1
|
Eckhardt E, Schinköthe J, Gischke M, Sehl-Ewert J, Corleis B, Dorhoi A, Teifke J, Albrecht D, Geluk A, Gilleron M, Bastian M. Phosphatidylinositolmannoside vaccination induces lipid-specific Th1-responses and partially protects guinea pigs from Mycobacterium tuberculosis challenge. Sci Rep 2023; 13:18613. [PMID: 37903877 PMCID: PMC10616071 DOI: 10.1038/s41598-023-45898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/25/2023] [Indexed: 11/01/2023] Open
Abstract
The concept of donor-unrestricted T cells (DURTs) comprises a heterogeneity of lymphoid cells that respond to an abundance of unconventional epitopes in a non-MHC-restricted manner. Vaccinologists strive to harness this so far underexplored branch of the immune system for new vaccines against tuberculosis. A particular division of DURTs are T cells that recognize their cognate lipid antigen in the context of CD1-molecules. Mycobacteria are characterized by a particular lipid-rich cell wall. Several of these lipids have been shown to be presented to T cells via CD1b-molecules. Guinea pigs functionally express CD1b and are hence an appropriate small animal model to study the role of CD1b-restricted, lipid-specific immune responses. In the current study, guinea pigs were vaccinated with BCG or highly-purified, liposome-formulated phosphatidylinositol-hexa-mannoside (PIM6) to assess the effect of CD1-restricted DURTs on the course of infection after virulent Mycobacterium tuberculosis (Mtb) challenge. Robust PIM6-specific T cell-responses were observed both after BCG- and PIM6-vaccination. The cellular response was significantly reduced in the presence of monoclonal, CD1b-blocking antibodies, indicating that a predominant part of this reactivity was CD1b-restricted. When animals were challenged with Mtb, BCG- and PIM6-vaccinated animals showed significantly reduced pathology, smaller necrotic granulomas in lymph node and spleen and reduced bacterial loads. While BCG conferred an almost sterile protection in this setting, compared to control animals' lesions were reduced roughly by two thirds in PIM6-vaccinated. Comprehensive histological and transcriptional analyses in the draining lymph node revealed that protected animals showed reduced transcription-levels of inflammatory cyto- and chemokines and higher levels of CD1b-expression on professional antigen cells compared to controls. Although BCG as a comparator induced by far stronger effects, our observations in the guinea pig model suggest that CD1b-restricted, PIM6-reactive DURTs contribute to immune-mediated containment of virulent Mtb.
Collapse
Affiliation(s)
- Emmelie Eckhardt
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jan Schinköthe
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Marcel Gischke
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Julia Sehl-Ewert
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Björn Corleis
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Jens Teifke
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Greifswald University, Greifswald, Germany
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Martine Gilleron
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | - Max Bastian
- Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Isle of Riems, Germany.
| |
Collapse
|
2
|
Viljoen A, Vercellone A, Chimen M, Gaibelet G, Mazères S, Nigou J, Dufrêne YF. Nanoscale clustering of mycobacterial ligands and DC-SIGN host receptors are key determinants for pathogen recognition. SCIENCE ADVANCES 2023; 9:eadf9498. [PMID: 37205764 PMCID: PMC10198640 DOI: 10.1126/sciadv.adf9498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
The bacterial pathogen Mycobacterium tuberculosis binds to the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin) on dendritic cells to evade the immune system. While DC-SIGN glycoconjugate ligands are ubiquitous among mycobacterial species, the receptor selectively binds pathogenic species from the M. tuberculosis complex (MTBC). Here, we unravel the molecular mechanism behind this intriguing selective recognition by means of a multidisciplinary approach combining single-molecule atomic force microscopy with Förster resonance energy transfer and bioassays. Molecular recognition imaging of mycobacteria demonstrates that the distribution of DC-SIGN ligands markedly differs between Mycobacterium bovis Bacille Calmette-Guérin (BCG) (model MTBC species) and Mycobacterium smegmatis (non-MTBC species), the ligands being concentrated into dense nanodomains on M. bovis BCG. Upon bacteria-host cell adhesion, ligand nanodomains induce the recruitment and clustering of DC-SIGN. Our study highlights the key role of clustering of both ligands on MTBC species and DC-SIGN host receptors in pathogen recognition, a mechanism that might be widespread in host-pathogen interactions.
Collapse
Affiliation(s)
- Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Myriam Chimen
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Gérald Gaibelet
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Serge Mazères
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07., B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
3
|
Walker EM, Merino KM, Slisarenko N, Grasperge BF, Mehra S, Roy CJ, Kaushal D, Rout N. Impact of SIV infection on mycobacterial lipid-reactive T cell responses in Bacillus Calmette-Guérin (BCG) inoculated macaques. Front Immunol 2023; 13:1085786. [PMID: 36726992 PMCID: PMC9885173 DOI: 10.3389/fimmu.2022.1085786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Background Although BCG vaccine protects infants from tuberculosis (TB), it has limited efficacy in adults against pulmonary TB. Further, HIV coinfection significantly increases the risk of developing active TB. In the lack of defined correlates of protection in TB disease, it is essential to explore immune responses beyond conventional CD4 T cells to gain a better understanding of the mechanisms of TB immunity. Methods Here, we evaluated unconventional lipid-reactive T cell responses in cynomolgus macaques following aerosol BCG inoculation and examined the impact of subsequent SIV infection on these responses. Immune responses to cellular lipids of M. bovis and M. tuberculosis were examined ex vivo in peripheral blood and bronchioalveolar lavage (BAL). Results Prior to BCG inoculation, innate-like IFN-γ responses to mycobacterial lipids were observed in T cells. Aerosol BCG exposure induced an early increase in frequencies of BAL γδT cells, a dominant subset of lipid-reactive T cells, along with enhanced IL-7R and CXCR3 expression. Further, BCG exposure stimulated greater IFN-γ responses to mycobacterial lipids in peripheral blood and BAL, suggesting the induction of systemic and local Th1-type response in lipid-reactive T cells. Subsequent SIV infection resulted in a significant loss of IL-7R expression on blood and BAL γδT cells. Additionally, IFN-γ responses of mycobacterial lipid-reactive T cells in BAL fluid were significantly lower in SIV-infected macaques, while perforin production was maintained through chronic SIV infection. Conclusions Overall, these data suggest that despite SIV-induced decline in IL-7R expression and IFN-γ production by mycobacterial lipid-reactive T cells, their cytolytic potential is maintained. A deeper understanding of anti-mycobacterial lipid-reactive T cell functions may inform novel approaches to enhance TB control in individuals with or without HIV infection.
Collapse
Affiliation(s)
- Edith M. Walker
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Kristen M. Merino
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Nadia Slisarenko
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Brooke F. Grasperge
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Chad J. Roy
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Namita Rout
- Division of Microbiology at Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
4
|
Mosquera-Restrepo SF, Zuberogoïtia S, Gouxette L, Layre E, Gilleron M, Stella A, Rengel D, Burlet-Schiltz O, Caro AC, Garcia LF, Segura C, Peláez Jaramillo CA, Rojas M, Nigou J. A Mycobacterium tuberculosis fingerprint in human breath allows tuberculosis detection. Nat Commun 2022; 13:7751. [PMID: 36517492 PMCID: PMC9751131 DOI: 10.1038/s41467-022-35453-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
An estimated one-third of tuberculosis (TB) cases go undiagnosed or unreported. Sputum samples, widely used for TB diagnosis, are inefficient at detecting infection in children and paucibacillary patients. Indeed, developing point-of-care biomarker-based diagnostics that are not sputum-based is a major priority for the WHO. Here, in a proof-of-concept study, we tested whether pulmonary TB can be detected by analyzing patient exhaled breath condensate (EBC) samples. We find that the presence of Mycobacterium tuberculosis (Mtb)-specific lipids, lipoarabinomannan lipoglycan, and proteins in EBCs can efficiently differentiate baseline TB patients from controls. We used EBCs to track the longitudinal effects of antibiotic treatment in pediatric TB patients. In addition, Mtb lipoarabinomannan and lipids were structurally distinct in EBCs compared to ex vivo cultured bacteria, revealing specific metabolic and biochemical states of Mtb in the human lung. This provides essential information for the rational development or improvement of diagnostic antibodies, vaccines and therapeutic drugs. Our data collectively indicate that EBC analysis can potentially facilitate clinical diagnosis of TB across patient populations and monitor treatment efficacy. This affordable, rapid and non-invasive approach seems superior to sputum assays and has the potential to be implemented at point-of-care.
Collapse
Affiliation(s)
- Sergio Fabián Mosquera-Restrepo
- Cellular Immunology and Immunogenetics Group (GICIG), Institute of Medical Research, Faculty of Medicine, University Research Headquarters (SIU), University of Antioquia (UdeA), Medellin, Colombia
| | - Sophie Zuberogoïtia
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Lucie Gouxette
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Emilie Layre
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Martine Gilleron
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Alexandre Stella
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - David Rengel
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France
| | - Ana Cecilia Caro
- Interdisciplinary Group for Molecular Studies (GIEM), Institute of Chemistry, Faculty of Exact and Natural Sciences. University of Antioquia (UdeA), Medellin, Colombia
| | - Luis F Garcia
- Cellular Immunology and Immunogenetics Group (GICIG), Institute of Medical Research, Faculty of Medicine, University Research Headquarters (SIU), University of Antioquia (UdeA), Medellin, Colombia
| | - César Segura
- Malaria Group, University Research Headquarters, University of Antioquia (UdeA), Medellín, Colombia
| | - Carlos Alberto Peláez Jaramillo
- Interdisciplinary Group for Molecular Studies (GIEM), Institute of Chemistry, Faculty of Exact and Natural Sciences. University of Antioquia (UdeA), Medellin, Colombia
| | - Mauricio Rojas
- Cellular Immunology and Immunogenetics Group (GICIG), Institute of Medical Research, Faculty of Medicine, University Research Headquarters (SIU), University of Antioquia (UdeA), Medellin, Colombia.
- Flow Cytometry Core, University Research Headquarters (SIU), University of Antioquia, UdeA, Medellín, Colombia.
| | - Jérôme Nigou
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, University of Toulouse III-Paul Sabatier, Toulouse, France.
| |
Collapse
|
5
|
Park WJ, Yoon YK, Kim Y, Park JS, Pansuriya R, Cho SN, Seok YJ, Ganapathy R. Development of a bivalent conjugate vaccine candidate against rotaviral diarrhea and tuberculosis using polysaccharide from Mycobacterium tuberculosis conjugated to ΔVP8* protein from rotavirus. Vaccine 2021; 39:6644-6652. [PMID: 34642087 DOI: 10.1016/j.vaccine.2021.09.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022]
Abstract
Conjugation of carbohydrate antigens with a carrier protein is a clinically proven strategy to overcome the poor immunogenicity of bacterial polysaccharide. In addition to its primary role, which is to help generate a T cell-mediate long-lasting immune response directed against the carbohydrate antigen, the carrier protein in a glycoconjugate vaccine can also play an important role as a protective antigen. Among carrier proteins currently used in licensed conjugate vaccines, non-typeable Haemophilus influenzae protein D has been used as an antigenically active carrier protein. Our previous studies also indicate that some carrier proteins provide B cell epitopes, along with T cell helper epitopes. Herein we investigated the dual role of truncated rotavirus spike protein ΔVP8* as a carrier and a protective antigen. Capsular polysaccharide lipoarabinomannan (LAM), purified from Mycobacterium tuberculosis (M.tb), was chemically conjugated with ΔVP8*. Mouse immunization experiments showed that the resultant conjugates elicited strong and specific immune responses against the polysaccharide antigen, and the responses were comparable to those induced by Diphtheria toxoid (DT)-based conjugates. The conjugate vaccine induced enhanced antibody titers and functional antibodies against ΔVP8* when compared to immunization with the unconjugated ΔVP8*. Thus, these results indicate that ΔVP8* can be a relevant carrier protein for glycoconjugate vaccine and the glycoconjugates consisting of ΔVP8* with LAM are effective bivalent vaccine candidates against rotavirus and tuberculosis.
