult population. Growing evidence suggests that inflammation may play an important role in the evolution of stroke. Because Rho-associated coiled-coil containing kinases (ROCKs) are important mediators of inflammation, they may contribute to stroke and stroke recovery. AREAS COVERED The pathophysiological role of ROCKs in mediating inflammation at different phases of stroke, and the therapeutic opportunities for stroke prevention and stroke treatment with ROCK inhibitors will be discussed. EXPERT OPINION Inflammation is a double-edged sword during the evolution of stroke. Immunomodulation might provide a novel therapeutic approach for stroke prevention and stroke treatment. ROCK plays an important role in mediating the inflammatory response following vascular injury as well as platelet activation and thrombus formation. ROCK inhibitors have been shown to be beneficial in stroke prevention, acute neuroprotection and chronic stroke recovery by affecting inflammatory-mediated platelet and endothelial function, smooth muscle contraction and neuronal regeneration. Thus, ROCK-mediated inflammation could be a potential therapeutic target for stroke prevention and stroke treatment. However, the mechanism by which ROCKs regulate the inflammatory response is unclear, and the role of the two ROCK isoforms in stroke and stroke recovery remains to be determined.
Collapse
Affiliation(s)
- Qing Mei Wang
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Boston, MA, USA
| | | |
Collapse
|
10
|
Inhibitory effects of chitooligosaccharides on degranulation and cytokine generation in rat basophilic leukemia RBL-2H3 cells. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.12.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
El-Deeb IM, Yoo KH, Lee SH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs. Med Res Rev 2010; 31:794-818. [PMID: 20687158 DOI: 10.1002/med.20206] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ROS kinase is one of the last two remaining orphan receptor tyrosine kinases with an as yet unidentified ligand. The normal functions of human ROS kinase in different body tissues have not been fully identified so far. However, the ectopic expression, as well as the production of variable mutant forms of ROS kinase has been reported in a number of cancers, such as glioblastoma multiforme, and non-small cell lung cancer, suggesting a role for ROS kinase in deriving such tumors. It is thought also that c-ROS gene may have a role in some cardiovascular diseases, and the fact that homozygous male mice targeted against c-ROS gene are healthy but infertile, has inspired researchers to think about ROS inhibition as a method for development of new male contraceptives. The recent discovery of new selective and potent inhibitors for ROS kinase, along with the development of new specific diagnostic methods for the detection of ROS fusion proteins, raises the importance of using these selective inhibitors for targeting ROS mutations as a new method for treatment of cancers harboring such genes. This review focuses on the ectopic expression of ROS and its fusion proteins in different cancer types and highlights the importance of targeting these proteins for treatment of substantial cancers. It describes also the recent advances in the field of ROS kinase inhibition, and the potential clinical applications of ROS kinase inhibitors.
Collapse
Affiliation(s)
- Ibrahim Mustafa El-Deeb
- Life/Health Division, Korea Institute of Science and Technology, Cheongryang, Seoul, Republic of Korea; Department of Biomolecular Science, University of Science and Technology, Yuseong-gu, Daejeon, Republic of Korea
| | | | | |
Collapse
|
12
|
The ITK-SYK Fusion Oncogene Induces a T-Cell Lymphoproliferative Disease in Mice Mimicking Human Disease. Cancer Res 2010; 70:6193-204. [DOI: 10.1158/0008-5472.can-08-3719] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Elias BC, Bhattacharya S, Ray RM, Johnson LR. Polyamine-dependent activation of Rac1 is stimulated by focal adhesion-mediated Tiam1 activation. Cell Adh Migr 2010; 4:419-30. [PMID: 20448461 DOI: 10.4161/cam.4.3.12043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrin receptors cluster on the cell surface and bind to extra cellular matrix (ECM) proteins triggering the formation of focal contacts and the activation of various signal transduction pathways that affect the morphology, motility, gene expression and survival of adherent cells. Polyamine depletion prevents the increase in autophosphorylation of focal adhesion kinase (FAK) and Src during attachment. Rac activity also shows a steady decline, and its upstream guanine nucleotide exchange factor (GEF), Tiam1 also shows a reduction in total protein level when cells are depleted of polyamines. When Tiam1 and Rac1 interaction was inhibited by NSC-23766, there was not only a decrease in Rac1 activity as expected but also a decrease in FAK auto-phosphorylation. Inhibition of Src activity by PP2 also reduced FAK autophosphorylation, which implies that Src modulates FAK autophosphorylation. From the data obtained in this study we conclude that FAK and Src are rapidly activated upon fibronectin mediated signaling leading to Tiam1-mediated Rac1 activation and that intracellular polyamines influence the signaling strength by modulating interaction of Src with Tiam1 using focal adhesion kinase as a scaffolding site.
Collapse
Affiliation(s)
- Bertha C Elias
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | |
Collapse
|
14
|
Kim Y, Kim K, Lee H, Han S, Lee YS, Choe J, Kim YM, Hahn JH, Ro JY, Jeoung D. Celastrol binds to ERK and inhibits FcepsilonRI signaling to exert an anti-allergic effect. Eur J Pharmacol 2009; 612:131-42. [PMID: 19356729 DOI: 10.1016/j.ejphar.2009.03.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/18/2009] [Accepted: 03/31/2009] [Indexed: 12/22/2022]
Abstract
The role of celastrol, a triterpene extracted from the Chinese "Thunder of God Vine," in allergic inflammation was investigated. Celastrol decreased the secretion of beta-hexosaminidase, decreased the release of histamine, decreased the expression of Th2 cytokines and decreased calcium influx and cell adhesion in antigen-stimulated RBL2H3 cells. Exposure to celastrol decreased the phosphorylation of extracellular regulated kinase (ERK) and the ERK kinase activity was decreased in RBL2H3 cells. A molecular dynamics simulation showed binding of celastrol to a large pocket in ERK2, which serves as the ATP-binding site. Exposure to celastrol inhibited the interaction between immunoglobulin Fc epsilon receptor I (FcepsilonRIgamma) and ERK and inhibited interaction between FcepsilonRIgamma and protein kinase C delta (PKCdelta). Antigen stimulation induced an interaction between Rac1 and ERK as well as an interaction between Rac1 and PKCdelta. Inhibition of ERK decreased Rac1 activity and inhibition of Rac1 decreased ERK activity in antigen-stimulated RBL2H3 cells. Celastrol regulated the expression of epithelial-mesenchymal transition (EMT)-related proteins through inhibition of PKCalpha, PKCdelta, and Rac1 in antigen-stimulated RBL2H3 cells. Exposure to celatrol inhibited PKCdelta activity in antigen-stimulated RBL2H3 cells. Celastrol exerted a negative effect on FcepsilonRIbeta signaling by inhibiting the interaction between heat shock protein 90 (hsp90) and proteins, such as, FcepsilonRIbeta, Akt and PKCalpha. Celastrol exerted a negative effect on in vivo atopic dermatitis induced by 2, 4-dinitrofluorobenzene (DNFB), which requires ERK. Celastrol also showed an inhibitory effect on skin inflammation induced by phorbol myristate acetate (PMA) in Balb/c mice. In summary, celastrol binds to ERK and inhibits FcepsilonRI signaling to exert an anti-inflammatory effect.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon 200-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakata K, Yoshimaru T, Suzuki Y, Inoue T, Ra C, Yakura H, Mizuno K. Positive and negative regulation of high affinity IgE receptor signaling by Src homology region 2 domain-containing phosphatase 1. THE JOURNAL OF IMMUNOLOGY 2008; 181:5414-24. [PMID: 18832698 DOI: 10.4049/jimmunol.181.8.5414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Src homology region 2 domain-containing phosphatase 1 (SHP-1), a cytoplasmic protein tyrosine phosphatase, plays an important role for the regulation of signaling from various hematopoietic cell receptors. Although SHP-1 is shown to be a negative signal modulator in mast cells, its precise molecular mechanisms are not well defined. To elucidate how SHP-1 regulates mast cell signaling, we established bone marrow-derived mast cells from SHP-1-deficient motheaten and wild-type mice and analyzed downstream signals induced by cross-linking of high affinity IgE receptor, Fc epsilonRI. Upon Fc epsilonRI ligation, motheaten-derived bone marrow-derived mast cells showed enhanced tyrosine phosphorylation of Src homology region 2 domain-containing leukocyte protein of 76 kDa (SLP-76) and linker for activation of T cells, activation of mitogen-activated protein kinases and gene transcription and production of cytokine. Because the activity of Syk, responsible for the phosphorylation of SLP-76 and linker for activation of T cells, is comparable irrespective of SHP-1, both molecules might be substrates of SHP-1 in mast cells. Interestingly, the absence of SHP-1 expression disrupted the association between SLP-76 and phospholipase Cgamma, which resulted in the decreased phospholipase Cgamma phosphorylation, calcium mobilization, and degranulation. Collectively, these results suggest that SHP-1 regulates Fc epsilonRI-induced downstream signaling events both negatively and positively by functioning as a protein tyrosine phosphatase and as an adaptor protein contributing to the formation of signaling complex, respectively.
