1
|
Shi Z, Han S. Personalized statin therapy: Targeting metabolic processes to modulate the therapeutic and adverse effects of statins. Heliyon 2025; 11:e41629. [PMID: 39866414 PMCID: PMC11761934 DOI: 10.1016/j.heliyon.2025.e41629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025] Open
Abstract
Statins are widely used for treating lipid disorders and cardiovascular diseases. However, the therapeutic efficiency and adverse effects of statins vary among different patients, which numerous clinical and epidemiological studies have attributed to genetic polymorphisms in statin-metabolizing enzymes and transport proteins. The metabolic processes of statins are relatively complex, involving spontaneous or enzyme-catalyzed interconversion between more toxic lactone metabolites and active acid forms in the liver and bloodstream, influenced by multiple factors, including the expression levels of many metabolic enzymes and transporters. Addressing the variable statin therapeutic outcomes is a pressing clinical challenge. Transcription factors and epigenetic modifications regulate the metabolic enzymes and transporters involved in statin metabolism and disposition and, therefore, hold promise as 'personalized' targets for achieving optimized statin therapy. In this review, we explore the potential for customizing therapy by targeting the metabolism of statin medications. The biochemical bases of adverse reactions to statin drugs and their correlation with polymorphisms in metabolic enzymes and transporters are summarized. Next, we mainly focus on the regulatory roles of transcription factors and epigenetic modifications in regulating the gene expression of statin biochemical machinery. The recommendations for future therapies are finally proposed by targeting the central regulatory factors of statin metabolism.
Collapse
Affiliation(s)
- Zhuangqi Shi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| | - Shuxin Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, China
| |
Collapse
|
2
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
3
|
Men S, Wang H. Phenobarbital in Nuclear Receptor Activation: An Update. Drug Metab Dispos 2023; 51:210-218. [PMID: 36351837 PMCID: PMC9900862 DOI: 10.1124/dmd.122.000859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Abstract
Phenobarbital (PB) is a commonly prescribed anti-epileptic drug that can also benefit newborns from hyperbilirubinemia. Being the first drug demonstrating hepatic induction of cytochrome P450 (CYP), PB has since been broadly used as a model compound to study xenobiotic-induced drug metabolism and clearance. Mechanistically, PB-mediated CYP induction is linked to a number of nuclear receptors, such as the constitutive androstane receptor (CAR), pregnane X receptor (PXR), and estrogen receptor α, with CAR being the predominant regulator. Unlike prototypical agonistic ligands, PB-mediated activation of CAR does not involve direct binding with the receptor. Instead, dephosphorylation of threonine 38 in the DNA-binding domain of CAR was delineated as a key signaling event underlying PB-mediated indirect activation of CAR. Further studies revealed that such phosphorylation sites appear to be highly conserved among most human nuclear receptors. Interestingly, while PB is a pan-CAR activator in both animals and humans, PB activates human but not mouse PXR. The species-specific role of PB in gene regulation is a key determinant of its implication in xenobiotic metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In this review, we summarize the recent progress in our understanding of PB-provoked transactivation of nuclear receptors with a focus on CAR and PXR. SIGNIFICANCE STATEMENT: Extensive studies using PB as a research tool have significantly advanced our understanding of the molecular basis underlying nuclear receptor-mediated drug metabolism, drug-drug interactions, energy homeostasis, and cell proliferation. In particular, CAR has been established as a cell signaling-regulated nuclear receptor in addition to ligand-dependent functionality. This mini-review highlights the mechanisms by which PB transactivates CAR and PXR.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland (S.M., H.W.)
| |
Collapse
|
4
|
Poudel S, Huber AD, Chen T. Regulation of Nuclear Receptors PXR and CAR by Small Molecules and Signal Crosstalk: Roles in Drug Metabolism and Beyond. Drug Metab Dispos 2023; 51:228-236. [PMID: 36116789 PMCID: PMC9900866 DOI: 10.1124/dmd.122.000858] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 01/31/2023] Open
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are ligand-activated transcription factors that regulate the expression of drug metabolizing enzymes and drug transporters. Since their discoveries, they have been studied as important factors for regulating processes related to drug efficacy, drug toxicity, and drug-drug interactions. However, their vast ligand-binding profiles extend into additional spaces, such as endogenously produced chemicals, microbiome metabolites, dietary compounds, and environmental pollutants. Therefore, PXR and CAR can respond to an enormous abundance of stimuli, resulting in significant shifts in metabolic programs and physiologic homeostasis. Naturally, PXR and CAR have been implicated in various diseases related to homeostatic perturbations, such as inflammatory bowel disorders, diabetes, and certain cancers. Recent findings have injected the field with new signaling mechanisms and tools to dissect the complex PXR and CAR biology and have strengthened the potential for future PXR and CAR modulators in the clinic. Here, we describe the historical and ongoing importance of PXR and CAR in drug metabolism pathways and how this history has evolved into new mechanisms that regulate and are regulated by these xenobiotic receptors, with a specific focus on small molecule ligands. To effectively convey the impact of newly emerging research, we have arranged five diverse and representative key recent advances, four specific challenges, and four perspectives on future directions. SIGNIFICANCE STATEMENT: PXR and CAR are key transcription factors that regulate homeostatic detoxification of the liver and intestines. Diverse chemicals bind to these nuclear receptors, triggering their transcriptional tuning of the cellular metabolic response. This minireview revisits the importance of PXR and CAR in pharmaceutical drug responses and highlights recent results with implications beyond drug metabolism.
Collapse
Affiliation(s)
- Shyaron Poudel
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Honkakoski P. Searching for Constitutive Androstane Receptor Modulators. Drug Metab Dispos 2022; 50:1002-1009. [PMID: 35184042 DOI: 10.1124/dmd.121.000482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/01/2022] [Indexed: 02/13/2025] Open
Abstract
The constitutive androstane receptor (CAR; NR1I3) has been established as one of the main drug- and xenobiotic-responsive transcriptional regulators, collectively called xenosensors. CAR activates the expression of several oxidative, hydrolytic, and conjugative drug-metabolizing enzymes and drug transporters, and therefore, it contributes to drug and xenobiotic elimination, drug interactions, and toxicological processes. This minireview introduces mechanisms that modulate CAR activity and focuses on the recent approaches used to search and characterize CAR agonists, inverse agonists, and indirect activators. This minireview is dedicated to Dr. Masahiko Negishi to celebrate his scientific achievements during his long service at the National Institutes of Health. SIGNIFICANCE STATEMENT: Discovery and characterization of human constitutive androstane receptor (CAR) modulators is important for drug development, toxicity studies, and in generation of chemical tools to dissect biological functions of CAR. This minireview focuses on the main methods used to search for these compounds and discusses their essential features.