Collapse
Affiliation(s)
- Wook-Jin Park
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea; International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Yeon-Kyung Yoon
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | - Youngmi Kim
- College of Medicine and Institute for Immunology and Immunological Diseases, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Sun Park
- International Vaccine Institute, Seoul 08826, Republic of Korea
| | | | - Sang-Nae Cho
- College of Medicine and Institute for Immunology and Immunological Diseases, Yonsei University, Seoul 03722, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of Korea
| | - Ravi Ganapathy
- International Vaccine Institute, Seoul 08826, Republic of Korea.
| |
Collapse
|
6
|
Lipid and Lipoarabinomannan Isolation and Characterization. Methods Mol Biol 2021. [PMID: 34235650 DOI: 10.1007/978-1-0716-1460-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The very high content of structurally diverse and biologically active lipids of exotic structures is the hallmark of Mycobacteria. As such the lipid composition is commonly used to characterize mycobacterial strains at the species and type-species levels. The present chapter describes the methods that allow the purification of the most commonly isolated biologically active lipids and those used for analyzing extractable lipids and their constituents, cell wall-linked mycolic acids (MA), and lipoarabinomannan (LAM). These involve various chromatographic techniques and analytical procedures necessary for structural and metabolic studies of mycobacterial lipids. In addition, as the use of physical methods has brought important overhang on chemical structures of the very-long-chain MA, which typify mycobacteria, NMR and mass spectrometry data of these specific fatty acids are included.
Collapse
|
7
|
Le Moigne V, Roux AL, Jobart-Malfait A, Blanc L, Chaoui K, Burlet-Schiltz O, Gaillard JL, Canaan S, Nigou J, Herrmann JL. A TLR2-Activating Fraction From Mycobacterium abscessus Rough Variant Demonstrates Vaccine and Diagnostic Potential. Front Cell Infect Microbiol 2020; 10:432. [PMID: 32984067 PMCID: PMC7481331 DOI: 10.3389/fcimb.2020.00432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/14/2020] [Indexed: 11/17/2022] Open
Abstract
Mycobacterium abscessus is a prevalent pathogenic mycobacterium in cystic fibrosis (CF) patients and one of the most highly drug resistant mycobacterial species to antimicrobial agents. It possesses the property to transition from a smooth (S) to a rough (R) morphotype, thereby influencing the host innate immune response. This transition from the S to the R morphotype takes place in patients with an exacerbation of the disease and a persistence of M. abscessus. We have previously shown that the exacerbation of the Toll-like receptor 2 (TLR2)-mediated inflammatory response, following this S to R transition, is essentially due to overproduction of bacilli cell envelope surface compounds, which we were able to extract by mechanical treatment and isolation by solvent partition in a fraction called interphase. Here, we set up a purification procedure guided by bioactivity to isolate a fraction from the R variant of M. abscessus cells which exhibits a high TLR2 stimulating activity, referred to as TLR2-enriched fraction (TLR2eF). As expected, TLR2eF was found to contain several lipoproteins and proteins known to be stimuli for TLR2. Vaccination with TLR2eF showed no protection toward an M. abscessus aerosol challenge, but provided mild protection in ΔF508 mice and their FVB littermates when intravenously challenged by M. abscessus. Interestingly however, antibodies against TLR2eF compounds were detected during disease in CF patients. In conclusion, we show the potential for compounds in TLR2eF as vaccine and diagnostic candidates, in order to enhance diagnosis, prevent and/or treat M. abscessus-related infections.
Collapse
Affiliation(s)
- Vincent Le Moigne
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Anne-Laure Roux
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Aude Jobart-Malfait
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Landry Blanc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Gaillard
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France
| | - Stéphane Canaan
- Université Aix-Marseille, CNRS, LISM, IMM FR3479, Marseille, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, Toulouse, France
| | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, Inserm, Infection et inflammation, Montigny-le-Bretonneux, France.,APHP, GHU Paris-Saclay, Hôpital Raymond Poincaré, Service de Microbiologie, Garches, France
| |
Collapse
|
8
|
Sawettanai N, Leelayuwapan H, Karoonuthaisiri N, Ruchirawat S, Boonyarattanakalin S. Synthetic Lipomannan Glycan Microarray Reveals the Importance of α(1,2) Mannose Branching in DC-SIGN Binding. J Org Chem 2019; 84:7606-7617. [PMID: 31099561 DOI: 10.1021/acs.joc.8b02944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipomannan (LM), a glycophospholipid found on the cell surface of mycobacteria, involves the virulence and survival in host cells. However, there is little to no information on how exactly mannan alignment, including the number of mannose units and the branched motif of LM, affects protein engagement during host-pathogen interactions. In this study, we synthesized the exact substructures of the LM glycans that consist of an α(1,6) mannan core, with and without the complete α(1,2) mannose branching, and comparatively studied their protein-carbohydrate interactions. The synthetic LM glycans were equipped with a thiol linker for immobilizations on the surfaces of microarrays. As per our findings, the presence of the branching α(1,2) mannose on the LM glycans increases their binding toward the dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin receptor. An increase in the number of mannose units on the glycans also increases the binding with the mannose receptor. Thus, the set of synthetic glycans can serve as a useful tool to study the biological activities of LM and can provide a better understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Nithinan Sawettanai
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Harin Leelayuwapan
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC) , National Science and Technology Development Agency (NSTDA) , Pathum Thani 12120 , Thailand
| | - Somsak Ruchirawat
- Program in Chemical Biology, Chulabhorn Graduate Institute , Chulabhorn Royal Academy , Bangkok 10210 , Thailand.,Laboratory of Medicinal Chemistry , Chulabhorn Research Institute, and Centre of Excellence on Environmental Health and Toxicology , Bangkok 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani 12121 , Thailand
| |
Collapse
|
9
|
Tran T, Bonham AJ, Chan ED, Honda JR. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis (Edinb) 2019; 115:96-107. [PMID: 30948183 DOI: 10.1016/j.tube.2019.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/29/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
Abstract
All mycobacteria, including nontuberculous mycobacteria (NTM), synthesize an array of lipids including phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM). While absent from Mycobacterium tuberculosis (M. tb), glycopeptidolipids (GPL) are critical to the biology of NTM. M. tb and some NTM also synthesize trehalose-containing glycolipids and phenolic glycolipids (PGL), key membrane constituents with essential roles in metabolism. While lipids facilitate immune evasion, they also induce host immunity against tuberculosis. However, much less is known about the significance of NTM-derived PIM, LM, LAM, GPL, trehalose-containing glycolipids, and PGL as virulence factors, warranting further investigation. While culling the scientific literature on NTM lipids, it's evident that such studies were relatively few in number with the overwhelming majority of prior work dedicated to understanding lipids from the saprophyte Mycobacterium smegmatis. The identification and functional analysis of immune reactive NTM-derived lipids remain challenging, but such work is likely to yield a greater understanding of the pathogenesis of NTM lung disease. In this review, we juxtapose the vast literature of what is currently known regarding M. tb lipids to the lesser number of studies for comparable NTM lipids. But because GPL is the most widely recognized NTM lipid, we highlight its role in disease pathogenesis.
Collapse
Affiliation(s)
- Tru Tran
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, PO Box 173364, Denver, CO, 80217-3364, USA.
| | - Andrew J Bonham
- Department of Chemistry, Metropolitan State University of Denver, Campus Box 52, P.O. Box 173362, Denver, CO, 80217-3362, USA.
| | - Edward D Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, CO, USA; Academic Affairs, National Jewish Health, 1400 Jackson St. Neustadt D509, Denver, CO, 80206, USA.
| | - Jennifer R Honda
- Department of Biomedical Research and the Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA.
| |
Collapse
|
10
|
Hussain A, Singh S, Das SS, Anjireddy K, Karpagam S, Shakeel F. Nanomedicines as Drug Delivery Carriers of Anti-Tubercular Drugs: From Pathogenesis to Infection Control. Curr Drug Deliv 2019; 16:400-429. [PMID: 30714523 PMCID: PMC6637229 DOI: 10.2174/1567201816666190201144815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/23/2018] [Accepted: 01/25/2019] [Indexed: 11/22/2022]
Abstract
In spite of advances in tuberculosis (TB) chemotherapy, TB is still airborne deadly disorder as a major issue of health concern worldwide today. Extensive researches have been focused to develop novel drug delivery systems to shorten the lengthy therapy approaches, prevention of relapses, reducing dose-related toxicities and to rectify technologically related drawbacks of anti-tubercular drugs. Moreover, the rapid emergence of drug resistance, poor patient compliance due to negative therapeutic outcomes and intracellular survival of Mycobacterium highlighted to develop carrier with optimum effectiveness of the anti-tubercular drugs. This could be achieved by targeting and concentrating the drug on the infection reservoir of Mycobacterium. In this article, we briefly compiled the general aspects of Mycobacterium pathogenesis, disease treatment along with progressive updates in novel drug delivery carrier system to enhance therapeutic effects of drug and the high level of patient compliance. Recently developed several vaccines might be shortly available as reported by WHO.
Collapse
Affiliation(s)
| | | | | | | | | | - Faiyaz Shakeel
- Address correspondence to this author at the Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Tel: +966-14673139; E-mail:
| |
Collapse
|
11
|
Decout A, Silva-Gomes S, Drocourt D, Blattes E, Rivière M, Prandi J, Larrouy-Maumus G, Caminade AM, Hamasur B, Källenius G, Kaur D, Dobos KM, Lucas M, Sutcliffe IC, Besra GS, Appelmelk BJ, Gilleron M, Jackson M, Vercellone A, Tiraby G, Nigou J. Deciphering the molecular basis of mycobacteria and lipoglycan recognition by the C-type lectin Dectin-2. Sci Rep 2018; 8:16840. [PMID: 30443026 PMCID: PMC6237770 DOI: 10.1038/s41598-018-35393-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/04/2023] Open
Abstract
Dectin-2 is a C-type lectin involved in the recognition of several pathogens such as Aspergillus fumigatus, Candida albicans, Schistosoma mansonii, and Mycobacterium tuberculosis that triggers Th17 immune responses. Identifying pathogen ligands and understanding the molecular basis of their recognition is one of the current challenges. Purified M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) was shown to induce signaling via Dectin-2, an activity that requires the (α1 → 2)-linked mannosides forming the caps. Here, using isogenic M. tuberculosis mutant strains, we demonstrate that ManLAM is a bona fide and actually the sole ligand mediating bacilli recognition by Dectin-2, although M. tuberculosis produces a variety of cell envelope mannoconjugates, such as phosphatidyl-myo-inositol hexamannosides, lipomannan or manno(lipo)proteins, that bear (α1 → 2)-linked mannosides. In addition, we found that Dectin-2 can recognize lipoglycans from other bacterial species, such as Saccharotrix aerocolonigenes or the human opportunistic pathogen Tsukamurella paurometabola, suggesting that lipoglycans are prototypical Dectin-2 ligands. Finally, from a structure/function relationship perspective, we show, using lipoglycan variants and synthetic mannodendrimers, that dimannoside caps and multivalent interaction are required for ligand binding to and signaling via Dectin-2. Better understanding of the molecular basis of ligand recognition by Dectin-2 will pave the way for the rational design of potent adjuvants targeting this receptor.
