1
|
Choi YN, Kim D, Lee S, Shin Y, Lee J. Quadruplet codon decoding-based versatile genetic biocontainment system. Nucleic Acids Res 2025; 53:gkae1292. [PMID: 39777466 PMCID: PMC11705086 DOI: 10.1093/nar/gkae1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Biological resources, such as sequence information, genetic traits, materials and strains, pose risks when inadvertently released or deliberately misused. To address these concerns, we developed Quadruplet COdon DEcoding (QCODE), a versatile genetic biocontainment strategy that introduces a quadruplet codon (Q-codon) causing frameshifts, hindering proper gene expression. Strategically incorporating Q-codons in multiple genes prevents genetic trait escape, unallowed proliferation of microbial strains and unauthorized leakages of genetic materials. This multifaceted strategy, integrating Q-codons for genetic traits, materials and strains, ensures robust biocontainment across various levels. Notably, our system maintains sequence protection, safeguarding genetic sequence information against unauthorized access. The QCODE approach offers a versatile, efficient and compact solution to enhance biosecurity in diverse biological research settings.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Donghyeon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongbeom Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ye Rim Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Wegrzyn K, Konieczny I. Toward an understanding of the DNA replication initiation in bacteria. Front Microbiol 2024; 14:1328842. [PMID: 38249469 PMCID: PMC10797057 DOI: 10.3389/fmicb.2023.1328842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024] Open
Abstract
Although the mechanism of DNA replication initiation has been investigated for over 50 years, many important discoveries have been made related to this process in recent years. In this mini-review, we discuss the current state of knowledge concerning the structure of the origin region in bacterial chromosomes and plasmids, recently discovered motifs recognized by replication initiator proteins, and proposed in the literature models describing initial origin opening. We review structures of nucleoprotein complexes formed by replication initiators at chromosomal and plasmid replication origins and discuss their functional implications. We also discuss future research challenges in this field.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Gdansk, Poland
| | | |
Collapse
|
3
|
Wegrzyn K, Oliwa M, Nowacka M, Zabrocka E, Bury K, Purzycki P, Czaplewska P, Pipka J, Giraldo R, Konieczny I. Rep protein accommodates together dsDNA and ssDNA which enables a loop-back mechanism to plasmid DNA replication initiation. Nucleic Acids Res 2023; 51:10551-10567. [PMID: 37713613 PMCID: PMC10602881 DOI: 10.1093/nar/gkad740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/25/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand β1, helices α1 and α2 and in the WH2 domain in loops preceding strands β1' and β2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Monika Oliwa
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Marzena Nowacka
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology in Warsaw, Księcia Trojdena 4, 02-109 Warsaw, Poland
| | - Elżbieta Zabrocka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Bury
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Piotr Purzycki
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Paulina Czaplewska
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Justyna Pipka
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas – CSIC, E28040 Madrid, Spain
| | - Igor Konieczny
- Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| |
Collapse
|
4
|
Maurya AP, Lazdins A, Wilson H, Lloyd GS, Stephens ER, Haines AS, Thomas CM. Iteron control of oriV function in IncP-1 plasmid RK2. Plasmid 2023; 126:102681. [PMID: 36990191 DOI: 10.1016/j.plasmid.2023.102681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023]
Abstract
Replication control of many plasmids is mediated by the balance between the positive and negative effects of Rep protein binding repeated sequences (iterons) associated with the replication origin, oriV. Negative control is thought to be mediated by dimeric Rep protein linking iterons in a process termed "handcuffing". The well-studied oriV region of RK2 contains 9 iterons arranged as a singleton (iteron 1), a group of 3 (iterons 2-4) and a group of 5 (iterons 5-9), but only iterons 5 to 9 are essential for replication. An additional iteron (iteron 10), oriented in the opposite direction, is also involved and reduces copy-number nearly two-fold. Since iterons 1 and 10 share an identical upstream hexamer (5' TTTCAT 3') it has been hypothesised that they form a TrfA-mediated loop facilitated by their inverted orientation. Here we report that contrary to the hypothesis, flipping one or other so they are in direct orientation results in marginally lower rather than higher copy-number. In addition, following mutagenesis of the hexamer upstream of iteron 10, we report that the Logo for the hexamer "upstream" of the regulatory iterons (1 to 4 and 10) differs from that of the essential iterons, suggesting functional differences in their interaction with TrfA.
Collapse
Affiliation(s)
- Anand P Maurya
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Alessandro Lazdins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Helen Wilson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Georgina S Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Elton R Stephens
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Anthony S Haines
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
5
|
Zürcher JF, Robertson WE, Kappes T, Petris G, Elliott TS, Salmond GPC, Chin JW. Refactored genetic codes enable bidirectional genetic isolation. Science 2022; 378:516-523. [PMID: 36264827 PMCID: PMC7614150 DOI: 10.1126/science.add8943] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The near-universal genetic code defines the correspondence between codons in genes and amino acids in proteins. We refactored the structure of the genetic code in Escherichia coli and created orthogonal genetic codes that restrict the escape of synthetic genetic information into natural life. We developed orthogonal and mutually orthogonal horizontal gene transfer systems, which permit the transfer of genetic information between organisms that use the same genetic code but restrict the transfer of genetic information between organisms that use different genetic codes. Moreover, we showed that locking refactored codes into synthetic organisms completely blocks invasion by mobile genetic elements, including viruses, which carry their own translation factors and successfully invade organisms with canonical and compressed genetic codes.
Collapse
Affiliation(s)
- Jérôme F. Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Tomás Kappes
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S. Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
6
|
Chatterjee S, Jha JK, Ciaccia P, Venkova T, Chattoraj DK. Interactions of replication initiator RctB with single- and double-stranded DNA in origin opening of Vibrio cholerae chromosome 2. Nucleic Acids Res 2020; 48:11016-11029. [PMID: 33035310 DOI: 10.1093/nar/gkaa826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Studies of bacterial chromosomes and plasmids indicate that their replication initiator proteins bind to origins of replication at many double-stranded sites and also at AT-rich regions where single-stranded DNA is exposed during origin opening. Single-strand binding apparently promotes origin opening by stabilizing an open structure, but how the initiator participates in this process and the contributions of the several binding sites remain unclear. Here, we show that the initiator protein of Vibrio cholerae specific to chromosome 2 (Chr2) also has single-strand binding activity in the AT-rich region of its origin. Binding is strand specific, depends on repeats of the sequence 5'ATCA and is greatly stabilized in vitro by specific double-stranded sites of the origin. The stability derives from the formation of ternary complexes of the initiator with the single- and double-stranded sites. An IHF site lies between these two kinds of sites in the Chr2 origin and an IHF-induced looping out of the intervening DNA mediates their interaction. Simultaneous binding to two kinds of sites in the origin appears to be a common mechanism by which bacterial replication initiators stabilize an open origin.
Collapse
Affiliation(s)
- Soniya Chatterjee
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Jyoti K Jha
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Peter Ciaccia
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Tatiana Venkova
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892-4260, USA
| |
Collapse
|
7
|
Kim JW, Bugata V, Cortés-Cortés G, Quevedo-Martínez G, Camps M. Mechanisms of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0026-2019. [PMID: 33210586 PMCID: PMC7724965 DOI: 10.1128/ecosalplus.esp-0026-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 11/20/2022]
Abstract
Plasmids are autonomously replicating sequences that help cells adapt to diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria. They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-dependent pathway leading to primosome assembly through primer extension and D-loop formation (theta classes B, C, and D). To ensure autonomy from the host's replication and to facilitate copy number regulation, theta plasmids have unique mechanisms of replication initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is essential because of the major and direct impact plasmid gene dosage has on gene expression. The timing of plasmid replication and segregation are also critical for optimizing plasmid gene expression. Therefore, we propose that plasmid replication needs to be understood in its biological context, where complex origins of replication (redundant origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin systems are often present. Highlighting their tight functional integration with ori function, we show that both partition and toxin-antitoxin systems tend to be encoded in close physical proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that adaptation of plasmids to their host optimizes their contribution to the host's fitness while restricting access to broad genetic diversity, and we argue that this trade-off between adaptation to host and access to genetic diversity is likely a determinant factor shaping the distribution of replicons in populations of enterobacteria.
