1
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025; 39:1011-1030. [PMID: 40140631 PMCID: PMC12055591 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
2
|
Macias-Díaz A, Nieto-Felipe J, Jardín I, Camello PJ, Martinez-Quintana EM, Salido GM, Smani T, Lopez JJ, Rosado JA. Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation. Am J Physiol Cell Physiol 2025; 328:C657-C669. [PMID: 39764579 DOI: 10.1152/ajpcell.00745.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here, we show that full-length FLNA is downregulated in samples from patients with colon cancer as well as in the adenocarcinoma cell line HT-29. This is consistent with an increased calpain-dependent FLNA cleaving with enhanced expression of the C-terminal FLNA fragment accompanied by enhanced expression of Orai1 and STIM1, as well as store-operated Ca2+ entry (SOCE). To further explore the mechanism underlying the enhancement of SOCE by the C-terminal FLNA fragment, we expressed in HEK-293 cells the C-terminal FLNA region encompassing repeats 16-24 (FLNA16-24 fragment), which enhanced both Orai1 and STIM1 as well as SOCE. Transfection of the FLNA16-24 fragment attenuates Orai1 and STIM1 protein degradation, and, specifically, abrogates Orai1α lysosomal degradation and retains this channel in the plasma membrane. However, the C-terminal FLNA fragment did not induce a detectable modification in Orai1β degradation. Due to the relevance of SOCE in cell physiology, our results provide evidence of a novel mechanism for the regulation of Ca2+ influx with relevant pathophysiological implications.NOTE & NOTEWORTHY FLNA cleaving by calpain has been observed in a variety of tumoral, including prostate and colorectal cancer cells, as well as in nontumoral cells, leading to a C-terminal fragment encompassing repeats 16-24. Expression of the FLNA16-24 fragment in HEK-293 cells enhances Orai1 and STIM1 expression, as well as SOCE, a mechanism mediated by attenuation of Orai1α and STIM1 degradation, providing evidence for a novel mechanism for the regulation of SOCE in normal and malignant cells.
Collapse
Affiliation(s)
- Alvaro Macias-Díaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Pedro J Camello
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, Seville, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
3
|
Nieto‐Felipe J, Macias‐Díaz A, Jimenez‐Velarde V, Lopez JJ, Salido GM, Smani T, Jardin I, Rosado JA. Feedback modulation of Orai1α and Orai1β protein content mediated by STIM proteins. J Cell Physiol 2025; 240:e31450. [PMID: 39359018 PMCID: PMC11730744 DOI: 10.1002/jcp.31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Store-operated Ca2+ entry is a mechanism controlled by the filling state of the intracellular Ca2+ stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1β, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1β. Under resting conditions, there is a pronounced association between STIM2 and Orai1α. STIM1 and STIM2 are also shown to influence the protein levels of the Orai1 variants, independently of Ca2+ influx, via lysosomal degradation. Interestingly, Orai1α and Orai1β appear to selectively regulate the protein level of STIM1, but not STIM2. These observations offer crucial insights into the regulatory dynamics between STIM proteins and Orai1 variants, enhancing our understanding of the intricate processes that fine-tune intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Joel Nieto‐Felipe
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Alvaro Macias‐Díaz
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Vanesa Jimenez‐Velarde
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Jose J. Lopez
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Gines M. Salido
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Tarik Smani
- Group of Cardiovascular PathophysiologyInstitute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSICSevilleSpain
- Department of Medical Physiology and BiophysicsFaculty of Medicine, University of SevilleSevilleSpain
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Juan A. Rosado
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| |
Collapse
|
4
|
Li M, Li M, Qiao L, Wu C, Xu D, Zhao Y, Zeng X. Role of JAK-STAT signaling pathway in pathogenesis and treatment of primary Sjögren's syndrome. Chin Med J (Engl) 2023; 136:2297-2306. [PMID: 37185152 PMCID: PMC10538906 DOI: 10.1097/cm9.0000000000002539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 05/17/2023] Open
Abstract
ABSTRACT Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease with high prevalence and possible poor prognosis. Though the pathogenesis of pSS has not been fully elucidated, B cell hyperactivity is considered as one of the fundamental abnormalities in pSS patients. It has long been identified that Janus kinases-signal transducer and activator of transcription (JAK-STAT) signaling pathway contributes to rheumatoid arthritis and systemic lupus erythematosus. Recently, increasing numbers of studies have provided evidence that JAK-STAT pathway also has an important role in the pathogenesis of pSS via direct or indirect activation of B cells. Signal transducer and activator of transcription 1 (STAT1), STAT3, and STAT5 activated by various cytokines and ribonucleic acid contribute to pSS development, respectively or synergically. These results reveal the potential application of Janus kinase inhibitors for treatment of pSS, which may fundamentally improve the quality of life and prognosis of patients with pSS.
Collapse
Affiliation(s)
- Mucong Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital (PUMCH); Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing 100730, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Ren JG, Xing B, Lv K, O’Keefe RA, Wu M, Wang R, Bauer KM, Ghazaryan A, Burslem GM, Zhang J, O’Connell RM, Pillai V, Hexner EO, Philips MR, Tong W. RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia. J Clin Invest 2023; 133:e165510. [PMID: 37317963 PMCID: PMC10266782 DOI: 10.1172/jci165510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.
Collapse
Affiliation(s)
- Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bowen Xing
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaosheng Lv
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry, School of Medicine at the Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Rachel A. O’Keefe
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Mengfang Wu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruoxing Wang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylyn M. Bauer
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Arevik Ghazaryan
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth O. Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark R. Philips
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Chhabra Y, Seiffert P, Gormal RS, Vullings M, Lee CMM, Wallis TP, Dehkhoda F, Indrakumar S, Jacobsen NL, Lindorff-Larsen K, Durisic N, Waters MJ, Meunier FA, Kragelund BB, Brooks AJ. Tyrosine kinases compete for growth hormone receptor binding and regulate receptor mobility and degradation. Cell Rep 2023; 42:112490. [PMID: 37163374 DOI: 10.1016/j.celrep.2023.112490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.
Collapse
Affiliation(s)
- Yash Chhabra
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21204, USA.
| | - Pernille Seiffert
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rachel S Gormal
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Manon Vullings
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | | | - Tristan P Wallis
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Farhad Dehkhoda
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Sowmya Indrakumar
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark; Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nina L Jacobsen
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nela Durisic
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael J Waters
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia
| | - Frédéric A Meunier
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory (SBiNLab) and REPIN, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Andrew J Brooks
- Frazer Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia; The University of Queensland, Institute for Molecular Bioscience, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
7
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
8
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
9
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
10
|
Gelatinase B/matrix metalloproteinase-9 and other neutrophil proteases switch off interleukin-2 activity. Biochem J 2019; 476:2191-2208. [PMID: 31262730 DOI: 10.1042/bcj20180382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/11/2019] [Accepted: 07/01/2019] [Indexed: 12/27/2022]
Abstract
Interleukin 2 (IL-2) is critical for T cell development and homeostasis, being a key regulator of adaptive immune responses in autoimmunity, hypersensitivity reactions and cancer. Therefore, its abundance in serum and peripheral tissues needs tight control. Here, we described a new mechanism contributing to the immunobiology of IL-2. We demonstrated, both in biochemical and cell-based assays, that IL-2 is subject to proteolytic processing by neutrophil matrix metalloproteinase-9 (MMP-9). IL-2 fragments produced after cleavage by MMP-9 remained linked by a disulfide bond and displayed a reduced affinity for all IL-2 receptor subunits and a distinct pattern and timing of signal transduction. Stimulation of IL-2-dependent cells, including murine CTLL-2 and primary human regulatory T cells, with cleaved IL-2 resulted in significantly decreased proliferation. The concerted action of neutrophil proteases destroyed IL-2. Our data suggest that in neutrophil-rich inflammatory conditions in vivo, neutrophil MMP-9 may reduce the abundance of signaling-competent IL-2 and generate a fragment that competes with IL-2 for receptor binding, whereas the combined activity of granulocyte proteases has the potential to degrade and thus eliminate bioavailable IL-2.