Collapse
Affiliation(s)
- Alexiane Decout
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,InvivoGen, Research Department, 31400, Toulouse, France.,Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sandro Silva-Gomes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,GlaxoSmithKline (GSK), Stevenage Herts, SG1 2NY, UK
| | | | - Emilyne Blattes
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Innovative Medecine for Tuberculosis (iM4TB), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michel Rivière
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Jacques Prandi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérald Larrouy-Maumus
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.,Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Beston Hamasur
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.,Biopromic AB, 171 65, Solna, Sweden
| | - Gunilla Källenius
- Department of Medicine, Karolinska Institutet Solna 171 76, Stockholm, Sweden
| | - Devinder Kaur
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.,Massachusetts Supranational TB Reference Laboratory, University of Massachusetts Medical School, Jamaica Plain, MA, 0213, USA
| | - Karen M Dobos
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Megan Lucas
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Gurdyal S Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ben J Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT, Amsterdam, The Netherlands
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Alain Vercellone
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France
| | - Gérard Tiraby
- InvivoGen, Research Department, 31400, Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Université Paul Sabatier, 31077, Toulouse, France.
| |
Collapse
|
12
|
Turner J, Torrelles JB. Mannose-capped lipoarabinomannan in Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4953419. [PMID: 29722821 PMCID: PMC5930247 DOI: 10.1093/femspd/fty026] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/22/2018] [Indexed: 11/14/2022] Open
Abstract
Mannose-capped lipoarabinomannan (ManLAM), present in all members of the Mycobacterium tuberculosis complex and in other pathogenic Mycobacterium spp, is a high molecular mass amphipathic lipoglycan with a defined critical role in mycobacterial survival during infection. In particular, ManLAM is well-characterized for its importance in providing M. tuberculosis a safe portal of entry to phagocytes, regulating the intracellular trafficking network, as well as immune responses of infected host cells. These ManLAM immunological characteristics are thought to be linked to the subtle but unique and well-defined structural characteristics of this molecule, including but not limited to the degree of acylation, the length of the D-mannan and D-arabinan cores, the length of the mannose caps, as well as the presence of other acidic constituents such as succinates, lactates and/or malates, and also the presence of 5-methylthioxylosyl. The impact of all these structural features on ManLAM spatial conformation and biological functions during M. tuberculosis infection is still uncertain. In this review, we dissect the relationship between ManLAM structure and biological function addressing how this relationship determines M. tuberculosis interactions with host cells, and how it aids this exceptional pathogen during the course of infection.
Collapse
MESH Headings
- Acylation
- Carbohydrate Sequence
- Gene Expression Regulation/immunology
- Host-Pathogen Interactions/immunology
- Humans
- Immunity, Innate
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Mannose/chemistry
- Mannose/immunology
- Mannose Receptor
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Microbial Viability
- Mycobacterium tuberculosis/chemistry
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- Nod2 Signaling Adaptor Protein/genetics
- Nod2 Signaling Adaptor Protein/immunology
- Phagocytes/immunology
- Phagocytes/microbiology
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/immunology
- Receptors, Complement/genetics
- Receptors, Complement/immunology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Tuberculosis, Pulmonary/genetics
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
Collapse
Affiliation(s)
- Joanne Turner
- Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227-5301, USA
| | - Jordi B Torrelles
- Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX 78227-5301, USA
| |
Collapse
|
13
|
Synthesis of synthetic mannan backbone polysaccharides found on the surface of Mycobacterium tuberculosis as a vaccine adjuvant and their immunological properties. Carbohydr Polym 2017; 175:746-755. [PMID: 28917925 DOI: 10.1016/j.carbpol.2017.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 12/30/2022]
Abstract
Surface components of Mycobacterium tuberculosis (Mtb) play crucial roles in modulating host immune responses. Thorough understandings of immunological properties of the Mtb's surface components are essential for the development of tuberculosis treatment and prevention. Unfortunately, the accessibility to the molecules on the surface of Mtb is limited by the structural complexity due to their various macromolecular nature and the hazard of culturing Mtb. In this study, we reveal a practical synthesis of lipomannan (LM) backbone polysaccharides - the core glycans found on Mtb's surface. A rapid synthetic approach based on a controlled polymerization was developed for the chemical synthesis of mannopyranans, the core structure of LM. The size of the LM glycans can be controlled by using specific monomer concentrations in addition to stereo- and regioselectivity derived from the versatile tricyclic orthoester mannose monomer. The immunological properties of the synthesized mannopyranans were investigated and their adjuvant potential was revealed. The adjuvanticity mechanism of the synthetic mannopyranans appears to involve the NF-κB and inflammasome pathways.
Collapse
|
14
|
Jankute M, Alderwick LJ, Noack S, Veerapen N, Nigou J, Besra GS. Disruption of Mycobacterial AftB Results in Complete Loss of Terminal β(1 → 2) Arabinofuranose Residues of Lipoarabinomannan. ACS Chem Biol 2017; 12:183-190. [PMID: 28033704 PMCID: PMC5259755 DOI: 10.1021/acschembio.6b00898] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Lipoarabinomannan
(LAM) and arabinogalactan (AG) are the two major
mycobacterial cell wall (lipo)polysaccharides, which contain a structurally
similar arabinan domain that is highly branched and assembled in a
stepwise fashion by variety of arabinofuranosyltransferases (ArafT). In addition to playing an essential role in mycobacterial
physiology, LAM and its biochemical precursor lipomannan possess potent
immunomodulatory activities that affect the host immune response.
In the search of additional mycobacterial ArafTs
that participate in the synthesis of the arabinan segment of LAM,
we disrupted aftB (MSMEG_6400) in Mycobacterium smegmatis. The deletion of chromosomal aftB locus could only be achieved in the presence of a rescue
plasmid carrying a functional copy of aftB, strongly
suggesting that it is essential for the viability of M. smegmatis. Isolation and detailed structural characterization of a LAM molecule
derived from the conditional mutant deficient in AftB revealed the
absence of terminal β(1 → 2)-linked arabinofuranosyl
residues. Furthermore, we demonstrated that truncated LAM displays
proinflammatory activity, which is due to its ability to activate
Toll-like receptor 2. All together, our results indicate that AftB
is an essential mycobacterial ArafT that plays a
role in the synthesis of the arabinan domain of LAM.
Collapse
Affiliation(s)
- Monika Jankute
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Luke J. Alderwick
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Stephan Noack
- Institute
of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Natacha Veerapen
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Jérôme Nigou
- Institut
de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Gurdyal S. Besra
- School
of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
15
|
Källenius G, Correia-Neves M, Buteme H, Hamasur B, Svenson SB. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations. Tuberculosis (Edinb) 2015; 96:120-30. [PMID: 26586646 DOI: 10.1016/j.tube.2015.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/16/2015] [Indexed: 01/04/2023]
Abstract
Exposure to Mycobacterium tuberculosis (Mtb) may lead to active or latent tuberculosis, or clearance of Mtb, depending essentially on the quality of the host's immune response. This response is initiated through the interaction of Mtb cell wall surface components, mostly glycolipids, with cells of the innate immune system, particularly macrophages (Mφs) and dendritic cells (DCs). The way Mφs and DC alter their cytokine secretome, activate or inhibit different microbicidal mechanisms and present antigens and consequently trigger the T cell-mediated immune response impacts the host immune response against Mtb. Lipoarabinomannan (LAM) is one of the major cell wall components of Mtb. Mannosyl-capped LAM (ManLAM), and its related cell wall-associated types of glycolipids/lipoglycans, namely phosphatidylinositol mannosides (PIMs) and lipomannan (LM), exhibit important and distinct immunomodulatory properties. The structure, internal heterogeneity and abundance of these molecules vary between Mtb strains exhibiting distinct degrees of virulence. Thus ManLAM, LM and PIMs may be considered crucial Mtb-associated virulence factors in the pathogenesis of tuberculosis. Of particular relevance for this review, there is controversy about the specific immunomodulatory properties of these distinct glycolipids, particularly when tested as purified molecules in vitro. In addition to the variability in the glycolipid composition conflicting reports may also result from differences in the protocols used for glycolipid isolation and for in vitro experiments including immune cell types and procedures to generate them. Understanding the immunomodulatory properties of these cell wall glycolipids, how they differ between distinct Mtb strains, and how they influence the degree of Mtb virulence, is of utmost relevance to understand how the host mounts a protective or otherwise pathologic immune response. This is essential for the design of preventive strategies against tuberculosis. Thus, since clarifying the controversy on this matter is crucial we here review, summarize and discuss reported data from in vitro stimulation with the three major Mtb complex cell wall glycolipids (ManLAM, PIMs and LM) in an attempt to conciliate the conflicting findings.
Collapse
Affiliation(s)
- Gunilla Källenius
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden.
| | - Margarida Correia-Neves
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Helen Buteme
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden; Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Beston Hamasur
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| | - Stefan B Svenson
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, 118 83 Stockholm, Sweden
| |
Collapse
|
16
|
Larrouy-Maumus G, Gilleron M, Skovierová H, Zuberogoitia S, Brennan PJ, Puzo G, Jackson M, Nigou J. A glycomic approach reveals a new mycobacterial polysaccharide. Glycobiology 2015; 25:1163-71. [PMID: 26261090 DOI: 10.1093/glycob/cwv061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/05/2015] [Indexed: 12/26/2022] Open
Abstract
Mycobacterium tuberculosis lipoarabinomannan (LAM) and biosynthetically related lipoglycans and glycans play an important role in host-pathogen interactions. Therefore, the elucidation of the complete biosynthetic pathways of these important molecules is expected to afford novel therapeutic targets. The characterization of biosynthetic enzymes and transporters involved in the formation and localization of these complex macromolecules in the bacterial cell envelope largely relies on genetic manipulation of mycobacteria and subsequent analyses of lipoglycan structural alterations. However, lipoglycans are present in relatively low amounts. Their purification to homogeneity remains tedious and time-consuming. To overcome these issues and to reduce the biomass and time required for lipoglycan purification, we report here the development of a methodology to efficiently purify lipoglycans by sodium deoxycholate-polyacrylamide gel electrophoresis. This faster purification method can be applied on a small amount of mycobacterial cells biomass (10-50 mg), resulting in tens of micrograms of purified lipoglycans. This amount of purified products was found to be sufficient to undertake structural analyses of lipoglycans and glycans carbohydrate domains by a combination of highly sensitive analytical procedures, involving cryoprobe NMR analysis of intact macromolecules and chemical degradations monitored by gas chromatography and capillary electrophoresis. This glycomic approach was successfully applied to the purification and structural characterization of a newly identified polysaccharide, structurally related to LAM, in the model fast-growing species Mycobacterium smegmatis.