Collapse
Affiliation(s)
- Jay W Kim
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Vega Bugata
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Gerardo Cortés-Cortés
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Giselle Quevedo-Martínez
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, 95064
| |
Collapse
|
8
|
Integration Host Factor IHF facilitates homologous recombination and mutagenic processes in Pseudomonas putida. DNA Repair (Amst) 2019; 85:102745. [PMID: 31715424 DOI: 10.1016/j.dnarep.2019.102745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Nucleoid-associated proteins (NAPs) such as IHF, HU, Fis, and H-NS alter the topology of bound DNA and may thereby affect accessibility of DNA to repair and recombination processes. To examine this possibility, we investigated the effect of IHF on the frequency of homologous recombination (HR) and point mutations in soil bacterium Pseudomonas putida by using plasmidial and chromosomal assays. We observed positive effect of IHF on the frequency of HR, whereas this effect varied depending both on the chromosomal location of the HR target and the type of plasmid used in the assay. The occurrence of point mutations in plasmid was also facilitated by IHF, whereas in the chromosome the positive effect of IHF appeared only at certain DNA sequences and/or chromosomal positions. We did not observe any significant effects of IHF on the spectrum of mutations. However, despite of the presence or absence of IHF, different mutational hot spots appeared both in plasmid and in chromosome. Additionally, the frequency of frameshift mutations in the chromosome was also strongly affected by the location of the mutational target sequence. Taking together, our results indicate that IHF facilitates the occurrence of genetic changes in P. putida, whereas the location of the target sequence affects both the IHF-dependent and IHF-independent mechanisms.
Collapse
|
9
|
Jha JK, Ramachandran R, Chattoraj DK. Opening the Strands of Replication Origins-Still an Open Question. Front Mol Biosci 2016; 3:62. [PMID: 27747216 PMCID: PMC5043065 DOI: 10.3389/fmolb.2016.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
The local separation of duplex DNA strands (strand opening) is necessary for initiating basic transactions on DNA such as transcription, replication, and homologous recombination. Strand opening is commonly a stage at which these processes are regulated. Many different mechanisms are used to open the DNA duplex, the details of which are of great current interest. In this review, we focus on a few well-studied cases of DNA replication origin opening in bacteria. In particular, we discuss the opening of origins that support the theta (θ) mode of replication, which is used by all chromosomal origins and many extra-chromosomal elements such as plasmids and phages. Although the details of opening can vary among different origins, a common theme is binding of the initiator to multiple sites at the origin, causing stress that opens an adjacent and intrinsically unstable A+T rich region. The initiator stabilizes the opening by capturing one of the open strands. How the initiator binding energy is harnessed for strand opening remains to be understood.
Collapse
Affiliation(s)
- Jyoti K Jha
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Revathy Ramachandran
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Dhruba K Chattoraj
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
10
|
Wegrzyn KE, Gross M, Uciechowska U, Konieczny I. Replisome Assembly at Bacterial Chromosomes and Iteron Plasmids. Front Mol Biosci 2016; 3:39. [PMID: 27563644 PMCID: PMC4980987 DOI: 10.3389/fmolb.2016.00039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/25/2016] [Indexed: 11/13/2022] Open
Abstract
The proper initiation and occurrence of DNA synthesis depends on the formation and rearrangements of nucleoprotein complexes within the origin of DNA replication. In this review article, we present the current knowledge on the molecular mechanism of replication complex assembly at the origin of bacterial chromosome and plasmid replicon containing direct repeats (iterons) within the origin sequence. We describe recent findings on chromosomal and plasmid replication initiators, DnaA and Rep proteins, respectively, and their sequence-specific interactions with double- and single-stranded DNA. Also, we discuss the current understanding of the activities of DnaA and Rep proteins required for replisome assembly that is fundamental to the duplication and stability of genetic information in bacterial cells.
Collapse
Affiliation(s)
- Katarzyna E Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Marta Gross
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Urszula Uciechowska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk Gdansk, Poland
| |
Collapse
|
11
|
Yano H, Wegrzyn K, Loftie-Eaton W, Johnson J, Deckert GE, Rogers LM, Konieczny I, Top EM. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 2016; 101:743-56. [PMID: 27121483 DOI: 10.1111/mmi.13407] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 01/01/2023]
Abstract
Antibiotic selection drives adaptation of antibiotic resistance plasmids to new bacterial hosts, but the molecular mechanisms are still poorly understood. We previously showed that a broad-host-range plasmid was poorly maintained in Shewanella oneidensis, but rapidly adapted through mutations in the replication initiation gene trfA1. Here we examined if these mutations reduced the fitness cost of TrfA1, and whether this was due to changes in interaction with the host's DNA helicase DnaB. The strains expressing evolved TrfA1 variants showed a higher growth rate than those expressing ancestral TrfA1. The evolved TrfA1 variants showed a lower affinity to the helicase than ancestral TrfA1 and were no longer able to activate the helicase at the oriV without host DnaA. Moreover, persistence of the ancestral plasmid was increased upon overexpression of DnaB. Finally, the evolved TrfA1 variants generated higher plasmid copy numbers than ancestral TrfA1. The findings suggest that ancestral plasmid instability can at least partly be explained by titration of DnaB by TrfA1. Thus under antibiotic selection resistance plasmids can adapt to a novel bacterial host through partial loss of function mutations that simultaneously increase plasmid copy number and decrease unfavorably high affinity to one of the hosts' essential proteins.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Katarznya Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Wesley Loftie-Eaton
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | | | - Gail E Deckert
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Linda M Rogers
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822, Gdansk, Poland
| | - Eva M Top
- Department of Biological Sciences.,Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, 83844, USA
| |
Collapse
|
12
|
Karlowicz A, Wegrzyn K, Dubiel A, Ropelewska M, Konieczny I. Proteolysis in plasmid DNA stable maintenance in bacterial cells. Plasmid 2016; 86:7-13. [PMID: 27252071 DOI: 10.1016/j.plasmid.2016.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 01/12/2023]
Abstract
Plasmids, as extrachromosomal genetic elements, need to work out strategies that promote independent replication and stable maintenance in host bacterial cells. Their maintenance depends on constant formation and dissociation of nucleoprotein complexes formed on plasmid DNA. Plasmid replication initiation proteins (Rep) form specific complexes on direct repeats (iterons) localized within the plasmid replication origin. Formation of these complexes along with a strict control of Rep protein cellular concentration, quaternary structure, and activity, is essential for plasmid maintenance. Another important mechanism for maintenance of low-copy-number plasmids are the toxin-antitoxin (TA) post-segregational killing (psk) systems, which prevent plasmid loss from the bacterial cell population. In this mini review we discuss the importance of nucleoprotein complex processing by energy-dependent host proteases in plasmid DNA replication and plasmid type II toxin-antitoxin psk systems, and draw attention to the elusive role of DNA in this process.
Collapse
Affiliation(s)
- Anna Karlowicz
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Andrzej Dubiel
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Malgorzata Ropelewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland.
| |
Collapse
|
13
|
Abstract
Iteron-containing plasmids are model systems for studying the metabolism of extrachromosomal genetic elements in bacterial cells. Here we describe the current knowledge and understanding of the structure of iteron-containing replicons, the structure of the iteron plasmid encoded replication initiation proteins, and the molecular mechanisms for iteron plasmid DNA replication initiation. We also discuss the current understanding of control mechanisms affecting the plasmid copy number and how host chaperone proteins and proteases can affect plasmid maintenance in bacterial cells.