Collapse
|
11
|
Mishra R, Upadhyay A, Prajapati VK, Mishra A. Proteasome-mediated proteostasis: Novel medicinal and pharmacological strategies for diseases. Med Res Rev 2018; 38:1916-1973. [DOI: 10.1002/med.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/13/2018] [Accepted: 04/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Ribhav Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| | - Vijay Kumar Prajapati
- Department of Biochemistry; School of Life Sciences; Central University of Rajasthan; Rajasthan India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit; Indian Institute of Technology Jodhpur; Rajasthan India
| |
Collapse
|
12
|
Wang W, Tan J, Xing Y, Kan N, Ling J, Dong G, Liu G, Chen H. p43 induces IP-10 expression through the JAK-STAT signaling pathway in HMEC-1 cells. Int J Mol Med 2016; 38:1217-24. [PMID: 27574027 DOI: 10.3892/ijmm.2016.2710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 07/15/2016] [Indexed: 11/06/2022] Open
Abstract
p43 is a cofactor of aminoacyl-tRNA synthetase in mammals that effectively inhibits angiogenesis. However, the role of p43 in angiogenesis remains unclear. In the present study, we examined the effects of p43 on angiogenesis using human microvascular endothelial cells-1 (HMEC-1) cells as a model. Our microarray data showed that p43 regulated a number of cytokines, and the majoity of these are involved in the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. IP-10 was previously shown to inhibit angiogenesis and suppress tumor growth via the JAK-STAT signaling pathway in vitro and in vivo. Our results showed that p43 induces both the mRNA and protein expression of IP-10. Furthermore, we demonstrated that p43 exerted an effect on the JAK-STAT signaling pathway by regulating key factors of the pathway. Using a JAK inhibitor, AG490, we studied the effect of p43 on HMEC-1 cells by blocking the JAK-STAT pathway. We found that AG490 inhibited the induction of IP-10 expression by p43, and suppressed the inhibitory effect of p43 on tubule formation and cell migration in HMEC-1 cells. We concluded that p43 inhibits tubule formation and cell migration by inducing IP-10 through the JAK-STAT signaling pathway, and blocking the JAK-STAT pathway with AG490 diminishes the inhibitory effects of p43 on angiogenesis.
Collapse
Affiliation(s)
- Wei Wang
- Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| | - Junjie Tan
- Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| | - Yuhua Xing
- National Institutes for Food and Drug Control, Beijing 100071, P.R. China
| | - Naipeng Kan
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, P.R. China
| | - Jingyi Ling
- Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| | - Guifu Dong
- School of Life Sciences, Anhui University, Hefei, Anhui 230039, P.R. China
| | - Gang Liu
- Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| | - Huipeng Chen
- Beijing Institute of Biotechnology, Beijing 100071, P.R. China
| |
Collapse
|
13
|
O'Leary CE, Riling CR, Spruce LA, Ding H, Kumar S, Deng G, Liu Y, Seeholzer SH, Oliver PM. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun 2016; 7:11226. [PMID: 27088444 PMCID: PMC4837450 DOI: 10.1038/ncomms11226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Nedd4 family E3 ubiquitin ligases have been shown to restrict T-cell function and impact T-cell differentiation. We show here that Ndfip1 and Ndfip2, activators of Nedd4 family ligases, together limit accumulation and function of effector CD4+ T cells. Using a three-part proteomics approach in primary T cells, we identify stabilization of Jak1 in Ndfip1/2-deficient T cells stimulated through the TCR. Jak1 degradation is aborted in activated T cells that lack Ndfips. In wild-type cells, Jak1 degradation lessens CD4+ cell sensitivity to cytokines during TCR stimulation, while in Ndfip-deficient cells cytokine responsiveness persists, promoting increased expansion and survival of pathogenic effector T cells. Thus, Ndfip1/Ndfip2 regulate the cross talk between the T-cell receptor and cytokine signalling pathways to limit inappropriate T-cell responses. Ndfip1 is an activator of Itch E3 ubiquitin ligase that limits T cell activation. Here the authors identify Jak1 in a proteomic screen for Ndfip dependent substrates, and show that Ndfip1/2 double-deficient T cells have reduced degradation of Jak1 and as a result are hyper-responsive to cytokine stimulation.
Collapse
Affiliation(s)
- Claire E O'Leary
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher R Riling
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lynn A Spruce
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Hua Ding
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | - Guoping Deng
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Yuhong Liu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Steven H Seeholzer
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Paula M Oliver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
14
|
Nerstedt A, Cansby E, Amrutkar M, Smith U, Mahlapuu M. Pharmacological activation of AMPK suppresses inflammatory response evoked by IL-6 signalling in mouse liver and in human hepatocytes. Mol Cell Endocrinol 2013; 375:68-78. [PMID: 23707791 DOI: 10.1016/j.mce.2013.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/06/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) induces inflammatory signalling in liver, leading to impaired insulin action in hepatocytes. In this study, we demonstrate that pharmacological activation of AMP-activated protein kinase (AMPK) represses IL-6-stimulated expression of proinflammatory markers serum amyloid A (Saa) as well as suppressor of cytokine signalling 3 (Socs3) in mouse liver. Further studies using the human hepatocellular carcinoma cell line HepG2 suggest that AMPK inhibits IL-6 signalling by repressing IL-6-stimulated phosphorylation of several downstream components of the pathway such as Janus kinase 1 (JAK1), SH2-domain containing protein tyrosine phosphatase 2 (SHP2) and signal transducer and activator of transcription 3 (STAT3). In summary, inhibition of IL-6 signalling cascade in liver by the metabolic master switch of the body, AMPK, supports the role of this kinase as a crucial point of convergence of metabolic and inflammatory pathways in hepatocytes.
Collapse
Affiliation(s)
- Annika Nerstedt
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
15
|
Bassil R, Zhu B, Lahoud Y, Riella LV, Yagita H, Elyaman W, Khoury SJ. Notch ligand delta-like 4 blockade alleviates experimental autoimmune encephalomyelitis by promoting regulatory T cell development. THE JOURNAL OF IMMUNOLOGY 2011; 187:2322-8. [PMID: 21813770 DOI: 10.4049/jimmunol.1100725] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Notch signaling pathway plays an important role in T cell differentiation. Delta-like ligand (Dll)4, one of five known Notch ligands, has been implicated in regulating Th2 cell differentiation in animal models of human diseases. However, the role of Dll4 in Th1/Th17-mediated autoimmune diseases remains largely unknown. Using an anti-Dll4 blocking mAb, we show that neutralizing Dll4 during the induction phase of experimental autoimmune encephalomyelitis in C57BL/6 mice significantly increased the pool of CD4(+)Foxp3(+) regulatory T cells (Treg) in the periphery and in the CNS, and decreased the severity of clinical disease and CNS inflammation. Dll4 blockade promoted induction of myelin-specific Th2/Treg immune responses and impaired Th1/Th17 responses compared with IgG-treated mice. In vitro, we show that signaling with recombinant Dll4 inhibits the TGF-β-induced Treg development, and inhibits Janus kinase 3-induced STAT5 phosphorylation, a transcription factor known to play a key role in Foxp3 expression and maintenance. Depletion of natural Treg using anti-CD25 Ab reversed the protective effects of anti-Dll4 Ab. These findings outline a novel role for Dll4-Notch signaling in regulating Treg development in EAE, making it an encouraging target for Treg-mediated immunotherapy in autoimmune diseases, such as multiple sclerosis.