Collapse
Affiliation(s)
- Kazuko Nakata
- Department of Immunology and Signal Transduction, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Science, Fuchu, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Bajpai M, Chopra P, Dastidar SG, Ray A. Spleen tyrosine kinase: a novel target for therapeutic intervention of rheumatoid arthritis. Expert Opin Investig Drugs 2008; 17:641-59. [PMID: 18447591 DOI: 10.1517/13543784.17.5.641] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND In the last few years, significant progress has been made in understanding the pathogenic mechanisms and in defining the role of relevant cells and molecules in the pathophysiology of rheumatoid arthritis (RA). Various therapies, both biological (anti-TNF, anti-interleukins [e.g., IL-1]) and small molecule inhibitors have been explored for the treatment of RA. OBJECTIVE To date, no single signaling pathway inhibitor as wide acting as the corticosteroids, is known. However, treatment with corticosteroids is also associated with allied side effects. Despite a lot of efforts in the category of small molecule inhibitors, no inhibitor is available to deal with RA at both fronts (inflammation and tissue damage), without causing immense side effects. METHOD This present review explores the role of spleen tyrosine kinase (Syk) in the pathogenesis of RA and also discusses how it may meet the present day therapeutic requirements for the treatment of RA. This review gives an in-depth discussion on the role of Syk signaling in RA, the possibilities of using Syk as a target and also discusses the possible side effects that could be associated with its inhibition. CONCLUSION We propose Syk inhibition as a potential therapeutic approach for the treatment of RA.
Collapse
Affiliation(s)
- Malini Bajpai
- Department of Pharmacology, New Drug Discovery Research, Ranbaxy Research Laboratories, Plot No-20, Sector-18, Gurgaon-122001-Haryana, India.
| | | | | | | |
Collapse
|
17
|
Kato N, Motohashi S, Okada T, Ozawa T, Mashima K. PICOT, protein kinase C theta-interacting protein, is a novel regulator of FcepsilonRI-mediated mast cell activation. Cell Immunol 2008; 251:62-7. [PMID: 18479680 DOI: 10.1016/j.cellimm.2008.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 11/29/2022]
Abstract
PICOT (PKC-interacting cousin of thioredoxin) consists of one thioredoxin homology domain in the N-terminal and two tandem PICOT homology domains in the C-terminal. PICOT specifically interacts with protein kinase C theta (PKC-theta) via its thioredoxin homology domain and acts as an important modulator of T cell receptor (TCR)-signaling. Using PICOT overexpressing rat basophilic leukemia cells (RBL-2H3), we evaluated the effect of PICOT overexpression on the FcepsilonRI-mediated signaling. In comparison to the control cells, introduction of PICOT to RBL-2H3 cells induced increased degranulation and the activation of NFAT and in the expression of IL-4 and TNF-alpha transcripts by FcepsilonRI-crosslinking, whereas no significant change was observed with the elevation of ERK1/2 and p38 MAP kinase phosphorylation and NF-kappaB activation by FcepsilonRI aggregation. More interesting was the exogenous PICOT overexpression in RBL-2H3 cells causing a large decrease in the elevation of JNK phosphorylation. PICOT-regulated FcepsilonRI-mediated signals in RBL-2H3 cells and acted as a positive regulator on IL-4 and TNF-alpha expression, NFAT and degranulation signal pathways and a negative regulator on a JNK signal pathway. Considering that PICOT has no enzymatic activity, the regulation of PICOT on FcepsilonRI-signaling may depend on PICOT-associated molecule(s).
Collapse
Affiliation(s)
- Natsumi Kato
- Department of Life Science, Rikkyo (St. Paul's) University, 3-34-1, Nishi-ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | | | |
Collapse
|
18
|
Abstract
Two types of mast cells, MC(T) and MC(TC), exist in humans. MC(T) and MC(TC) are different in their granular neutral proteases, tissue localizations, and functions. This article describes the differences between the cutaneous mast cell receptors.
Collapse
Affiliation(s)
- Michihiro Hide
- Department of Dermatology, Programs for Biomedical Research, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan.
| | | | | |
Collapse
|
19
|
Zhang J, Suzuki K, Hitomi T, Siraganian RP. TOM1L1 is a Lyn substrate involved in FcepsilonRI signaling in mast cells. J Biol Chem 2007; 282:37669-77. [PMID: 17977829 DOI: 10.1074/jbc.m705168200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine kinase Lyn and Syk are critical for antigen-receptor-induced signal transduction in mast cells. To identify novel Lyn/Syk substrates, we screened an RBL-2H3 bacterial expression library for proteins that were tyrosine phosphorylated with baculoviral expressed Lyn or Syk. Five clones as potential Lyn substrates and eight clones as Syk substrates were identified including known substrates such as SLP-76, LAT, and alpha-tubulin. A potential substrate of Lyn identified was the molecule TOM1L1, which has several domains thought to be important for membrane trafficking and protein-protein interactions. Because the function of TOM1L1 is unclear, the rat TOM1L1 full-length cDNA was isolated and used to express the protein in COS-1 and RBL-2H3 mast cells. In COS-1 cells, the co-transfection of TOM1L1 and Lyn, but not Syk, resulted in the tyrosine phosphorylation of TOM1L1. In RBL-2H3 mast cells, the overexpressed TOM1L1 was strongly tyrosine phosphorylated in non-stimulated cells, and this phosphorylation was enhanced by FcepsilonRI aggregation. By subcellular fractionation, wild-type TOM1L1 was mainly in the cytoplasm with a small fraction constitutively associated with the membrane; this association was markedly reduced in deletion mutants lacking several of the protein interaction domains. The overexpression of TOM1L1 enhanced antigen-induced tumor necrosis factor (TNF) alpha generation and release. Both protein interaction domains (VHS and the coiled-coil domains) were required for the increased TNFalpha release, but not the increased TNFalpha generation. These results suggest that TOM1L1 is a novel protein involved in the FcepsilonRI signal transduction for the generation of cytokines.