Collapse
|
14
|
Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Proc Natl Acad Sci U S A 2015. [PMID: 26195759 DOI: 10.1073/pnas.1504926112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the molecular basis for replisome activity has been extensively investigated, it is not clear what the exact mechanism for de novo assembly of the replication complex at the replication origin is, or how the directionality of replication is determined. Here, using the plasmid RK2 replicon, we analyze the protein interactions required for Escherichia coli polymerase III (Pol III) holoenzyme association at the replication origin. Our investigations revealed that in E. coli, replisome formation at the plasmid origin involves interactions of the RK2 plasmid replication initiation protein (TrfA) with both the polymerase β- and α-subunits. In the presence of other replication proteins, including DnaA, helicase, primase and the clamp loader, TrfA interaction with the β-clamp contributes to the formation of the β-clamp nucleoprotein complex on origin DNA. By reconstituting in vitro the replication reaction on ssDNA templates, we demonstrate that TrfA interaction with the β-clamp and sequence-specific TrfA interaction with one strand of the plasmid origin DNA unwinding element (DUE) contribute to strand-specific replisome assembly. Wild-type TrfA, but not the TrfA QLSLF mutant (which does not interact with the β-clamp), in the presence of primase, helicase, Pol III core, clamp loader, and β-clamp initiates DNA synthesis on ssDNA template containing 13-mers of the bottom strand, but not the top strand, of DUE. Results presented in this work uncovered requirements for anchoring polymerase at the plasmid replication origin and bring insights of how the directionality of DNA replication is determined.
Collapse
|
15
|
Zabrocka E, Wegrzyn K, Konieczny I. Two replication initiators - one mechanism for replication origin opening? Plasmid 2014; 76:72-8. [PMID: 25454070 DOI: 10.1016/j.plasmid.2014.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/30/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022]
Abstract
DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.
Collapse
Affiliation(s)
- Elzbieta Zabrocka
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland.
| |
Collapse
|
16
|
Wegrzyn K, Fuentes-Perez ME, Bury K, Rajewska M, Moreno-Herrero F, Konieczny I. Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin. Nucleic Acids Res 2014; 42:7807-18. [PMID: 24838560 PMCID: PMC4081077 DOI: 10.1093/nar/gku453] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The DNA unwinding element (DUE) is a sequence rich in adenine and thymine residues present within the origin region of both prokaryotic and eukaryotic replicons. Recently, it has been shown that this is the site where bacterial DnaA proteins, the chromosomal replication initiators, form a specific nucleoprotein filament. DnaA proteins contain a DNA binding domain (DBD) and belong to the family of origin binding proteins (OBPs). To date there has been no data on whether OBPs structurally different from DnaA can form nucleoprotein complexes within the DUE. In this work we demonstrate that plasmid Rep proteins, composed of two Winged Helix domains, distinct from the DBD, specifically bind to one of the strands of ssDNA within the DUE. We observed nucleoprotein complexes formed by these Rep proteins, involving both dsDNA containing the Rep-binding sites (iterons) and the strand-specific ssDNA of the DUE. Formation of these complexes required the presence of all repeated sequence elements located within the DUE. Any changes in these repeated sequences resulted in the disturbance in Rep-ssDNA DUE complex formation and the lack of origin replication activity in vivo or in vitro.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Maria Eugenia Fuentes-Perez
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnologia, CSIC, Darwin 3, 28049 Cantoblanco, Madrid, Spain
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 24 Kladki, 80-822 Gdansk, Poland
| |
Collapse
|
17
|
|
18
|
Wegrzyn K, Witosinska M, Schweiger P, Bury K, Jenal U, Konieczny I. RK2 plasmid dynamics in Caulobacter crescentus cells--two modes of DNA replication initiation. MICROBIOLOGY-SGM 2013; 159:1010-1022. [PMID: 23538715 DOI: 10.1099/mic.0.065490-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Undisturbed plasmid dynamics is required for the stable maintenance of plasmid DNA in bacterial cells. In this work, we analysed subcellular localization, DNA synthesis and nucleoprotein complex formation of plasmid RK2 during the cell cycle of Caulobacter crescentus. Our microscopic observations showed asymmetrical distribution of plasmid RK2 foci between the two compartments of Caulobacter predivisional cells, resulting in asymmetrical allocation of plasmids to progeny cells. Moreover, using a quantitative PCR (qPCR) method, we estimated that multiple plasmid particles form a single fluorescent focus and that the number of plasmids per focus is approximately equal in both swarmer and predivisional Caulobacter cells. Analysis of the dynamics of TrfA-oriV complex formation during the Caulobacter cell cycle revealed that TrfA binds oriV primarily during the G1 phase, however, plasmid DNA synthesis occurs during the S and G2 phases of the Caulobacter cell cycle. Both in vitro and in vivo analysis of RK2 replication initiation in C. crescentus cells demonstrated that it is independent of the Caulobacter DnaA protein in the presence of the longer version of TrfA protein, TrfA-44. However, in vivo stability tests of plasmid RK2 derivatives suggested that a DnaA-dependent mode of plasmid replication initiation is also possible.
Collapse
Affiliation(s)
- Katarzyna Wegrzyn
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Monika Witosinska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Pawel Schweiger
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Katarzyna Bury
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | - Urs Jenal
- Center for Molecular Life Sciences, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Igor Konieczny
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
19
|
Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci U S A 2012; 109:4944-9. [PMID: 22411796 DOI: 10.1073/pnas.1107254109] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment.
Collapse
|
20
|
Rajewska M, Wegrzyn K, Konieczny I. AT-rich region and repeated sequences - the essential elements of replication origins of bacterial replicons. FEMS Microbiol Rev 2011; 36:408-34. [PMID: 22092310 DOI: 10.1111/j.1574-6976.2011.00300.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/07/2011] [Indexed: 11/27/2022] Open
Abstract
Repeated sequences are commonly present in the sites for DNA replication initiation in bacterial, archaeal, and eukaryotic replicons. Those motifs are usually the binding places for replication initiation proteins or replication regulatory factors. In prokaryotic replication origins, the most abundant repeated sequences are DnaA boxes which are the binding sites for chromosomal replication initiation protein DnaA, iterons which bind plasmid or phage DNA replication initiators, defined motifs for site-specific DNA methylation, and 13-nucleotide-long motifs of a not too well-characterized function, which are present within a specific region of replication origin containing higher than average content of adenine and thymine residues. In this review, we specify methods allowing identification of a replication origin, basing on the localization of an AT-rich region and the arrangement of the origin's structural elements. We describe the regularity of the position and structure of the AT-rich regions in bacterial chromosomes and plasmids. The importance of 13-nucleotide-long repeats present at the AT-rich region, as well as other motifs overlapping them, was pointed out to be essential for DNA replication initiation including origin opening, helicase loading and replication complex assembly. We also summarize the role of AT-rich region repeated sequences for DNA replication regulation.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | |
Collapse
|
21
|
Kolatka K, Kubik S, Rajewska M, Konieczny I. Replication and partitioning of the broad-host-range plasmid RK2. Plasmid 2010; 64:119-34. [DOI: 10.1016/j.plasmid.2010.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 06/08/2010] [Accepted: 06/21/2010] [Indexed: 11/27/2022]
|
22
|
Pierechod M, Nowak A, Saari A, Purta E, Bujnicki JM, Konieczny I. Conformation of a plasmid replication initiator protein affects its proteolysis by ClpXP system. Protein Sci 2009; 18:637-49. [PMID: 19241373 DOI: 10.1002/pro.68] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad-host-range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX-dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.