Collapse
Affiliation(s)
- Gérald Larrouy-Maumus
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex 4, France Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France
| | - Martine Gilleron
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex 4, France Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France
| | - Henrieta Skovierová
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Sophie Zuberogoitia
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex 4, France Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France
| | - Patrick J Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Germain Puzo
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex 4, France Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA
| | - Jérôme Nigou
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, F-31077 Toulouse Cedex 4, France Université de Toulouse, Université Paul Sabatier, IPBS, F-31077 Toulouse, France
| |
Collapse
|
17
|
Abstract
Mycobacteria are microorganisms that contain a very high content of structurally diverse lipids, some of them being biologically active substances. As such the lipid composition is commonly used to characterize mycobacterial strains at the species and type-species level. This chapter describes the methods that allow the purification of the most commonly isolated biologically active lipids and those used for analyzing extractable lipids and their constituents, cell wall-linked mycolic acids and lipoarabinomannan (LAM). The latter involve simple chromatographic and analytical techniques, such as thin-layer chromatography and gas chromatography coupled to mass spectrometry.
Collapse
Affiliation(s)
- Marie-Antoinette Lanéelle
- Tuberculosis & Infection Biology Department, Institut de Pharmacologie et de BiologieStructurale (IPBS), Centre National de la Recherche Scientifique (CNRS), BP 64182, 205 route de Narbonne, 31077, Toulouse, France
| | | | | |
Collapse
|
18
|
Angala SK, Belardinelli JM, Huc-Claustre E, Wheat WH, Jackson M. The cell envelope glycoconjugates of Mycobacterium tuberculosis. Crit Rev Biochem Mol Biol 2014; 49:361-99. [PMID: 24915502 PMCID: PMC4436706 DOI: 10.3109/10409238.2014.925420] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tuberculosis (TB) remains the second most common cause of death due to a single infectious agent. The cell envelope of Mycobacterium tuberculosis (Mtb), the causative agent of the disease in humans, is a source of unique glycoconjugates and the most distinctive feature of the biology of this organism. It is the basis of much of Mtb pathogenesis and one of the major causes of its intrinsic resistance to chemotherapeutic agents. At the same time, the unique structures of Mtb cell envelope glycoconjugates, their antigenicity and essentiality for mycobacterial growth provide opportunities for drug, vaccine, diagnostic and biomarker development, as clearly illustrated by recent advances in all of these translational aspects. This review focuses on our current understanding of the structure and biogenesis of Mtb glycoconjugates with particular emphasis on one of the most intriguing and least understood aspect of the physiology of mycobacteria: the translocation of these complex macromolecules across the different layers of the cell envelope. It further reviews the rather impressive progress made in the last 10 years in the discovery and development of novel inhibitors targeting their biogenesis.
Collapse
Affiliation(s)
- Shiva Kumar Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA
| | | | | | | | | |
Collapse
|
19
|
Stoop EJM, Mishra AK, Driessen NN, van Stempvoort G, Bouchier P, Verboom T, van Leeuwen LM, Sparrius M, Raadsen SA, van Zon M, van der Wel NN, Besra GS, Geurtsen J, Bitter W, Appelmelk BJ, van der Sar AM. Mannan core branching of lipo(arabino)mannan is required for mycobacterial virulence in the context of innate immunity. Cell Microbiol 2013; 15:2093-108. [PMID: 23902464 PMCID: PMC3963455 DOI: 10.1111/cmi.12175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/28/2022]
Abstract
The causative agent of tuberculosis (TB), Mycobacterium tuberculosis, remains an important worldwide health threat. Although TB is one of the oldest infectious diseases of man, a detailed understanding of the mycobacterial mechanisms underlying pathogenesis remains elusive. Here, we studied the role of the α(1→2) mannosyltransferase MptC in mycobacterial virulence, using the Mycobacterium marinum zebrafish infection model. Like its M. tuberculosis orthologue, disruption of M. marinum mptC (mmar_3225) results in defective elongation of mannose caps of lipoarabinomannan (LAM) and absence of α(1→2)mannose branches on the lipomannan (LM) and LAM mannan core, as determined by biochemical analysis (NMR and GC-MS) and immunoblotting. We found that the M. marinum mptC mutant is strongly attenuated in embryonic zebrafish, which rely solely on innate immunity, whereas minor virulence defects were observed in adult zebrafish. Strikingly, complementation with the Mycobacterium smegmatis mptC orthologue, which restored mannan core branching but not cap elongation, was sufficient to fully complement the virulence defect of the mptC mutant in embryos. Altogether our data demonstrate that not LAM capping, but mannan core branching of LM/LAM plays an important role in mycobacterial pathogenesis in the context of innate immunity.
Collapse
Affiliation(s)
- Esther J M Stoop
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Arun K Mishra
- Mycobacterial Research Division, National Institute for Medical ResearchThe Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Nicole N Driessen
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Gunny van Stempvoort
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Pascale Bouchier
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Lisanne M van Leeuwen
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Marion Sparrius
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Susanne A Raadsen
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Maaike van Zon
- Division of Cell Biology-B6, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL)1066 CS, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Division of Cell Biology-B6, Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL)1066 CS, Amsterdam, The Netherlands
| | - Gurdyal S Besra
- School of Biosciences, University of BirminghamEdgbaston, Birmingham, B15 2TT, UK
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
- Department of Molecular Microbiology, VU Universityde Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ben J Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| | - Astrid M van der Sar
- Department of Medical Microbiology and Infection Control, VU University Medical Centervan der Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Divergent effects of mycobacterial cell wall glycolipids on maturation and function of human monocyte-derived dendritic cells. PLoS One 2012; 7:e42515. [PMID: 22880012 PMCID: PMC3411746 DOI: 10.1371/journal.pone.0042515] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/10/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is able to evade the immune defenses and may persist for years, decades and even lifelong in the infected host. Mtb cell wall components may contribute to such persistence by modulating several pivotal types of immune cells. Dendritic cells (DCs) are the most potent antigen-presenting cells and hence play a crucial role in the initial immune response to infections by connecting the innate with the adaptive immune system. PRINCIPAL FINDINGS We investigated the effects of two of the major mycobacterial cell wall-associated types of glycolipids, mannose-capped lipoarabinomannan (ManLAM) and phosphatidylinositol mannosides (PIMs) purified from the Mtb strains H37Rv and Mycobacterium bovis, on the maturation and cytokine profiles of immature human monocyte-derived DCs. ManLAM from Mtb H37Rv stimulated the release of pro-inflammatory cytokines TNF, IL-12, and IL-6 and expression of co-stimulatory (CD80, CD86) and antigen-presenting molecules (MHC class II). ManLAM from M. bovis also induced TNF, IL-12 and IL-6 but at significantly lower levels. Importantly, while ManLAM was found to augment LPS-induced DC maturation and pro-inflammatory cytokine production, addition of PIMs from both Mtb H37Rv and M. bovis strongly reduced this stimulatory effect. CONCLUSIONS These results indicate that the mycobacterial cell wall contains macromolecules of glycolipid nature which are able to induce strong and divergent effects on human DCs; i.e while ManLAM is immune-stimulatory, PIMs act as powerful inhibitors of DC cytokine responses. Thus PIMs may be important Mtb-associated virulence factors contributing to the pathogenesis of tuberculosis disease. These findings may also aid in the understanding of some earlier conflicting reports on the immunomodulatory effects exerted by different ManLAM preparations.
Collapse
|
21
|
Mishra AK, Krumbach K, Rittmann D, Batt SM, Lee OYC, De S, Frunzke J, Besra GS, Eggeling L. Deletion of manC in Corynebacterium glutamicum results in a phospho-myo-inositol mannoside- and lipoglycan-deficient mutant. MICROBIOLOGY-SGM 2012; 158:1908-1917. [PMID: 22539165 DOI: 10.1099/mic.0.057653-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mannose is an important constituent of the immunomodulatory glycoconjugates of the mycobacterial cell wall: lipoarabinomannan (LAM), lipomannan (LM) and the related phospho-myo-inositol mannosides (PIMs). In Mycobacterium tuberculosis and the related bacillus Corynebacterium glutamicum, mannose is either imported from the medium or derived from glycolysis, and is subsequently converted into the nucleotide-based sugar donor guanosine diphosphomannose (GDP-mannose). This can be utilized by the glycosyltranferases of the GT-A/B superfamily or converted to the lipid-based donor polyprenyl monophosphomannose, and used as a substrate by the transmembrane glycosyltransferases of the GT-C superfamily. To investigate GDP-mannose biosynthesis in detail, the gene encoding a putative ManC in C. glutamicum was deleted. Deletion of manC resulted in a slow-growing mutant, with reduced but not totally abrogated guanosine diphosphomannose pyrophosphorylase activity. However, a comprehensive cell wall analysis revealed that C. glutamicumΔmanC is deficient in PIMs and LM/LAM. Closer inspection suggests that promiscuous ManC activity is contributed by additional putative nucleotidyltransferases, PmmB, WbbL1, GalU and GlmU, and a hypothetical protein, NCgl0715. Furthermore, complementation analyses of C. glutamicumΔmanC with Rv3264c suggested that it is a true homologue of ManC in M. tuberculosis, and the essentiality of PIMs in M. tuberculosis makes it an attractive drug target.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Karin Krumbach
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Doris Rittmann
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Sarah M Batt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Oona Y-C Lee
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sandip De
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Julia Frunzke
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Lothar Eggeling
- Biotechnology (IBG-1), Research Centre Juelich GmbH, D-52425 Juelich, Germany
| |
Collapse
|
22
|
Driss V, Hermann E, Legrand F, Loiseau S, Delbeke M, Kremer L, Guerardel Y, Dombrowicz D, Capron M. CR3-dependent negative regulation of human eosinophils by Mycobacterium bovis BCG lipoarabinomannan. Immunol Lett 2012; 143:202-7. [DOI: 10.1016/j.imlet.2012.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 01/21/2023]
|
23
|
Zhang G, Tian Y, Hu K, Zhu Y, Chater KF, Feng C, Liu G, Tan H. Importance and regulation of inositol biosynthesis during growth and differentiation of Streptomyces. Mol Microbiol 2012; 83:1178-94. [PMID: 22329904 DOI: 10.1111/j.1365-2958.2012.08000.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Unusually among bacteria, actinobacteria possess myo-inositol 1-phosphate synthase (mIPS). In the developmentally complex Streptomyces coelicolor, the mIPS-encoding gene (inoA) is cotranscribed with a putative regulatory gene (inoR). The inoRA transcript was more abundant in an inoR in-frame deletion mutant, and InoR formed different complexes in vitro with an extensive region around the inoRA promoter. Binding was relieved by adding glucose 6-phosphate. Thus, InoR is a metabolite-sensitive autorepressor that influences inoA expression, and hence the level of inositol, by controlling transcription from P(inoRA) . Disruption of inoA resulted in inositol-dependent growth and development, with full phenotypic correction at 0.1 mM inositol: at lower inositol concentrations differentiation was arrested at intermediate stages. This pattern may partly reflect increased demand for membrane phospholipids during sporulation septation. A corresponding sharp upregulation of inoRA transcription coincident with sporulation was dependent on a developmental regulator, WhiI. A truncated form of WhiI could bind two sites downstream of P(inoRA) , and one of the WhiI-binding sites overlapped the InoR-binding site. The combined action of a metabolic regulator and a developmental regulator at the simple P(inoRA) promoter is a previously undescribed strategy for the differential provision of developmentally appropriate levels of a substance required during the formation of spore chains.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Hutacharoen P, Ruchirawat S, Boonyarattanakalin S. Biological Activities of Synthetic Oligosaccharides and Glycolipids from Mycobacteria. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.621041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Panatpong Hutacharoen
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Somsak Ruchirawat
- b Program in Chemical Biology, Chulabhorn Graduate Institute and the Center of Excellence on Environmental Health, Toxicology and Management of Chemicals , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
- c Laboratory of Medicinal Chemistry, Chulabhorn Research Institute , Vibhavadee-Rangsit Highway , Lak Si , Bangkok , 10210 , Thailand
| | - Siwarutt Boonyarattanakalin
- a School of Bio-Chemical Engineering and Technology, Sirindhorn International Institute of Technology , Thammasat University , Pathum Thani , 12121 , Thailand
| |
Collapse
|
25
|
Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol Rev 2011; 35:1126-57. [PMID: 21521247 PMCID: PMC3229680 DOI: 10.1111/j.1574-6976.2011.00276.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 03/28/2011] [Accepted: 04/19/2011] [Indexed: 11/26/2022] Open
Abstract
Approximately one third of the world's population is infected with Mycobacterium tuberculosis, the causative agent of tuberculosis. This bacterium has an unusual lipid-rich cell wall containing a vast repertoire of antigens, providing a hydrophobic impermeable barrier against chemical drugs, thus representing an attractive target for vaccine and drug development. Apart from the mycolyl-arabinogalactan-peptidoglycan complex, mycobacteria possess several immunomodulatory constituents, notably lipomannan and lipoarabinomannan. The availability of whole-genome sequences of M. tuberculosis and related bacilli over the past decade has led to the identification and functional characterization of various enzymes and the potential drug targets involved in the biosynthesis of these glycoconjugates. Both lipomannan and lipoarabinomannan possess highly variable chemical structures, which interact with different receptors of the immune system during host-pathogen interactions, such as Toll-like receptors-2 and C-type lectins. Recently, the availability of mutants defective in the synthesis of these glycoconjugates in mycobacteria and the closely related bacterium, Corynebacterium glutamicum, has paved the way for host-pathogen interaction studies, as well as, providing attenuated strains of mycobacteria for the development of new vaccine candidates. This review provides a comprehensive account of the structure, biosynthesis and immunomodulatory properties of these important glycoconjugates.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
26
|
Recent advances in deciphering the contribution of Mycobacterium tuberculosis lipids to pathogenesis. Tuberculosis (Edinb) 2011; 91:187-95. [DOI: 10.1016/j.tube.2011.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 01/04/2011] [Accepted: 01/16/2011] [Indexed: 12/29/2022]
|
27
|
Alderwick LJ, Lloyd GS, Ghadbane H, May JW, Bhatt A, Eggeling L, Fütterer K, Besra GS. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLoS Pathog 2011; 7:e1001299. [PMID: 21383969 PMCID: PMC3044687 DOI: 10.1371/journal.ppat.1001299] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 01/19/2011] [Indexed: 11/19/2022] Open
Abstract
The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT)) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT) contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT), linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.