Collapse
Affiliation(s)
- Juan Zhang
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, NIDCR, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Ozawa T, Nakata K, Mizuno K, Yakura H. Negative autoregulation of Src homology region 2-domain-containing phosphatase-1 in rat basophilic leukemia-2H3 cells. Int Immunol 2007; 19:1049-61. [PMID: 17675340 DOI: 10.1093/intimm/dxm070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Src homology region 2-domain-containing phosphatase-1 (SHP-1) plays an important role in the regulation of signaling from various receptors in hematopoietic cells. In mast cells, SHP-1 has been shown to negatively regulate the initial signaling triggered by high-affinity receptor for IgE (FcepsilonRI) and positively regulate downstream outputs. To clarify the molecular mechanisms of SHP-1 in mast cells, we determined substrates for SHP-1 by using the substrate-trapping approach. When phosphatase-inactive SHP-1 was over-expressed in rat basophilic leukemia (RBL)-2H3 cells, tyrosine phosphorylation of a 68-kDa protein was enhanced before and after FcepsilonRI aggregation. Immunoprecipitation and western blot analyses revealed that this protein is SHP-1, either endogenous or ectopically expressed. FcepsilonRI-induced activation of Lyn and Syk was comparable between cells expressing wild-type (wt) and phosphatase-inactive SHP-1. In vitro phosphatase assay and combined transfection, immunoprecipitation and immunoblot analyses showed that tyrosine 536 of SHP-1 was potent phosphorylation site and that SHP-1 could dephosphorylate this site that had been phosphorylated by Lyn. Furthermore, the phosphatase activity of SHP-1 immunoprecipitated from cells expressing a phosphatase-inactive SHP-1 was increased compared with that from vector-transfected or wt SHP-1-expressing cells. Finally, expression of phosphatase-inactive SHP-1 resulted in decreased activation of mitogen-activated protein kinases and suppressed transcription of cytokine genes, whereas wt SHP-1 enhanced these processes. Taken collectively, these results suggest that SHP-1 may be a physiological substrate of SHP-1 in RBL-2H3 cells and that dephosphorylation of SHP-1 leads to a decrease in its catalytic activity and an enhancement of downstream signaling. A negative autoregulatory circuit of SHP-1 may contribute to mast cell regulation.
Collapse
Affiliation(s)
- Tomoko Ozawa
- Department of Immunology and Signal Transduction, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Science, 2-6 Musashidai, Fuchu, Tokyo 183-8526, Japan
| | | | | | | |
Collapse
|
21
|
Schmitter T, Pils S, Sakk V, Frank R, Fischer KD, Hauck CR. The granulocyte receptor carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) directly associates with Vav to promote phagocytosis of human pathogens. THE JOURNAL OF IMMUNOLOGY 2007; 178:3797-805. [PMID: 17339478 DOI: 10.4049/jimmunol.178.6.3797] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The human granulocyte-specific receptor carcinoembryonic antigen-related cell adhesion molecule (CEACAM)3 is critically involved in the opsonin-independent recognition of several bacterial pathogens. CEACAM3-mediated phagocytosis depends on the integrity of an ITAM-like sequence within the cytoplasmic domain of CEACAM3 and is characterized by rapid stimulation of the GTPase Rac. By performing a functional screen with CEACAM3-expressing cells, we found that overexpression of a dominant-negative form of the guanine nucleotide exchange factor Vav, but not the dominant-negative versions SWAP70, Dock2, or ELMO1 interfered with CEACAM3-initiated phagocytosis. Moreover, small interfering RNA-mediated silencing of Vav reduced uptake and abrogated the stimulation of Rac in response to bacterial CEACAM3 engagement. In Vav1/Vav2-deficient cells, CEACAM3-mediated internalization was only observed after re-expression of Vav. Vav colocalized with CEACAM3 upon bacterial infection, coimmunoprecipitated in a complex with CEACAM3, and the Vav Src homology 2 domain directly associated with phosphorylated Tyr(230) of CEACAM3. In primary human granulocytes, TAT-mediated transduction of dominant-negative Vav, but not SWAP70, severely impaired the uptake of CEACAM3-binding bacteria. These data support the view that, different from canonical ITAM signaling, the CEACAM3 ITAM-like sequence short-wires bacterial recognition and Rac stimulation via a direct association with Vav to promote rapid phagocytosis and elimination of CEACAM-binding human pathogens.
Collapse
Affiliation(s)
- Tim Schmitter
- Zentrum für Infektionsforschung, Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Yohe ME, Rossman KL, Gardner OS, Karnoub AE, Snyder JT, Gershburg S, Graves LM, Der CJ, Sondek J. Auto-inhibition of the Dbl family protein Tim by an N-terminal helical motif. J Biol Chem 2007; 282:13813-23. [PMID: 17337446 DOI: 10.1074/jbc.m700185200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dbl-related oncoproteins are guanine nucleotide exchange factors specific for Rho-family GTPases and typically possess tandem Dbl homology (DH) and pleckstrin homology domains that act in concert to catalyze exchange. Because the ability of many Dbl-family proteins to catalyze exchange is constitutively activated by truncations N-terminal to their DH domains, it has been proposed that the activity of Dbl-family proteins is regulated by auto-inhibition. However, the exact mechanisms of regulation of Dbl-family proteins remain poorly understood. Here we show that the Dbl-family protein, Tim, is auto-inhibited by a short, helical motif immediately N-terminal to its DH domain, which directly occludes the catalytic surface of the DH domain to prevent GTPase activation. Similar to the distantly related Vav isozymes, auto-inhibition of Tim is relieved by truncation, mutation, or phosphorylation of the auto-inhibitory helix. A peptide comprising the helical motif inhibits the exchange activity of Tim in vitro. Furthermore, substitutions within the most highly conserved surface of the DH domain designed to disrupt interactions with the auto-inhibitory helix also activate the exchange process.
Collapse
Affiliation(s)
- Marielle E Yohe
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tkaczyk C, Jensen BM, Iwaki S, Gilfillan AM. Adaptive and innate immune reactions regulating mast cell activation: from receptor-mediated signaling to responses. Immunol Allergy Clin North Am 2007; 26:427-50. [PMID: 16931287 DOI: 10.1016/j.iac.2006.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this article, we have described studies that have demonstrated that mast cells can be activated as a consequence of adaptive and innate immune reactions and that these responses can be modified by ligands for other receptors expressed on the surface of mast cells. These various stimuli differentially activate multiple signaling pathways within the mast cells required for the generation and/or release of inflammatory mediators. Thus, the composition of the suite of mediators released and the physiologic ramifications of these responses are dependent on the stimuli and the microenvironment in which the mast cells are activated. Knowledge of the different signaling molecules used by cell surface receptors may allow selective pharmacologic targeting such that inhibiting the adverse effects of mast cell activation can be achieved without influencing the beneficial effects of mast cell activation. The exact interconnections between the signaling pathways initiated by the surface receptors described in this article remain to be completely worked out; thus, this remains a topic for future investigation.
Collapse
Affiliation(s)
- Christine Tkaczyk
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11C206, 10 Center Drive, MSC 1881, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
24
|
Gilfillan AM, Tkaczyk C. Integrated signalling pathways for mast-cell activation. Nat Rev Immunol 2006; 6:218-30. [PMID: 16470226 DOI: 10.1038/nri1782] [Citation(s) in RCA: 719] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mast-cell activation mediated by the high-affinity receptor for IgE (FcepsilonRI) is considered to be a key event in the allergic inflammatory response. However, in a physiological setting, other receptors, such as KIT, might also markedly influence the release of mediators by mast cells. Recent studies have provided evidence that FcepsilonRI-dependent degranulation is regulated by two complementary signalling pathways, one of which activates phospholipase Cgamma and the other of which activates phosphatidylinositol 3-kinase, using specific transmembrane and cytosolic adaptor molecules. In this Review, we discuss the evidence for these interacting pathways and describe how the capacity of KIT, and other receptors, to influence FcepsilonRI-dependent mast-cell-mediator release might be a function of the relative abilities of these receptors to activate these alternative pathways.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 10, Room 11C206, 10 Center Drive, MSC 1881, Bethesda, Maryland 20892-1881, USA.
| | | |
Collapse
|
25
|
Wong BR, Grossbard EB, Payan DG, Masuda ES. Targeting Syk as a treatment for allergic and autoimmune disorders. Expert Opin Investig Drugs 2005; 13:743-62. [PMID: 15212616 DOI: 10.1517/13543784.13.7.743] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent advances in our understanding of allergic and autoimmune disorders have begun to translate into novel, effective and safe medicines for these common maladies. Examples include an anti-IgE monoclonal antibody recently approved for severe asthmatics and the TNF-alpha antagonists that have demonstrated their ability to suppress rheumatoid arthritis, Crohn's disease and other chronic inflammatory processes. However, protein therapies are difficult and expensive to develop, manufacture and administer. Clearly, there is also a need for small-molecule inhibitors of novel targets that have safe and effective characteristics. Syk is an intracellular protein tyrosine kinase that was discovered 15 years ago as a key mediator of immunoreceptor signalling in a host of inflammatory cells including B cells, mast cells, macrophages and neutrophils. These immunoreceptors, including Fc receptors and the B-cell receptor, are important for both allergic diseases and antibody-mediated autoimmune diseases and thus pharmacologically interfering with Syk could conceivably treat these disorders. In addition, as Syk is positioned upstream in the cell signalling pathway, therapies targeting Syk may be more advantageous relative to drugs that inhibit a single downstream event. Syk inhibition during an allergic or asthmatic response will block three mast cell functions: the release of preformed mediators such as histamine, the production of lipid mediators such as leukotrienes and prostaglandins and the secretion of cytokines. In contrast, commonly used antihistamines or leukotriene receptor antagonists target only a single mediator of this complex cascade. Despite its expression in platelets and other non-haematopoietic cells, the role of Syk in regulating vascular homeostasis and other housekeeping functions is minimal or masked by redundant Syk-independent pathways. This suggests that targeting Syk would be an optimal approach to effectively treat a multitude of chronic inflammatory diseases without undue toxicity.