Collapse
Affiliation(s)
- Marcin Pierechod
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
23
|
Specific mutations within the AT-rich region of a plasmid replication origin affect either origin opening or helicase loading. Proc Natl Acad Sci U S A 2008; 105:11134-9. [PMID: 18685104 DOI: 10.1073/pnas.0805662105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prokaryotic and eukaryotic replicons possess a distinctive region containing a higher than average number of adenine and thymine residues (the AT-rich region) where, during the process of replication initiation, the initial destabilization (opening) of the double helix takes place. In many prokaryotic origins, this region consists of repeated 13-mer motifs whose function has not yet been specified. Here we identify specific mutations within the 13-mer sequences of the broad-host-range plasmid RK2 that can result in defective origin opening or that do not affect opening but induce defects in helicase loading. We also show that after the initial recruitment of helicase at the DnaA-box sequences of the plasmid origin, the helicase is translocated to the AT-rich region in a reaction requiring specific sequence of the 13-mers and appropriate facing of the origin motifs. Our results demonstrate that specific sequences within the AT-rich region of a replication origin are required for either origin opening or helicase loading.
Collapse
|
24
|
Chatterjee S, Basu A, Basu A, Das Gupta SK. DNA bending in the mycobacterial plasmid pAL5000 origin-RepB complex. J Bacteriol 2007; 189:8584-92. [PMID: 17905972 PMCID: PMC2168951 DOI: 10.1128/jb.01155-07] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmid pAL5000 represents a family of relatively newly discovered cryptic plasmids in gram-positive Actinomycetes bacteria. The replication regions of these plasmids comprise a bicistronic operon, repA-repB, encoding two replication proteins. Located upstream is a cis-acting element that functions as the origin of replication. It comprises an approximately 200-bp segment spanning two binding sites for the replication protein RepB, a low-affinity (L) site and a high-affinity (H) site separated by an approximately 40-bp spacer sequence. The trajectory of the DNA in the RepB-origin complex has been investigated, and it has been found that the origin undergoes significant bending movements upon RepB binding. RepB binding not only led to local bending effects but also caused a long-range polar curvature which affected the DNA sequences 3' to the H site. These movements appear to be essential for the in-phase alignment of the L and H sites that leads to the formation of a looped structure. A novel property of RepB unearthed in this study is its ability to form multimers. This property may be an important factor that determines the overall trajectory of the DNA in the RepB-origin complex. The results presented in this study suggest that the origins of replication of pAL5000 and related plasmids are highly flexible and that multimeric, RepB-like initiator proteins bind the origin and induce local deformations and long-range curvatures which are probably necessary for the proper functioning of the origin.
Collapse
Affiliation(s)
- Sujoy Chatterjee
- Bose Institute, Dept. of Microbiology, P1/12 C.I.T. Scheme VIIM, Kolkata 700054, India.
| | | | | | | |
Collapse
|
25
|
Swan MK, Bastia D, Davies C. Crystal structure of pi initiator protein-iteron complex of plasmid R6K: implications for initiation of plasmid DNA replication. Proc Natl Acad Sci U S A 2006; 103:18481-6. [PMID: 17124167 PMCID: PMC1693688 DOI: 10.1073/pnas.0609046103] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2005] [Indexed: 11/18/2022] Open
Abstract
We have determined the crystal structure of a monomeric biologically active form of the pi initiator protein of plasmid R6K as a complex with a single copy of its cognate DNA-binding site (iteron) at 3.1-A resolution. The initiator belongs to the family of winged helix type of proteins. The structure reveals that the protein contacts the iteron DNA at two primary recognition helices, namely the C-terminal alpha4' and the N-terminal alpha4 helices, that recognize the 5' half and the 3' half of the 22-bp iteron, respectively. The base-amino acid contacts are all located in alpha4', whereas the alpha4 helix and its vicinity mainly contact the phosphate groups of the iteron. Mutational analyses show that the contacts of both recognition helices with DNA are necessary for iteron binding and replication initiation. Considerations of a large number of site-directed mutations reveal that two distinct regions, namely alpha2 and alpha5 and its vicinity, are required for DNA looping and initiator dimerization, respectively. Further analysis of mutant forms of pi revealed the possible domain that interacts with the DnaB helicase. Thus, the structure-function analysis presented illuminates aspects of initiation mechanism of R6K and its control.
Collapse
Affiliation(s)
- Michael K. Swan
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Deepak Bastia
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
26
|
Duigou S, Knudsen KG, Skovgaard O, Egan ES, Løbner-Olesen A, Waldor MK. Independent control of replication initiation of the two Vibrio cholerae chromosomes by DnaA and RctB. J Bacteriol 2006; 188:6419-24. [PMID: 16923911 PMCID: PMC1595377 DOI: 10.1128/jb.00565-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Although the two Vibrio cholerae chromosomes initiate replication in a coordinated fashion, we show here that each chromosome appears to have a specific replication initiator. DnaA overproduction promoted overinitiation of chromosome I and not chromosome II. In contrast, overproduction of RctB, a protein that binds to the origin of replication of chromosome II, promoted overinitiation of chromosome II and not chromosome I.
Collapse
Affiliation(s)
- Stéphane Duigou
- Department of Microbiology, Tufts University School of Medicine and Howard Hughes Medical Institute, 136 Harrison Ave., Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA. J Bacteriol 2006; 188:5501-9. [PMID: 16855240 PMCID: PMC1540049 DOI: 10.1128/jb.00231-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The broad-host-range plasmid RK2 is capable of replication and stable maintenance within a wide range of gram-negative bacterial hosts. It encodes the essential replication initiation protein TrfA, which binds to the host initiation protein, DnaA, at the plasmid origin of replication (oriV). There are two versions of the TrfA protein, 44 and 33 kDa, resulting from alternate in-frame translational starts. We have shown that the smaller protein, TrfA-33, and its 64-residue amino-terminal peptide (designated T1) physically interact with the Escherichia coli beta sliding clamp (beta(2)). This interaction appears to be mediated through a QLSLF peptide motif located near the amino-terminal end of TrfA-33 and T1, which is identical to the previously described eubacterial clamp-binding consensus motif. T1 forms a stable complex with beta(2) and was found to inhibit plasmid RK2 replication in vitro. This specific interaction between T1 and beta(2) and the ability of T1 to block DNA replication have implications for the previously reported cell lethality caused by overproduction of T1. The toxicity of T1 was suppressed when wild-type T1 was replaced with mutant T1, carrying an LF deletion in the beta-binding motif. Previously, T1 toxicity has been shown to be suppressed by Hda, an intermediate regulatory protein which helps prevent over-initiation in E. coli through its interaction with the initiator protein, DnaA, and beta(2). Our results support a model in which T1 toxicity is caused by T1 binding to beta(2), especially when T1 is overexpressed, preventing beta(2) from interacting with host replication proteins such as Hda during the early events of chromosome replication.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067, Australia.
| | | | | | | | | |
Collapse
|
28
|
Krasowiak R, Sevastsyanovich Y, Konieczny I, Bingle LEH, Thomas CM. IncP-9 replication initiator protein binds to multiple DNA sequences in oriV and recruits host DnaA protein. Plasmid 2006; 56:187-201. [PMID: 16828157 DOI: 10.1016/j.plasmid.2006.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 05/12/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
The minimal replicon from IncP-9 plasmid pM3, consisting of oriV and rep, is able to replicate in Pseudomonas putida but not in Escherichia coli, unless production of Rep protein is increased. The Rep protein, at 20kDa, is the smallest replication protein so far identified for a theta replicating plasmid. Rep was purified and shown to bind in three blocks across the oriV region that do not correlate with a single unique binding sequence. The block closest to rep is not necessary for oriV function. Rep forms at least two types of complex--one rendering the DNA entirely resistant to cleavage, the other occupying one side of the helix. No short segment of oriV showed the same affinity for Rep as the whole of oriV. The oriV region did not bind purified DnaA from E. coli, P. putida or P. aeruginosa but when Rep was present also, super-shifts were found with DnaA in a sequence-specific manner. Scrambling of the primary candidate DnaA box did not inactivate oriV but did increase the level of Rep required to activate oriV. The general pattern of Rep-DNA recognition sequences in oriV indicates that the IncP-9 system falls outside of the paradigms of model plasmids that have been well-studied to date.