Collapse
Affiliation(s)
- Paavo Honkakoski
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
6
|
Režen T, Rozman D, Kovács T, Kovács P, Sipos A, Bai P, Mikó E. The role of bile acids in carcinogenesis. Cell Mol Life Sci 2022; 79:243. [PMID: 35429253 PMCID: PMC9013344 DOI: 10.1007/s00018-022-04278-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
AbstractBile acids are soluble derivatives of cholesterol produced in the liver that subsequently undergo bacterial transformation yielding a diverse array of metabolites. The bulk of bile acid synthesis takes place in the liver yielding primary bile acids; however, other tissues have also the capacity to generate bile acids (e.g. ovaries). Hepatic bile acids are then transported to bile and are subsequently released into the intestines. In the large intestine, a fraction of primary bile acids is converted to secondary bile acids by gut bacteria. The majority of the intestinal bile acids undergo reuptake and return to the liver. A small fraction of secondary and primary bile acids remains in the circulation and exert receptor-mediated and pure chemical effects (e.g. acidic bile in oesophageal cancer) on cancer cells. In this review, we assess how changes to bile acid biosynthesis, bile acid flux and local bile acid concentration modulate the behavior of different cancers. Here, we present in-depth the involvement of bile acids in oesophageal, gastric, hepatocellular, pancreatic, colorectal, breast, prostate, ovarian cancer. Previous studies often used bile acids in supraphysiological concentration, sometimes in concentrations 1000 times higher than the highest reported tissue or serum concentrations likely eliciting unspecific effects, a practice that we advocate against in this review. Furthermore, we show that, although bile acids were classically considered as pro-carcinogenic agents (e.g. oesophageal cancer), the dogma that switch, as lower concentrations of bile acids that correspond to their serum or tissue reference concentration possess anticancer activity in a subset of cancers. Differences in the response of cancers to bile acids lie in the differential expression of bile acid receptors between cancers (e.g. FXR vs. TGR5). UDCA, a bile acid that is sold as a generic medication against cholestasis or biliary surge, and its conjugates were identified with almost purely anticancer features suggesting a possibility for drug repurposing. Taken together, bile acids were considered as tumor inducers or tumor promoter molecules; nevertheless, in certain cancers, like breast cancer, bile acids in their reference concentrations may act as tumor suppressors suggesting a Janus-faced nature of bile acids in carcinogenesis.
Collapse
Affiliation(s)
- Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tünde Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
| | - Patrik Kovács
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, 4032, Hungary.
| |
Collapse
|
7
|
Mukha A, Kalkhoven E, van Mil SWC. Splice variants of metabolic nuclear receptors: Relevance for metabolic disease and therapeutic targeting. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166183. [PMID: 34058349 DOI: 10.1016/j.bbadis.2021.166183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.
Collapse
Affiliation(s)
- Anna Mukha
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
8
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
9
|
Pande P, Zhong XB, Ku WW. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis. Drug Metab Dispos 2020; 48:1321-1329. [PMID: 33077425 DOI: 10.1124/dmd.120.000195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 02/13/2025] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) affect expression and function of cytochrome P450 genes (P450s). The increased expression of inflammatory cytokines is a major driver of the downregulation of P450 expression in NAFLD. Decrease in P450 expression could potentially lead to drug-drug interaction, inefficient pharmacological effect of a drug, or hepatotoxicity. An epigenetic modifier, histone 3 lysine 9 methyl transferase enzyme (G9a), known to increase histone 3 lysine 9 methylation, is downregulated in diet-induced obesity animal models. In a liver-specific G9a knockout animal model, expression of P450s was downregulated. Currently, the role of G9a in regulation of P450s in steatosis is unknown. Our hypothesis is that in steatosis G9a plays a role in downregulation of P450 expression. In this study, we used HepaRG cells to induce steatosis using a combination of free fatty acids oleic acid and palmitic acid. The G9a was knocked down and overexpressed using small interfering RNA and adenovirus mediated approaches, respectively. Knockdown and overexpression of G9a in the absence of steatosis decreased and increased expression of nuclear receptors constitutive androstane receptor (CAR), pregnane X receptor, small heterodimer partner, and CYP2B6, 2E1, 2C8, 2C9, and 3A4, respectively. In steatotic conditions, overexpression of G9a prevented fatty acid mediated decreased expression of CAR, CYP2C19, 2C8, 7A1, and 3A4. Our current study suggests that G9a might serve as a key regulator of P450 expression at both the basal level and in early steatotic conditions. Single nucleotide polymorphism of G9a leading to loss/gain of function could lead to the poor metabolizer or ultrarapid metabolizer phenotypes. SIGNIFICANCE STATEMENT: The current study demonstrates that histone modification enzyme G9a is involved in the regulation of expression of nuclear receptors constitutive androstane receptor, pregnane X receptor, and small heterodimer partner as well as drug-metabolizing cytochrome P450s (P450s) at basal conditions and in fatty acid induced cellular model of steatosis. Histone 3 lysine 9 methylation should be considered together with histone 3 lysine 4 and histone 3 lysine 27 methylation as the epigenetic mechanisms controlling gene expression of P450s.
Collapse
Affiliation(s)
- Parimal Pande
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Xiao-Bo Zhong
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Warren W Ku
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| |
Collapse
|
10
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
12
|
Chen K, Zhong J, Hu L, Li R, Du Q, Cai J, Li Y, Gao Y, Cui X, Yang X, Wu X, Yao L, Dai J, Wang Y, Jin H. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr Drug Metab 2019; 20:29-35. [PMID: 30227815 DOI: 10.2174/1389200219666180918152241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Background:
PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as
xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and
drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism
through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are
trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism.
Methods:
A structured search of databases has been performed by using focused review topics. According to conceptual
framework, the main idea of research literature was summarized and presented.
Results:
For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and
lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of
lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and
inhabits β-oxidation.
Conclusion:
In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been
confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity
and diabetes. However, further research is required to promote the clinical application of this new energy metabolism
function of xenobiotic receptors.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaona Cui
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shangdong, China
| | - Lu Yao
- Jilin Medical University, Jilin, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wang
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
13
|
Abstract
Nuclear receptors (NRs) are ligand-dependent transcription factors that are involved in various biological processes including metabolism, reproduction, and development. Upon activation by their ligands, NRs bind to their specific DNA elements, exerting their biological functions by regulating their target gene expression. Bile acids are detergent-like molecules that are synthesized in the liver. They not only function as a facilitator for the digestion of lipids and fat-soluble vitamins but also serve as signaling molecules for several nuclear receptors to regulate diverse biological processes including lipid, glucose, and energy metabolism, detoxification and drug metabolism, liver regeneration, and cancer. The nuclear receptors including farnesoid X receptor (FXR), pregnane X receptor (PXR), constitutive androstane receptor (CAR), vitamin D receptor (VDR), and small heterodimer partner (SHP) constitute an integral part of the bile acid signaling. This chapter reviews the role of the NRs in bile acid homeostasis, highlighting the regulatory functions of the NRs in lipid and glucose metabolism in addition to bile acid metabolism.
Collapse
|
14
|
Tian J, Marino R, Johnson C, Locker J. Binding of Drug-Activated CAR/Nr1i3 Alters Metabolic Regulation in the Liver. iScience 2018; 9:209-228. [PMID: 30396153 PMCID: PMC6222290 DOI: 10.1016/j.isci.2018.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
The constitutive androstane receptor (CAR/Nr1i3) regulates detoxification of drugs and other xenobiotics by the liver. Binding of these compounds, activating ligands, causes CAR to translocate to the nucleus and stimulate genes of detoxification. However, CAR activation also changes metabolism and induces rapid liver growth. To explain this gene regulation, we characterized the genome-wide early binding of CAR; its binding partner, RXRα; and the acetylation that they induced on H4K5. CAR-linked genes showed either stimulation or inhibition and regulated lipid, carbohydrate, and energy metabolism, as well as detoxification. Stimulation of expression increased, but inhibition did not decrease, H4K5Ac. Transcriptional inhibition occurred when CAR bound with HNF4α, PPARα, or FXR on the same enhancers. Functional competition among these bound nuclear receptors normally coordinates transcriptional resources as metabolism shifts. However, binding of drug-activated CAR to the same enhancers adds a new competitor that constitutively alters the normal balance of metabolic gene regulation. CAR activation stimulates a massive liver transcriptional response Target genes control drug detoxification, general metabolism, and liver growth CAR stimulates genes through coactivation and histone acetylation CAR inhibits genes when it shares their enhancers with other nuclear receptors
Collapse
Affiliation(s)
- Jianmin Tian
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Rebecca Marino
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Carla Johnson
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15261, USA
| | - Joseph Locker
- Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop St, Pittsburgh, PA 15261, USA.
