1
|
Porell RN, Nag OK, Stewart MH, Susumu K, Oh E, Delehanty JB. Quantum Dot Erythropoietin Bioconjugates Enhance EPO-Receptor Clustering on Transfected Human Embryonic Kidney Cells. Bioconjug Chem 2025; 36:160-168. [PMID: 39836713 DOI: 10.1021/acs.bioconjchem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Erythropoietin (EPO)-induced cellular signaling through the EPO receptor (EPOR) is a fundamental pathway for the modulation of cellular behavior and activity. In our previous work, we showed in primary human astrocytes that the multivalent display of EPO on the surface of semiconductor quantum dots (QDs) mediates augmented JAK/STAT signaling, a concomitant 1.8-fold increase in the expression of aquaporin-4 (AQPN-4) channel proteins, and a 2-fold increase in the AQPN-4-mediated water transport activity. Our hypothesis is that this enhanced signaling involves the simultaneous ligation and clustering of EPOR by QD-EPO conjugates. Here, we utilized a human embryonic kidney (HEK 293T/17) cell line transfected with EPOR fused to enhanced green fluorescent protein (eGFP) to visualize EPOR clustering. We demonstrate that QDs displaying five copies of EPO (bearing a C-terminal 6-histidine tract) on the nanoparticle surface induce a 1.8-fold increase in EPOR clustering compared to monomeric EPO at the same concentration. Our findings confirm the critical role played by the multivalent display of EPO in mediating clustering of the EPOR. More generally, these results illustrate the capability of nanoparticle-growth factor bioconjugates to control the activity of cognate receptors and the important role played by multivalent display in the modulation of selective cellular delivery and signaling.
Collapse
Affiliation(s)
- Ryan N Porell
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Okhil K Nag
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Michael H Stewart
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - James B Delehanty
- Center for Biomolecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
2
|
Hsieh HH, Yao H, Ma Y, Zhang Y, Xiao X, Stephens H, Wajahat N, Chung SS, Xu L, Xu J, Rampal RK, Huang LJS. Epo-IGF1R cross talk expands stress-specific progenitors in regenerative erythropoiesis and myeloproliferative neoplasm. Blood 2022; 140:2371-2384. [PMID: 36054916 PMCID: PMC9837451 DOI: 10.1182/blood.2022016741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.
Collapse
Affiliation(s)
- Hsi-Hsien Hsieh
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Huiyu Yao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yue Ma
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yuannyu Zhang
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Xue Xiao
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Helen Stephens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Naureen Wajahat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephen S. Chung
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Jian Xu
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Raajit K. Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
3
|
Nakahara M, Ito H, Skinner JT, Lin Q, Tamosiuniene R, Nicolls MR, Keegan AD, Johns RA, Yamaji-Kegan K. The inflammatory role of dysregulated IRS2 in pulmonary vascular remodeling under hypoxic conditions. Am J Physiol Lung Cell Mol Physiol 2021; 321:L416-L428. [PMID: 34189964 PMCID: PMC8410109 DOI: 10.1152/ajplung.00068.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by progressive elevation of pulmonary vascular resistance, right ventricular failure, and ultimately death. We have shown previously that insulin receptor substrate 2 (IRS2), a molecule highly critical to insulin resistance and metabolism, has an anti-inflammatory role in Th2-skewed lung inflammation and pulmonary vascular remodeling. Here, we investigated the hypothesis that IRS2 has an immunomodulatory role in human and experimental PH. Expression analysis showed that IRS2 was significantly decreased in the pulmonary vasculature of patients with pulmonary arterial hypertension and in rat models of PH. In mice, genetic ablation of IRS2 enhanced the hypoxia-induced signaling pathway of Akt and Forkhead box O1 (FOXO1) in the lung tissue and increased pulmonary vascular muscularization, proliferation, and perivascular macrophage recruitment. Furthermore, mice with homozygous IRS2 gene deletion showed a significant gene dosage-dependent increase in pulmonary vascular remodeling and right ventricular hypertrophy in response to hypoxia. Functional studies with bone marrow-derived macrophages isolated from homozygous IRS2 gene-deleted mice showed that hypoxia exposure led to enhancement of the Akt and ERK signaling pathway followed by increases in the pro-PH macrophage activation markers, vascular endothelial growth factor-A and arginase 1. Our data suggest that IRS2 contributes to anti-inflammatory effects by regulating macrophage activation and recruitment, which may limit the vascular inflammation, remodeling, and right ventricular hypertrophy that are seen in PH pathology. Restoring the IRS2 pathway may be an effective therapeutic approach for the treatment of PH and right heart failure.