Collapse
Affiliation(s)
- Renata Krasowiak
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | |
Collapse
|
29
|
Abstract
Bacteriophages (prokaryotic viruses) are favourite model systems to study DNA replication in prokaryotes, and provide examples for every theoretically possible replication mechanism. In addition, the elucidation of the intricate interplay of phage-encoded replication factors with 'host' factors has always advanced the understanding of DNA replication in general. Here we review bacteriophage replication based on the long-standing observation that in most known phage genomes the replication genes are arranged as modules. This allows us to discuss established model systems--f1/fd, phiX174, P2, P4, lambda, SPP1, N15, phi29, T7 and T4--along with those numerous phages that have been sequenced but not studied experimentally. The review of bacteriophage replication mechanisms and modules is accompanied by a compendium of replication origins and replication/recombination proteins (available as supplementary material online).
Collapse
|
30
|
Borrell L, Yang J, Pittard AJ, Praszkier J. Interaction of initiator proteins with the origin of replication of an IncL/M plasmid. Plasmid 2006; 56:88-101. [PMID: 16774786 DOI: 10.1016/j.plasmid.2006.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/07/2006] [Accepted: 04/27/2006] [Indexed: 11/24/2022]
Abstract
The origin of replication of the IncL/M plasmid pMU604 was analyzed to identify sequences important for binding of initiator proteins and origin activity. A thrice repeated sequence motif 5'-NANCYGCAA-3' was identified as the binding site (RepA box) of the initiator protein, RepA. All three copies of the RepA box were required for in vivo activity and binding of RepA to these boxes appeared to be cooperative. A DnaA R box (box 1), located immediately upstream of the RepA boxes, was not required for recruitment of DnaA during initiation of replication by RepA of pMU604 unless a DnaA R box located at the distal end of the origin (box 3) had been inactivated. However, DnaA R box 1 was important for recruitment of DnaA to the origin of replication of pMU604 when the initiator RepA was that from a distantly related plasmid, pMU720. A mutation which scrambled DnaA R boxes 1 and 3 and one which scrambled DnaA R boxes 1, 3 and 4 had much more deleterious effects on initiation by RepA of pMU720 than on initiation by RepA of pMU604. Neither Rep protein could initiate replication from the origin of pMU604 in the absence of DnaA, suggesting that the difference between them might lie in the mechanism of recruitment of DnaA to this origin. DnaA protein enhanced the binding and origin unwinding activities of RepA of pMU604, but appeared unable to bind to a linear DNA fragment bearing the origin of replication of pMU604 in the absence of other proteins.
Collapse
Affiliation(s)
- L Borrell
- Department of Microbiology and Immunology, The University of Melbourne, Vic. 3010, Australia
| | | | | | | |
Collapse
|
31
|
Banack T, Clauson N, Ogbaa N, Villar J, Oliver D, Firshein W. Overexpression of the Hda DnaA-related protein in Escherichia coli inhibits multiplication, affects membrane permeability, and induces the SOS response. J Bacteriol 2006; 187:8507-10. [PMID: 16321957 PMCID: PMC1317017 DOI: 10.1128/jb.187.24.8507-8510.2005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Trevor Banack
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | | | | | | | |
Collapse
|
32
|
Kowalczyk L, Rajewska M, Konieczny I. Positioning and the specific sequence of each 13-mer motif are critical for activity of the plasmid RK2 replication origin. Mol Microbiol 2005; 57:1439-49. [PMID: 16102011 DOI: 10.1111/j.1365-2958.2005.04770.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The minimal replication origin of the broad-host-range plasmid RK2, oriV, contains five iterons which are binding sites for the plasmid-encoded replication initiation protein TrfA, four DnaA boxes, which bind the host DnaA protein, and an AT-rich region containing four 13-mer sequences. In this study, 26 mutants with altered sequence and/or spacing of 13-mer motifs have been constructed and analysed for replication activity in vivo and in vitro. The data show that the replacement of oriV 13-mers by similar but not identical 13-mer sequences from Escherichia coli oriC inactivates the origin. In addition, interchanging the positions of the oriV 13-mers results in greatly reduced activity. Mutants with T/A substitutions are also inactive. Furthermore, introduction of single-nucleotide substitutions demonstrates very restricted sequence requirements depending on the 13-mer position. Only two of the mutants are host specific, functional in Pseudomonas aeruginosa but not in E. coli. Our experiments demonstrate considerable complexity in the plasmid AT-rich region architecture required for functionality. It is evident that low internal stability of this region is not the only feature contributing to origin activity. Our studies suggest a requirement for sequence-specific protein interactions within the 13-mers during assembly of replication complexes at the plasmid origin.
Collapse
Affiliation(s)
- Lukasz Kowalczyk
- Department of Molecular and Cellular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk, ul. Kladki 24, 80-822 Gdansk, Poland
| | | | | |
Collapse
|
33
|
Felczak MM, Simmons LA, Kaguni JM. An essential tryptophan of Escherichia coli DnaA protein functions in oligomerization at the E. coli replication origin. J Biol Chem 2005; 280:24627-33. [PMID: 15878847 DOI: 10.1074/jbc.m503684200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or interdependent by substituting many conserved amino acids in this region with alanine to identify essential residues. We show that alanine substitutions of leucine 3, phenylalanine 46, and leucine 62 do not affect DnaA function in initiation. In contrast, we find on characterization of a mutant DnaA that tryptophan 6 is essential for DnaA function because its substitution by alanine abrogates self-oligomerization, resulting in the failure to load DnaB at oriC. These results indicate that DnaA bound to oriC forms a specific oligomeric structure, which is required to load DnaB helicase.
Collapse
Affiliation(s)
- Magdalena M Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA
| | | | | |
Collapse
|
34
|
Onn I, Milman-Shtepel N, Shlomai J. Redox potential regulates binding of universal minicircle sequence binding protein at the kinetoplast DNA replication origin. EUKARYOTIC CELL 2004; 3:277-87. [PMID: 15075258 PMCID: PMC387648 DOI: 10.1128/ec.3.2.277-287.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinetoplast DNA, the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a remarkable structure containing 5,000 topologically linked DNA minicircles. Their replication is initiated at two conserved sequences, a dodecamer, known as the universal minicircle sequence (UMS), and a hexamer, which are located at the replication origins of the minicircle L- and H-strands, respectively. A UMS-binding protein (UMSBP), binds specifically the conserved origin sequences in their single stranded conformation. The five CCHC-type zinc knuckle motifs, predicted in UMSBP, fold into zinc-dependent structures capable of binding a single-stranded nucleic acid ligand. Zinc knuckles that are involved in the binding of DNA differ from those mediating protein-protein interactions that lead to the dimerization of UMSBP. Both UMSBP DNA binding and its dimerization are sensitive to redox potential. Oxidation of UMSBP results in the protein dimerization, mediated through its N-terminal domain, with a concomitant inhibition of its DNA-binding activity. UMSBP reduction yields monomers that are active in the binding of DNA through the protein C-terminal region. C. fasciculata trypanothione-dependent tryparedoxin activates the binding of UMSBP to UMS DNA in vitro. The possibility that UMSBP binding at the minicircle replication origin is regulated in vivo by a redox potential-based mechanism is discussed.