Collapse
Affiliation(s)
- Ribal Bassil
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Page BDG, Ball DP, Gunning PT. Signal transducer and activator of transcription 3 inhibitors: a patent review. Expert Opin Ther Pat 2010; 21:65-83. [DOI: 10.1517/13543776.2011.539205] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Chueh FY, Leong KF, Yu CL. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in leukemic T cells and cytokine-stimulated cells. Biochem Biophys Res Commun 2010; 402:778-83. [PMID: 21036145 DOI: 10.1016/j.bbrc.2010.10.112] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/24/2010] [Indexed: 01/07/2023]
Abstract
Signal transducers and activators of transcription (STATs) were first identified as key signaling molecules in response to cytokines. Constitutive STAT activation also has been widely implicated in oncogenesis. We analyzed STAT5-associated proteins in a leukemic T cell line LSTRA, which exhibits constitutive tyrosine phosphorylation and activation of STAT5. A cellular protein was found to specifically interact with STAT5 in LSTRA cells by co-immunoprecipitation. Sequencing analysis and subsequent immunoblotting confirmed the identity of this STAT5-associated protein as the E2 component of mitochondrial pyruvate dehydrogenase complex (PDC-E2). Consistent with this interaction, both subcellular fractionation and immunofluorescence microscopy revealed mitochondrial localization of STAT5 in LSTRA cells. Mitochondrial localization of tyrosine-phosphorylated STAT5 also occurred in cytokine-stimulated cells. A time course experiment further demonstrated the transient kinetics of STAT5 mitochondrial translocation after cytokine stimulation. In contrast, cytokine-induced STAT1 and STAT3 activation did not result in their translocation into mitochondria. Furthermore, we showed that mitochondrial STAT5 bound to the D-loop regulatory region of mitochondrial DNA in vitro. It suggests a potential role of STAT5 in regulating the mitochondrial genome. Proliferative metabolism toward aerobic glycolysis is well known in cancer cells as the Warburg effect and is also observed in cytokine-stimulated cells. Our novel findings of cytokine-induced STAT5 translocation into mitochondria and its link to oncogenesis provide important insights into the underlying mechanisms of this characteristic metabolic shift.
Collapse
Affiliation(s)
- Fu-Yu Chueh
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
18
|
Helmer RA, Panchoo M, Dertien JS, Bhakta SM, Hewetson A, Chilton BS. Prolactin-induced Jak2 phosphorylation of RUSH: a key element in Jak/RUSH signaling. Mol Cell Endocrinol 2010; 325:143-9. [PMID: 20562009 PMCID: PMC2902710 DOI: 10.1016/j.mce.2010.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Jak2/Stat-mediated prolactin signaling culminates in Stat5a-DNA-binding. However, not all Jak2-dependent genes have Stat5 sites. Western analysis with inhibitors showed Jak2 is a proximal intermediate in prolactin-induced RUSH phosphorylation. Transfection assays with HRE-H9 cells showed the RUSH-binding site mediated the ability of prolactin to augment progesterone-dependent transcription of the RUSH gene. Jak2 inhibitors or targeted RUSH-site mutation blocked the prolactin effect. RUSH co-immunoprecipitated with phospho-Jak2 from nuclear extracts. Jak2 inhibitors abolished the nuclear pool of phospho-RUSH not the nuclear content of RUSH in HRE-H9 cells. Nucleolar-affiliated partners, e.g. nucleolin, were identified by microLC/MS/MS analysis of nuclear proteins that co-immunoprecipitated with RUSH/GST-RING. RUSH did not exclusively co-localize with fibrillarin to the nucleolus. MG-132 (proteasomal inhibitor) failed to block Tyrene CR4-mediated decrease in phospho-RUSH, and did not promote RUSH accumulation in the nucleolus. These studies authenticate prolactin-dependent Jak2 phosphorylation of RUSH, and provide functional implications on the RUSH network of nuclear interactions.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Marlyn Panchoo
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Suhani M. Bhakta
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Aveline Hewetson
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| |
Collapse
|
19
|
Abstract
Much data support an essential role for interleukin (IL)-2 in immune tolerance. This idea is much different from the early paradigm in which IL-2 is central for protective immune responses. This change in thinking occurred when a T regulatory cell defect was shown to be responsible for the lethal autoimmunity associated with IL-2/IL-2R deficiency. This realization allowed investigators to explore immune responses in IL-2-nonresponsive mice rendered autoimmune-free. Such studies established that IL-2 sometimes contributes to optimal primary immune responses, but it is not mandatory. Emerging findings, however, suggest an essential role for IL-2 in immune memory. Here, the current understanding of the dual role of IL-2 in maintaining tolerance and contributing to immunity in vivo is reviewed with some emphasis on T regulatory cell production and homeostasis. Also discussed are implications of this new appreciation concerning the immunobiology of IL-2 with respect to targeting IL-2 or its receptor in immunotherapy.
Collapse
Affiliation(s)
- Thomas R Malek
- Department of Microbiology and Immunology and the Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, Florida 33101, USA.
| |
Collapse
|
20
|
Hoyt R, Zhu W, Cerignoli F, Alonso A, Mustelin T, David M. Cutting edge: selective tyrosine dephosphorylation of interferon-activated nuclear STAT5 by the VHR phosphatase. THE JOURNAL OF IMMUNOLOGY 2007; 179:3402-6. [PMID: 17785772 PMCID: PMC2770724 DOI: 10.4049/jimmunol.179.6.3402] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cytokine-induced tyrosine phosphorylation of the transcription factor STAT5 is required for its transcriptional activity. In this article we show that the small dual-specificity phosphatase VHR selectively dephosphorylates IFN-alpha- and beta-activated, tyrosine-phosphorylated STAT5, leading to the subsequent inhibition of STAT5 function. Phosphorylation of VHR at Tyr(138) was required for its phosphatase activity toward STAT5. In addition, the Src homology 2 domain of STAT5 was required for the effective dephosphorylation of STAT5 by VHR. The tyrosine kinase Tyk2, which mediates the phosphorylation of STAT5, was also responsible for the phosphorylation of VHR at Tyr(138).
Collapse
Affiliation(s)
- Richard Hoyt
- Division of Biological Sciences and University of California Cancer Center, University of California La Jolla, CA 92093
| | - Wei Zhu
- Division of Biological Sciences and University of California Cancer Center, University of California La Jolla, CA 92093
| | | | | | | | - Michael David
- Division of Biological Sciences and University of California Cancer Center, University of California La Jolla, CA 92093
- Address correspondence and reprint requests to Dr. Michael David, University of California Department of Biology, Bonner Hall 3138, 9500 Gilman Drive, La Jolla, CA 92093-0322.
| |
Collapse
|
21
|
Lee CL, Jiang PP, Sit WH, Wan JMF. Proteome of human T lymphocytes with treatment of cyclosporine and polysaccharopeptide: Analysis of significant proteins that manipulate T cells proliferation and immunosuppression. Int Immunopharmacol 2007; 7:1311-24. [PMID: 17673146 DOI: 10.1016/j.intimp.2007.05.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/21/2007] [Accepted: 05/24/2007] [Indexed: 11/25/2022]
Abstract
The aberrant activation of T lymphocyte proliferation is one of the key events in organ transplant recipients and autoimmune disorders. The present study adopted a gel-based proteomics approach to define the proteins representative of the T cell proliferation and to discover the molecules that play critical roles during the suppression of T cell proliferation. Human T lymphocytes were isolated from healthy donors and primed with phytohemagglutinin (PHA) to undergo proliferation. Two medical fungal products with specific T cell activation inhibitory properties, cyclosporine A (CsA) and polysaccharopeptide (PSP), were used to study the proteins that manipulate T cell proliferation. After demonstrating their similar effects on cell proliferation, cell survival and interleuklin-2 (IL-2) secretion, significant quantitative protein alterations were detected between the CsA- and PSP-treated T cell proteome. These altered proteins were identified by MALDI-TOF and classified into 3 categories: (i) proteins affected by both CsA and PSP, (ii) proteins affected by CsA alone, and (iii) proteins affected by PSP alone. Most of these altered proteins have functional significance in protein degradation, the antioxidant pathway, energy metabolism and immune cell regulation.