Collapse
Affiliation(s)
- Mayumi Nakahara
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Homare Ito
- Department of Anesthesiology, University of Maryland Baltimore, Baltimore, Maryland
| | - John T Skinner
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Qing Lin
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Rasa Tamosiuniene
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California
| | - Mark R Nicolls
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, California
| | - Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
- Baltimore Veterans Affairs Medical Center, Baltimore, Maryland
| | - Roger A Johns
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology, University of Maryland Baltimore, Baltimore, Maryland
| |
Collapse
|
4
|
Tomc J, Debeljak N. Molecular Pathways Involved in the Development of Congenital Erythrocytosis. Genes (Basel) 2021; 12:1150. [PMID: 34440324 PMCID: PMC8391844 DOI: 10.3390/genes12081150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023] Open
Abstract
Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.
Collapse
Affiliation(s)
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
5
|
Fenerich BA, Fernandes JC, Rodrigues Alves APN, Coelho-Silva JL, Scopim-Ribeiro R, Scheucher PS, Eide CA, Tognon CE, Druker BJ, Rego EM, Machado-Neto JA, Traina F. NT157 has antineoplastic effects and inhibits IRS1/2 and STAT3/5 in JAK2 V617F-positive myeloproliferative neoplasm cells. Signal Transduct Target Ther 2020; 5:5. [PMID: 32296029 PMCID: PMC6978524 DOI: 10.1038/s41392-019-0102-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/15/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022] Open
Abstract
Recent data indicate that IGF1R/IRS signaling is a potential therapeutic target in BCR-ABL1-negative myeloproliferative neoplasms (MPN); in this pathway, IRS2 is involved in the malignant transformation induced by JAK2V617F, and upregulation of IGF1R signaling induces the MPN phenotype. NT157, a synthetic compound designed as an IGF1R-IRS1/2 inhibitor, has been shown to induce antineoplastic effects in solid tumors. Herein, we aimed to characterize the molecular and cellular effects of NT157 in JAK2V617F-positive MPN cell lines (HEL and SET2) and primary patient hematopoietic cells. In JAK2V617F cell lines, NT157 decreased cell viability, clonogenicity, and cell proliferation, resulting in increases in apoptosis and cell cycle arrest in the G2/M phase (p < 0.05). NT157 treatment inhibited IRS1/2, JAK2/STAT, and NFκB signaling, and it activated the AP-1 complex, downregulated four oncogenes (CCND1, MYB, WT1, and NFKB1), and upregulated three apoptotic-related genes (CDKN1A, FOS, and JUN) (p < 0.05). NT157 induced genotoxic stress in a JAK2/STAT-independent manner. NT157 inhibited erythropoietin-independent colony formation in cells from polycythemia vera patients (p < 0.05). These findings further elucidate the mechanism of NT157 action in a MPN context and suggest that targeting IRS1/2 proteins may represent a promising therapeutic strategy for MPN.
Collapse
Affiliation(s)
- Bruna Alves Fenerich
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Cristina Fernandes
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Ana Paula Nunes Rodrigues Alves
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Juan Luiz Coelho-Silva
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Renata Scopim-Ribeiro
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Santos Scheucher
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Howard Hughes Medical Institute, Portland, OR, USA
| | - Eduardo Magalhães Rego
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil
- Department of Internal Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - João Agostinho Machado-Neto
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Fabiola Traina
- Department of Medical Images, Hematology, and Clinical Oncology, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil.