Collapse
Affiliation(s)
- Brian R Wong
- Rigel Pharmaceuticals, 1180 Veterans Boulevard, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
26
|
Chakrabarti K, Lin R, Schiller NI, Wang Y, Koubi D, Fan YX, Rudkin BB, Johnson GR, Schiller MR. Critical role for Kalirin in nerve growth factor signaling through TrkA. Mol Cell Biol 2005; 25:5106-18. [PMID: 15923627 PMCID: PMC1140581 DOI: 10.1128/mcb.25.12.5106-5118.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction.
Collapse
Affiliation(s)
- Kausik Chakrabarti
- University of Connecticut Health Center, Department of Neuroscience, 263 Farmington Ave., Farmington, CT 06030-4301, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Linwong W, Hirasawa N, Aoyama S, Hamada H, Saito T, Ohuchi K. Inhibition of the antigen-induced activation of rodent mast cells by putative Janus kinase 3 inhibitors WHI-P131 and WHI-P154 in a Janus kinase 3-independent manner. Br J Pharmacol 2005; 145:818-28. [PMID: 15852029 PMCID: PMC1576194 DOI: 10.1038/sj.bjp.0706240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 03/21/2005] [Accepted: 03/21/2005] [Indexed: 02/06/2023] Open
Abstract
We analyzed the effects of the Janus kinase 3 (Jak3)-specific inhibitor WHI-P131 (4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) and the Jak3/Syk inhibitor WHI-P154 (4-(3'-bromo-4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline) on the antigen-induced activation of mast cells. In the rat mast cell line RBL-2H3, both WHI-P131 and WHI-P154 inhibited the antigen-induced degranulation and phosphorylation of p44/42 mitogen-activated protein kinase (MAPK), p38 MAPK and c-Jun N-terminal kinase (JNK). The phosphorylation of Gab2, Akt and Vav was also inhibited by WHI-P131 and WHI-P154, indicating that these inhibitors suppress the activation of phosphatidylinositol 3-kinase (PI3K). In bone marrow-derived mast cells (BMMCs) from Jak3-deficient (Jak3-/-) mice, degranulation and activation of MAPKs were induced by the antigen in almost the same extent as in BMMCs from wild-type mice. In addition, the antigen-induced degranulation and activation of MAPKs were inhibited by WHI-P131 and WHI-P154 in both groups of BMMCs, indicating that these compounds inhibit a certain step except for Jak3. The antigen-induced increase in the activity of Fyn, a probable tyrosine kinase of Gab2, was also inhibited by WHI-P131 and WHI-P154 in RBL-2H3 cells. In BMMCs from Jak3-/- mice, the antigen stimulation induced tyrosine phosphorylation of Fyn, which was inhibited by WHI-P131, as well as in BMMCs from wild-type mice and in RBL-2H3 cells. These findings suggest that Jak3 does not play a significant role in the antigen-induced degranulation and phosphorylation of MAPKs, and that WHI-P131 and WHI-P154 inhibit the PI3K pathway by preventing the antigen-induced activation of Fyn, thus inhibiting the antigen-induced degranulation and phosphorylation of MAPKs in mast cells.
Collapse
Affiliation(s)
- Watchara Linwong
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Suzue Aoyama
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hirofumi Hamada
- Department of Molecular Medicine, Sapporo Medical University, S1 W17 Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology (RCAI), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuo Ohuchi
- Laboratory of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
28
|
Pan J, Kao YL, Joshi S, Jeetendran S, Dipette D, Singh US. Activation of Rac1 by phosphatidylinositol 3‐kinasein vivo: role in activation of mitogen‐activated protein kinase (MAPK) pathways and retinoic acid‐induced neuronal differentiation of SH‐SY5Y cells. J Neurochem 2005; 93:571-83. [PMID: 15836616 DOI: 10.1111/j.1471-4159.2005.03106.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Rho GTPases such as RhoA, Rac1 and Cdc42 are crucial players in the regulation of signal transduction pathways required for neuronal differentiation. Using an in vitro cell culture model of neuroblastoma SH-SY5Y cells, we demonstrated previously that RhoA is an in vivo substrate of tissue transglutaminase (TGase) and retinoic acid (RA) promoted activation of RhoA by transamidation. Although activation of RhoA promoted cytoskeletal rearrangement in SH-SY5Y cells, it was not involved in induction of neurite outgrowth. Here, we demonstrate that RA promotes activation of Rac1 in SH-SY5Y cells in a transamidation-independent manner. RA-induced activation of Rac1 is mediated by phosphatidylinositol 3-kinase (PI3K), probably because of phosphorylation of the p85 regulatory subunit by Src kinases. Over-expression of constitutively active PI3K or Rac1-V12 induces neurite outgrowth, activation of mitogen activated protein kinases (MAPKs), and expression of neuronal markers. The PI3K inhibitor LY294002, or over-expression of dominant negative Rac1-N17, blocks RA-induced neurite outgrowth, activation of MAPKs, and expression of neuronal markers, suggesting that activation of PI3K/Rac1 signaling represents a potential mechanism for regulation of neuronal differentiation in SH-SY5Y cells.
Collapse
Affiliation(s)
- Jing Pan
- Cardiovascular Research Institute, Department of Internal Medicine, The Texas A&M University System Health Science Center, College of Medicine, Temple, Texas 76504, USA
| | | | | | | | | | | |
Collapse
|
29
|
Qin H, Carr HS, Wu X, Muallem D, Tran NH, Frost JA. Characterization of the Biochemical and Transforming Properties of the Neuroepithelial Transforming Protein 1. J Biol Chem 2005; 280:7603-13. [PMID: 15611121 DOI: 10.1074/jbc.m412141200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho family small G proteins are key regulators of cytoskeletal organization and oncogenic transformation whose activation is controlled by a family of proteins known as guanine nucleotide exchange factors (GEFs). In this work we have characterized the structural and biological determinants for cytoskeletal regulation and cell transformation by the neuroepithelioma transforming gene 1 (NET1), which is a GEF specific for RhoA, but not Cdc42 or Rac1. Previously it was shown that the biological activity and nuclear localization of NET1 is controlled by its amino terminus. Here we demonstrate that the amino terminus of NET1 does not function as cis-acting autoinhibitory domain, nor does it affect the ability of full-length NET1 to stimulate actin stress fiber formation. We also show that the nuclear localization of NET1 is controlled by two separate domains within its amino terminus, only one of which contains the previously identified NLS sequences. Importantly, we find that the ability of NET1 to stimulate actin stress fiber formation does not correlate with its transforming activity, because NET1 proteins that potently stimulate stress fiber formation do not transform cells. Furthermore, the presence of a potential PDZ binding site in the C terminus of NET1 is critical to its ability to transform cells, but is not required for enzymatic activity or for effects on the actin cytoskeleton. Thus, these data highlight a divergence between the ability of NET1 to stimulate cytoskeletal reorganization and to transform cells, and implicate the interaction with PDZ domain-containing proteins as critical to NET1-dependent transformation.