Collapse
Affiliation(s)
- Cheuk-Lun Lee
- School of Biological Science, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | | | | | | |
Collapse
|
22
|
Abstract
Universal and essential to cytokine receptor signaling, the JAK-STAT pathway is one of the best understood signal transduction cascades. Almost 40 cytokine receptors signal through combinations of four JAK and seven STAT family members, suggesting commonality across the JAK-STAT signaling system. Despite intense study, there remain substantial gaps in understanding how the cascades are activated and regulated. Using the examples of the IL-6 and IL-10 receptors, I will discuss how diverse outcomes in gene expression result from regulatory events that effect the JAK1-STAT3 pathway, common to both receptors. I also consider receptor preferences by different STATs and interpretive problems in the use of STAT-deficient cells and mice. Finally, I consider how the suppressor of cytokine signaling (SOCS) proteins regulate the quality and quantity of STAT signals from cytokine receptors. New data suggests that SOCS proteins introduce additional diversity into the JAK-STAT pathway by adjusting the output of activated STATs that alters downstream gene activation.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38104, USA.
| |
Collapse
|
23
|
Shi X, Franko B, Frantz C, Amin HM, Lai R. JSI-124 (cucurbitacin I) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signalling, downregulates nucleophosmin-anaplastic lymphoma kinase (ALK), and induces apoptosis in ALK-positive anaplastic large cell lymphoma cells. Br J Haematol 2006; 135:26-32. [PMID: 16939498 DOI: 10.1111/j.1365-2141.2006.06259.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
JSI-124 (cucurbitacin I) has been recently described as a specific inhibitor of signal transducer and activator of transcription-3 (STAT3). As STAT3 activation is pathogenetically important in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ ALCL), we investigated whether JSI-124 can mediate significant inhibitory effects in this cell type. In two ALK+ ALCL cell lines (Karpas 299 and SU-DHL-1), JSI-124 significantly reduced the number of viable cells to 50% of that of negative controls at a dose of 5-10 micromol/l at 24 h and 1-1.25 micromol/l at 48 h. This decrease in viability was associated with apoptosis, as confirmed by the increase in the subG(0/1) fraction, poly(ADP-ribose)polymerase cleavage and expression of active caspase 3. JSI-124 decreased the phosphorylated-STAT3 and -Janus kinase-3 (JAK3) levels in a dose-dependent fashion, and these changes were coupled with significant decreases in several STAT3 downstream targets, including mcl-1, bcl-2, bcl-xL and cyclin D3. Interestingly, JSI-124 also dramatically decreased the protein levels of JAK3 and nucleophosmin (NPM)-ALK, and these effects were reversible by MG132. Our data support that JSI-124 is a potentially useful therapeutic agent for ALK+ ALCL. In addition to its role as a tyrosine kinase inhibitor, JSI-124 appears to be involved in regulating proteosome degradation for proteins such as JAK3 and NPM-ALK.
Collapse
Affiliation(s)
- Xinzhe Shi
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
24
|
Nilsson J, Bjursell G, Kannius-Janson M. Nuclear Jak2 and transcription factor NF1-C2: a novel mechanism of prolactin signaling in mammary epithelial cells. Mol Cell Biol 2006; 26:5663-74. [PMID: 16847321 PMCID: PMC1592781 DOI: 10.1128/mcb.02095-05] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The classical mechanism by which prolactin transduces its signal in mammary epithelial cells is by activation of cytosolic signal transducer and activator of transcription 5 (Stat5) via a plasma membrane-associated prolactin receptor-Janus kinase 2 (Jak2) complex. Here we describe an alternative pathway through which prolactin via Jak2 localized in the nucleus activates the transcription factor nuclear factor 1-C2 (NF1-C2). Previous reports have demonstrated a nuclear localization of Jak2, but the physiologic importance of nuclear Jak2 has not been clear. We demonstrate that nuclear Jak2 regulates the amount of active NF1-C2 through tyrosine phosphorylation and proteasomal degradation. Our data also demonstrate a link between prolactin and p53 as well as the milk gene carboxyl ester lipase through nuclear Jak2 and NF1-C2. Hence, we describe a novel pathway through which nuclear Jak2 is subject to regulation by prolactin in mammary epithelial cells.
Collapse
Affiliation(s)
- Jeanette Nilsson
- Department of CMB/Molecular Biology, Box 462, S-405 30 Göteborg, Sweden
| | | | | |
Collapse
|
25
|
Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+ anaplastic large-cell lymphoma. Blood 2006; 108:2796-803. [PMID: 16825495 DOI: 10.1182/blood-2006-04-017434] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Previous studies showed that most cases of ALK(+) anaplastic large-cell lymphoma (ALK(+)ALCL) do not express SHP1, a tyrosine phosphatase and an important negative regulator for cellular signaling pathways such as that of JAK/STAT. To fully assess the biologic significance of loss of SHP1 in ALK(+)ALCL, we transfected SHP1 plasmids into 2 SHP1(-), ALK(+)ALCL cell lines, Karpas 299 and SU-DHL-1. After 24 hours of transfection, pJAK3 and pSTAT3 were decreased, and these changes correlated with down-regulation of STAT3 downstream targets including cyclin D3, mcl-1, and bcl-2. Expression of SHP1 in these 2 cell lines also resulted in marked decreases in the protein levels of JAK3 and NPM-ALK, and these effects were reversible by proteosome inhibitor MG132. Conversely, when SHP1 expression in SUP-M2 (a SHP1(+) ALK(+)ALCL cell line) was inhibited using siRNA, pSTAT3, pJAK3, JAK3, and NPM-ALK were all up-regulated. Coimmunoprecipitation studies showed that SHP1 was physically associated with JAK3 and NPM-ALK. SHP1 expression in Karpas 299 and SU-DHL-1 led to significant G(1) cell cycle arrest but not apoptosis. To conclude, loss of SHP1 contributes to the pathogenesis of ALK(+)ALCL by 2 mechanisms: (1) it leaves the tyrosine phosphorylation and activation of JAK3/STAT3 unchecked and (2) it decreases proteosome degradation of JAK3 and NPM-ALK.
Collapse
Affiliation(s)
- Yajun Han
- Department of Laboratory Medicine and Pathology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada T6G 1Z2
| | | | | | | | | | | |
Collapse
|
26
|
Forget G, Gregory DJ, Olivier M. Proteasome-mediated Degradation of STAT1α following Infection of Macrophages with Leishmania donovani. J Biol Chem 2005; 280:30542-9. [PMID: 15983048 DOI: 10.1074/jbc.m414126200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activation of the Janus-activated kinase 2 (JAK2)/STAT1alpha signaling pathway is repressed in Leishmania-infected macrophages. This represents an important mechanism by which this parasite subverts the microbicidal functions of the cell to promote its own survival and propagation. We recently provided evidence that the protein tyrosine phosphatase (PTP) SHP-1 was responsible for JAK2 inactivation. However, STAT1 translocation to the nucleus was not restored in the absence of SHP-1. In the present study, we have used B10R macrophages to study the mechanism by which this Leishmania-induced STAT1 inactivation occurs. STAT1alpha nuclear localization was shown to be rapidly reduced by the infection. Western blot analysis revealed that cellular STAT1alpha, but not STAT3, was degraded. Using PTP inhibitors and an immortalized bone marrow-derived macrophage cell line from SHP-1-deficient mice, we showed that STAT1 inactivation was independent of PTP activity. However, inhibition of macrophage proteasome activity significantly rescued Leishmania-induced STAT1alpha degradation. We further demonstrated that degradation was receptor-mediated and involved protein kinase C alpha. All Leishmania species tested (L. major, L. donovani, L. mexicana, L. braziliensis), but not the related parasite Trypanosoma cruzi, caused STAT1alpha degradation. Collectively, results from this study revealed a new mechanism for STAT1 regulation by a microbial pathogen, which favors its establishment and propagation within the host.
Collapse
Affiliation(s)
- Geneviève Forget
- Centre de Recherche en Infectiologie and Département de Biologie Médicale, Centre Hospitalier Universitaire de Québec, Université Laval, Québec G1V 4G2, Canada
| | | | | |
Collapse
|
27
|
Olivier M, Gregory DJ, Forget G. Subversion mechanisms by which Leishmania parasites can escape the host immune response: a signaling point of view. Clin Microbiol Rev 2005; 18:293-305. [PMID: 15831826 PMCID: PMC1082797 DOI: 10.1128/cmr.18.2.293-305.2005] [Citation(s) in RCA: 369] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The obligate intracellular parasite Leishmania must survive the antimicrobial activities of its host cell, the macrophage, and prevent activation of an effective immune response. In order to do this, it has developed numerous highly successful strategies for manipulating activities, including antigen presentation, nitric oxide and oxygen radical generation, and cytokine production. This is generally the result of interactions between Leishmania cell surface molecules, particularly gp63 and LPG, and less well identified macrophage surface receptors, causing the distortion of specific intracellular signaling cascades. We describe some of the signaling pathways and intermediates that are repressed in infected cells, including JAK/STAT, Ca(2+)-dependent protein kinase C (PKC) isoforms, and mitogen-activated protein kinases (especially ERK1/2), and proteasome-mediated transcription factor degradation. We also discuss protein tyrosine phosphatases (particularly SHP-1), intracellular Ca2+, Ca(2+)-independent PKC, ceramide, and the suppressors of cytokine signaling family of repressors, which are all reported to be activated following infection, and the role of parasite-secreted cysteine proteases.