| |
Collapse
|
15
|
Mackowiak B, Hodge J, Stern S, Wang H. The Roles of Xenobiotic Receptors: Beyond Chemical Disposition. Drug Metab Dispos 2018; 46:1361-1371. [PMID: 29759961 PMCID: PMC6124513 DOI: 10.1124/dmd.118.081042] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/07/2018] [Indexed: 02/06/2023] Open
Abstract
Over the past 20 years, the ability of the xenobiotic receptors to coordinate an array of drug-metabolizing enzymes and transporters in response to endogenous and exogenous stimuli has been extensively characterized and well documented. The constitutive androstane receptor (CAR) and the pregnane X receptor (PXR) are the xenobiotic receptors that have received the most attention since they regulate the expression of numerous proteins important to drug metabolism and clearance and formulate a central defensive mechanism to protect the body against xenobiotic challenges. However, accumulating evidence has shown that these xenobiotic sensors also control many cellular processes outside of their traditional realms of xenobiotic metabolism and disposition, including physiologic and/or pathophysiologic responses in energy homeostasis, cell proliferation, inflammation, tissue injury and repair, immune response, and cancer development. This review will highlight recent advances in studying the noncanonical functions of xenobiotic receptors with a particular focus placed on the roles of CAR and PXR in energy homeostasis and cancer development.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Jessica Hodge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
16
|
Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:635-647. [PMID: 29757018 DOI: 10.1080/17425255.2018.1476488] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that play major roles in the expression of various drug metabolism enzymes and are known for their ligand promiscuity. As with other nuclear receptors, PXR and CAR are each composed of a ligand-binding domain (LBD) and a DNA-binding domain (DBD) connected by a hinge region. Areas covered: This review focuses on the information obtained over the last 15+ years from X-ray crystallography studies of the structure of PXR and CAR. Areas of focus include the mobility of each structure, based on temperature factors (B factors); multimeric interactions; the binding of coregulators and ligands; and how the crystal structures were obtained. The first use of hydrogen-deuterium exchange coupled with mass spectroscopy (HDX-MS) to study compound-protein interactions in the PXR-LBD is also addressed. Expert opinion: X-ray crystallography studies have provided us with an excellent understanding of how the LBDs of each receptor function; however, many questions remain concerning the structure of these receptors. Future research should focus on determining the co-crystal structure of an antagonist bound to PXR and on studying the structural aspects of the full-length CAR and PXR proteins.
Collapse
Affiliation(s)
- Cameron D Buchman
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Sergio C Chai
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
17
|
The Role of PPAR and Its Cross-Talk with CAR and LXR in Obesity and Atherosclerosis. Int J Mol Sci 2018; 19:ijms19041260. [PMID: 29690611 PMCID: PMC5979375 DOI: 10.3390/ijms19041260] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 02/06/2023] Open
Abstract
The prevalence of obesity and atherosclerosis has substantially increased worldwide over the past several decades. Peroxisome proliferator-activated receptors (PPARs), as fatty acids sensors, have been therapeutic targets in several human lipid metabolic diseases, such as obesity, atherosclerosis, diabetes, hyperlipidaemia, and non-alcoholic fatty liver disease. Constitutive androstane receptor (CAR) and liver X receptors (LXRs) were also reported as potential therapeutic targets for the treatment of obesity and atherosclerosis, respectively. Further clarification of the internal relationships between these three lipid metabolic nuclear receptors is necessary to enable drug discovery. In this review, we mainly summarized the cross-talk of PPARs-CAR in obesity and PPARs-LXRs in atherosclerosis.
Collapse
|
18
|
Erice O, Labiano I, Arbelaiz A, Santos-Laso A, Munoz-Garrido P, Jimenez-Agüero R, Olaizola P, Caro-Maldonado A, Martín-Martín N, Carracedo A, Lozano E, Marin JJ, O'Rourke CJ, Andersen JB, Llop J, Gómez-Vallejo V, Padro D, Martin A, Marzioni M, Adorini L, Trauner M, Bujanda L, Perugorria MJ, Banales JM. Differential effects of FXR or TGR5 activation in cholangiocarcinoma progression. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1335-1344. [PMID: 28916388 DOI: 10.1016/j.bbadis.2017.08.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/19/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Cholangiocarcinoma (CCA) is an aggressive tumor type affecting cholangiocytes. CCAs frequently arise under certain cholestatic liver conditions. Intrahepatic accumulation of bile acids may facilitate cocarcinogenic effects by triggering an inflammatory response and cholangiocyte proliferation. Here, the role of bile acid receptors FXR and TGR5 in CCA progression was evaluated. METHODS FXR and TGR5 expression was determined in human CCA tissues and cell lines. An orthotopic model of CCA was established in immunodeficient mice and tumor volume was monitored by magnetic resonance imaging under chronic administration of the specific FXR or TGR5 agonists, obeticholic acid (OCA) or INT-777 (0,03% in chow; Intercept Pharmaceuticals), respectively. Functional effects of FXR or TGR5 activation were evaluated on CCA cells in vitro. RESULTS FXR was downregulated whereas TGR5 was upregulated in human CCA tissues compared to surrounding normal liver tissue. FXR expression correlated with tumor differentiation and TGR5 correlated with perineural invasion. TGR5 expression was higher in perihilar than in intrahepatic CCAs. In vitro, FXR was downregulated and TGR5 was upregulated in human CCA cells compared to normal human cholangiocytes. OCA halted CCA growth in vivo, whereas INT-777 showed no effect. In vitro, OCA inhibited CCA cell proliferation and migration which was associated with decreased mitochondrial energy metabolism. INT-777, by contrast, stimulated CCA cell proliferation and migration, linked to increased mitochondrial energy metabolism. CONCLUSION Activation of FXR inhibits, whereas TGR5 activation may promote, CCA progression by regulating proliferation, migration and mitochondrial energy metabolism. Modulation of FXR or TGR5 activities may represent potential therapeutic strategies for CCA.
Collapse
Affiliation(s)
- O Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - I Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - A Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - A Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - P Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - P Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | | | - N Martín-Martín
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - A Carracedo
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; CIBERONC, Instituto de Salud Carlos III, Madrid, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - E Lozano
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Spain
| | - J J Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Spain
| | - C J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Llop
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Spain
| | | | - D Padro
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Spain
| | - A Martin
- Molecular Imaging Unit, CIC biomaGUNE, San Sebastián, Spain
| | - M Marzioni
- Department of Gastroenterology, Università Politecnica delle Marche, Ancona, Italy
| | - L Adorini
- Intercept Pharmaceuticals, New York, USA
| | - M Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Austria
| | - L Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain
| | - M J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - J M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
19
|
Abstract
In most cholestatic liver diseases the primary cholestasis-causing lesions are located in the biliary tree and may be of (auto)immune origin. Bile salts are responsible for the secondary toxic consequences. Bile salt and nuclear hormone directed therapies primarily aim at improving this secondary toxic injury. In primary biliary cholangitis, trials show statistically significant responses on biochemical endpoints. Preclinical studies suggest that FXR- and PPAR-agonists, inhibitors of the apical sodium-dependent bile salt transporter (ASBT-inhibitors) and the C23 UDCA derivative nor-UDCA are promising agents for the treatment of primary sclerosing cholangitis (PSC). Area covered: Pharmaceuticals that interfere with bile salt signaling in humans for the treatment of chronic cholestatic liver disease are reviewed. Expert commentary: Nuclear hormone receptors, bile salt transport proteins and receptors provide targets for novel therapies of cholestatic liver disease. These drugs show positive results on biochemical endpoints. For histological endpoints, survival and transplant-free survival, long-term trials are needed. For relief of symptoms, such as fatigue and pruritus, these drugs have yet to prove their value.