Collapse
Affiliation(s)
- Itay Onn
- Department of Parasitology, The Kuvin Center for the Study of Infectious and Tropical Diseases, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | |
Collapse
|
35
|
Zzaman S, Reddy JM, Bastia D. The DnaK-DnaJ-GrpE chaperone system activates inert wild type pi initiator protein of R6K into a form active in replication initiation. J Biol Chem 2004; 279:50886-94. [PMID: 15485812 DOI: 10.1074/jbc.m407531200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The plasmid R6K is an interesting model system for investigating initiation of DNA replication, not only near the primary binding sites of the initiator protein pi but also at a distance, caused by pi -mediated DNA looping. An important milestone in the mechanistic analysis of this replicon was the development of a reconstituted replication system consisting of 22 different highly purified proteins (Abhyankar, M. A., Zzaman, S., and Bastia, D. (2003) J. Biol. Chem. 278, 45476-45484). Although the in vitro reconstituted system promotes ori gamma-specific initiation of replication by a mutant form of the initiator called pi*, the wild type (WT) pi is functionally inert in this system. Here we show that the chaperone DnaK along with its co-chaperone DnaJ and the nucleotide exchange factor GrpE were needed to activate WT pi and caused it to initiate replication in vitro at the correct origin. We show further that the reaction was relatively chaperone-specific and that other chaperones, such as ClpB and ClpX, were incapable of activating WT pi. The molecular mechanism of activation appeared to be a chaperone-catalyzed facilitation of dimeric inert WT pi into iteron-bound monomers. Protein-protein interaction analysis by enzyme-linked immunosorbent assay revealed that, in the absence of ATP, DnaJ directly interacted with pi but its binary interactions with DnaK and GrpE and with ClpB and ClpX were at background levels, suggesting that pi is recruited by protein-protein interaction with DnaJ and then fed into the DnaK chaperone machine to promote initiator activation.
Collapse
Affiliation(s)
- Shamsu Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
36
|
Bui CT, Rees K, Cotton RGH. Permanganate oxidation reactions of DNA: perspective in biological studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2004; 22:1835-55. [PMID: 14533885 DOI: 10.1081/ncn-120023276] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
KMnO4 has been well known as a powerful chemical probe for numerous applications in biological fields, particularly for those used in conformational studies of DNA. The KMnO4 assay provides essential information for understanding biochemical processes and detecting aberrant DNA, which is associated with many genetic diseases. Elegant examples are sequencing techniques, foot-printing assays for transcriptional studies, an interference method for hormone receptor binding assays as well as DNA conformational studies of Z-DNA, Z-Z junctions, hairpins, curvatures, short nucleotide base repeats, binding of intercalators and groove binders, etc. Recently, KMnO4 has been successfully applied to detect single base changes and mutations in DNA (chemical cleavage of mismatch method, CCM) as well as other types of base damage (8-oxoguanine and thymine dimers). This paper aims to review the usefulness and limitations of the permanganate oxidation reaction used in various biological studies of DNA.
Collapse
Affiliation(s)
- Chinh T Bui
- Genomic Disorders Research Centre, The University of Melbourne, St. Vincent Hospital, Fitzroy, Melbourne, Australia.
| | | | | |
Collapse
|
37
|
Matsumoto-Mashimo C, Guerout AM, Mazel D. A new family of conditional replicating plasmids and their cognate Escherichia coli host strains. Res Microbiol 2004; 155:455-61. [PMID: 15249062 DOI: 10.1016/j.resmic.2004.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Accepted: 03/05/2004] [Indexed: 11/19/2022]
Abstract
We constructed a family of conditionally replicating plasmids, the pTX1 family, which are based on the IncPalpha oriV origin of replication that is dependent on the trfA-encoded protein. We constructed several Escherichia coli derivatives expressing trfA from different chromosomal loci, which can be transduced by phage P1 to any E. coli strain. The pTX1 plasmids also carry the oriTRP4 origin of transfer, and can be conjugated to E. coli, Vibrio cholerae and likely to a broad range of bacteria from the commonly used donor strains SM10 and S17-1, which sustain replication of the plasmids through the trfA gene carried by their integrated RP4. If TrfA is not provided in trans, these plasmids behave as suicide vectors. As such they can be used as a platform for a variety of applications such as those developed on the popular conditionally replicating plasmids carrying the oriVR6Kgamma origin of replication that is controlled by the Pi protein. Their ability to be used as efficient suicide vectors for gene disruption in V. cholerae has been demonstrated.
Collapse
Affiliation(s)
- Chiho Matsumoto-Mashimo
- Unité Postulante Plasticité du Génome Bactérien, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, France.
| | | | | |
Collapse
|
38
|
Bergström M, Hermansson M, Dahlberg C. Isolation and sequencing of the replication region of plasmid pBFp1 isolated from a marine biofilm. Plasmid 2004; 51:179-84. [PMID: 15109824 DOI: 10.1016/j.plasmid.2004.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Revised: 01/16/2004] [Indexed: 11/23/2022]
Abstract
A 24 kb plasmid, pBFp1, encoding mercury resistance was previously isolated from a marine biofilm. Isolation and sequencing of a 4280 bp DNA fragment containing the plasmid replicon (rep-pBFp1) revealed a putative open reading frame encoding a RepA protein and an oriV-like region containing an A+T rich sub-region, iterons, and DnaA boxes. Sequence comparisons showed significant similarities to the incW plasmid pSa both for the RepA amino acid sequence and in the iteron DNA sequence. Plasmid pBFp1 was also shown to be incompatible with pSa in standard incompatibility testing. A probe from the repA gene of pBFp1 was further made and tested on a collection of plasmids exogenously isolated from marine habitats in a previous study.
Collapse
Affiliation(s)
- Maria Bergström
- Department of Cell and Molecular Biology, Microbiology Göteborg University, Box 462, SE 405 30, Sweden
| | | | | |
Collapse
|
39
|
Betteridge T, Yang J, Pittard AJ, Praszkier J. Role of RepA and DnaA proteins in the opening of the origin of DNA replication of an IncB plasmid. J Bacteriol 2004; 186:3785-93. [PMID: 15175292 PMCID: PMC419965 DOI: 10.1128/jb.186.12.3785-3793.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 03/01/2004] [Indexed: 11/20/2022] Open
Abstract
The replication initiator protein RepA of the IncB plasmid pMU720 was shown to induce localized unwinding of its cognate origin of replication in vitro. DnaA, the initiator protein of Escherichia coli, was unable to induce localized unwinding of this origin of replication on its own but enhanced the opening generated by RepA. The opened region lies immediately downstream of the last of the three binding sites for RepA (RepA boxes) and covers one turn of DNA helix. A 6-mer sequence, 5'-TCTTAA-3', which lies within the opened region, was essential for the localized unwinding of the origin in vitro and origin activity in vivo. In addition, efficient unwinding of the origin of replication of pMU720 in vitro required the native positioning of the binding sites for the initiator proteins. Interestingly, binding of RepA to RepA box 1, which is essential for origin activity, was not required for the localized opening of the origin in vitro.
Collapse
Affiliation(s)
- T Betteridge
- Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
40
|
Zzaman S, Abhyankar MM, Bastia D. Reconstitution of F factor DNA replication in vitro with purified proteins. J Biol Chem 2004; 279:17404-10. [PMID: 14973139 DOI: 10.1074/jbc.m400021200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Jacob, Brenner, and Cuzin pioneered the development of the F plasmid as a model system to study replication control, and these investigations led to the development of the "replicon model" (Jacob, F., Brenner, S., and Cuzin, F. (1964) Cold Spring Harbor Symp. Quant. Biol. 28, 329-348). To elucidate further the mechanism of initiation of replication of this plasmid and its control, we have reconstituted its replication in vitro with 21 purified host-encoded proteins and the plasmid-encoded initiator RepE. The replication in vitro was specifically initiated at the F ori (oriV) and required both the bacterial initiator protein DnaA and the plasmid-encoded initiator RepE. The wild type dimeric RepE was inactive in catalyzing replication, whereas a monomeric mutant form called RepE(*) (R118P) was capable of catalyzing vigorous replication. The replication topology was mostly of the Cairns form, and the fork movement was unidirectional and mostly from right to left. The replication was dependent on the HU protein, and the structurally and functionally related DNA bending protein IHF could not efficiently substitute for HU. The priming was dependent on DnaG primase. Many of the characteristics of the in vitro replication closely mimicked those of in vivo replication. We believe that the in vitro system should be very useful in unraveling the mechanism of replication initiation and its control.