Collapse
Affiliation(s)
- Martin Olivier
- Centre for the Study of Host Resistance at the Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | | | | |
Collapse
|
28
|
Robinson LJ, Xue J, Corey SJ. Src family tyrosine kinases are activated by Flt3 and are involved in the proliferative effects of leukemia-associated Flt3 mutations. Exp Hematol 2005; 33:469-79. [PMID: 15781338 DOI: 10.1016/j.exphem.2005.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 12/27/2004] [Accepted: 01/13/2005] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The hematopoietic growth factor receptor, Fms-like tyrosine kinase-3 (Flt3), modulates survival and proliferation of myeloid and B-cell precursors. Activating mutations of Flt3 are the most common molecular abnormalities in acute myeloid leukemia (AML) and have an apparent role in leukemogenesis. However, signaling pathways mediating Flt3 effects are incompletely understood. The role of Src kinases is unknown, although some, such as Lyn, have also been linked to leukemogenesis. This study examines the role of Src kinases in Flt3 signaling and the oncogenic effects of leukemia-associated Flt3 mutations. MATERIALS AND METHODS We examined the activation and functional roles of Src kinases in human leukemic myeloid cell lines expressing wild-type Flt3 or a constitutively active mutant, and in cells stably transduced with human wild-type or mutant Flt3. RESULTS Flt3 ligand stimulation of wild-type Flt3 increased phosphorylation of Src kinase Lyn. Constitutive Lyn phosphorylation and activation was found in cells expressing constitutively active Flt3 mutants. Src kinases are implicated in downregulation of closely related receptors, but Src inhibitors had no effect on ligand-stimulated Flt3 degradation, or on the rapid degradation of an Flt3 mutant. However, growth-factor-independent proliferation resulting from mutant Flt3 expression did depend on the activity of Src kinases. CONCLUSION Our studies reveal for the first time the involvement of Src kinases in Flt3 signaling, with activation of Lyn by constitutively active Flt3 mutants as well as ligand-stimulated wild-type receptor, and show that Src kinase inhibitors block proliferative effects of Flt3 mutants found in AML. Thus, Src kinases may represent targets for inhibitor therapy in Flt3-related AML.
Collapse
Affiliation(s)
- Lisa J Robinson
- Department of Pathology, University of Pittsburgh Medical School, Pittsburgh, PA 15261, USA.
| | | | | |
Collapse
|
29
|
Powell SR, Wang P, Katzeff H, Shringarpure R, Teoh C, Khaliulin I, Das DK, Davies KJA, Schwalb H. Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: essential role of the proteasome. Antioxid Redox Signal 2005; 7:538-46. [PMID: 15889999 DOI: 10.1089/ars.2005.7.538] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study examined the hypothesis that postischemic levels of oxidized and/or ubiquitinated proteins may be predictive of functional recovery as they may be indicative of activity of the 20S and/or 26S proteasomes, respectively. Subjecting isolated rat hearts to 15 min of ischemia had no effect on 20S- and 26S-proteasome activities; however, both were significantly (p < 0.05) decreased by 70% and 54%, respectively, following 30 min of ischemia and 60 min of reperfusion, changes associated with increased levels of protein carbonyls and ubiquitinated proteins. Preischemic treatment of hearts with the proteasome inhibitor, MG132, resulted in dose-dependent decreases (p < 0.05) in recovery of postischemic function [MG132 (microM), heart rate x pressure product: 0, 11,158 +/- 2,423; 6, 11,400 +/- 3,009; 12, 5,513 +/- 2,225; 25, 2,325 +/- 992] and increased accumulation of ubiquitinated proteins. Preconditioning with repetitive ischemia (IP) or preischemic treatment with nicorandil (Nic) resulted in a significant increase in postischemic 20S-proteasome activity after 60 min of reperfusion (control, 95 +/- 4; IP, 301 +/- 65; Nic, 242 +/- 61 fluorescence units). Only Nic had similar effects on 26S-proteasome activity. These results support the conclusion that a correlation exists between eventual recovery of postischemic function and levels of oxidized and/or ubiquitinated proteins, a phenomenon that may be dependent on activity of the 20S and 26S proteasomes.
Collapse
Affiliation(s)
- Saul R Powell
- Department of Medicine, Long Island Jewish Medical Center Campus of the Albert Einstein College of Medicine, New Hyde Park, NY 11042, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Affiliation(s)
- Julian Adams
- Infinity Pharmaceuticals, Inc., 780 Memorial Drive, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
31
|
Meyer T, Hendry L, Begitt A, John S, Vinkemeier U. A Single Residue Modulates Tyrosine Dephosphorylation, Oligomerization, and Nuclear Accumulation of Stat Transcription Factors. J Biol Chem 2004; 279:18998-9007. [PMID: 15010467 DOI: 10.1074/jbc.m400766200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The NH(2) terminus of Stat proteins forms a versatile protein interaction domain that is believed to use discrete surfaces to mediate oligomerization and tyrosine dephosphorylation of Stat dimers. Here we show for Stat1 and Stat5a/b that these interfaces overlap and need to be reassigned to an unrelated region of the N-domain. Unexpectedly, our study showed for Stat1 that defective oligomerization of DNA-bound dimers was associated with prolonged interferon-induced nuclear accumulation. This uncoupling of DNA binding and nuclear retention was explained by the concomitant dephosphorylation deficiency that both Stat1 and Stat5a/b have in common and that for Stat1 was due to defective dephosphorylation by the phosphatase TC45. Furthermore, diminished N-domain-mediated oligomerization affected transcriptional activation by both Stat1 and Stat5a/b in a promoter-specific manner. DNA binding analysis indicated that oligomerization of Stats on DNA may be common, irrespective of the presence of multiple canonical binding sites. Accordingly, also transcription from promoters with only a single discernable gamma-activated sequence site was negatively effected by reduced tetramerization. Thus, these results indicate that defective oligomerization cannot generally be compensated for by enhanced tyrosine phosphorylation and prolonged nuclear accumulation. In addition, these data clarify the role of DNA binding in nuclear retention of Stat1.
Collapse
Affiliation(s)
- Thomas Meyer
- Abteilung Zelluläre Signalverarbeitung, Forschungsinstitut für Molekulare Pharmakologie, Freie Universität Berlin, 13125 Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
Hanada T, Kinjyo I, Inagaki-Ohara K, Yoshimura A. Negative regulation of cytokine signaling by CIS/SOCS family proteins and their roles in inflammatory diseases. Rev Physiol Biochem Pharmacol 2004; 149:72-86. [PMID: 12687406 DOI: 10.1007/s10254-003-0015-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immune and inflammatory systems are controlled by multiple cytokines, including interleukins (ILs) and interferons. These cytokines exert their biological functions through Janus tyrosine kinases (JAKs) and STAT transcription factors. The CIS (cytokine-inducible SH2 protein) and SOCS (suppressors of cytokine signaling) are a family of intracellular proteins, several of which have emerged as key physiological regulators of cytokine responses, including those that regulate the inflammatory systems. In this review, we focused on the molecular mechanism of the action of CIS/SOCS family proteins and their roles in inflammatory diseases. Furthermore, we illustrate several approaches for treating inflammatory diseases by modulating extracellular and intracellular signaling pathways.