- Center for Cell-Based Therapy, Sao Paulo Research Foundation, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
6
|
Machado-Neto JA, Fenerich BA, Rodrigues Alves APN, Fernandes JC, Scopim-Ribeiro R, Coelho-Silva JL, Traina F. Insulin Substrate Receptor (IRS) proteins in normal and malignant hematopoiesis. Clinics (Sao Paulo) 2018; 73:e566s. [PMID: 30328953 PMCID: PMC6169455 DOI: 10.6061/clinics/2018/e566s] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
The insulin receptor substrate (IRS) proteins are a family of cytoplasmic proteins that integrate and coordinate the transmission of signals from the extracellular to the intracellular environment via transmembrane receptors, thus regulating cell growth, metabolism, survival and proliferation. The PI3K/AKT/mTOR and MAPK signaling pathways are the best-characterized downstream signaling pathways activated by IRS signaling (canonical pathways). However, novel signaling axes involving IRS proteins (noncanonical pathways) have recently been identified in solid tumor and hematologic neoplasm models. Insulin receptor substrate-1 (IRS1) and insulin receptor substrate-2 (IRS2) are the best-characterized IRS proteins in hematologic-related processes. IRS2 binds to important cellular receptors involved in normal hematopoiesis (EPOR, MPL and IGF1R). Moreover, the identification of IRS1/ABL1 and IRS2/JAK2V617F interactions and their functional consequences has opened a new frontier for investigating the roles of the IRS protein family in malignant hematopoiesis. Insulin receptor substrate-4 (IRS4) is absent in normal hematopoietic tissues but may be expressed under abnormal conditions. Moreover, insulin receptor substrate-5 (DOK4) and insulin receptor substrate-6 (DOK5) are linked to lymphocyte regulation. An improved understanding of the signaling pathways mediated by IRS proteins in hematopoiesis-related processes, along with the increased development of agonists and antagonists of these signaling axes, may generate new therapeutic approaches for hematological diseases. The scope of this review is to recapitulate and review the evidence for the functions of IRS proteins in normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- João Agostinho Machado-Neto
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
- Departamento de Farmacologia do Instituto de Ciencias Biomedicas da Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bruna Alves Fenerich
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Ana Paula Nunes Rodrigues Alves
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Jaqueline Cristina Fernandes
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Renata Scopim-Ribeiro
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Juan Luiz Coelho-Silva
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
| | - Fabiola Traina
- Departamento de Medicina Interna, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
7
|
de Melo Campos P, Machado-Neto JA, Eide CA, Savage SL, Scopim-Ribeiro R, da Silva Souza Duarte A, Favaro P, Lorand-Metze I, Costa FF, Tognon CE, Druker BJ, Olalla Saad ST, Traina F. IRS2 silencing increases apoptosis and potentiates the effects of ruxolitinib in JAK2V617F-positive myeloproliferative neoplasms. Oncotarget 2016; 7:6948-59. [PMID: 26755644 PMCID: PMC4872760 DOI: 10.18632/oncotarget.6851] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/01/2016] [Indexed: 01/07/2023] Open
Abstract
The recurrent V617F mutation in JAK2 (JAK2V617F) has emerged as the primary contributor to the pathogenesis of myeloproliferative neoplasms (MPN). However, the lack of complete response in most patients treated with the JAK1/2 inhibitor, ruxolitinib, indicates the need for identifying pathways that cooperate with JAK2. Activated JAK2 was found to be associated with the insulin receptor substrate 2 (IRS2) in non-hematological cells. We identified JAK2/IRS2 binding in JAK2V617F HEL cells, but not in the JAK2WT U937 cell line. In HEL cells, IRS2 silencing decreased STAT5 phosphorylation, reduced cell viability and increased apoptosis; these effects were enhanced when IRS2 silencing was combined with ruxolitinib. In U937 cells, IRS2 silencing neither reduced cell viability nor induced apoptosis. IRS1/2 pharmacological inhibition in primary MPN samples reduced cell viability in JAK2V617F-positive but not JAK2WT specimens; combination with ruxolitinib had additive effects. IRS2 expression was significantly higher in CD34+ cells from essential thrombocythemia patients compared to healthy donors, and in JAK2V617F MPN patients when compared to JAK2WT. Our data indicate that IRS2 is a binding partner of JAK2V617F in MPN. IRS2 contributes to increased cell viability and reduced apoptosis in JAK2-mutated cells. Combined pharmacological inhibition of IRS2 and JAK2 may have a potential clinical application in MPN.