Collapse
Affiliation(s)
- Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Georgina S. Lloyd
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Hemza Ghadbane
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - John W. May
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Lothar Eggeling
- Institut für Biotechnologie I, Forschungszentrum Jülich, Jülich, Germany
| | - Klaus Fütterer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
28
|
Guerin ME, Korduláková J, Alzari PM, Brennan PJ, Jackson M. Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 2010; 285:33577-83. [PMID: 20801880 PMCID: PMC2962455 DOI: 10.1074/jbc.r110.168328] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs) are unique glycolipids found in abundant quantities in the inner and outer membranes of the cell envelope of all Mycobacterium species. They are based on a phosphatidyl-myo-inositol lipid anchor carrying one to six mannose residues and up to four acyl chains. PIMs are considered not only essential structural components of the cell envelope but also the structural basis of the lipoglycans (lipomannan and lipoarabinomannan), all important molecules implicated in host-pathogen interactions in the course of tuberculosis and leprosy. Although the chemical structure of PIMs is now well established, knowledge of the enzymes and sequential events leading to their biosynthesis and regulation is still incomplete. Recent advances in the identification of key proteins involved in PIM biogenesis and the determination of the three-dimensional structures of the essential phosphatidyl-myo-inositol mannosyltransferase PimA and the lipoprotein LpqW have led to important insights into the molecular basis of this pathway.
Collapse
Affiliation(s)
- Marcelo E. Guerin
- From the Unidad de Biofisica, Centro Mixto Consejo Superior de Investigaciones Cientificas-Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU), Barrio Sarriena s/n, Leioa, Bizkaia 48940, Spain
- the Departamento de Bioquímica, Universidad del País Vasco, 48940 País Vasco, Spain
- IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Jana Korduláková
- the Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Mlynská Dolina, 84215 Bratislava, Slovakia
| | - Pedro M. Alzari
- the Unité de Biochimie Structurale, CNRS URA 2185, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, and
| | - Patrick J. Brennan
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| | - Mary Jackson
- the Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682
| |
Collapse
|
29
|
Skovierová H, Larrouy-Maumus G, Pham H, Belanová M, Barilone N, Dasgupta A, Mikusová K, Gicquel B, Gilleron M, Brennan PJ, Puzo G, Nigou J, Jackson M. Biosynthetic origin of the galactosamine substituent of Arabinogalactan in Mycobacterium tuberculosis. J Biol Chem 2010; 285:41348-55. [PMID: 21030587 DOI: 10.1074/jbc.m110.188110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.
Collapse
Affiliation(s)
- Henrieta Skovierová
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tam PH, Lowary TL. Mycobacterial lipoarabinomannan fragments as haptens for potential anti-tuberculosis vaccines. CARBOHYDRATE CHEMISTRY 2010. [DOI: 10.1039/9781849730891-00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Pui-Hang Tam
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta Gunning-Lemieux Chemistry Centre Edmonton AB, T6G 2G2 Canada
| | - Todd L. Lowary
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta Gunning-Lemieux Chemistry Centre Edmonton AB, T6G 2G2 Canada
| |
Collapse
|
31
|
Birch HL, Alderwick LJ, Appelmelk BJ, Maaskant J, Bhatt A, Singh A, Nigou J, Eggeling L, Geurtsen J, Besra GS. A truncated lipoglycan from mycobacteria with altered immunological properties. Proc Natl Acad Sci U S A 2010; 107:2634-9. [PMID: 20133807 PMCID: PMC2823879 DOI: 10.1073/pnas.0915082107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell-wall integrity in Mycobacterium tuberculosis is essential and is the target of several antitubercular drugs. For example, ethambutol targets arabinogalactan and lipoarabinomannan (LAM) biosynthesis through the inhibition of several arabinofuranosyltransferases. Apart from their role in cell-wall integrity, mycobacterial LAMs also exhibit important immunomodulatory activities. Here we report the isolation and detailed structural characterization of a unique LAM molecule derived from Mycobacterium smegmatis deficient in the arabinofuranosyltransferase AftC (AftC-LAM). This mutant LAM expresses a severely truncated arabinan domain completely devoid of 3,5-Araf-branching residues, revealing an intrinsic involvement of AftC in the biosynthesis of LAM. Furthermore, we found that ethambutol efficiently inhibits biosynthesis of the AftC-LAM arabinan core, unambiguously demonstrating the involvement of the arabinofuranosyltransferase EmbC in early stages of LAM-arabinan biosynthesis. Finally, we demonstrate that AftC-LAM exhibits an enhanced proinflammatory activity, which is due to its ability to activate Toll-like receptor 2 (TLR2). Overall, our efforts further describe the mechanism of action of an important antitubercular drug, ethambutol, and demonstrate a role for specific arabinofuranosyltransferases in LAM biosynthesis. In addition, the availability of sufficient amounts of chemically defined wild-type and isogenic truncated LAMs paves the way for further investigations of the structure-function relationship of TLR2 activation by mycobacterial lipoglycans.
Collapse
Affiliation(s)
- Helen L. Birch
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ben J. Appelmelk
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Janneke Maaskant
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Albel Singh
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Jerome Nigou
- Département Mécanismes Moléculaires des Infections Mycobactériennes, Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5089, 31077 Toulouse cedex 4, France; and
| | - Lothar Eggeling
- Institute for Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany
| | - Jeroen Geurtsen
- Department of Medical Microbiology and Infection Control, VU University Medical Center, 1081 BT Amsterdam, The Netherlands
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Carlson TK, Torrelles JB, Smith K, Horlacher T, Castelli R, Seeberger PH, Crouch EC, Schlesinger LS. Critical role of amino acid position 343 of surfactant protein-D in the selective binding of glycolipids from Mycobacterium tuberculosis. Glycobiology 2009; 19:1473-84. [PMID: 19684355 DOI: 10.1093/glycob/cwp122] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Surfactant protein D (SP-D), a lectin that recognizes carbohydrates via its C-type carbohydrate recognition domains (CRDs), regulates Mycobacterium tuberculosis (M.tb)-macrophage interactions via recognition of M.tb mannosylated cell wall components. SP-D binds to, agglutinates, and reduces phagocytosis and intracellular growth of M.tb. Species-specific variations in the CRD amino acid sequence contribute to carbohydrate recognition preferences and have been exploited to enhance the antimicrobial properties of SP-D in vitro. Here, we characterized the binding interaction between several wild-type and mutant SP-D neck + CRD trimeric subunits (NCRDs) and pathogenic and nonpathogenic mycobacterial species. Specific amino acid substitutions (i.e., the 343-amino-acid position) that flank the carbohydrate binding groove led to significant increases in binding of only virulent and attenuated M.tb strains and to a lesser extent M. marinum, whereas there was negligible binding to M. avium complex and M. smegmatis. Moreover, a nonconserved mutation at the critical 321-amino-acid position (involved in Ca(2+) coordination) abrogated binding to M.tb and M. marinum. We further characterized the binding of NCRDs to the predominant surface-exposed mannosylated lipoglycans of the M.tb cell envelope. Results showed a binding pattern that is dependent on the nature of the side chain of the 343-amino-acid position flanking the SP-D CRD binding groove and the nature of the terminal mannosyl sugar linkages of the mycobacterial lipoglycans. We conclude that the 343 position is critical in defining the binding pattern of SP-D proteins to M.tb and its mannosylated cell envelope components.
Collapse
Affiliation(s)
- Tracy K Carlson
- Division of Infectious Diseases, Department of Internal Medicine, Center for Microbial Interface Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Shi L, Torrelles JB, Chatterjee D. Lipoglycans of Mycobacterium tuberculosis: isolation, purification, and characterization. Methods Mol Biol 2009; 465:23-45. [PMID: 20560059 DOI: 10.1007/978-1-59745-207-6_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this chapter, we describe in detail the steps involved in isolation and characterization of lipoglycans from Mycobacterium tuberculosis and Mycobacterium smegmatis. In addition, procedures involved in structural analysis such as immunoblotting with mAb CS-35 or CS-40, gas chromatography, gas chromatography/mass spectrometry, nuclear magnetic resonance spectroscopy, and endoarabinanase digestion followed by high-pH anion exchange chromatography and two-dimensional gel electrophoresis are presented.