Collapse
Affiliation(s)
- T Hanada
- Division of Molecular and Cellular Immunology, Medical Institute of Bioregulation, Kyushu University, Maidashi, 812-8582 Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
33
|
Rigacci S, Talini D, Berti A. LMW-PTP associates and dephosphorylates STAT5 interacting with its C-terminal domain. Biochem Biophys Res Commun 2004; 312:360-6. [PMID: 14637146 DOI: 10.1016/j.bbrc.2003.10.126] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hematopoietic cells, particularly megakaryoblastic ones, display a high level of low M(r) phosphotyrosine protein phosphatase (LMW-PTP) expression; nevertheless, the role of this PTP in such cellular lineages has been scarcely investigated. Here, we demonstrate that LMW-PTP is able to associate and dephosphorylate signal transducer and activator of transcription-5 (STAT5) in DAMI megakaryocytic cells. Numerous researchers repeatedly hypothesized the association of a regulatory phosphotyrosine protein phosphatase with STAT5 C-terminus, but such phosphotyrosine protein phosphatase remained unknown. We show evidence indicating that the association of STAT5 and LMW-PTP does not exclusively involve the phosphatase active site and phosphotyrosine residue of STAT5, and we individuate an essential region of interaction at STAT5 C-terminus, coinciding with the previously hypothesized PTP-associating domain.
Collapse
Affiliation(s)
- Stefania Rigacci
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy
| | | | | |
Collapse
|
34
|
Cornish AL, Chong MM, Davey GM, Darwiche R, Nicola NA, Hilton DJ, Kay TW, Starr R, Alexander WS. Suppressor of cytokine signaling-1 regulates signaling in response to interleukin-2 and other gamma c-dependent cytokines in peripheral T cells. J Biol Chem 2003; 278:22755-61. [PMID: 12665516 DOI: 10.1074/jbc.m303021200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Suppressor of cytokine signaling-1 (SOCS-1) is an essential regulator of cytokine signaling. SOCS-1-/- mice die before weaning with a complex disease characterized by fatty degeneration and necrosis of the liver. This disease is mediated by interferon (IFN) gamma as neonatal mortality fails to occur in SOCS-1-/-IFNgamma-/- mice. However, the immune system of healthy SOCS-1-/-IFNgamma-/- mice is dysregulated with a reduced ratio of CD4:CD8 T cells and increases in some aspects of T cell activation. SOCS-1-/-IFNgamma-/- mice also die before their wild type and IFNgamma-/- counterparts with a range of inflammatory conditions including pneumonia, gut infiltration, and skin ulceration, suggesting that SOCS-1 controls not only IFNgamma signaling, but also other immunoregulatory factors. This study shows that T cells from SOCS-1-deficient mice display hypersensitivity to cytokines that act through the gammac receptor. SOCS-1 expression is induced by interleukin (IL) 2, IL-4, IL-7, and IL-15, and SOCS-1-deficient T cells show increased proliferation and prolonged survival in response to IL-2 and IL-4. Furthermore, IL-2 induced increased STAT5 phosphorylation and CD44 expression in SOCS-1-deficient T cells compared with controls. Hypersensitivity to gammac-dependent cytokines may contribute to abnormal T cell function, as well as the pathology observed in mice lacking SOCS-1.
Collapse
Affiliation(s)
- Ann L Cornish
- The Walter and Eliza Hall Institute of Medical Research, Post Office, Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Aringer M, Hofmann SR, Frucht DM, Chen M, Centola M, Morinobu A, Visconti R, Kastner DL, Smolen JS, O'Shea JJ. Characterization and analysis of the proximal Janus kinase 3 promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:6057-64. [PMID: 12794134 DOI: 10.4049/jimmunol.170.12.6057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Janus kinase 3 (Jak3) is a nonreceptor tyrosine kinase essential for signaling via cytokine receptors that comprise the common gamma-chain (gammac), i.e., the receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Jak3 is preferentially expressed in hemopoietic cells and is up-regulated upon cell differentiation and activation. Despite the importance of Jak3 in lymphoid development and immune function, the mechanisms that govern its expression have not been defined. To gain insight into this issue, we set out to characterize the Jak3 promoter. The 5'-untranslated region of the Jak3 gene is interrupted by a 3515-bp intron. Upstream of this intron and the transcription initiation site, we identified an approximately 1-kb segment that exhibited lymphoid-specific promoter activity and was responsive to TCR signals. Truncation of this fragment revealed that core promoter activity resided in a 267-bp fragment that contains putative Sp-1, AP-1, Ets, Stat, and other binding sites. Mutation of the AP-1 sites significantly diminished, whereas mutation of the Ets sites abolished, the inducibility of the promoter construct. Chromatin immunoprecipitation assays showed that histone acetylation correlates with mRNA expression and that Ets-1/2 binds this region. Thus, transcription factors that bind these sites, especially Ets family members, are likely to be important regulators of Jak3 expression.
Collapse
Affiliation(s)
- Martin Aringer
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moulin S, Bouzinba-Segard H, Kelly PA, Finidori J. Jak2 and proteasome activities control the availability of cell surface growth hormone receptors during ligand exposure. Cell Signal 2003; 15:47-55. [PMID: 12401519 DOI: 10.1016/s0898-6568(02)00054-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several mechanisms participate in the down-regulation of growth hormone receptor (GHR) signalling under ligand exposure. In CHO cells expressing GHR, we show that ligand stimulation induces degradation of the total cell GHR content. Experiments with 125I-hGH indicate that ligand-bound internalized receptors are not immediately replaced. Using cell surface biotinylation, we demonstrate for the first time that, concomitantly with the degradation of cell surface receptors, GHRs from the intracellular compartments are also degraded. We thus suggest that under prolonged ligand exposure, some GHRs are targeted to the cell surface, while others are routed to degradation compartments. Inhibitors of Jak2 and of the proteasome partially inhibited degradation of cell surface receptors, while these compounds completely inhibit the degradation of intracellular GHRs, resulting in their accumulation. We therefore propose that Jak2 and proteasome activities control the amount of intracellular GHRs, and thus the availability of receptors at the cell surface, during ligand exposure.
Collapse
Affiliation(s)
- Stéphanie Moulin
- INSERM Unit 344, Molecular Endocrinology, Faculty of Medicine Necker, 156 rue de Vaugirard 75730, Paris Cedex 15, France
| | | | | | | |
Collapse
|
37
|
Liu D, Scafidi J, Prada AE, Zahedi K, Davis AE. Nuclear phosphatases and the proteasome in suppression of STAT1 activity in hepatocytes. Biochem Biophys Res Commun 2002; 299:574-80. [PMID: 12459177 DOI: 10.1016/s0006-291x(02)02694-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
IFN-gamma induction of C1 inhibitor (C1INH) is mediated by an IFN-gamma-activated sequence (GAS), via binding of signal transducer and activator of transcription 1 (STAT1). These studies focused on the factors responsible for down-regulation of nuclear STAT1 in hepatocytes, the primary site of synthesis of C1INH. The activity of nuclear STAT1 following stimulation with IFN-gamma was sustained with the phosphatase inhibitor, pervanadate, or the proteasome inhibitor, lactacystin. Pervanadate prolonged STAT1 activation and blocked the inactivation of nuclear STAT1. Binding of ubiquitin to phosphorylated STAT1 was detectable in cells treated with lactacystin. Staurosporine only moderately decreased the prolongation of nuclear phosphorylated STAT1 after pretreatment with pervanadate or lactacystin. An antisense mitogen-activated protein kinase phosphatase (MKP-1) oligonucleotide prolonged the accumulation of phosphorylated STAT1. These data are consistent with the hypothesis that down-regulation of IFN-gamma-mediated nuclear STAT1 binding in hepatocytes involves both dephosphorylation by MKP-1 and degradation via proteolysis by the ubiquitin-dependent proteasome pathway.
Collapse
Affiliation(s)
- Dongxu Liu
- The Center for Blood Research, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
38
|
Wurster AL, Rodgers VL, Satoskar AR, Whitters MJ, Young DA, Collins M, Grusby MJ. Interleukin 21 is a T helper (Th) cell 2 cytokine that specifically inhibits the differentiation of naive Th cells into interferon gamma-producing Th1 cells. J Exp Med 2002; 196:969-77. [PMID: 12370258 PMCID: PMC2194031 DOI: 10.1084/jem.20020620] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The cytokine potential of developing T helper (Th) cells is directly shaped both positively and negatively by the cytokines expressed by the effector Th cell subsets. Here we find that the recently identified cytokine, interleukin (IL)-21, is preferentially expressed by Th2 cells when compared with Th1 cells generated in vitro and in vivo. Exposure of naive Th precursors to IL-21 inhibits interferon (IFN)-gamma production from developing Th1 cells. The repression of IFN-gamma production is specific in that the expression of other Th1 and Th2 cytokines is unaffected. IL-21 decreases the IL-12 responsiveness of developing Th cells by specifically reducing both signal transducer and activator of transcription 4 protein and mRNA expression. These results suggest that Th2 cell-derived IL-21 regulates the development of IFN-gamma-producing Th1 cells which could serve to amplify a Th2 response.