Collapse
Affiliation(s)
- Peter L M Jansen
- a Maastricht Center for Systems Biology (MaCSBio) , Maastricht University , Maastricht , The Netherlands.,b Academic Medical Center , University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
20
|
Choi YJ, Zhou D, Barbosa ACS, Niu Y, Guan X, Xu M, Ren S, Nolin TD, Liu Y, Xie W. Activation of Constitutive Androstane Receptor Ameliorates Renal Ischemia-Reperfusion-Induced Kidney and Liver Injury. Mol Pharmacol 2018; 93:239-250. [PMID: 29351922 PMCID: PMC5801556 DOI: 10.1124/mol.117.111146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 01/05/2018] [Indexed: 02/05/2023] Open
Abstract
Acute kidney injury (AKI) is associate with high mortality. Despite evidence of AKI-induced distant organ injury, a relationship between AKI and liver injury has not been clearly established. The goal of this study is to investigate whether renal ischemia-reperfusion (IR) can affect liver pathophysiology. We showed that renal IR in mice induced fatty liver and compromised liver function through the downregulation of constitutive androstane receptor (CAR; -90.4%) and inhibition of hepatic very-low-density lipoprotein triglyceride (VLDL-TG) secretion (-28.4%). Treatment of mice with the CAR agonist 1,4-bis[2-(3,5 dichloropyridyloxy)] benzene (TCPOBOP) prevented the development of AKI-induced fatty liver and liver injury, which was associated with the attenuation of AKI-induced inhibition of VLDL-TG secretion. The hepatoprotective effect of TCPOBOP was abolished in CAR-/- mice. Interestingly, alleviation of fatty liver by TCPOBOP also improved the kidney function, whereas CAR ablation sensitized mice to AKI-induced kidney injury and lethality. The serum concentrations of interleukin-6 (IL-6) were elevated by 27-fold after renal IR, but were normalized in TCPOBOP-treated AKI mice, suggesting that the increased release of IL-6 from the kidney may have mediated the AKI responsive liver injury. Taken together, our results revealed an interesting kidney-liver organ cross-talk in response to AKI. Given the importance of CAR in the pathogenesis of renal IR-induced fatty liver and impaired kidney function, fatty liver can be considered as an important risk factor for kidney injury, and a timely management of hepatic steatosis by CAR activation may help to restore kidney function in patients with AKI or kidney transplant.
Collapse
Affiliation(s)
- You-Jin Choi
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Dong Zhou
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Anne Caroline S Barbosa
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Yongdong Niu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Xiudong Guan
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Meishu Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Songrong Ren
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Thomas D Nolin
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Youhua Liu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences (Y.-J.C., A.C.S.B., Y.N, M.X., S.R., W.X.), Department of Pathology, School of Medicine (D.Z., Y.L.), Center for Clinical Pharmaceutical Sciences, Department of Pharmacy and Therapeutics, School of Pharmacy (T.D.N), and Department of Pharmacology and Chemical Biology (W.X.), University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology, Shantou University Medical College, Shantou, Guangdong, China (Y.N.); and Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China (X.G.)
| |
Collapse
|
21
|
Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol Sci 2018; 161:5-22. [PMID: 28973688 PMCID: PMC5837539 DOI: 10.1093/toxsci/kfx186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Geoffrey W Patton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Ronald F Chanderbhan
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Antonia Mattia
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
22
|
Jonsson-Schmunk K, Schafer SC, Croyle MA. Impact of nanomedicine on hepatic cytochrome P450 3A4 activity: things to consider during pre-clinical and clinical studies. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2017. [DOI: 10.1007/s40005-017-0376-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
van der Mark VA, Rudi de Waart D, Shevchenko V, Elferink RPJO, Chamuleau RAFM, Hoekstra R. Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells. Drug Metab Dispos 2017; 45:56-67. [PMID: 27780834 DOI: 10.1124/dmd.116.072603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen- and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as low-clearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpression.
Collapse
Affiliation(s)
- Vincent A van der Mark
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| | - D Rudi de Waart
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| | - Valery Shevchenko
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| | - Ronald P J Oude Elferink
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| | - Robert A F M Chamuleau
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| | - Ruurdtje Hoekstra
- Department of Experimental Surgery (V.A.M., R.A.F.M.C., R.H.), and the Tytgat Institute for Liver and Intestinal Research, Academic Medical Center (V.A.M., D.R.W., R.P.J.O.E., R.A.F.M.C., R.H.), Amsterdam, the Netherlands; and Biopredic International, Saint-Grégoire, France (V.S.)
| |
Collapse
|
24
|
Lee K, You H, Choi J, No KT. Development of pharmacophore-based classification model for activators of constitutive androstane receptor. Drug Metab Pharmacokinet 2016; 32:172-178. [PMID: 28366619 DOI: 10.1016/j.dmpk.2016.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 11/10/2016] [Indexed: 10/20/2022]
Abstract
Constitutive androstane receptor (CAR) is predominantly expressed in the liver and is important for regulating drug metabolism and transport. Despite its biological importance, there have been few attempts to develop in silico models to predict the activity of CAR modulated by chemical compounds. The number of in silico studies of CAR may be limited because of CAR's constitutive activity under normal conditions, which makes it difficult to elucidate the key structural features of the interaction between CAR and its ligands. In this study, to address these limitations, we introduced 3D pharmacophore-based descriptors with an integrated ligand and structure-based pharmacophore features, which represent the receptor-ligand interaction. Machine learning methods (support vector machine and artificial neural network) were applied to develop an in silico model with the descriptors containing significant information regarding the ligand binding positions. The best classification model built with a solvent accessibility volume-based filter and the support vector machine showed good predictabilities of 87%, and 85.4% for the training set and validation set, respectively. This demonstrates that our model can be used to accurately predict CAR activators and offers structural information regarding ligand/protein interactions.
Collapse
Affiliation(s)
- Kyungro Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Hwan You
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Jiwon Choi
- Bioinformatics & Molecular Design Research Center, Yonsei University, Seoul 03722, South Korea
| | - Kyoung Tai No
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea; Bioinformatics & Molecular Design Research Center, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
25
|
A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharm Sin B 2016; 6:450-452. [PMID: 27709013 PMCID: PMC5045536 DOI: 10.1016/j.apsb.2016.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/01/2023] Open
Abstract
The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) were cloned and/or established as xenobiotic receptors in 1998. Due to their activities in the transcriptional regulation of phase I and phase II enzymes as well as drug transporters, PXR and CAR have been defined as the master regulators of xenobiotic responses. The discovery of PXR and CAR provides the essential molecular basis by which drugs and other xenobiotic compounds regulate the expression of xenobiotic enzymes and transporters. This article is intended to provide a historical overview on the discovery of PXR and CAR as xenobiotic receptors.
Collapse
|
26
|
Chai SC, Cherian MT, Wang YM, Chen T. Small-molecule modulators of PXR and CAR. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1141-1154. [PMID: 26921498 PMCID: PMC4975625 DOI: 10.1016/j.bbagrm.2016.02.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/27/2022]
Abstract
Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Milu T Cherian
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yue-Ming Wang
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, 262 Danny Thomas Place, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Mousa HS, Carbone M, Malinverno F, Ronca V, Gershwin ME, Invernizzi P. Novel therapeutics for primary biliary cholangitis: Toward a disease-stage-based approach. Autoimmun Rev 2016; 15:870-876. [DOI: 10.1016/j.autrev.2016.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022]
|
28
|
Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol 2016; 12:1463-1477. [PMID: 27548410 DOI: 10.1080/17425255.2016.1223626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.