Collapse
Affiliation(s)
- Libin Shi
- Department of Microbiology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | |
Collapse
|
34
|
Lipoarabinomannan of Mycobacterium: mannose capping by a multifunctional terminal mannosyltransferase. Proc Natl Acad Sci U S A 2008; 105:17973-7. [PMID: 19004785 DOI: 10.1073/pnas.0807761105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biosynthesis of phosphatidylinositol (PI)-containing lipoarabinomannan (LAM) and lipomannan (LM) of Mycobacterium spp. follows a conserved pathway involving multiple membrane-associated, substrate-specific mannosyltransferases (ManTs) responsible for the sequential addition of alpha-mannopyranosyl (Manp) units donated by decaprenyl-P-Manp on the periplasmic side of the plasma membrane. Because of their receptor-binding and immunomodulatory properties, the alpha(1-->2)-linked di- and tri-Manp motifs that functionalize the nonreducing arabinan termini of LAM (ManLAM) in Mycobacterium tuberculosis are of crucial importance. We now show that the M. tuberculosis ManT, Rv2181, is required for the addition of these alpha(1-->2)-linked Manp residues but also at other locations of the LAM molecule. Structural analyses of the LM and LAM variants produced by a M. tuberculosis Rv2181 knockout mutant revealed the presence of but a single Manp residue on the nonreducing arabinan termini of LAM and also a complete absence of alpha(1-->2)-linked Man branching on the mannan backbones of LM and LAM. A recombinant strain was constructed in ManLAM-deficient Mycobacterium smegmatis that coexpressed Rv2181 and Rv1635c-the ManT responsible for the addition of the first Manp capping residue of ManLAM. Analysis revealed LAM termini fully capped with di- and tri-Manp motifs in addition to alpha(1-->2)Man branching on the mannan backbones of LM and LAM, confirming the involvement of the alpha(1-->2)ManT Rv2181 in the dual role of Man capping and mannan-core branching, and in the process generated a rapidly growing, ManLAM-containing strain, a tool for the study of the role of ManLAM in the pathogenesis of tuberculosis.
Collapse
|
35
|
Pitarque S, Larrouy-Maumus G, Payré B, Jackson M, Puzo G, Nigou J. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb) 2008; 88:560-5. [PMID: 18539533 PMCID: PMC2613510 DOI: 10.1016/j.tube.2008.04.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/11/2008] [Accepted: 04/12/2008] [Indexed: 01/29/2023]
Abstract
By labeling surface carbohydrates, we found that a pool of lipoglycans, cell wall associated, is exposed at the cell surface of mycobacteria and thus, most probably, inserted in the outer leaflet of the outer membrane. In contrast, plasma membrane anchored lipoglycans are not accessible to surface labeling. This result supports the role of lipoglycans as key immunomodulatory molecules but raises the question of their transport from the plasma membrane, where they are synthesized, to the outermost layers of the envelope, where they can act as modulins. The data are discussed in terms of consequences for cell envelope organization.
Collapse
Affiliation(s)
- Sylvain Pitarque
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Gérald Larrouy-Maumus
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Bruno Payré
- Université Paul Sabatier, Centre de Microscopie Electronique Appliquée à la Biologie, 133 route de Narbonne, 31062 Toulouse Cedex 4, France
| | - Mary Jackson
- Unité de Génétique Mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, CNRS UMR 5089, Département Mécanismes Moléculaires des Infections Mycobactériennes, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
36
|
Mishra AK, Klein C, Gurcha SS, Alderwick LJ, Babu P, Hitchen PG, Morris HR, Dell A, Besra GS, Eggeling L. Structural characterization and functional properties of a novel lipomannan variant isolated from a Corynebacterium glutamicum pimB' mutant. Antonie Van Leeuwenhoek 2008; 94:277-87. [PMID: 18421567 PMCID: PMC2480597 DOI: 10.1007/s10482-008-9243-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/04/2008] [Indexed: 11/28/2022]
Abstract
The genus Corynebacterium is part of the phylogenetic group nocardioform actinomycetes, which also includes the genus Mycobacterium. Members of this phylogenetic group have a characteristic cell envelope structure, which is dominated by complex lipids and amongst these, lipoglycans are of particular interest. The disruption of NCgl2106 in C. glutamicum resulted in a mutant devoid of monoacylated phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) resulting in the accumulation of Ac(1)PIM(1) and cessation of phosphatidyl-myo-inositol (PI) based lipomannan (Cg-LM, now also termed 'Cg-LM-A') and lipoarabinomannan (Cg-LAM) biosynthesis. Interestingly, SDS-analysis of the lipoglycan fraction from the mutant revealed the synthesis of a single novel lipoglycan, now termed 'Cg-LM-B'. Further chemical analyses established the lipoglycan possessed an alpha-D: -glucopyranosyluronic acid-(1 --> 3)-glycerol (GlcAGroAc(2)) based anchor which was then further glycosylated by 8-22 mannose residues, with Man(12-20)GlcAGroAC(2) molecular species being the most abundant, to form a novel lipomannan structure (Cg-LM-B). The deletion of NCgl2106 in C. glutamicum has now provided a useful strain, in addition with a deletion mutant of NCgl0452 in C. glutamicum for the purification of Cg-LM-A and Cg-LM-B. Interestingly, both Cg-LM species induced a similar production of TNF-alpha by a human macrophage cell line suggesting that the phospho-myo-inositol residue of the PI-anchor does not play a key role in lipoglycan pro-inflammatory activity.
Collapse
Affiliation(s)
- Arun K. Mishra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Christina Klein
- Institute for Biotechnology 1, Research Centre Juelich, 52425 Juelich, Germany
| | - Sudagar S. Gurcha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Luke J. Alderwick
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Ponnusamy Babu
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, SW7 2AZ UK
| | - Paul G. Hitchen
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, SW7 2AZ UK
| | - Howard R. Morris
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London, SW7 2AZ UK
- M-Scan Ltd., Wokingham, Berks, RG41 2TZ UK
| | - Anne Dell
- M-Scan Ltd., Wokingham, Berks, RG41 2TZ UK
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| | - Lothar Eggeling
- Institute for Biotechnology 1, Research Centre Juelich, 52425 Juelich, Germany
| |
Collapse
|
37
|
Mishra AK, Alderwick LJ, Rittmann D, Wang C, Bhatt A, Jacobs WR, Takayama K, Eggeling L, Besra GS. Identification of a novel alpha(1-->6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. Mol Microbiol 2008; 68:1595-613. [PMID: 18452585 PMCID: PMC2440535 DOI: 10.1111/j.1365-2958.2008.06265.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2008] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis and Corynebacterium glutamicum share a similar cell wall structure and orthologous enzymes involved in cell wall assembly. Herein, we have studied C. glutamicum NCgl1505, the orthologue of putative glycosyltransferases Rv1459c from M. tuberculosis and MSMEG3120 from Mycobacterium smegmatis. Deletion of NCgl1505 resulted in the absence of lipomannan (Cg-LM-A), lipoarabinomannan (Cg-LAM) and a multi-mannosylated polymer (Cg-LM-B) based on a 1,2-di-O-C(16)/C(18:1)-(alpha-D-glucopyranosyluronic acid)-(1-->3)-glycerol (GlcAGroAc(2)) anchor, while syntheses of triacylated-phosphatidyl-myo-inositol dimannoside (Ac(1)PIM(2)) and Man(1)GlcAGroAc(2) were still abundant in whole cells. Cell-free incubation of C. glutamicum membranes with GDP-[(14)C]Man established that C. glutamicum synthesized a novel alpha(1-->6)-linked linear form of Cg-LM-A and Cg-LM-B from Ac(1)PIM(2) and Man(1)GlcAGroAc(2) respectively. Furthermore, deletion of NCgl1505 also led to the absence of in vitro synthesized linear Cg-LM-A and Cg-LM-B, demonstrating that NCgl1505 was involved in core alpha(1-->6) mannan biosynthesis of Cg-LM-A and Cg-LM-B, extending Ac(1)PI[(14)C]M(2) and [(14)C]Man(1)GlcAGroAc(2) primers respectively. Use of the acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C(8) in an in vitro cell-free assay confirmed NCgl1505 as an alpha(1-->6) mannopyranosyltransferase, now termed MptB. While Rv1459c and MSMEG3120 demonstrated similar in vitroalpha(1-->6) mannopyranosyltransferase activity, deletion of the Rv1459c homologue in M. smegmatis did not result in loss of mycobacterial LM/LAM, indicating a functional redundancy for this enzyme in mycobacteria.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - Luke J Alderwick
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - Doris Rittmann
- Institute for Biotechnology 1, Research Centre JuelichD-52425 Juelich, Germany
| | - Cindy Wang
- Mycobacteriology Research Laboratory, William S. Middleton Memorial Veterans HospitalMadison, WI 53705, USA
| | - Apoorva Bhatt
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| | - William R Jacobs
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Albert Einstein College of MedicineBronx, NY 10461, USA
| | - Kuni Takayama
- Mycobacteriology Research Laboratory, William S. Middleton Memorial Veterans HospitalMadison, WI 53705, USA
| | - Lothar Eggeling
- Institute for Biotechnology 1, Research Centre JuelichD-52425 Juelich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK
| |
Collapse
|
38
|
Simonney N, Dewulf G, Herrmann JL, Gutierrez MC, Vicaut E, Boutron C, Leportier M, Lafaurie M, Abgrall S, Sereni D, Autran B, Carcelain G, Bourgarit A, Lagrange PH. Anti-PGL-Tb1 responses as an indicator of the immune restoration syndrome in HIV-TB patients. Tuberculosis (Edinb) 2008; 88:453-61. [PMID: 18495539 DOI: 10.1016/j.tube.2008.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2007] [Revised: 01/08/2008] [Accepted: 01/12/2008] [Indexed: 10/22/2022]
Abstract
A prospective and multi-centre study has allowed us to analyse antibody responses and Mycobacterium tuberculosis clinical isolate genotypes on 24 consecutive HIV-TB co-infected patients treated with Highly Active Antiretroviral Therapy (HAART) who either went on to develop a TB Immune Restoration Syndrome (TB-IRS), or not. Circulating free and immune-complexed antibodies against ManLAM, ESAT-6/CFP10 and PGL-Tb1 in HIV-TB co-infected patients were measured by ELISA at the initiation of anti-TB treatment, at the date of HAART initiation and thereafter. Presence of circulating B cells was also monitored by in vitro antibody production (IVAP) against ESAT-6/CFP10 and PGL-Tb1. Finally, 16 out of 24M. tuberculosis clinical isolates from patients with TB-IRS were genotyped using spoligotyping and MIRUs-VNTR typing. Eleven patients (45.8%) experienced TB-IRS (TB-IRS+). Significantly, lower anti-PGL-Tb1 antibody levels were identified in TB-IRS+ compared to TB-IRS-negative patients prior to TB-IRS development. These very low levels were neither related to CD4 counts nor with complexed antibodies. No difference in antibody levels was observed with the other tested antigens. In addition, no specific strain genotype was associated with TB-IRS. The presence of specific anti-PGL-Tb1 antibodies only in TB-IRS-negative patients represents for the first time an indicator of a potential protective response or a diagnostic biomarker for the detection of non-progression to TB-IRS in HIV-TB co-infected patients starting HAART.