Collapse
Affiliation(s)
- Andrea L Wurster
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Rondinone CM, Kramer D. Proteasome inhibitors regulate tyrosine phosphorylation of IRS-1 and insulin signaling in adipocytes. Biochem Biophys Res Commun 2002; 296:1257-63. [PMID: 12207909 DOI: 10.1016/s0006-291x(02)02083-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insulin rapidly stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of insulin receptor substrates (IRS), which in turn associates and activates PI 3-kinase, leading to an increase in glucose uptake. Phosphorylation of IRS proteins and activation of downstream kinases by insulin are transient and the mechanisms for the subsequent downregulation of their activity are largely unknown. We report here that the insulin-induced IRS-1 tyrosine phosphorylation and PI 3-kinase association to IRS-1 were strongly sustained by the proteasome inhibitors, MG132 and lactacystin. In contrast, no effect was detected on the insulin receptor and IRS-2 tyrosine phosphorylation. Interestingly, lactacystin also preserved PKB activation and insulin-induced glucose uptake. In contrast, calpeptin, a calpain inhibitor, was ineffective. Tyrosine phosphatase assays were also performed, showing that lactacystin was not functioning directly as a tyrosine phosphatase inhibitor "in vitro." In conclusion, proteasome inhibitors can regulate the tyrosine phosphorylation of IRS-1 and the downstream insulin signaling pathway, leading to glucose transport.
Collapse
Affiliation(s)
- Cristina M Rondinone
- Metabolic Diseases Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Department 47R, Building AP10, 100 Abbott Park Road, 60064, Abbott Park, IL, USA.
| | | |
Collapse
|
40
|
Goh ELK, Zhu T, Leong WY, Lobie PE. c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription. Endocrinology 2002; 143:3590-603. [PMID: 12193575 DOI: 10.1210/en.2002-220374] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously demonstrated that cellular stimulation with GH results in the formation of a multiprotein signaling complex. One component of this multiprotein signaling complex is the adapter molecule c-Cbl. Here we have examined the role of c-Cbl in the mechanism of GH signal transduction. Forced expression of c-Cbl in NIH3T3 cells did not alter GH-stimulated Janus kinase 2 tyrosine phosphorylation nor GH-stimulated p44/42 MAPK activation and consequent Elk-1- mediated transcription. c-Cbl overexpression did, however, result in enhanced and prolonged GH-stimulated activation of phosphatidylinositol 3-kinase. Forced expression of c-Cbl did not affect GH-stimulated STAT5 tyrosine phosphorylation, nuclear translocation, nor binding to DNA but markedly abrogated GH-stimulated STAT5-mediated transactivation. c-Cbl overexpression resulted in increased ubiquitination and proteosomal degradation of STAT5 and increased degradation of GH-stimulated tyrosine phosphorylated STAT5. Cellular pretreatment with the proteosomal inhibitor MG132 reversed the effect of c-Cbl overexpression with prolonged duration of GH-stimulated STAT5 tyrosine phosphorylation and restoration of STAT5-mediated transcription. Thus, c-Cbl is a negative regulator of GH-stimulated STAT5-mediated transcription by direction of STAT5 for proteosomal degradation.
Collapse
Affiliation(s)
- Eyleen L K Goh
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore 117609
| | | | | | | |
Collapse
|
41
|
Wu HM, Chi KH, Lin WW. Proteasome inhibitors stimulate activator protein-1 pathway via reactive oxygen species production. FEBS Lett 2002; 526:101-5. [PMID: 12208513 DOI: 10.1016/s0014-5793(02)03151-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this report we explored the effects of proteasome inhibitors (MG132, aLLN, lactacystin and MG262) on interleukin-8 (IL-8) induction. In HEK293 cells, proteasome inhibitors could concentration-dependently increase IL-8 promoter and activator protein-1 (AP-1) activities, but inhibited nuclear factor (NF)-kappa B activation induced by cytokines. The stimulating effects on IL-8 promoter and AP-1 were reduced by N-acetylcysteine, glutathione, diphenyleneiodonium, rotenone and antimycin A. Fluorescent analysis using 2',7'-dichlorodihydrofluorescin diacetate further confirmed the abilities of proteasome inhibitors to induce reactive oxygen species (ROS) production. These results suggest that ROS production by proteasome inhibitors leads to AP-1 activation, which in the absence of NF-kappa B activation still transactivates IL-8 gene expression.
Collapse
Affiliation(s)
- Hsiao-Mei Wu
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
42
|
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M, Shuai K. Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol 2002; 22:5662-8. [PMID: 12138178 PMCID: PMC133976 DOI: 10.1128/mcb.22.16.5662-5668.2002] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Upon interferon (IFN) stimulation, Stat1 becomes tyrosine phosphorylated and translocates into the nucleus, where it binds to DNA to activate transcription. The activity of Stat1 is dependent on tyrosine phosphorylation, and its inactivation in the nucleus is accomplished by a previously unknown protein tyrosine phosphatase (PTP). We have now purified a Stat1 PTP activity from HeLa cell nuclear extract and identified it as TC45, the nuclear isoform of the T-cell PTP (TC-PTP). TC45 can dephosphorylate Stat1 both in vitro and in vivo. Nuclear extracts lacking TC45 fail to dephosphorylate Stat1. Furthermore, the dephosphorylation of IFN-induced tyrosine-phosphorylated Stat1 is defective in TC-PTP-null mouse embryonic fibroblasts (MEFs) and primary thymocytes. Reconstitution of TC-PTP-null MEFs with TC45, but not the endoplasmic reticulum (ER)-associated isoform TC48, rescues the defect in Stat1 dephosphorylation. The dephosphorylation of Stat3, but not Stat5 or Stat6, is also affected in TC-PTP-null cells. Our results identify TC45 as a PTP responsible for the dephosphorylation of Stat1 in the nucleus.
Collapse
Affiliation(s)
- Johanna ten Hoeve
- Department of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Grolleau A, Bowman J, Pradet-Balade B, Puravs E, Hanash S, Garcia-Sanz JA, Beretta L. Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 2002; 277:22175-84. [PMID: 11943782 DOI: 10.1074/jbc.m202014200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rapamycin has been shown to affect translation. We have utilized two complementary approaches to identify genes that are predominantly affected by rapamycin in Jurkat T cells. One was to compare levels of polysome-bound and total RNA using oligonucleotide microarrays complementary to 6,300 human genes. Another was to determine protein synthesis levels using two-dimensional PAGE. Analysis of expression changes at the polysome-bound RNA levels showed that translation of most of the expressed genes was partially reduced following rapamycin treatment. However, translation of 136 genes (6% of the expressed genes) was totally inhibited. This group included genes encoding RNA-binding proteins and several proteasome subunit members. Translation of a set of 159 genes (7%) was largely unaffected by rapamycin treatment. These genes included transcription factors, kinases, phosphatases, and members of the RAS superfamily. Analysis of [(35)S]methionine-labeled proteins from the same cell populations using two-dimensional PAGE showed that the integrated intensity of 111 of 830 protein spots changed in rapamycin-treated cells by at least 3-fold (70 increased, 41 decreased). We identified 22 affected protein spots representing protein products of 16 genes. The combined microarray and proteomic approach has uncovered novel genes affected by rapamycin that may be involved in its immunosuppressive effect and other genes that are not affected at the level of translation in a context of general inhibition of cap-dependent translation.
Collapse
Affiliation(s)
- Annabelle Grolleau
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The suppressors of cytokine signalling (SOCS) are a family of intracellular proteins, several of which have emerged as key physiological regulators of cytokine responses, including those that regulate the immune system. The SOCS proteins seem to regulate signal transduction by combining direct inhibitory interactions with cytokine receptors and signalling proteins with a generic mechanism of targeting associated proteins for degradation. Evidence is emerging for the involvement of SOCS proteins in diseases of the human immune system, which raises the possibility that therapeutic strategies that are based on the manipulation of SOCS activity might be of clinical benefit.