Collapse
Affiliation(s)
- S Zzaman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
41
|
Krüger R, Filutowicz M. pi protein- and ATP-dependent transitions from 'closed' to 'open' complexes at the gamma ori of plasmid R6K. Nucleic Acids Res 2004; 31:5993-6003. [PMID: 14530447 PMCID: PMC219486 DOI: 10.1093/nar/gkg809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
R6K-encoded pi protein can bind to the seven, 22 bp tandem iterons of the gamma origin. In this work, we use a variant of pi, His-pi.F107S, that is hyperactive in replication. In vitro, His-pi.F107S-dependent local DNA melting (open complex formation) occurs in the absence of host proteins (IHF/HU or DnaA) and it is positioned in the A + T-rich region adjacent to iterons. Experiments described here examine the effects of ATP, Mg2+ and temperature on the opening reaction. We show that the opening of the gamma origin can occur in the presence of ATP as well as AMP-PCP (a non-hydrolyzable ATP analog). This suggests that, for gamma origin, ATP hydrolysis may be unnecessary for open complex formation facilitated by His-pi.F107S. In the absence of ATP or Mg2+, His-pi.F107S yielded data suggestive of distortions in the iteron attributable to DNA bending rather than DNA melting. Our findings also demonstrate that ATP and pi stimulate open complex formation over a wide range of temperatures, but not at 0 degrees C. These and other results indicate that ATP and/or Mg2+ are not needed for His-pi.F107S binding to iterons and that ATP effects an allosteric change in the protein bound to gamma origin.
Collapse
Affiliation(s)
- Ricardo Krüger
- Department of Bacteriology, University of Wisconsin-Madison, 420 Henry Mall, Madison, WI 53706, USA
| | | |
Collapse
|
42
|
Abhyankar MM, Zzaman S, Bastia D. Reconstitution of R6K DNA replication in vitro using 22 purified proteins. J Biol Chem 2003; 278:45476-84. [PMID: 12970346 DOI: 10.1074/jbc.m308516200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have reconstituted a multiprotein system consisting of 22 purified proteins that catalyzed the initiation of replication specifically at ori gamma of R6K, elongation of the forks, and their termination at specific replication terminators. The initiation was strictly dependent on the plasmid-encoded initiator protein pi and on the host-encoded initiator DnaA. The wild type pi was almost inert, whereas a mutant form containing 3 amino acid substitutions that tended to monomerize the protein was effective in initiating replication. The replication in vitro was primed by DnaG primase, whereas in a crude extract system that had not been fractionated, it was dependent on RNA polymerase. The DNA-bending protein IHF was needed for optimal replication and its substitution by HU, unlike in the oriC system, was less effective in promoting optimal replication. In contrast, wild type pi-mediated replication in vivo requires IHF. Using a template that contained ori gamma flanked by two asymmetrically placed Ter sites in the blocking orientation, replication proceeded in the Cairns type mode and generated the expected types of termination products. A majority of the molecules progressed counterclockwise from the ori, in the same direction that has been observed in vivo. Many features of replication in the reconstituted system appeared to mimic those of in vivo replication. The system developed here is an important milestone in continuing biochemical analysis of this interesting replicon.
Collapse
Affiliation(s)
- Mayuresh M Abhyankar
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | |
Collapse
|
43
|
Zhong Z, Helinski D, Toukdarian A. A specific region in the N terminus of a replication initiation protein of plasmid RK2 is required for recruitment of Pseudomonas aeruginosa DnaB helicase to the plasmid origin. J Biol Chem 2003; 278:45305-10. [PMID: 12952979 DOI: 10.1074/jbc.m306058200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Broad host range plasmid RK2 encodes two versions of its essential replication initiation protein, TrfA, using in-frame translational starts spaced 97 amino acids apart. The smaller protein, TrfA-33, is sufficient for plasmid replication in many bacterial hosts. Efficient replication in Pseudomonas aeruginosa, however, specifically requires the larger TrfA-44 protein. With the aim of identifying sequences of TrfA-44 required for stable replication of RK2 in P. aeruginosa, specific deletions and a substitution mutant within the N terminus sequence unique to TrfA-44 were constructed, and the mutant proteins were tested for activity. Deletion mutants were targeted to three of the four predicted helical regions in the first 97 amino acids of TrfA-44. Deletion of TrfA-44 amino acids 21-32 yielded a mutant protein, TrfA-44Delta2, that had lost the ability to bind and load the DnaB helicase of P. aeruginosa or Pseudomonas putida onto the RK2 origin in vitro and did not support stable replication of an RK2 mini-replicon in P. aeruginosa in vivo. A substitution of amino acid 22 within this essential region resulted in a protein, TrfA-44E22A, with reduced activity in vitro, particularly with the P. putida helicase. Deletion of amino acids 37-55 (TrfA-44Delta3) slightly affected protein activity in vitro with the P. aeruginosa helicase and significantly with the P. putida helicase, whereas deletion of amino acids 71-88 (TrfA-44Delta4) had no effect on TrfA activity in vitro with either helicase. These results identify regions of the TrfA-44 protein that are required for recruitment of the Pseudomonas DnaB helicases in the initiation of RK2 replication.
Collapse
Affiliation(s)
- Zhenping Zhong
- Division of Biological Sciences and Center for Molecular Genetics, University of California, San Diego, La Jolla, California 92093-0322, USA
| | | | | |
Collapse
|
44
|
Jiang Y, Pacek M, Helinski DR, Konieczny I, Toukdarian A. A multifunctional plasmid-encoded replication initiation protein both recruits and positions an active helicase at the replication origin. Proc Natl Acad Sci U S A 2003; 100:8692-7. [PMID: 12835421 PMCID: PMC166374 DOI: 10.1073/pnas.1532393100] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DnaA replication initiation protein has been shown to be essential for DNA strand opening at the AT-rich region of the replication origin of the Escherichia coli chromosome as well as serving to recruit and position the DnaB replicative helicase at this open region. Homologues of the dnaA gene of E. coli have been found in most bacterial species, and the DnaA protein has been shown to be required for the initiation of replication of both chromosomal and plasmid DNA. For several plasmid elements it has been found that a plasmid-encoded initiation protein is required along with the DnaA protein to bring about opening of the AT-rich region at the replication origin. The broad host range plasmid RK2 encodes two forms of its replication initiation protein (TrfA-33 and TrfA-44) that differ by an additional 98 aa at the N terminus of the larger (TrfA-44) form. Both forms initiate replication of RK2 in E. coli in vitro by a DnaA-dependent mechanism. However, as shown in this study, TrfA-44 specifically interacts with the DnaB replicative helicase of Pseudomonas putida and Pseudomonas aeruginosa and initiates the formation of a prepriming open complex in the absence of DnaA protein. Thus, the TrfA-44 initiation protein has the multifunctional properties of recruiting and positioning an active form of the DnaB helicase at the RK2 replication origin by a DnaA-independent process. This unique property for a replication initiation protein undoubtedly plays an important role in extending the host range of the RK2 antibiotic resistance plasmid.