Collapse
Affiliation(s)
- N Simonney
- EA3510, UFR Denis Diderot, Université Paris VII et Service de Microbiologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, CIB HOG, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ito T, Hasegawa A, Hosokawa H, Yamashita M, Motohashi S, Naka T, Okamoto Y, Fujita Y, Ishii Y, Taniguchi M, Yano I, Nakayama T. Human Th1 differentiation induced by lipoarabinomannan/lipomannan from Mycobacterium bovis BCG Tokyo-172. Int Immunol 2008; 20:849-60. [PMID: 18469327 DOI: 10.1093/intimm/dxn043] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mycobacterium tuberculosis (tubercle bacilli) and the related acid-fast bacteria including Mycobacterium bovis Bacille Calmett-Guerin (BCG) have a characteristic cell wall (CW) containing various lipoglycans and glycolipids. Such lipoglycans have been reported to activate type-I inflammatory responses via dendritic cells (DCs) through Toll-like receptor 2. In this study, lipoglycans, lipoarabinomannan (LAM), lipomannan (LM) and phosphatidylinositol mannoside (PIM), were purified from the CW fractions of M. bovis BCG Tokyo-172, and the effect on the differentiation of human peripheral blood naive CD4 T cells into T(h)1 and T(h)2 was examined. LAM/LM molecules enhanced T(h)1 differentiation under both T(h)1 and T(h)2 conditions, whereas some other glycolipids and phospholipid enhanced T(h)2 differentiation under T(h)2 conditions. Other components had little effect under the given conditions. Even in highly purified CD4 T cell cultures, LAM/LM enhanced T(h)1 generation only under T(h)1 culture conditions. These results indicate that LAM/LM possesses a potent augmenting activity in T(h)1 differentiation in human CD4 T cells. LAM/LM appeared to act directly on naive CD4 T cells to enhance T(h)1 differentiation under T(h)1 culture conditions, while acting indirectly to up-regulate the generation of T(h)1 cells via IL-12/DCs under T(h)1 and T(h)2 conditions. Therefore, these results provide the first evidence indicating that LAM/LM from M. bovis BCG may possess a potent modulating activity in the human system, and thus supporting the strategy for the use of BCG components in the vaccine development for such T(h)2 diseases as allergic asthma and rhinitis.
Collapse
Affiliation(s)
- Toshihiro Ito
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tam PH, Besra GS, Lowary TL. Exploring the substrate specificity of a mycobacterial polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase. Chembiochem 2008; 9:267-78. [PMID: 18161725 DOI: 10.1002/cbic.200700391] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Indexed: 11/07/2022]
Abstract
A series of synthetic alpha-(1-->6)-linked octyl mannopyranoside oligomers was evaluated as potential acceptors of a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase that is involved in the biosynthesis of the mannan core of mycobacterial lipoarabinomannan. Initial evaluation demonstrated that the enzyme recognizes di-, tri- and tetramannosides (5, 6 and 7) as substrates with different activities. While the highest mannosyltransferase activities were observed when the di- and trisaccharide were used as substrates, diminished enzymatic activity was seen with the tetramannoside. As octyl alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside (5) appears to be the minimum structural element required for mannosyltransferase catalysis, a panel of methoxy and deoxy disaccharide analogues (8-21) were used to probe the substrate specificity of the enzyme further. In terms of the steric requirements at the active site, the enzyme does not recognize either C2'- and C2-methoxy analogues as substrates, a result that suggests that the alpha-(1-->2)-mannopyranosyl branches, which are present in the mannan core of LAM must be added on a larger alpha-(1-->6)-oligomannan intermediate. In contrast, the presence of a methoxy functionality at the C3', C3, C4' and C4 positions are somewhat tolerated by the enzyme, although diminished enzyme activities were observed with the C4'- and C4-methoxy analogues. Moreover, the 2'- and 4-hydroxyl groups appear not to be critical for substrate binding at the active site, as both 2'- and 4-deoxy analogues are substrates for the enzyme. In contrast, replacement of the hydroxyl groups at other positions essentially abolished enzymatic activity. Further kinetic characterization of the enzyme by using the effective acceptor substrates gave apparent K(M) values ranging from 111 to 437 microM, which are within two-fold higher or lower than that for the parent dimannoside (5). Although the K(M) values indicate that the enzyme binds those acceptors with comparable affinities, the C4'-methoxy analogue (12) turns over more slowly than the others, as indicated by the apparent V(max) values.
Collapse
Affiliation(s)
- Pui-Hang Tam
- Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
41
|
Mishra AK, Alderwick LJ, Rittmann D, Tatituri RVV, Nigou J, Gilleron M, Eggeling L, Besra GS. Identification of an alpha(1-->6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol Microbiol 2007; 65:1503-17. [PMID: 17714444 PMCID: PMC2157549 DOI: 10.1111/j.1365-2958.2007.05884.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum and Mycobacterium tuberculosis share a similar cell wall architecture, and the availability of their genome sequences has enabled the utilization of C. glutamicum as a model for the identification and study of, otherwise essential, mycobacterial genes involved in lipomannan (LM) and lipoarabinomannan (LAM) biosynthesis. We selected the putative glycosyltransferase-Rv2174 from M. tuberculosis and deleted its orthologue NCgl2093 from C. glutamicum. This resulted in the formation of a novel truncated lipomannan (Cg-t-LM) and a complete ablation of LM/LAM biosynthesis. Purification and characterization of Cg-t-LM revealed an overall decrease in molecular mass, a reduction of alpha(1-->6) and alpha(1-->2) glycosidic linkages illustrating a reduced degree of branching compared with wild-type LM. The deletion mutant's biochemical phenotype was fully complemented by either NCgl2093 or Rv2174. Furthermore, the use of a synthetic neoglycolipid acceptor in an in vitro cell-free assay utilizing the sugar donor beta-D-mannopyranosyl-1-monophosphoryl-decaprenol together with the neoglycolipid acceptor alpha-D-Manp-(1-->6)-alpha-D-Manp-O-C8 as a substrate, confirmed NCgl2093 and Rv2174 as an alpha(1-->6) mannopyranosyltransferase (MptA), involved in the latter stages of the biosynthesis of the alpha(1-->6) mannan core of LM. Altogether, these studies have identified a new mannosyltransferase, MptA, and they shed further light on the biosynthesis of LM/LAM in Corynebacterianeae.
Collapse
Affiliation(s)
- Arun K Mishra
- School of Biosciences, University of BirminghamEdgbaston, Birmingham B15 2TT, UK
| | - Luke J Alderwick
- School of Biosciences, University of BirminghamEdgbaston, Birmingham B15 2TT, UK
| | - Doris Rittmann
- Institute for Biotechnology 1, Research Centre JuelichD-52425 Juelich, Germany
| | - Raju V V Tatituri
- School of Biosciences, University of BirminghamEdgbaston, Birmingham B15 2TT, UK
| | - Jerome Nigou
- Institute de Parmacologie et de Biologie StructuraleUMR CNRS 5089, Toulouse, France
| | - Martine Gilleron
- Institute de Parmacologie et de Biologie StructuraleUMR CNRS 5089, Toulouse, France
| | - Lothar Eggeling
- Institute for Biotechnology 1, Research Centre JuelichD-52425 Juelich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of BirminghamEdgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
42
|
Doz E, Rose S, Nigou J, Gilleron M, Puzo G, Erard F, Ryffel B, Quesniaux VFJ. Acylation determines the toll-like receptor (TLR)-dependent positive versus TLR2-, mannose receptor-, and SIGNR1-independent negative regulation of pro-inflammatory cytokines by mycobacterial lipomannan. J Biol Chem 2007; 282:26014-25. [PMID: 17617634 DOI: 10.1074/jbc.m702690200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis lipomannans (LMs) modulate the host innate immune response. The total fraction of Mycobacterium bovis BCG LM was shown both to induce macrophage activation and pro-inflammatory cytokines through Toll-like receptor 2 (TLR2) and to inhibit pro-inflammatory cytokine production by lipopolysaccharide (LPS)-activated macrophages through a TLR2-independent pathway. The pro-inflammatory activity was attributed to tri- and tetra-acylated forms of BCG LM but not the mono- and di-acylated ones. Here, we further characterize the negative activities of M. bovis BCG LM on primary murine macrophage activation. We show that di-acylated LMs exhibit a potent inhibitory effect on cytokine and NO secretion by LPS-activated macrophages. The inhibitory activity of mycobacterial mannose-capped lipoarabino-mannans on human phagocytes was previously attributed to their binding to the C-type lectins mannose receptor or specific intracellular adhesion molecule-3 grabbing nonintegrin (DC-SIGN). However, we found that di-acylated LM inhibition of LPS-induced tumor necrosis factor secretion by murine macrophages was independent of TLR2, mannose receptor, or the murine ortholog SIGNR1. We further determined that tri-acyl-LM, an agonist of TLR2/TLR1, promoted interleukin-12 p40 and NO secretion through the adaptor proteins MyD88 and TIRAP, whereas the fraction containing tetra-acylated LM activated macrophages in a MyD88-dependent fashion, mostly through TLR4. TLR4-dependent pro-inflammatory activity was also seen with M. tuberculosis LM, composed mostly of tri-acylated LM, suggesting that acylation degree per se might not be sufficient to determine TLR2 versus TLR4 usage. Therefore, LM acylation pattern determines the anti-inflammatory versus pro-inflammatory effects of LM through different pattern recognition receptors or signaling pathways and may represent an additional mean of regulating the host innate immunity by mycobacteria.
Collapse
Affiliation(s)
- Emilie Doz
- Orleans University and CNRS, Molecular Immunology and Embryology, UMR6218, 45071 Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wittkowski M, Mittelstädt J, Brandau S, Reiling N, Lindner B, Torrelles J, Brennan PJ, Holst O. Capsular Arabinomannans from Mycobacterium avium with Morphotype-specific Structural Differences but Identical Biological Activity. J Biol Chem 2007; 282:19103-12. [PMID: 17459879 DOI: 10.1074/jbc.m611551200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The capsules of two colony morphotypes of Mycobacterium avium strain 2151 were investigated, i.e. the virulent smooth-transparent (SmT1) and the nonvirulent smooth-opaque (SmO) types. From both morphotypes we separated a nonacylated arabinomannan (AM) from an acylated polysaccharide fraction by affinity chromatography, of which the AMs were structurally characterized. The AMs from the virulent morphotype, in contrast to that from the nonvirulent form, possessed a larger mannan chain and a shorter arabinan chain. Incubation of murine bone marrow-derived macrophages and human dendritic cells showed that the acylated polysaccharide fractions were potent inducers of tumor necrosis factor-alpha, interleukin-12, and interleukin-10 compared with nonacylated AMs, which led to only a marginal cytokine release. Further in vitro experiments showed that both the acylated polysaccharide fractions and the nonacylated AMs were able to induce in vitro anti-tumor cytotoxicity of human peripheral blood mononuclear cells. Thus, morphotype-specific structural differences in the capsular AMs of M. avium do not correlate with biological activity; however, their acylation is a prerequisite for effective stimulation of murine macrophages and human dendritic cells.
Collapse
Affiliation(s)
- Manon Wittkowski
- Structural Biochemistry, Leibniz-Center for Medicine and Biosciences, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Dulphy N, Herrmann JL, Nigou J, Réa D, Boissel N, Puzo G, Charron D, Lagrange PH, Toubert A. Intermediate maturation of Mycobacterium tuberculosis LAM-activated human dendritic cells. Cell Microbiol 2007; 9:1412-25. [PMID: 17253979 DOI: 10.1111/j.1462-5822.2006.00881.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Contrasting observations raise the question of the role of mycobacterial derived products as compared with the whole bacterium Mycobacterium tuberculosis on maturation and function of human dendritic cells (DCs). DC-SIGN has been identified as the key DC receptor for M. tuberculosis through its interaction with the mannosylated lipoarabinomannan (ManLAM). Although ManLAM is a major mycobacterial component released from infected antigen-presenting cells, there is no formal evidence yet for an effect of ManLAM per se on DC maturation and function. DCs activated with purified ManLAM displayed an intermediate maturation phenotype as compared with lipopolysaccharide fully matured DCs with reduced expression of MHC class I and class II molecules, CD83 and CD86 and of the chemokine receptor CCR7. They were sensitive to autologous natural killer (NK) lysis, thus behaving like immature DCs. However, ManLAM-activated DCs lost phagocytic activity and triggered priming of naive T-cells, confirming their intermediate maturation. Partial maturation of ManLAM-activated DCs was overcome by triggering the CD40/CD40L pathway as a second signal, which completed maturation phenotypically and abolished autologous NK lysis susceptibility. Altogether, these data provide evidence that ManLAM may induce a partial maturation phenotype on non-infected bystander DCs during infection suggesting that ManLAM released from infected cells might impair adaptive immune response towards M. tuberculosis.