Collapse
|
29
|
Dimethylesculetin ameliorates maternal glucose intolerance and fetal overgrowth in high-fat diet-fed pregnant mice via constitutive androstane receptor. Mol Cell Biochem 2016; 419:185-92. [PMID: 27426490 DOI: 10.1007/s11010-016-2772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance along with obesity. 6,7-dimethylesculetin (DE) is an active component of Yin Zhi Huang which is a traditional Asian medicine used to treat neonatal jaundice via CAR. In this study, we examined whether DE could affect the expression of gluconeogenic and lipogenic genes via human CAR pathway using human HepG2 cells in vitro. We also studied whether DE treatment during pregnancy could prevent maternal hypertension, glucose intolerance and hyperlipidemia, and fetal overgrowth in high-fat diet (HFD)-induced obese pregnant mice. Dimethylesculetin suppressed the mRNA expression of gluconeogenic genes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and lipogenic genes, sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1, and enhanced CAR-mediated transcription. Blocking the CAR-mediated pathway abolished the effect of DE in vitro. DE treatment during pregnancy could prevent maternal hypertension, glucose intolerance and hyperlipidemia, and fetal overgrowth in HFD-induced obese pregnant mice in vivo. Our data indicate that DE might be a potential therapeutic agent for obese pregnant patients with insulin resistance through CAR to prevent the perinatal outcomes such as preeclampsia, gestational diabetes, and macrosomia. Further analysis of possible complications and side effects using animal models is required.
Collapse
|
30
|
Mackowiak B, Wang H. Mechanisms of xenobiotic receptor activation: Direct vs. indirect. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1130-1140. [PMID: 26877237 DOI: 10.1016/j.bbagrm.2016.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 12/31/2022]
Abstract
The so-called xenobiotic receptors (XRs) have functionally evolved into cellular sensors for both endogenous and exogenous stimuli by regulating the transcription of genes encoding drug-metabolizing enzymes and transporters, as well as those involving energy homeostasis, cell proliferation, and/or immune responses. Unlike prototypical steroid hormone receptors, XRs are activated through both direct ligand-binding and ligand-independent (indirect) mechanisms by a plethora of structurally unrelated chemicals. This review covers research literature that discusses direct vs. indirect activation of XRs. A particular focus is centered on the signaling control of the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), and the aryl hydrocarbon receptor (AhR). We expect that this review will shed light on both the common and distinct mechanisms associated with activation of these three XRs. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
31
|
Inouye Y. [Structure and Function of the Nuclear Receptor Constitutive Androstane Receptor]. YAKUGAKU ZASSHI 2016; 136:297-308. [PMID: 26831808 DOI: 10.1248/yakushi.15-00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animal defense mechanisms against both endogenous and exogenous toxic compounds function mainly through receptor-type transcription factors, including the constitutive androstane receptor (CAR). Following xenobiotic stimulation, CAR translocates into the nucleus and transactivates its target genes including oxygenic and conjugative enzymes and transporters in hepatocytes. We identified subcellular localization signals in the rat CAR: two nuclear localization signals (NLS1 and 2); two nuclear export signals (NES1 and 2); and a cytoplasmic retention region. The nuclear import of CAR is regulated by the importin-Ran system and microtubule network. Five splice variants (SV1-5) were identified in rat liver in addition to wild-type CAR. When expressed in immortalized cells, their artificial transcripts were inactive as transcription factors. A CAR mutant with three consecutive alanine residues inserted into the ligand-binding domain of CAR showed ligand-dependent activation of target genes in immortalized cells, which is in marked contrast to the constitutive transactivating nature of wild-type CAR. Using this assay system, androstenol and clotrimazole, both of which are inverse agonists of CAR, were classified as an antagonist and weak agonist, respectively. A member of the DEAD box DNA/RNA helicase family (DP97) and protein arginine methyltransferase 5 (PRMT5) were found to be gene (or promotor)-specific coactivators of CAR. The expression of the CAR gene might be under the control of clock genes mediated by the nuclear receptor Rev-erb-α.
Collapse
|
32
|
Pellegrino P, Perrotta C, Clementi E, Radice S. Vaccine–Drug Interactions: Cytokines, Cytochromes, and Molecular Mechanisms. Drug Saf 2015; 38:781-7. [DOI: 10.1007/s40264-015-0330-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Kobayashi K, Hashimoto M, Honkakoski P, Negishi M. Regulation of gene expression by CAR: an update. Arch Toxicol 2015; 89:1045-55. [PMID: 25975989 DOI: 10.1007/s00204-015-1522-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/27/2015] [Indexed: 11/30/2022]
Abstract
The constitutive androstane receptor (CAR), a member of the nuclear receptor superfamily, is a well-known xenosensor that regulates hepatic drug metabolism and detoxification. CAR activation can be elicited by a large variety of xenobiotics, including phenobarbital (PB) which is not a directly binding CAR ligand. The mechanism of CAR activation is complex and involves translocation from the cytoplasm into the nucleus, followed by further activation steps in the nucleus. Recently, epidermal growth factor receptor (EGFR) has been identified as a PB-responsive receptor, and PB activates CAR by inhibiting the EGFR signaling. In addition to regulation of drug metabolism, activation of CAR has multiple biological end points such as modulation of xenobiotic-elicited liver injury, and the role of CAR in endobiotic functions such as glucose metabolism and cholesterol homeostasis is increasingly recognized. Thus, investigations on the molecular mechanism of CAR activation are critical for the real understanding of CAR-mediated processes. Here, we summarize the current understanding of mechanisms by which CAR activators regulate gene expression through cellular signaling pathways and the roles of CAR on xenobiotic-elicited hepatocellular carcinoma, liver injury, glucose metabolism and cholesterol homeostasis.
Collapse
Affiliation(s)
- Kaoru Kobayashi
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan,
| | | | | | | |
Collapse
|
34
|
Cherian MT, Chai SC, Chen T. Small-molecule modulators of the constitutive androstane receptor. Expert Opin Drug Metab Toxicol 2015; 11:1099-114. [PMID: 25979168 DOI: 10.1517/17425255.2015.1043887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The constitutive androstane receptor (CAR) induces drug-metabolizing enzymes for xenobiotic metabolism. AREAS COVERED This review covers recent advances in elucidating the biological functions of CAR and its modulation by a growing number of agonists and inhibitors. EXPERT OPINION Extrapolation of animal CAR function to that of humans should be carefully scrutinized, particularly when rodents are used in evaluating the metabolic profile and carcinogenic properties of clinical drugs and environmental chemicals. Continuous efforts are needed to discover novel CAR inhibitors, with extensive understanding of their inhibitory mechanism, species selectivity, and discriminating power against other xenobiotic sensors.
Collapse
Affiliation(s)
- Milu T Cherian
- Postdoctoral fellow, St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | |
Collapse
|
35
|
Avouac J, Palumbo-Zerr K, Ruzehaji N, Tomcik M, Zerr P, Dees C, Distler A, Beyer C, Schneider H, Distler O, Schett G, Allanore Y, Distler JHW. The nuclear receptor constitutive androstane receptor/NR1I3 enhances the profibrotic effects of transforming growth factor β and contributes to the development of experimental dermal fibrosis. Arthritis Rheumatol 2015; 66:3140-50. [PMID: 25155144 DOI: 10.1002/art.38819] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Nuclear receptors regulate cell growth, differentiation, and homeostasis. Selective nuclear receptors promote fibroblast activation, which leads to tissue fibrosis, the hallmark of systemic sclerosis (SSc). This study was undertaken to investigate the effects of constitutive androstane receptor (CAR)/NR1I3, an orphan nuclear receptor, on fibroblast activation and experimental dermal fibrosis. METHODS CAR expression was quantified by quantitative polymerase chain reaction, Western blotting, immunohistochemistry, and immunofluorescence. CAR expression was modulated by small molecules, small interfering RNA, forced overexpression, and site-directed mutagenesis. The effects of CAR activation were analyzed in cultured fibroblasts, in bleomycin-induced dermal fibrosis, and in mice overexpressing a constitutively active transforming growth factor β (TGFβ) receptor type I (TβRI-CA). RESULTS Up-regulation of CAR was detected in the skin and in dermal fibroblasts in SSc patients. Stimulation of healthy fibroblasts with TGFβ induced the expression of CAR messenger RNA and protein in a Smad-dependent manner. Pharmacologic activation or overexpression of CAR in healthy fibroblasts significantly increased the stimulatory effects of TGFβ on collagen synthesis and myofibroblast differentiation, and amplified the stimulatory effects of TGFβ on COL1A2 transcription activity. Treatment with CAR agonist increased the activation of canonical TGFβ signaling in murine models of SSc and exacerbated bleomycin-induced and TβRI-CA-induced fibrosis with increased dermal thickening, myofibroblast counts, and collagen accumulation. CONCLUSION Our findings indicate that CAR is up-regulated in SSc and regulates TGFβ signaling. Activation of CAR increases the profibrotic effects of TGFβ in cultured fibroblasts and in different preclinical models of SSc. Thus, inactivation of CAR might be a novel approach to target aberrant TGFβ signaling in SSc and in other fibrotic diseases.