Collapse
Affiliation(s)
- Yong Jiang
- Division of Biological Sciences and Center for Molecular Genetics, University of California at San Diego, La Jolla, CA 92093-0322, USA
| | | | | | | | | |
Collapse
|
45
|
Díaz-López T, Lages-Gonzalo M, Serrano-López A, Alfonso C, Rivas G, Díaz-Orejas R, Giraldo R. Structural changes in RepA, a plasmid replication initiator, upon binding to origin DNA. J Biol Chem 2003; 278:18606-16. [PMID: 12637554 DOI: 10.1074/jbc.m212024200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RepA protein is the DNA replication initiator of the Pseudomonas plasmid pPS10. RepA dimers bind to an inversely repeated operator sequence in repA promoter, thus repressing its own synthesis, whereas monomers bind to four directly repeated sequences (iterons) to initiate DNA replication. We had proposed previously that RepA is composed of two winged-helix (WH) domains, a structural unit also present in eukaryotic and archaeal initiators. To bind to the whole iteron sequence through both domains, RepA should couple monomerization to a conformational change in the N-terminal WH, which includes a leucine zipper-like sequence motif. We show for the first time that, by itself, binding to iteron DNA in vitro dissociates RepA dimers into monomers and alters RepA conformation, suggesting an allosteric effect. Furthermore, we also show that similar changes in RepA are promoted by mutations that substitute two Leu residues of the putative leucine zipper by Ala, destabilizing the hydrophobic core of the first WH. We propose that this mutant (RepA-2L2A) resembles a transient folding intermediate in the pathway leading to active monomers. These findings, together with the known activation of other Rep-type proteins by chaperones, are relevant to understand the molecular basis of plasmid DNA replication initiation.
Collapse
Affiliation(s)
- Teresa Díaz-López
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas (CSIC), C/Velázquez, 144, 28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Zoueva OP, Iyer VN, Matula TI, Kozlowski M. Analysis of pCU1 replication origins: dependence of oriS on the plasmid-encoded replication initiation protein RepA. Plasmid 2003; 49:152-9. [PMID: 12726768 DOI: 10.1016/s0147-619x(02)00151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad-host-range replicon of the plasmid pCU1 has three origins of vegetative replication called oriB, oriS, and oriV. In the multi-origin replicon, individual origins can distinguish among replication factors provided by the host. It has been found that during replication in Escherichia coli polA(-) host, oriS was the only active origin of a mutant pCU1 derivative bearing a mutation in the gene encoding replication initiation protein RepA. To further investigate the capacity of oriS to function in an E. coli polA(-) host we constructed a number of clones of the basic replicon of pCU1 containing oriS as the only replication origin. An oriS construct created with pUC18 could transform the polA(-) strain when RepA was supplied in trans. When the oriS region (between nucleotides 290 and 832) was ligated to an antibiotic resistance Omega fragment, the construct could be recovered as a plasmid from polA(+) strain if functional RepA was provided in trans. Our results therefore indicate that the basic replicon of pCU1, containing oriS as the sole origin, does require RepA to initiate plasmid replication in E. coli
Collapse
Affiliation(s)
- O P Zoueva
- Health Canada, Biologics and Genetics Therapies Directorate, Center for Biologics Research, Banting Bldg, 2201C, Tunney's Pasture, Ross Avenue, Ont, K1A 0L2, Ottawa, Canada
| | | | | | | |
Collapse
|
47
|
Kim PD, Banack T, Lerman DM, Tracy JC, Camara JE, Crooke E, Oliver D, Firshein W. Identification of a novel membrane-associated gene product that suppresses toxicity of a TrfA peptide from plasmid RK2 and its relationship to the DnaA host initiation protein. J Bacteriol 2003; 185:1817-24. [PMID: 12618445 PMCID: PMC150145 DOI: 10.1128/jb.185.6.1817-1824.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The toxicity of a peptide derived from the amino-terminal portion of 33-kDa TrfA, one of the initiation proteins encoded by the broad-host-range plasmid RK2, was suppressed by a host protein related to DnaA, the initiation protein of Escherichia coli. The newly identified 28.4-kDa protein, termed a DnaA paralog (Dp) because it is similar to a region of DnaA but likely has a different function in initiation of plasmid RK2 replication, interacts physically with the 33-kDa TrfA initiation protein, including the initiation-active monomeric form. The Dp has a cellular distribution similar to that of the 33-kDa TrfA initiation protein, being found primarily in the inner membrane fraction, with lesser amounts detected in the outer membrane fraction and almost none in the soluble fraction of E. coli. Maintenance and inner membrane-associated replication of plasmid RK2 were enhanced in a Dp knockout strain and inhibited in strains containing extra copies of the Dp gene or in membrane extracts to which a tagged form of Dp was added. Recently, the Dp was independently shown to help prevent overinitiation in E. coli and was termed Hda (S. Kato and T. Katayama, EMBO J. 20:4253-4262, 2001).
Collapse
Affiliation(s)
- Peter D Kim
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Giraldo R. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. FEMS Microbiol Rev 2003; 26:533-54. [PMID: 12586394 DOI: 10.1111/j.1574-6976.2003.tb00629.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Although DNA replication is the universal process for the transmission of genetic information in all living organisms, until very recently evidence was lacking for a related structure and function in the proteins (initiators) that trigger replication in the three 'Life Domains' (Bacteria, Archaea and Eukarya). In this article new data concerning the presence of common features in the initiators of chromosomal replication in bacteria, archaea and eukaryotes are reviewed. Initiators are discussed in the light of: (i) The structure and function of their conserved ATPases Associated with various cellular Activities (AAA+) and winged-helix domains. (ii) The nature of the macromolecular assemblies that they constitute at the replication origins. (iii) Their possible phylogenetic relationship, attempting to sketch the essentials of a hypothetical DNA replication initiator in the micro-organism proposed to be the ancestor of all living cells.
Collapse
Affiliation(s)
- Rafael Giraldo
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas (CSIC), C/Velázquez 144, 28006 Madrid, Spain.
| |
Collapse
|
49
|
Konieczny I. Strategies for helicase recruitment and loading in bacteria. EMBO Rep 2003; 4:37-41. [PMID: 12524518 PMCID: PMC1315803 DOI: 10.1038/sj.embor.embor703] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 10/31/2002] [Indexed: 11/10/2022] Open
Abstract
DNA replication initiation in prokaryotes and eukaryotes requires the recruitment and loading of a helicase at the replication origin. To subsequently unwind the double-stranded DNA, the helicase must be properly positioned on the separated DNA strands. Several studies have revealed similarities and differences in the mechanisms used by different autonomously replicating DNA elements (replicons) for recruitment and activation of the appropriate helicase. Of particular interest are plasmid replicons that are adapted for replication in diverse bacterial hosts and are therefore intriguingly able to exploit the helicases of distantly related bacterial species. The different molecular mechanisms by which replicons recruit and load helicases are only just beginning to be understood.
Collapse
Affiliation(s)
- Igor Konieczny
- Department of Molecular and Cellular Biology, Faculty of Biotechnology, University of Gdansk, 24 Kladki, Poland.
| |
Collapse
|
50
|
Messer W. The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev 2002; 26:355-74. [PMID: 12413665 DOI: 10.1111/j.1574-6976.2002.tb00620.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The initiation of replication is the central event in the bacterial cell cycle. Cells control the rate of DNA synthesis by modulating the frequency with which new chains are initiated, like all macromolecular synthesis. The end of the replication cycle provides a checkpoint that must be executed for cell division to occur. This review summarizes recent insight into the biochemistry, genetics and control of the initiation of replication in bacteria, and the central role of the initiator protein DnaA.
Collapse
Affiliation(s)
- Walter Messer
- Max-Planck-Institut für molekulare Genetik, Ihnestrasse 73, D-14195 Berlin-Dahlem, Germany.
| |
Collapse
|