Collapse
Affiliation(s)
- Huajun Qin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kawakatsu T, Ogita H, Fukuhara T, Fukuyama T, Minami Y, Shimizu K, Takai Y. Vav2 as a Rac-GDP/GTP Exchange Factor Responsible for the Nectin-induced, c-Src- and Cdc42-mediated Activation of Rac. J Biol Chem 2005; 280:4940-7. [PMID: 15485841 DOI: 10.1074/jbc.m408710200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.
Collapse
Affiliation(s)
- Tomomi Kawakatsu
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Godambe SA, Knapp KM, Meals EA, English BK. Role of vav1 in the lipopolysaccharide-mediated upregulation of inducible nitric oxide synthase production and nuclear factor for interleukin-6 expression activity in murine macrophages. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:525-31. [PMID: 15138177 PMCID: PMC404562 DOI: 10.1128/cdli.11.3.525-531.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
vav1 has been shown to play a key role in lymphocyte development and activation, but its potential importance in macrophage activation has received little attention. We have previously reported that exposure of macrophages to bacterial lipopolysaccharide (LPS) leads to increased activity of hck and other src-related tyrosine kinases and to the prompt phosphorylation of vav1 on tyrosine. In this study, we tested the role of vav1 in macrophage responses to LPS, focusing on the upregulation of nuclear factor for interleukin-6 expression (NF-IL-6) activity and inducible nitric oxide synthase (iNOS) protein accumulation in RAW-TT10 murine macrophages. We established a series of stable cell lines expressing three mutant forms of vav1 in a tetracycline-regulatable fashion: (i) a form producing a truncated protein, vavC; (ii) a form containing a point mutation in the regulatory tyrosine residue, vavYF174; and (iii) a form with an in-frame deletion of 6 amino acids required for the guanidine nucleotide exchange factor (GEF) activity of vav1 for rac family GTPases, vavGEFmt. Expression of the truncated mutant (but not the other two mutants) has been reported to interfere with T-cell activation. In contrast, we now demonstrate that expression of any of the three mutant forms of vav1 in RAW-TT10 cells consistently inhibited LPS-mediated increases in iNOS protein accumulation and NF-IL-6 activity. These data provide direct evidence for a role for vav1 in LPS-mediated macrophage activation and iNOS production and suggest that vav1 functions in part via activation of NF-IL-6. Furthermore, these findings indicate that the GEF activity of vav1 is required for its ability to mediate macrophage activation by LPS.
Collapse
Affiliation(s)
- Sandip A Godambe
- Department of Pediatrics, Children's Foundation Research Center, Le Bonheur Children's Medical Center, 50 N. Dunlap, Memphis, TN 38103, USA
| | | | | | | |
Collapse
|
32
|
|
33
|
Park EJ, Ji KA, Jeon SB, Choi WH, Han IO, You HJ, Kim JH, Jou I, Joe EH. Rac1 contributes to maximal activation of STAT1 and STAT3 in IFN-gamma-stimulated rat astrocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2004; 173:5697-703. [PMID: 15494521 DOI: 10.4049/jimmunol.173.9.5697] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rac1 GTPase is implicated as a signaling mediator in various cellular events. In this study, we show that Rac1 contributes to IFN-gamma-induced inflammatory responses in rat astrocytes. We revealed that IFN-gamma rapidly stimulated activation of Rac1 in C6 astroglioma cells by investigating GST-PAK-PBD-binding ability. We also found that Rac1 deficiency led to attenuation of IFN-gamma-responsive transcriptional responses. Compared with levels in control cells, IFN-gamma-induced IFN-gamma-activated sequence promoter activity was markedly reduced in both C6 astroglioma cells and primary astrocytes expressing RacN17, a well-characterized Rac1-negative mutant. The expression of several IFN-gamma-responsive genes, such as MCP-1 and ICAM-1, was also reduced in cells expressing RacN17. Consistent with these observations, IFN-gamma-induced phosphorylation of STAT1 and STAT3 was lower in C6 cells expressing RacN17 (referred to as C6-RacN17) than in control cells. However, there was no difference in expression level of IFN-gammaRalpha subunit and IFN-gamma-induced phosphorylation of JAK1 between C6 control and C6-RacN17 cells. Interestingly, Rac1 appeared to associate with IFN-gammaRalpha and augment the interaction of IFN-gammaR with either STAT1 or STAT3 in response to IFN-gamma. Taken together, we suggest that Rac1 may serve as an auxiliary mediator of IFN-gamma-signaling, at least at the level of STAT activation, thus contributing to maximal activation of IFN-gamma-responsive inflammatory signaling in rat astrocytes.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology, School of Medicine, Ajou University, Suwon, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reuveny M, Heller H, Bengal E. RhoA controls myoblast survival by inducing the phosphatidylinositol 3-kinase-Akt signaling pathway. FEBS Lett 2004; 569:129-34. [PMID: 15225621 DOI: 10.1016/j.febslet.2004.05.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 05/25/2004] [Indexed: 01/01/2023]
Abstract
The small GTPase RhoA regulates the expression of the myogenic transcription factor, MyoD, and the transcription of muscle-specific genes. We report that RhoA also affects the survival of differentiating myoblasts. Two signaling pathways, extracellular signal-regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3-K)-Akt, are involved in myoblast survival. Here, we show that inhibition of RhoA prevents the phosphorylation of Akt, but does not affect the phosphorylation of ERK. Constitutive expression of an active form of Akt prevents apoptosis in myoblasts treated with the Rho inhibitor C3-transferase. These results indicate that RhoA functions to prevent myoblast death by inducing the PI3-K-Akt pathway.
Collapse
Affiliation(s)
- Mickol Reuveny
- Department of Biochemistry, Faculty of Medicine, Rappaport Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
35
|
Chikumi H, Barac A, Behbahani B, Gao Y, Teramoto H, Zheng Y, Gutkind JS. Homo- and hetero-oligomerization of PDZ-RhoGEF, LARG and p115RhoGEF by their C-terminal region regulates their in vivo Rho GEF activity and transforming potential. Oncogene 2004; 23:233-40. [PMID: 14712228 DOI: 10.1038/sj.onc.1207012] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PDZ-RhoGEF, LARG, and p115RhoGEF are members of a newly identified family of Rho-guanine nucleotide exchange factors (GEFs) exhibiting a unique structural feature consisting of the presence of an area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a functional motif by which Galpha(12) and Galpha(13) can bind and regulate the activity of these RhoGEFs, thus providing a direct link from these heterotrimeric G proteins to Rho. PDZ-RhoGEF and LARG can also be phosphorylated by tyrosine kinases, including FAK, and associate with Plexin B, a semaphorin receptor, which controls axon guidance during development, through their PDZ domain, thereby stimulating Rho. Interestingly, while characterizing a PDZ-RhoGEF antiserum, we found that a transfected PDZ-RhoGEF construct associated with the endogenous PDZ-RhoGEF. Indeed, we observed that PDZ-RhoGEF and LARG can form homo- and hetero-oligomers, whereas p115RhoGEF can only homo-oligomerize, and that this intermolecular interaction was mediated by their unique C-terminal regions. Deletion of the C-terminal tail of PDZ-RhoGEF had no significant effect on the GEF catalytic activity towards Rho in vitro, but resulted in a drastic increase in the ability to stimulate a serum response element reporter and the accumulation of the GTP-bound Rho in vivo. Furthermore, removal of the C-termini of each of the three RGL-containing GEFs unleashed their full transforming potential. Together, these findings suggest the existence of a novel mechanism controlling the activity of PDZ-RhoGEF, LARG, and p115RhoGEF, which involves homo- and hetero-oligomerization through their inhibitory C-terminal region.