Collapse
Affiliation(s)
- Nicolas Dulphy
- INSERM, U662, Institut Universitaire d'Hématologie, Université Paris VII, and Laboratoire d'Immunologie et d'Histocompatibilité, Centre d'Investigation Biomédicales, AP-HP, Hôpital Sait-Louis, Paris, F-75010, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Tam PH, Lowary TL. Synthesis of deoxy and methoxy analogs of octyl alpha-D-mannopyranosyl-(1-->6)-alpha-D-mannopyranoside as probes for mycobacterial lipoarabinomannan biosynthesis. Carbohydr Res 2007; 342:1741-72. [PMID: 17553471 DOI: 10.1016/j.carres.2007.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 04/26/2007] [Accepted: 05/01/2007] [Indexed: 11/16/2022]
Abstract
A panel of analogs of the disaccharide alpha-D-Manp-(1-->6)-alpha-D-Manp-OOctyl, a known acceptor substrate for a polyprenol monophosphomannose-dependent alpha-(1-->6)-mannosyltransferase involved in the assembly of the alpha-(1-->6)-linked mannan core of mycobacterial lipoarabinomannan, has been synthesized. Described are synthetic routes to the target deoxy and methoxy analogs in which one of the hydroxyl groups of the parent disaccharide has been modified. All glycosylation reactions involved the use of octyl glycoside acceptors and thioglycoside donors using iodonium-ion activation, and the stereochemistry of the mannopyranoside bond formed was established by measurement of the 1J(C-1,H-1). Depending on the target, the key methylation or deoxygenation reactions were carried out on either mono- or disaccharide substrates. This series of analogs will be useful for probing the substrate specificity of the enzyme, in particular, its steric and hydrogen-bonding requirements.
Collapse
Affiliation(s)
- Pui-Hang Tam
- Alberta Ingenuity Centre for Carbohydrate Science and Department of Chemistry, The University of Alberta, Gunning-Lemieux Chemistry Centre, Edmonton, AB, Canada T6G 2G2
| | | |
Collapse
|
46
|
Maes E, Coddeville B, Kremer L, Guérardel Y. Polysaccharide structural variability in mycobacteria: identification and characterization of phosphorylated mannan and arabinomannan. Glycoconj J 2007; 24:439-48. [PMID: 17510794 DOI: 10.1007/s10719-007-9036-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/16/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Arabinomannan (AMannan) and mannan (Mannan) are major polysaccharides antigens of the mycobacterial capsule. They are highly related to the lipoarabinomannan (LAM) and lipomannan (LM) lipoglycans of the cell wall, known to participate to the immunopathogenesis of mycobacterial infections. Here we present the identification of two related polysaccharides from Mycobacterium kansasii that co-purified with AMannan and Mannan. Structural analysis using GC, MALDI-MS and NMR clearly established these molecules as non-acylated phosphorylated AMannan and Mannan designated P-AMannan and P-Mannan, respectively. These glycoconjugates represent a new source of polysaccharide structural variability in mycobacteria and constitute unique tools for structure-activity relationship studies in order to investigate the role of fatty acids in the biological functions of LAM and LM. The potential participation of these polysaccharides in influencing the outcome of the infection is also discussed.
Collapse
Affiliation(s)
- Emmanuel Maes
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
| | | | | | | |
Collapse
|
47
|
Elass E, Coddeville B, Guérardel Y, Kremer L, Maes E, Mazurier J, Legrand D. Identification by surface plasmon resonance of the mycobacterial lipomannan and lipoarabinomannan domains involved in binding to CD14 and LPS-binding protein. FEBS Lett 2007; 581:1383-90. [PMID: 17350002 DOI: 10.1016/j.febslet.2007.02.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 02/14/2007] [Accepted: 02/19/2007] [Indexed: 11/28/2022]
Abstract
The mycobacterial lipoglycans, lipomannan (LM) and lipoarabinomannan (LAM), regulate host defence mechanisms through their interaction with pattern recognition receptors such as Toll-like receptors (TLRs). We have developed a surface plasmon resonance assay to analyse the molecular basis for the recognition of Mycobacterium kansasii LM or LAM, by immobilized CD14 and LPS-binding protein (LBP) both being capable to promote presentation of bacterial glycolipids to TLRs. The affinity of either LM/LAM was higher to CD14 than to LBP. Kinetic and Scatchard analyses were consistent with a model involving a single class of binding sites. These interactions required the lipidic anchor, but not the carbohydrate domains, of LM or LAM. We also provide evidence that addition of recombinant LBP enhanced the stimulatory effect of LM or LAM on matrix metalloproteinase-9 expression and secretion in macrophages, through a TLR1/TLR2-dependent mechanism.
Collapse
Affiliation(s)
- Elisabeth Elass
- Unité Mixte de Recherche n 8576 du Centre National de la Recherche Scientifique, Institut Fédératif de Recherche 147, Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
48
|
Tatituri RVV, Illarionov PA, Dover LG, Nigou J, Gilleron M, Hitchen P, Krumbach K, Morris HR, Spencer N, Dell A, Eggeling L, Besra GS. Inactivation of Corynebacterium glutamicum NCgl0452 and the role of MgtA in the biosynthesis of a novel mannosylated glycolipid involved in lipomannan biosynthesis. J Biol Chem 2007; 282:4561-4572. [PMID: 17179146 DOI: 10.1074/jbc.m608695200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis PimB has been demonstrated to catalyze the addition of a mannose residue from GDP-mannose to a monoacylated phosphatidyl-myo-inositol mannoside (Ac(1)PIM(1)) to generate Ac(1)PIM(2). Herein, we describe the disruption of its probable orthologue Cg-pimB and the chemical analysis of glycolipids and lipoglycans isolated from wild type Corynebacterium glutamicum and the C. glutamicum::pimB mutant. Following a careful analysis, two related glycolipids, Gl-A and Gl-X, were found in the parent strain, but Gl-X was absent from the mutant. The biosynthesis of Gl-X was restored in the mutant by complementation with either Cg-pimB or Mt-pimB. Subsequent chemical analyses established Gl-X as 1,2-di-O-C(16)/C(18:1)-(alpha-d-mannopyranosyl)-(1-->4)-(alpha-d-glucopyranosyluronic acid)-(1-->3)-glycerol (ManGlcAGroAc(2)) and Gl-A as the precursor, GlcAGroAc(2). In addition, C. glutamicum::pimB was still able to produce Ac(1)PIM(2), suggesting that Cg-PimB catalyzes the synthesis of ManGlcAGroAc(2) from GlcAGroAc(2). Isolation of lipoglycans from C. glutamicum led to the identification of two related lipoglycans. The larger lipoglycan possessed a lipoarabinomannan-like structure, whereas the smaller lipoglycan was similar to lipomannan (LM). The absence of ManGlcA-GroAc(2) in C. glutamicum::pimB led to a severe reduction in LM. These results suggested that ManGlcAGroAc(2) was further extended to an LM-like molecule. Complementation of C. glutamicum::pimB with Cg-pimB and Mt-pimB led to the restoration of LM biosynthesis. As a result, Cg-PimB, which we have assigned as MgtA, is now clearly defined as a GDP-mannose-dependent alpha-mannosyltransferase from our in vitro analyses and is involved in the biosynthesis of ManGlcAGroAc(2).
Collapse
Affiliation(s)
- Raju V V Tatituri
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Petr A Illarionov
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Lynn G Dover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jerome Nigou
- Institut de Pharmacologie et de Biologie Structurale, UMR CNRS 5089, Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, UMR CNRS 5089, Toulouse, France
| | - Paul Hitchen
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, United Kingdom
| | - Karin Krumbach
- Institute for Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany
| | - Howard R Morris
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, United Kingdom; M-SCAN Mass Spectrometry Research and Training Centre, Wokingham, Berks RG41 2TZ, United Kingdom, and the
| | - Neil Spencer
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Anne Dell
- Institute for Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany
| | - Lothar Eggeling
- Institute for Biotechnology 1, Research Centre Juelich, D-52425 Juelich, Germany
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
49
|
Ragas A, Roussel L, Puzo G, Rivière M. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A. J Biol Chem 2006; 282:5133-42. [PMID: 17158455 DOI: 10.1074/jbc.m610183200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tuberculosis is still a major health problem, and understanding the mechanism by which Mycobacterium tuberculosis (Mtb) invades and colonizes its host target cells remains an important issue for the control of infection. The innate immune system C-type lectins (C-TLs), including the human pulmonary surfactant protein A (PSP-A), have been recently identified as determinant players in the early recognition of the invading pathogen and in mounting the host defense response. Although the antigenic lipoglycan mannosylated lipoarabinomannan is currently considered to be the major C-TL target on the mycobacterial surface, the recognition by some C-TLs of the only mycobacterial species composing the "Mtb complex" indicates that mannosylated lipoarabinomannan cannot account alone for this specificity. Thus, we searched for the mycobacterial molecules targeted by human PSP-A, focusing our attention on the Mtb surface glycoproteins. We developed an original functional proteomic approach based on a lectin blot assay using crude human bronchoalveolar lavage fluid as a source of physiological PSP-A. Combined with selective cell-surface protein extraction and mass spectrometry peptide mapping, this strategy allowed us to identify the Apa (alanine- and proline-rich antigenic) glycoprotein as new potential target for PSP-A. This result was supported by direct binding of PSP-A to purified Apa. Moreover, EDTA addition or deglycosylation of purified Apa samples completely abolished the interaction, demonstrating that the interaction is calcium- and mannose-dependent, as expected. Finally, we provide convincing evidence that Apa, formerly considered as mainly secreted, is associated with the cell wall for a sufficiently long time to aid in the attachment of PSP-A. Because, to date, Apa seems to be restricted to the Mtb complex strains, we propose that it may account for the selective recognition of those strains by PSP-A and other immune system C-TLs containing homologous functional domains.
Collapse
Affiliation(s)
- Aude Ragas
- Institut de Pharmacologie et de Biologie Structurale, CNRS, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| | | | | | | |
Collapse
|
50
|
Abstract
Dendritic cells (DC) are the most professional APC, which induce and coordinate immune responses. The principal task of DC is T cell activation, although DC also interact with and regulate other cell types. The present review serves to illustrate the increasing evidence that lipids play an important role in DC biology. In addition to being fuel stores and structural components of cellular membranes such as in other cell types, lipids act as second messengers and as effectors throughout all steps of DC differentiation and regulate important DC functions. The recent finding that DC synthesize lipid antigens in response to bacterial stimulation and induce antibacterial, CD1-restricted T cells through antigenic mimicry further emphasizes the important role of lipids and DC at the blurring boundaries of innate and adaptive immunity.
Collapse
Affiliation(s)
- Martin Thurnher
- Department of Urology, Innsbruck Medical University, and Kompetenzzentrum Medizin Tirol, Austria.
| |
Collapse
|