Collapse
Affiliation(s)
- Paula de Melo Campos
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - João A Machado-Neto
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Samantha L Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Renata Scopim-Ribeiro
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| | - Adriana da Silva Souza Duarte
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Patricia Favaro
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Irene Lorand-Metze
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA.,Howard Hughes Medical Institute, Portland, Oregon, USA
| | - Sara T Olalla Saad
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil
| | - Fabiola Traina
- Hematology and Hemotherapy Center - University of Campinas/Hemocentro - Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, São Paulo, Brazil.,Current address: Department of Internal Medicine, University of São Paulo at Ribeirão Preto Medical School, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Machado-Neto JA, Favaro P, Lazarini M, da Silva Santos Duarte A, Archangelo LF, Lorand-Metze I, Costa FF, Saad STO, Traina F. Downregulation of IRS2 in myelodysplastic syndrome: A possible role in impaired hematopoietic cell differentiation. Leuk Res 2012; 36:931-5. [DOI: 10.1016/j.leukres.2012.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 11/30/2022]
|
9
|
Christensen B, Vendelbo MH, Krusenstjerna-Hafstrøm T, Madsen M, Pedersen SB, Jessen N, Møller N, Jørgensen JOL. Erythropoietin administration acutely stimulates resting energy expenditure in healthy young men. J Appl Physiol (1985) 2012; 112:1114-21. [PMID: 22241056 DOI: 10.1152/japplphysiol.01391.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment with recombinant human erythropoietin (rHuEpo) improves insulin sensitivity in patients with end-stage renal disease, and animal studies indicate that Epo increases fat oxidation. However, the metabolic effects of rHuEpo have never been experimentally studied in healthy humans. The aim was to investigate the effects of an acute rHuEpo bolus on substrate metabolism and insulin sensitivity in healthy young men. Ten healthy young men were studied in a single-blinded, randomized crossover design with a 2-wk washout period receiving 400 IU/kg rHuEpo or placebo. Substrate metabolism was evaluated by indirect calorimetry and tracer infusions, and insulin sensitivity by a hyperinsulinemic euglycemic clamp; and PCR and Western blotting measured protein expression and content, respectively. Resting energy expenditure (REE) increased significantly after rHuEpo [basal: 1,863.3 ± 67.2 (kcal/day) (placebo) vs. 2,041.6 ± 81.2 (rHuEpo), P < 0.001; clamp: 1,903.9 ± 68.3 (placebo) vs. 2,015.7 ± 114.4 (rHuEpo), P = 0.03], but the increase could not be explained by changes in mRNA levels of uncoupling protein 2 or 3. Fat oxidation in the basal state tended to be higher after rHuEpo but could not be explained by changes in mRNA levels of CPT1 and PPARα or AMPK and ACC protein phosphorylation. Insulin-stimulated glucose disposal, glucose metabolism, and whole body and forearm protein metabolism did not change significantly in response to rHuEpo. In conclusion, a single injection of rHuEpo acutely increases REE in healthy human subjects. This calorigenic effect is not accompanied by distinct alterations in the pattern of substrate metabolism or insulin sensitivity.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
AL-BADER MD, MALATIALI SA, REDZIC ZB. Expression of Estrogen Receptor α and β in Rat Astrocytes in Primary Culture: Effects of Hypoxia and Glucose Deprivation. Physiol Res 2011; 60:951-60. [DOI: 10.33549/physiolres.932167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Estrogen replacement therapy could play a role in the reduction of injury associated with cerebral ischemia in vivo, which could be, at least partially, a consequence of estrogen influence of glutamate buffering by astrocytes during hypoxia/ischemia. Estrogen exerts biological effects through interaction with its two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), which are both expressed in astrocytes. This study explored effects of hypoxia and glucose deprivation (HGD), alone or followed by 1 h recovery, on ERα and ERβ expression in primary rat astrocyte cultures following 1 h exposure to: a) 5 % CO2 in air (control group-CG); b) 2 % O2/5 % CO2 in N2 with glucose deprivation (HGD group-HGDG); or c) the HGDG protocol followed by 1 h CG protocol (recovery group-RG). ERα mRNA expression decreased in HGDG. At the protein level, full-length ERα (67 kDa) and three ERα-immunoreactive protein bands (63, 60 and 52 kDa) were detected. A significant decrease in the 52 kDa band was seen in HGDG, while a significant decrease in expression of the full length ERα was seen in the RG. ERβ mRNA and protein expression (a 54 kDa single band) did not change. The observed decrease in ERα protein may limit estrogen-mediated signalling in astrocytes during hypoxia and recovery.