Collapse
Affiliation(s)
- Hiroki Chikumi
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Marinissen MJ, Servitja JM, Offermanns S, Simon MI, Gutkind JS. Thrombin protease-activated receptor-1 signals through Gq- and G13-initiated MAPK cascades regulating c-Jun expression to induce cell transformation. J Biol Chem 2003; 278:46814-25. [PMID: 12954641 DOI: 10.1074/jbc.m305709200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the ability of G protein-coupled receptors to stimulate normal and aberrant cell growth has been intensely investigated, the precise nature of the molecular mechanisms underlying their transforming potential are still not fully understood. In this study, we have taken advantage of the potent mitogenic effect of thrombin and the focus-forming activity of one of its receptors, protease-activated receptor-1, to dissect how this receptor coupled to Galphai, Galphaq/11, and Galpha12/13 transduces signals from the membrane to the nucleus to initiate transcriptional events involved in cell transformation. Using endogenous and transfected thrombin receptors in NIH 3T3 cells, ectopic expression of muscarinic receptors coupled to Galphaq and Galphai, and chimeric G protein alpha subunits and murine fibroblasts deficient in Galphaq/11, and Galpha12/13, we show here that, although coupling to Galphai is sufficient to induce ERK activation, the ability to couple to Galphaq and/or Galpha13 is necessary to induce c-jun expression and cell transformation. Furthermore, we show that Galphaq and Galpha13 can initiate the activation of MAPK cascades, including JNK, p38, and ERK5, which in turn regulate the activity of transcription factors controlling expression from the c-jun promoter. We also present evidence that c-Jun and the kinases regulating its expression are integral components of the transforming pathway initiated by protease-activated receptor-1.
Collapse
Affiliation(s)
- Maria Julia Marinissen
- Oral and Pharyngeal Cancer Branch, NIDCR/National Institutes of Health, Building 30, Room 211, 9000 Rockville Pike, Bethesda, MD 20892-4330, USA
| | | | | | | | | |
Collapse
|
37
|
Monje P, Marinissen MJ, Gutkind JS. Phosphorylation of the carboxyl-terminal transactivation domain of c-Fos by extracellular signal-regulated kinase mediates the transcriptional activation of AP-1 and cellular transformation induced by platelet-derived growth factor. Mol Cell Biol 2003; 23:7030-43. [PMID: 12972619 PMCID: PMC193921 DOI: 10.1128/mcb.23.19.7030-7043.2003] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polypeptide growth factors, such as platelet-derived growth factor (PDGF), promote the reinitiation of DNA synthesis and cell growth through multiple intracellular signaling pathways that converge in the nucleus to regulate the activity of transcription factors, thereby controlling the expression of growth-promoting genes. Among them, the AP-1 (activating protein-1) family of transcription factors, including c-Fos and c-Jun family members, plays a key role, as AP-1 activity is potently activated by PDGF and is required to stimulate cell proliferation. However, the nature of the pathways connecting PDGF receptors to AP-1 is still poorly defined. In this study, we show that PDGF regulates AP-1 by stimulating the expression and function of c-Fos through extracellular signal-regulated kinase (ERK). The latter involves the direct phosphorylation by ERK of multiple residues in the carboxyl-terminal transactivation domain of c-Fos, which results in its increased transcriptional activity. Interestingly, the phosphorylation of c-Fos by ERK was required for the ability of PDGF and serum to stimulate the activity of c-Fos as well as AP-1-dependent transcription. Furthermore, we provide evidence that the ERK-dependent activation of c-Fos is an integral component of the mitogenic pathway by which PDGF regulates normal and aberrant cell growth.
Collapse
Affiliation(s)
- Paula Monje
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892-4330, USA
| | | | | |
Collapse
|
38
|
Servitja JM, Marinissen MJ, Sodhi A, Bustelo XR, Gutkind JS. Rac1 function is required for Src-induced transformation. Evidence of a role for Tiam1 and Vav2 in Rac activation by Src. J Biol Chem 2003; 278:34339-46. [PMID: 12810717 DOI: 10.1074/jbc.m302960200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proto-oncogene c-Src has been implicated in the development and progression of a number of human cancers including those of colon and breast. Accumulating evidence indicates that activated alleles of Src may induce cell transformation through Ras-ERK-dependent and -independent pathways. Here we show that Rac1 activity is strongly elevated in Src-transformed cells and that this small G protein is a critical component of the pathway connecting oncogenic Src with cell transformation. We further show that Vav2 and the ubiquitously expressed Rac1 guanine nucleotide exchange factor Tiam1 are phosphorylated in tyrosine residues in cells transfected with active and oncogenic Src. Moreover, phosphorylation of Tiam1 in cells treated with pervanadate, a potent inhibitor of tyrosine phosphatases, was partially inhibited by the Src inhibitor SU6656. Using truncated mutants of Tiam1, we demonstrate that multiple sites can be tyrosine-phosphorylated by Src. Furthermore, Tiam1 cooperated with Src to induce activation of Rac1 in vivo and the formation of membrane ruffles. Similarly, activation of JNK and the c-jun promoter by Src were also potently increased by Tiam1. Together, these results suggest that Vav2 and Tiam1 may act as downstream effectors of Src, thereby regulating Rac1-dependent pathways that participate in Src-induced cell transformation.
Collapse
Affiliation(s)
- Joan-Marc Servitja
- Oral and Pharyngeal Cancer Branch, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Integrin receptors connect the extracellular matrix to the actin cytoskeleton. This interaction can be viewed as a cyclical liaison, which develops again and again at new adhesion sites only to cease at sites of de-adhesion. Recent work has demonstrated that multidomain proteins play crucial roles in the integrin-actin connection by providing a high degree of regulation adjusted to the needs of the cell. In this review we present several examples of this paradigm and with special emphasis on the ILK-PINCH-parvin complex, which amply demonstrates how structural and signalling functions are linked together.
Collapse
Affiliation(s)
- Cord Brakebusch
- Max Planck Institute for Biochemistry, Department of Molecular Medicine, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
40
|
Nishihara H, Maeda M, Oda A, Tsuda M, Sawa H, Nagashima K, Tanaka S. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood 2002; 100:3968-74. [PMID: 12393632 DOI: 10.1182/blood-2001-11-0032] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The CDM (ced-5 of Caenorhabditis elegans, DOCK180 [downstream of Crk with molecular weight of 180 kDa] of humans, and myoblast city of Drosophila melanogaster) family of proteins has been shown to play a pivotal role in the integrin-mediated signaling pathway under the regulation of an adaptor molecule c-CT10-related kinase II (c-Crk-II) in adherent cells. Recently, hematopoietic cell-specific CDM protein DOCK2 has been shown to be indispensable for lymphocyte migration. However, the regulatory mechanism for DOCK2 is still unknown because DOCK2 lacks a c-Crk-II binding consensus motif. In this study, we demonstrated that DOCK2 bound to CrkL, which is present exclusively in hematopoietic cells both in vivo and in vitro, and we also found that 2 separate regions of DOCK2 contributed to its binding to Src homology 3 (SH3) domain of CrkL. Colocalization of DOCK2 with Crk-like (CrkL) and F-actin was shown by immunocytochemical analysis with the use of Jurkat cells. We also found that CrkL-induced activation of small guanine triphosphatase (GTPase) Rac1 was significantly inhibited by the DOCK2-dCS mutant in 293T cells. Furthermore, the association of DOCK2 and Vav, the guanine-nucleotide exchanging factor (GEF) for Rac1, was demonstrated in Jurkat cells. Finally, the stable expression of DOCK2-dCS mutant in Jurkat cells was shown to reduce cell attachment. These data suggest the presence of a novel protein complex of CrkL, DOCK2, and Vav to regulate Rac1 in leukemia cell lines.
Collapse
Affiliation(s)
- Hiroshi Nishihara
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Nishihara H, Maeda M, Tsuda M, Makino Y, Sawa H, Nagashima K, Tanaka S. DOCK2 mediates T cell receptor-induced activation of Rac2 and IL-2 transcription. Biochem Biophys Res Commun 2002; 296:716-20. [PMID: 12176041 DOI: 10.1016/s0006-291x(02)00931-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DOCK2, a CDM family protein exclusively found in hematopoietic cells, has been shown to play a role in lymphocyte migration by the regulation of actin cytoskeleton. Although DOCK2 has been shown to induce the activation of Rac1, the regulatory mechanism of Rac2, which is a hematopoietic cell-specific small GTPase, is still unknown. In this study, we examined the role of DOCK2 in the activation of Rac2 in hematopoietic cells. DOCK2 was found to associate with the zeta subunit of the CD3 complex of T cell receptors in Jurkat cells and to activate forced expressed Rac2 in 293T cells. In addition, the stable expression of DOCK2 in Jurkat cells exhibited the elevated activity of endogenous Rac2. Furthermore, the transcriptional activity of interleukin-2 (IL-2) was enhanced in DOCK2-expressing Jurkat cells and the dominant negative form of Rac2 suppressed its elevated IL-2 promoter activity. These results suggest that DOCK2 mediates TCR-dependent activation of Rac2, leading to the regulation of IL-2 promoter activity in T cells.