Collapse
Affiliation(s)
- Jérôme Avouac
- University of Erlangen-Nuremberg, Erlangen, Germany; Paris Descartes University, INSERM U1016, and Cochin Hospital, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sepe V, Renga B, Festa C, D'Amore C, Masullo D, Cipriani S, Di Leva FS, Monti MC, Novellino E, Limongelli V, Zampella A, Fiorucci S. Modification on ursodeoxycholic acid (UDCA) scaffold. discovery of bile acid derivatives as selective agonists of cell-surface G-protein coupled bile acid receptor 1 (GP-BAR1). J Med Chem 2014; 57:7687-701. [PMID: 25162837 DOI: 10.1021/jm500889f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.
Collapse
Affiliation(s)
- Valentina Sepe
- Department of Pharmacy, University of Naples "Federico II" , Via D. Montesano, 49, 80131 Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pavlin MR, Brunzelle JS, Fernandez EJ. Agonist ligands mediate the transcriptional response of nuclear receptor heterodimers through distinct stoichiometric assemblies with coactivators. J Biol Chem 2014; 289:24771-8. [PMID: 25053412 PMCID: PMC4155646 DOI: 10.1074/jbc.m114.575423] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 07/20/2014] [Indexed: 11/06/2022] Open
Abstract
The constitutive androstane (CAR) and retinoid X receptors (RXR) are ligand-mediated transcription factors of the nuclear receptor protein superfamily. Functional CAR:RXR heterodimers recruit coactivator proteins, such as the steroid receptor coactivator-1 (SRC1). Here, we show that agonist ligands can potentiate transactivation through both coactivator binding sites on CAR:RXR, which distinctly bind two SRC1 molecules. We also observe that SRC1 transitions from a structurally plastic to a compact form upon binding CAR:RXR. Using small angle x-ray scattering (SAXS) we show that the CAR(tcp):RXR(9c)·SRC1 complex can encompass two SRC1 molecules compared with the CAR(tcp):RXR·SRC1, which binds only a single SRC1. Moreover, sedimentation coefficients and molecular weights determined by analytical ultracentrifugation confirm the SAXS model. Cell-based transcription assays show that disrupting the SRC1 binding site on RXR alters the transactivation by CAR:RXR. These data suggest a broader role for RXR within heterodimers, whereas offering multiple strategies for the assembly of the transcription complex.
Collapse
Affiliation(s)
- Mark Remec Pavlin
- From the Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996 and
| | - Joseph S Brunzelle
- the Department of Molecular Pharmacology and Biological Chemistry, Life Sciences Collaborative Access Team, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Elias J Fernandez
- From the Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996 and
| |
Collapse
|
38
|
Mathäs M, Burk O, Gödtel-Armbrust U, Herlyn H, Wojnowski L, Windshügel B. Structural and functional similarity of amphibian constitutive androstane receptor with mammalian pregnane X receptor. PLoS One 2014; 9:e96263. [PMID: 24797902 PMCID: PMC4010427 DOI: 10.1371/journal.pone.0096263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/04/2014] [Indexed: 11/19/2022] Open
Abstract
The nuclear receptors and xenosensors constitutive androstane receptor (CAR, NR1I3) and pregnane X receptor (PXR, NR1I2) induce the expression of xenobiotic metabolizing enzymes and transporters, which also affects various endobiotics. While human and mouse CAR feature a high basal activity and low induction upon ligand exposure, we recently identified two constitutive androstane receptors in Xenopus laevis (xlCARα and β) that possess PXR-like characteristics such as low basal activity and activation in response to structurally diverse compounds. Using a set of complementary computational and biochemical approaches we provide evidence for xlCARα being the structural and functional counterpart of mammalian PXR. A three-dimensional model of the xlCARα ligand-binding domain (LBD) reveals a human PXR-like L-shaped ligand binding pocket with a larger volume than the binding pockets in human and murine CAR. The shape and amino acid composition of the ligand-binding pocket of xlCAR suggests PXR-like binding of chemically diverse ligands which was confirmed by biochemical methods. Similarly to PXR, xlCARα possesses a flexible helix 11’. Modest increase in the recruitment of coactivator PGC-1α may contribute to the enhanced basal activity of three gain-of-function xlCARα mutants humanizing key LBD amino acid residues. xlCARα and PXR appear to constitute an example of convergent evolution.
Collapse
Affiliation(s)
- Marianne Mathäs
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Christian Nußhag
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Oliver Burk
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | - Holger Herlyn
- Institute of Anthropology, Johannes Gutenberg-University, Mainz, Germany
| | - Leszek Wojnowski
- Department of Pharmacology, University Medical Center, Mainz, Germany
| | - Björn Windshügel
- Centre for Bioinformatics, University of Hamburg, Hamburg, Germany
- European ScreeningPort GmbH, Hamburg, Germany
- * E-mail:
| |
Collapse
|
39
|
Timsit YE, Negishi M. Coordinated regulation of nuclear receptor CAR by CCRP/DNAJC7, HSP70 and the ubiquitin-proteasome system. PLoS One 2014; 9:e96092. [PMID: 24789201 PMCID: PMC4008524 DOI: 10.1371/journal.pone.0096092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 04/03/2014] [Indexed: 01/14/2023] Open
Abstract
The constitutive active/androstane receptor (CAR) plays an important role as a coordinate transcription factor in the regulation of various hepatic metabolic pathways for chemicals such as drugs, glucose, fatty acids, bilirubin, and bile acids. Currently, it is known that in its inactive state, CAR is retained in the cytoplasm in a protein complex with HSP90 and the tetratricopeptide repeat protein cytosoplasmic CAR retention protein (CCRP). Upon activation by phenobarbital (PB) or the PB-like inducer 1,4-bis[2-(3,5-dichloropyridyloxy)]-benzene (TCPOBOP), CAR translocates into the nucleus. We have identified two new components to the cytoplasmic regulation of CAR: ubiquitin-dependent degradation of CCRP and protein-protein interaction with HSP70. Treatment with the proteasome inhibitor MG132 (5 µM) causes CAR to accumulate in the cytoplasm of transfected HepG2 cells. In the presence of MG132, TCPOBOP increases CCRP ubiquitination in HepG2 cells co-expressing CAR, while CAR ubiquitination was not detected. MG132 treatment of HepG2 also attenuated of TCPOBOP-induced CAR transcriptional activation on reporter constructs which contain CAR-binding DNA elements derived from the human CYP2B6 gene. The elevation of cytoplasmic CAR protein with MG132 correlated with an increase of HSP70, and to a lesser extent HSP60. Both CCRP and CAR were found to interact with endogenous HSP70 in HepG2 cells by immunoprecipitation analysis. Induction of HSP70 levels by heat shock also increased cytoplasmic CAR levels, similar to the effect of MG132. Lastly, heat shock attenuated TCPOBOP-induced CAR transcriptional activation, also similar to the effect of MG132. Collectively, these data suggest that ubiquitin-proteasomal regulation of CCRP and HSP70 are important contributors to the regulation of cytoplasmic CAR levels, and hence the ability of CAR to respond to PB or PB-like inducers.