Collapse
Affiliation(s)
- Warren S Alexander
- The Walter and Eliza Hall Institute of Medical Research and the Cooperative Research Centre for Cellular Growth Factors, Royal Melbourne Hospital, Victoria, Australia.
| |
Collapse
|
45
|
Abstract
Hematopoiesis is the cumulative result of intricately regulated signal transduction cascades that are mediated by cytokines and their cognate receptors. Proper culmination of these diverse signaling pathways forms the basis for an orderly generation of different cell types and aberrations in these pathways is an underlying cause for diseases such as leukemias and other myeloproliferative and lymphoproliferative disorders. Over the past decade, downstream signal transduction events initiated upon cytokine/growth factor stimulation have been a major focus of basic and applied biomedical research. As a result, several key concepts have emerged allowing a better understanding of the complex signaling processes. A group of transcription factors, termed signal transducers and activators of transcription (STATs) appear to orchestrate the downstream events propagated by cytokine/growth factor interactions with their cognate receptors. Similarly, cytoplasmic Janus protein tyrosine kinases (JAKs) and Src family of kinases seem to play a critical role in diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Accumulating evidence suggests that STAT protein activation may be mediated by members of both JAK and Src family members following cytokine/growth factor stimulation. In addition, JAK kinases appear to be essential for the phosphorylation of the cytokine receptors which results in the creation of docking sites on the receptors for binding of SH2-containing proteins such as STATs, Src-kinases and other signaling intermediates. Cell and tissue-specificity of cytokine action appears to be determined by the nature of signal transduction pathways activated by cytokine/receptor interactions. The integration of these diverse signaling cues from active JAK kinases, members of the Src-family kinases and STAT proteins, leads to cell proliferation, cell survival and differentiation, the end-point of the cytokine/growth factor stimulus.
Collapse
Affiliation(s)
- Sushil G Rane
- Laboratory of Cell Regulation & Carcinogenesis, NCI, NIH, Bldg. 41, C629, 41 Library Drive, Bethesda, Maryland, MD 20892, USA
| | | |
Collapse
|
46
|
Ungureanu D, Saharinen P, Junttila I, Hilton DJ, Silvennoinen O. Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002; 22:3316-26. [PMID: 11971965 PMCID: PMC133778 DOI: 10.1128/mcb.22.10.3316-3326.2002] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Revised: 07/26/2001] [Accepted: 02/19/2002] [Indexed: 01/17/2023] Open
Abstract
The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.
Collapse
Affiliation(s)
- Daniela Ungureanu
- Institute of Medical Technology, University of Tampere, FIN-33014 Tampere, Finland
| | | | | | | | | |
Collapse
|
47
|
Kaur N, Wohlhueter AL, Halvorsen SW. Activation and inactivation of signal transducers and activators of transcription by ciliary neurotrophic factor in neuroblastoma cells. Cell Signal 2002; 14:419-29. [PMID: 11882386 DOI: 10.1016/s0898-6568(01)00280-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Neurons in vivo are exposed to a variety of different growth factors and cytokines. A principal signalling pathway for ciliary neurotrophic factor (CNTF)-like cytokines is the Janus kinase (Jak)/signal transducer and activator of transcription (STAT) system of kinases and transcription factors. In the human cell line (SH-SY5Y), STAT1 and STAT3 activation by CNTF-like cytokines showed tyrosine phosphorylation peaking at 0.5 h and inactivating within 2 h. Tyrosine phosphorylation of the receptor-associated tyrosine kinases Jak1 and Jak2 showed a similar time course of activation and inactivation in response to CNTF. The STAT1 response to the non-CNTF-like cytokine, interferon-gamma (IFN-gamma) did not inactivate. Inactivation to CNTF was not due to a decrease in CNTF receptor subunit gp130 or in levels of Jak1 or Jak2. STAT inactivation was inhibited by the protein kinase blocker H7 and a tyrosine phosphatase blocker, but not by inhibitors of protein kinase C, mitogen-activated protein kinase (MAPK) kinase, mTOR-P70/S6 kinase or phosphatidyl inositol-3-kinase (PI-3 kinase). Surprisingly, CNTF caused only a minor increase in levels of suppressors of cytokine signalling, SOCS-1 and SOCS-3. CNTF pretreatment desensitized the cells to the CNTF-like cytokines, leukemia inhibitory factor and oncostatin-M but not to IFN-gamma. These results reveal a complex level of regulation of shared signalling pathways for cytokines that is dependent on both the type of cell and cytokine.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, 102 Faber Hall, University at Buffalo, The State University of New York, Buffalo, NY 14214-3000, USA
| | | | | |
Collapse
|
48
|
Regulation of Jak2 through the ubiquitin-proteasome pathway involves phosphorylation of Jak2 on Y1007 and interaction with SOCS-1. Mol Cell Biol 2002. [PMID: 11971965 DOI: 10.1128/mcb.22.10.3316‐3326.2002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The family of cytoplasmic Janus (Jak) tyrosine kinases plays an essential role in cytokine signal transduction, regulating cell survival and gene expression. Ligand-induced receptor dimerization results in phosphorylation of Jak2 on activation loop tyrosine Y1007 and stimulation of its catalytic activity, which, in turn, results in activation of several downstream signaling cascades. Recently, the catalytic activity of Jak2 has been found to be subject to negative regulation through various mechanisms including association with SOCS proteins. Here we show that the ubiquitin-dependent proteolysis pathway is involved in the regulation of the turnover of activated Jak2. In unstimulated cells Jak2 was monoubiquitinated, and interleukin-3 or gamma interferon stimulation induced polyubiquitination of Jak2. The polyubiquitinated Jak2 was rapidly degraded through proteasomes. By using different Jak2 mutants we show that tyrosine-phosphorylated Jak2 is preferentially polyubiquitinated and degraded. Furthermore, phosphorylation of Y1007 on Jak2 was required for proteasomal degradation and for SOCS-1-mediated downregulation of Jak2. The proteasome inhibitor treatment stabilized the Jak2-SOCS-1 protein complex and inhibited the proteolysis of Jak2. In summary, these results indicate that the ubiquitin-proteasome pathway negatively regulates tyrosine-phosphorylated Jak2 in cytokine receptor signaling, which provides an additional mechanism to control activation of Jak2 and maintain cellular homeostasis.
Collapse
|
49
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 803] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
50
|
Aoki N, Matsuda T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol Endocrinol 2002; 16:58-69. [PMID: 11773439 DOI: 10.1210/mend.16.1.0761] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the present study we examined involvement of nuclear protein tyrosine phosphatase TC-PTP in PRL-mediated signaling. TC-PTP could dephosphorylate signal transducer and activator of transcription 5a (STAT5a) and STAT5b, but the apparent dephosphorylation activity of TC-PTP was weaker than that of cytosolic PTP1B 30 min after PRL stimulation in transfected COS-7 cells, whereas both STAT5a and STAT5b were dephosphorylated to the same extent by recombinant TC-PTP and PTP1B in vitro. Tyrosine-phosphorylated STAT5 was coimmunoprecipitated with substrate trapping mutants of TC-PTP, suggesting that STAT5 is a specific substrate of TC-PTP. These observations were further extended in mammary epithelial COMMA-1D cells stably expressing TC-PTP. A time-course study revealed that dephosphorylation of STAT5 by TC-PTP was delayed compared with that by cytosolic PTP1B due to nuclear localization of TC-PTP throughout PRL stimulation in mammary epithelial cells. Endogenous beta-casein gene expression and beta-casein gene promoter activation in COS-7 cells were largely suppressed by TC-PTP wild type as well as catalytically inactive mutants, suggesting that stable complexes formed between STAT5 and TC-PTP in the nucleus. Taken together, we conclude that TC-PTP is catalytically competent with respect to dephosphorylation and deactivation of PRL-activated STAT5 in the nucleus.
Collapse
Affiliation(s)
- Naohito Aoki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|