Collapse
Affiliation(s)
- Hiroshi Nishihara
- Laboratory of Molecular and Cellular Pathology, Hokkaido University School of Medicine, N 15, W7, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Turner M, Billadeau DD. VAV proteins as signal integrators for multi-subunit immune-recognition receptors. Nat Rev Immunol 2002; 2:476-86. [PMID: 12094222 DOI: 10.1038/nri840] [Citation(s) in RCA: 261] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, substantial progress has been made towards the identification of intracellular signalling molecules that couple multi-subunit immune-recognition receptors (MIRRs) to their various effector functions. Among these, the VAV proteins have been observed to have a crucial role in regulating some of the earliest events in receptor signalling. VAV proteins function, in part, as guanine-nucleotide exchange factors (GEFs) for the RHO/RAC family of GTPases. This review focuses on the role of VAV proteins in the regulation of lymphocyte development and function, and emphasizes the regulatory roles that these proteins have through both GEF-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Martin Turner
- Lymphocyte Signalling and Development Laboratory, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK.
| | | |
Collapse
|
43
|
Lindholm CK, Henriksson ML, Hallberg B, Welsh M. Shb links SLP-76 and Vav with the CD3 complex in Jurkat T cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3279-88. [PMID: 12084069 DOI: 10.1046/j.1432-1033.2002.03008.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study addresses the interactions between the adaptor protein Shb and components involved in T cell signalling, including SLP-76, Gads, Vav and ZAP70. We show that both SLP-76 and ZAP70 co-immunoprecipitate with Shb in Jurkat T cells and that Shb and Vav co-immunoprecipitate when cotransfected in COS cells. We also demonstrate, utilizing fusion protein constructs, that SLP-76, Gads and Vav associate independently of each other to different domains or regions, of Shb. Overexpression of an SH2 domain-defective Shb causes diminished phosphorylation of SLP-76 and Vav and consequently decreased activation of c-Jun kinase upon T cell receptor (TCR) stimulation. Shb was also found to localize to glycolipid-enriched membrane microdomains (GEMs), also called lipid rafts, after TCR stimulation. Our results indicate that upon TCR stimulation, Shb is targeted to these lipid rafts where Shb aids in recruiting the SLP-76-Gads-Vav complex to the T cell receptor zeta-chain and ZAP70.
Collapse
Affiliation(s)
- Cecilia K Lindholm
- Department of Medical Cell Biology, Box 571, Biomedicum, Uppsala University, 75123 Uppsala, Sweden.
| | | | | | | |
Collapse
|
44
|
Schmidt A, Hall A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev 2002; 16:1587-609. [PMID: 12101119 DOI: 10.1101/gad.1003302] [Citation(s) in RCA: 939] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Anja Schmidt
- MRC Laboratory for Molecular Cell Biology, Cancer Research UK Oncogene and Signal Transduction Group, University College London, London WC1E 6BT, UK.
| | | |
Collapse
|
45
|
Xie ZH, Ambudkar I, Siraganian RP. The adapter molecule Gab2 regulates Fc epsilon RI-mediated signal transduction in mast cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4682-91. [PMID: 11971018 DOI: 10.4049/jimmunol.168.9.4682] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The recently cloned scaffolding molecule Gab2 can assemble multiple molecules involved in signaling pathways. Bone marrow-derived mast cells isolated from Gab2(-/-) mice have defective signaling probably due to the lack of the activation of phosphatidylinositol-3 kinase (PI3-kinase). In this study, we investigated the role of Gab2 using the rat basophilic leukemia 2H3 cell line mast cells. Fc epsilon RI aggregation induced the tyrosine phosphorylation of Gab2 and translocation of a significant fraction of it from the cytosol to the plasma membrane. As in other cells, Gab2 was found to associate with several signaling molecules including Src homology 2-containing protein tyrosine phosphatase 2, Grb2, Lyn, and phospholipase C gamma (PLC gamma). The association of Gab2 with Lyn and PLC gamma were enhanced after receptor aggregation. Overexpression of Gab2 in rat basophilic leukemia 2H3 cell line cells inhibited the Fc epsilon RI-induced tyrosine phosphorylation of the subunits of the receptor, and the phosphorylation and/or activation of Syk and mitogen-activated protein kinase. Downstream events such as calcium mobilization, degranulation, and induction of TNF-alpha and IL-6 gene transcripts were decreased in Gab2 overexpressing cells, although Akt phosphorylation as a measure of PI3-kinase activation was unaffected. These results suggest that in addition to the positive effects mediated by PI3-kinase that are apparent in Gab2(-/-) mast cells, Gab2 by interacting with Lyn and PLC gamma may have negative regulatory effects on Fc epsilon RI-induced mast cell signaling and functions.
Collapse
Affiliation(s)
- Zhi-Hui Xie
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
46
|
Chikumi H, Fukuhara S, Gutkind JS. Regulation of G protein-linked guanine nucleotide exchange factors for Rho, PDZ-RhoGEF, and LARG by tyrosine phosphorylation: evidence of a role for focal adhesion kinase. J Biol Chem 2002; 277:12463-73. [PMID: 11799111 DOI: 10.1074/jbc.m108504200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recently identified family of guanine nucleotide exchange factors for Rho that includes PDZ-RhoGEF, LARG, and p115RhoGEF exhibits a unique structural feature consisting in the presence of area of similarity to regulators of G protein signaling (RGS). This RGS-like (RGL) domain provides a structural motif by which heterotrimeric G protein alpha subunits of the Galpha(12) family can bind and regulate the activity of RhoGEFs. Hence, these newly discovered RGL domain-containing RhoGEFs provide a direct link from Galpha(12) and Galpha(13) to Rho. Recently available data suggest, however, that tyrosine kinases can regulate the ability of G protein-coupled receptors (GPCRs) to stimulate Rho, although the underlying molecular mechanisms are still unknown. Here, we found that the activation of thrombin receptors endogenously expressed in HEK-293T cells leads to a remarkable increase in the levels of GTP-bound Rho within 1 min (11-fold) and a more limited but sustained activation (4-fold) thereafter, which lasts even for several hours. Interestingly, tyrosine kinase inhibitors did not affect the early phase of Rho activation, immediately after thrombin addition, but diminished the levels of GTP-bound Rho during the delayed phase. As thrombin receptors stimulate focal adhesion kinase (FAK) potently, we explored whether this non-receptor tyrosine kinase participates in the activation of Rho by GPCRs. We obtained evidence that FAK can be activated by thrombin, Galpha(12), Galpha(13), and Galpha(q) through both Rho-dependent and Rho-independent mechanisms and that PDZ-RhoGEF and LARG can in turn be tyrosine-phosphorylated through FAK in response to thrombin, thereby enhancing the activation of Rho in vivo. These data indicate that FAK may act as a component of a positive feedback loop that results in the sustained activation of Rho by GPCRs, thus providing evidence of the existence of a novel biochemical route by which tyrosine kinases may regulate the activity of Rho through the tyrosine phosphorylation of RGL-containing RhoGEFs.