Collapse
Affiliation(s)
- Yoav E. Timsit
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Masahiko Negishi
- The Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
40
|
Abstract
The intracellular nuclear receptor farnesoid X receptor and the transmembrane G protein-coupled receptor TGR5 respond to bile acids by activating transcriptional networks and/or signalling cascades. These cascades affect the expression of a great number of target genes relevant for bile acid, cholesterol, lipid and carbohydrate metabolism, as well as genes involved in inflammation, fibrosis and carcinogenesis. Pregnane X receptor, vitamin D receptor and constitutive androstane receptor are additional nuclear receptors that respond to bile acids, albeit to a more restricted set of species of bile acids. Recognition of dedicated bile acid receptors prompted the development of semi-synthetic bile acid analogues and nonsteroidal compounds that target these receptors. These agents hold promise to become a new class of drugs for the treatment of chronic liver disease, hepatocellular cancer and extrahepatic inflammatory and metabolic diseases. This Review discusses the relevant bile acid receptors, the new drugs that target bile acid signalling and their possible applications.
Collapse
Affiliation(s)
- Frank G Schaap
- Department of Surgery, NUTRIM School of Nutrition, Toxicology and Metabolism, Maastricht University, PO Box 616, 6200 MD, Maastricht, Netherlands
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Peter L M Jansen
- Department of Gastroenterology and Hepatology, Academic Medical Centre, Meibergdreef 9, 1105 AZ, Amsterdam, Netherlands
| |
Collapse
|
41
|
Xu S, Sun AQ, Suchy FJ. A novel RARα/CAR-mediated mechanism for regulation of human organic solute transporter-β gene expression. Am J Physiol Gastrointest Liver Physiol 2014; 306:G154-62. [PMID: 24264050 PMCID: PMC3920074 DOI: 10.1152/ajpgi.00138.2013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/16/2013] [Indexed: 01/31/2023]
Abstract
The organic solute transporter-α/β (OSTα/β) is a heteromeric transporter that is essential for bile acid and sterol disposition and for the enterohepatic circulation. To better understand the mechanism underlying OST gene regulation, the effects of retinoic acid (RA) on OSTα/β gene expression were investigated. The results show a dose-dependent induction of OSTβ but not OSTα expression in both Huh7 and HepG2 cells by RA treatment. A novel functional RA receptor response element (RARE; so-called DR5) in the promoter of OSTβ gene was identified. The interaction of RARα/RXRα with the RARE was verified by electrophoretic mobility shift and chromatin immunoprecipitation assays and its functional importance by hOSTβ promoter activation in luciferase reporter assays. The studies demonstrated that the RARE is also a constitutive androstane receptor (CAR) binding site for OSTβ gene regulation. These results suggest that OSTβ is a target of both FXR-mediated (by binding to IR-1 element) and RARα- and CAR-mediated (by binding to DR5 element) gene regulation pathways. In summary, this study has uncovered a novel RARE (DR5) element in the promoter of OSTβ that binds RARα or CAR heterodimerized with RXRα and appears to function synergistically with the IR-1 element to provide maximal induction of OSTβ in response to RA. These findings demonstrate a role for RARα and CAR in controlling OSTβ expression levels.
Collapse
Affiliation(s)
- Shuhua Xu
- Children's Hospital Colorado, Univ. of Colorado School of Medicine, 13123 E. 16th Ave., B065 Aurora, CO 80045.
| | | | | |
Collapse
|
42
|
Kodama S, Negishi M. Sulfotransferase genes: regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metab Rev 2013; 45:441-9. [PMID: 24025090 DOI: 10.3109/03602532.2013.835630] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pregnane X receptor (PXR) and constitutive active/androstane receptor (CAR), members of the nuclear receptor superfamily, are two major xeno-sensing transcription factors. They can be activated by a broad range of lipophilic xenobiotics including therapeutics drugs. In addition to xenobiotics, endogenous compounds such as steroid hormones and bile acids can also activate PXR and/or CAR. These nuclear receptors regulate genes that encode enzymes and transporters that metabolize and excrete both xenobiotics and endobiotics. Sulfotransferases (SULTs) are a group of these enzymes and sulfate xenobiotics for detoxification. In general, inactivation by sulfation constitutes the mechanism to maintain homeostasis of endobiotics. Thus, deciphering the molecular mechanism by which PXR and CAR regulate SULT genes is critical for understanding the roles of SULTs in the alterations of physiological and pathophysiological processes caused by drug treatment or environmental exposures.
Collapse
Affiliation(s)
- Susumu Kodama
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan and
| | | |
Collapse
|
43
|
Modulation of xenobiotic receptors by steroids. Molecules 2013; 18:7389-406. [PMID: 23884115 PMCID: PMC3777271 DOI: 10.3390/molecules18077389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/13/2022] Open
Abstract
Nuclear receptors (NRs) are ligand-activated transcription factors that regulate the expression of their target genes. NRs play important roles in many human diseases, including metabolic diseases and cancer, and are therefore a key class of therapeutic targets. Steroids play important roles in regulating nuclear receptors; in addition to being ligands of steroid receptors, steroids (and their metabolites) also regulate other NRs, such as the pregnane X receptor and constitutive androstane receptor (termed xenobiotic receptors), which participate in steroid metabolism. Xenobiotic receptors have promiscuous ligand-binding properties, and their structurally diverse ligands include steroids and their metabolites. Therefore, steroids, their metabolism and metabolites, xenobiotic receptors, steroid receptors, and the respective signaling pathways they regulate have functional interactions. This review discusses these functional interactions and their implications for activities mediated by steroid receptors and xenobiotic receptors, focusing on steroids that modulate pathways involving the pregnane X receptor and constitutive androstane receptor. The emphasis of the review is on structure-function studies of xenobiotic receptors bound to steroid ligands.
Collapse
|
44
|
Choi EJ, Jang YJ, Cha EY, Shin JG, Lee SS. Identification and characterization of novel alternative splice variants of human constitutive androstane receptor in liver samples of Koreans and Caucasians. Drug Metab Dispos 2013; 41:888-96. [PMID: 23378627 DOI: 10.1124/dmd.112.049791] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Human constitutive androstane receptor (hCAR, NR1I3) is a member of the orphan nuclear receptor family and regulates the transcription of many drug-metabolizing enzymes and drug transporters. Previous studies have shown that the hCAR gene produces a number of different kinds of mRNA splicing variants (SVs) in non-Asian ethnicities. In the present study, we identified 18 hCAR SVs (SV1-SV18), including four novel SVs in Korean human livers. Among the four novel SVs, SV2 showed enhanced transactivation activity when cotransfected with CYP2B6 reporter gene, whereas other SVs were nonfunctional. When profiles of major hCAR SVs were compared among 30 livers from Korean patients and 20 livers from Caucasian patients, the relative composition of each SV showed interethnic variation as well as interindividual variation. The most predominant form of hCAR SV was not wild type, but either SV4 or SV7. The summed relative amounts of SV4 and SV7 ranged from 34.5 to 57.6% in the 30 Korean livers and from 47.2 to 82.6% in the 20 Caucasian livers, suggesting large interindividual variation. The mean relative amount of nonfunctional SV9 was significantly higher in Koreans (29.8%) than in Caucasians (12.8%). The mean relative amount of novel SV2 was 9.7% in Korean livers and 3.5% in Caucasian livers. Expression profiling of hCAR proteins in human livers also supported large interindividual variation in the expressional ratio of wild-type and SVs. Our results describe for the first time the direct comparison of hCAR SV profiles between Koreans and Caucasians. The functional relevance of these interindividual and interethnic variations of hCAR mRNA expression needs to be further characterized.