Collapse
Affiliation(s)
- Hiroki Chikumi
- Oral and Pharyngeal Cancer Branch, NIDCR, National Institutes of Health, Bethesda, Maryland 20892-4330, USA
| | | | | |
Collapse
|
47
|
Kaminuma O, Elly C, Tanaka Y, Mori A, Liu YC, Altman A, Miyatake S. Vav-induced activation of the human IFN-gamma gene promoter is mediated by upregulation of AP-1 activity. FEBS Lett 2002; 514:153-8. [PMID: 11943142 DOI: 10.1016/s0014-5793(02)02316-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The role of Vav in the transcriptional regulation of the human interferon-gamma (IFN-gamma) promoter was investigated. Overexpression of Vav in Jurkat-TAg cells enhanced T cell receptor (TCR)-induced activation of a luciferase (Luc) reporter gene construct driven by cis-regulatory element of the IFN-gamma gene (-346 to +7). Electrophoresis mobility shift and Luc reporter assays demonstrated that the DNA-binding and transcriptional activity of the proximal AP-1-dependent NFAT site (positions -172 to -138), the AP-1/Ying-Yang 1 (YY1)-binding site (-209 to -184), and a consensus AP-1-binding site were upregulated by Vav. Vav enhanced TCR-induced activation of c-Jun N-terminal kinase (JNK) and its upstream regulator, Rho family GTPases. Finally, coexpression of a dominant-negative Rac1 mutant suppressed Vav-mediated upregulation of the transcriptional and DNA-binding activity of the proximal NFAT/AP-1 site and the AP-1/YY1 site, as well as the complete IFN-gamma promoter activity. Vav activates the IFN-gamma promoter via upregulation of AP-1-binding through a Rac1/JNK pathway.
Collapse
Affiliation(s)
- Osamu Kaminuma
- Department of Immunology, The Tokyo Metropolitan Institute of Medical Science, 2-18-22 Honkomagome, Bunkyo-ku, Tokyo 113-8613, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Manetz TS, Gonzalez-Espinosa C, Arudchandran R, Xirasagar S, Tybulewicz V, Rivera J. Vav1 regulates phospholipase cgamma activation and calcium responses in mast cells. Mol Cell Biol 2001; 21:3763-74. [PMID: 11340169 PMCID: PMC87023 DOI: 10.1128/mcb.21.11.3763-3774.2001] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2000] [Accepted: 03/07/2001] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic cell-specific protein Vav1 is a substrate of tyrosine kinases activated following engagement of many receptors, including FcepsilonRI. Vav1-deficient mice contain normal numbers of mast cells but respond more weakly than their normal counterparts to a passive systemic anaphylaxis challenge. Vav1-deficient bone marrow-derived mast cells also exhibited reduced degranulation and cytokine production, although tyrosine phosphorylation of FcepsilonRI, Syk, and LAT (linker for activation of T cells) was normal. In contrast, tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) and PLCgamma2 and calcium mobilization were markedly inhibited. Reconstitution of deficient mast cells with Vav1 restored normal tyrosine phosphorylation of PLCgamma1 and PLCgamma2 and calcium responses. Thus, Vav1 is essential to FcepsilonRI-mediated activation of PLCgamma and calcium mobilization in mast cells. In addition to its known role as an activator of Rac1 GTPases, these findings demonstrate a novel function for Vav1 as a regulator of PLCgamma-activated calcium signals.
Collapse
Affiliation(s)
- T S Manetz
- Section on Chemical Immunology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-1820, USA
| | | | | | | | | | | |
Collapse
|
49
|
Kaminuma O, Deckert M, Elly C, Liu YC, Altman A. Vav-Rac1-mediated activation of the c-Jun N-terminal kinase/c-Jun/AP-1 pathway plays a major role in stimulation of the distal NFAT site in the interleukin-2 gene promoter. Mol Cell Biol 2001; 21:3126-36. [PMID: 11287617 PMCID: PMC86940 DOI: 10.1128/mcb.21.9.3126-3136.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2000] [Accepted: 02/02/2001] [Indexed: 12/15/2022] Open
Abstract
Vav, a hematopoiesis-specific signaling protein, plays an important role in T-cell development and activation. Vav upregulates the expression of the interleukin-2 (IL-2) gene, primarily via activation of the distal NFAT site in the IL-2 gene promoter (NFAT-IL-2). However, since this site cooperatively binds NFAT and AP-1, the relative contribution of Vav to NFAT versus AP-1 activation has not been determined. Here, we studied the respective roles of the AP-1 and NFAT pathways in the T-cell receptor (TCR)-mediated, Vav-dependent activation of NFAT-IL-2. Although Vav stimulated the transcriptional activity of an NFAT-IL-2 reporter gene, it failed to stimulate the transcriptional or DNA-binding activities of an AP-1-independent NFAT site derived from the human gamma interferon gene promoter. Vav also did not stimulate detectable Ca(2+) mobilization and nuclear translocation of NFATc or NFATp. On the other hand, Vav induced the activation of Rac1 or Cdc42 and c-Jun N-terminal kinase (JNK), enhanced the transcriptional and DNA-binding activities of AP-1, and induced increased phosphorylation of c-Jun. Dominant-negative Vav and/or Rac1 mutants blocked the TCR-mediated stimulation of these events, demonstrating the physiological relevance of these effects. Vav also associated with Rac1 or Cdc42 in T cells, and anti-CD3 antibody stimulation enhanced this association. These findings indicate that a Rac1-dependent JNK/c-Jun/AP-1 pathway, rather than the Ca(2+)/NFAT pathway, plays the predominant role in NFAT-IL-2 activation by Vav.
Collapse
Affiliation(s)
- O Kaminuma
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
50
|
Suzuki T, Kiyokawa N, Taguchi T, Sekino T, Katagiri YU, Fujimoto J. CD24 induces apoptosis in human B cells via the glycolipid-enriched membrane domains/rafts-mediated signaling system. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:5567-77. [PMID: 11313396 DOI: 10.4049/jimmunol.166.9.5567] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The glycosylphosphatidylinositol-anchored CD24 protein is a B cell differentiation Ag that is expressed on mature resting B cells but disappears upon Ag stimulation. We used Burkitt's lymphoma (BL) cells, which are thought to be related to germinal center B cells, to examine the biological effect of Ab-mediated CD24 cross-linking on human B cells and observed 1) induction of apoptosis in BL cells mediated by cross-linking of CD24; and 2) synergism between the cross-linking of CD24 and that of the B cell receptor for Ag in the effect on apoptosis induction. We also observed activation of mitogen-activated protein kinases following CD24 cross-linking, suggesting that CD24 mediates the intracellular signaling that leads to apoptosis in BL cells. Although CD24 has no cytoplasmic portion to transduce signals intracellularly, analysis of biochemically separated glycolipid-enriched membrane (GEM) fractions indicated enhanced association of CD24 and Lyn protein tyrosine kinase in GEM as well as increased Lyn kinase activity after CD24 cross-linking, suggesting that CD24 mediates intracellular signaling via a GEM-dependent mechanism. Specific microscopic cocapping of CD24 and Lyn, but not of other kinases, following CD24 cross-linking supported this idea. We further observed that apoptosis induction by cross-linking is a common feature shared by GEM-associated molecules expressed on BL cells, including GPI-anchored proteins and glycosphingolipids. CD24-mediated apoptosis in BL cells may provide a model for the cell death mechanism initiated by GEM-associated molecules, which is closely related to B cell receptor for Ag-mediated apoptosis.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Antibodies, Monoclonal/metabolism
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, B-Lymphocyte/biosynthesis
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Apoptosis/immunology
- Apoptosis Regulatory Proteins
- B-Lymphocytes/cytology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Biological Transport, Active/immunology
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- CD24 Antigen
- Carrier Proteins/metabolism
- Cell Fractionation
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Centrifugation, Density Gradient
- Cholera Toxin/pharmacology
- Glycosylphosphatidylinositols/metabolism
- Humans
- Immune Sera/metabolism
- Intracellular Fluid/immunology
- Intracellular Fluid/metabolism
- Membrane Glycoproteins
- Membrane Microdomains/metabolism
- Membrane Microdomains/physiology
- Mitochondrial Proteins
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
- Tumor Cells, Cultured/immunology
- Tumor Cells, Cultured/metabolism
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- T Suzuki
- Department of Pathology, National Children's Medical Research Center, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|