Collapse
Affiliation(s)
- Eun-Jung Choi
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Paik Hospital, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Abstract
The cytosolic sulfotransferases (SULTs) are a multigene family of enzymes that catalyze the transfer of a sulfonate group from the physiologic sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate, to a nucleophilic substrate to generate a polar product that is more amenable to elimination from the body. As catalysts of both xenobiotic and endogenous metabolism, the SULTs are major points of contact between the external and physiological environments, and modulation of SULT-catalyzed metabolism can not only affect xenobiotic disposition, but it can also alter endogenous metabolic processes. Therefore, it is not surprising that SULT expression is regulated by numerous members of the nuclear receptor (NR) superfamily that function as sensors of xenobiotics as well as endogenous molecules, such as fatty acids, bile acids, and oxysterols. These NRs include the peroxisome proliferator-activated receptors, pregnane X receptor, constitutive androstane receptor, vitamin D receptor, liver X receptors, farnesoid X receptor, retinoid-related orphan receptors, and estrogen-related receptors. This review summarizes current information about NR regulation of SULT expression. Because species differences in SULT subfamily composition and tissue-, sex-, development-, and inducer-dependent regulation are prominent, these differences will be emphasized throughout the review. In addition, because of the central role of the SULTs in cellular physiology, the effect of NR-mediated SULT regulation on physiological and pathophysiological processes will be discussed. Gaps in current knowledge that require further investigation are also highlighted.
Collapse
Affiliation(s)
- Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|
46
|
Xiao L, Wang J, Jiang M, Xie W, Zhai Y. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. VITAMINS AND HORMONES 2013; 91:243-58. [PMID: 23374719 DOI: 10.1016/b978-0-12-407766-9.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of lipid metabolism is central to energy homeostasis in higher multicellular organisms. Lipid homeostasis depends on factors that are able to transduce metabolic parameters into regulatory events representing the fundamental components of the general control system. Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions including energy metabolism. The constitutive androstane receptor (CAR, NR1I3), initially identified as a xenobiotic-sensing receptor, may also have roles in lipid homeostasis. The nuclear receptors liver X receptors (LXRs, NR1H2/3) and peroxisome proliferator-activated receptors (PPARs, NR1C) have been known for their roles in lipid metabolism. LXR is a sterol sensor that promotes lipogenesis, whereas PPARα controls a variety of genes in several pathways of lipid metabolism. This chapter focuses primarily on the role of CAR in lipid metabolism directly or through its cross talk with LXRs and PPARα.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Biomedicine Research Institute and College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Wallace BD, Redinbo MR. Xenobiotic-sensing nuclear receptors involved in drug metabolism: a structural perspective. Drug Metab Rev 2012; 45:79-100. [PMID: 23210723 DOI: 10.3109/03602532.2012.740049] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Xenobiotic compounds undergo a critical range of biotransformations performed by the phase I, II, and III drug-metabolizing enzymes. The oxidation, conjugation, and transportation of potentially harmful xenobiotic and endobiotic compounds achieved by these catalytic systems are significantly regulated, at the gene expression level, by members of the nuclear receptor (NR) family of ligand-modulated transcription factors. Activation of NRs by a variety of endo- and exogenous chemicals are elemental to induction and repression of drug-metabolism pathways. The master xenobiotic sensing NRs, the promiscuous pregnane X receptor and less-promiscuous constitutive androstane receptor are crucial to initial ligand recognition, jump-starting the metabolic process. Other receptors, including farnesoid X receptor, vitamin D receptor, hepatocyte nuclear factor 4 alpha, peroxisome proliferator activated receptor, glucocorticoid receptor, liver X receptor, and RAR-related orphan receptor, are not directly linked to promiscuous xenobiotic binding, but clearly play important roles in the modulation of metabolic gene expression. Crystallographic studies of the ligand-binding domains of nine NRs involved in drug metabolism provide key insights into ligand-based and constitutive activity, coregulator recruitment, and gene regulation. Structures of other, noncanonical transcription factors also shed light on secondary, but important, pathways of control. Pharmacological targeting of some of these nuclear and atypical receptors has been instituted as a means to treat metabolic and developmental disorders and provides a future avenue to be explored for other members of the xenobiotic-sensing NRs.
Collapse
Affiliation(s)
- Bret D Wallace
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
48
|
Zhang YKJ, Lu H, Klaassen CD. Expression of human CAR splicing variants in BAC-transgenic mice. Toxicol Sci 2012; 132:142-50. [PMID: 23152187 DOI: 10.1093/toxsci/kfs321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as well as 73-kbp upstream and 91-kbp downstream human genomic DNA into the genome of CAR-null mice. A series of experiments demonstrate that (1) the expression of major hCAR mRNA SVs, SV0-4, in livers of hCAR-TG mice is comparable to that in human livers; (2) the hCAR SVs are predominantly expressed in liver, which resembles the tissue distribution of CAR in humans, but diverges from that in mice; and (3) major hCAR mRNA SVs increase markedly in postnatal livers of hCAR-TG mice, which mimics the ontogeny of CAR mRNA in humans. Thus, the transgene likely contains all the functional regulatory elements controlling proper spatial and temporal expression of the hCAR gene. Moreover, hCAR-TG mice respond to the hCAR-specific agonist 6-(4-chlorophenyl)imidazo[2,1-b] [1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime instead of the mouse CAR agonist 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, as well as the common CAR activator, phenobarbital, suggesting that hCAR is fully functional in livers of transgenic mice. In summary, the hCAR-TG mice developed by this study represent a valid model for studying in vivo function and regulation of hCAR and its splicing variants.
Collapse
Affiliation(s)
- Yu-Kun Jennifer Zhang
- Department of Pharmacology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | |
Collapse
|
49
|
Independent activation of hepatitis B virus biosynthesis by retinoids, peroxisome proliferators, and bile acids. J Virol 2012; 87:991-7. [PMID: 23135717 DOI: 10.1128/jvi.01562-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the human hepatoma cell line HepG2, retinoic acid, clofibric acid, and bile acid treatment can only modestly increase hepatitis B virus (HBV) biosynthesis. Utilizing the human embryonic kidney cell line 293T, it was possible to demonstrate that the retinoid X receptor α (RXRα) plus its ligand can support viral biosynthesis independently of additional nuclear receptors. In addition, RXRα/peroxisome proliferator-activated receptor α (PPARα) and RXRα/farnesoid X receptor α (FXRα) heterodimeric nuclear receptors can also mediate ligand-dependent HBV transcription and replication when activated by clofibric acid and bile acid, respectively, independently of a requirement for the ligand-dependent activation of RXRα. These observations indicate that there are at least three possible modes of ligand-mediated activation of HBV transcription and replication existing within hepatocytes, suggesting that multiple independent mechanisms control viral production in the livers of infected individuals.
Collapse
|
50
|
Caiozzi G, Wong BS, Ricketts ML. Dietary modification of metabolic pathways via nuclear hormone receptors. Cell Biochem Funct 2012; 30:531-51. [PMID: 23027406 DOI: 10.1002/cbf.2842] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 04/07/2012] [Accepted: 05/09/2012] [Indexed: 12/17/2022]
Abstract
Nuclear hormone receptors (NHRs), as ligand-dependent transcription factors, have emerged as important mediators in the control of whole body metabolism. Because of the promiscuous nature of several members of this superfamily that have been found to bind ligand with lower affinity than the classical steroid NHRs, they consequently display a broader ligand selectivity. This promiscuous nature has facilitated various bioactive dietary components being able to act as agonist ligands for certain members of the NHR superfamily. By binding to these NHRs, bioactive dietary components are able to mediate changes in various metabolic pathways, including, glucose, cholesterol and triglyceride homeostasis among others. This review will provide a general overview of the nuclear hormone receptors that have been shown to be activated by dietary components. The physiological consequences of such receptor activation by these dietary components will then be discussed in more detail.
Collapse
Affiliation(s)
- Gianella Caiozzi
- Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada Reno, Reno, NV 89557, USA
| | | | | |
Collapse
|