Collapse
Affiliation(s)
| | | | - Z. B. REDZIC
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait
| |
Collapse
|
11
|
Kerr WG, Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 2011; 3:249-57. [PMID: 21422750 DOI: 10.1159/000323920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022] Open
Abstract
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Collapse
Affiliation(s)
- William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
12
|
Abstract
This is a Minireview covering landmarks or milestones in the development of erythropoietin (EPO). Thirty-nine landmark advances have been identified, which cover the period 1863-2003. Several reports are included that directly support these original landmark advances. This Minireview also updates some of the advances in EPO research since my last Minireview update on EPO published in this journal in 2003. The areas of EPO research updated are: sites of production; purification, assay and standardization; regulation; action; use in anemias; extraerythropoietic actions; adverse effects; and blood doping. The new reports on the use of EPO in the therapy of myocardial infarction; stroke and other neurological diseases; diabetic retinopathy and other retinal diseases are also covered.
Collapse
Affiliation(s)
- James W Fisher
- Department of Pharmacology, Tulane University, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
13
|
Abstract
SHIP1 is at the nexus of intracellular signaling pathways in immune cells that mediate bone marrow (BM) graft rejection, production of inflammatory and immunosuppressive cytokines, immunoregulatory cell formation, the BM niche that supports development of the immune system, and immune cancers. This review summarizes how SHIP participates in normal immune physiology or the pathologies that result when SHIP is mutated. This review also proposes that SHIP can have either inhibitory or activating roles in cell signaling that are determined by whether signaling pathways distal to PI3K are promoted by SHIP's substrate (PI(3,4,5)P(3) ) or its product (PI(3,4)P(2) ). This review also proposes the "two PIP hypothesis" that postulates that both SHIP's product and its substrate are necessary for a cancer cell to achieve and sustain a malignant state. Finally, due to the recent discovery of small molecule antagonists and agonists for SHIP, this review discusses potential therapeutic settings where chemical modulation of SHIP might be of benefit.
Collapse
Affiliation(s)
- William G Kerr
- SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
14
|
Boucher M, Pesant S, Lei YH, Nanton N, Most P, Eckhart AD, Koch WJ, Gao E. Simultaneous administration of insulin-like growth factor-1 and darbepoetin alfa protects the rat myocardium against myocardial infarction and enhances angiogenesis. Clin Transl Sci 2010; 1:13-20. [PMID: 20443814 DOI: 10.1111/j.1752-8062.2008.00008.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Recent studies have shown that insulin growth factor-1 (IGF-1) and either erythropoietin (EPO) or the long-acting EPO analog Darbepoetin alfa (DA) protect the heart against ischemia/reperfusion (I/R) and myocardial infarction (MI). The present study examined the cardioprotective effect of simultaneous treatments with IGF-1 and DA in these models of cardiac injury. Rats were subjected to I/R or MI and were treated with IGF-1, DA, and a combination of IGF-1 and DA, or vehicle treatment. IGF-1 and DA treatments imparted similar protective effect by reducing infarct size. Moreover, these treatments led to improvement of cardiac function after I/R or MI compared to vehicle. In the reperfused heart, apoptosis was reduced with either or both IGF-1 and DA treatments as measured by reduced TUNEL staining and caspase-3 activity. In addition, after MI, treatment with IGF-1 or DA significantly induced angiogenesis. This angiogenic effect was enhanced significantly when IGF-1 and DA were given simultaneously compared to vehicle or either agents alone. These data indicate simultaneous pharmacological treatments with IGF-1 and DA protect the heart against I/R and MI injuries. This protection results in reduced infarct size and improved cardiac function. Moreover, this treatment reduces apoptosis and enhances angiogenesis in the ischemic heart.
Collapse
Affiliation(s)
- Matthieu Boucher
- George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Center for Translational Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Cmarik J, Ruscetti S. Friend Spleen Focus-Forming Virus Activates the Tyrosine Kinase sf-Stk and the Transcription Factor PU.1 to Cause a Multi-Stage Erythroleukemia in Mice. Viruses 2010; 2:2235-2257. [PMID: 21994618 PMCID: PMC3185572 DOI: 10.3390/v2102235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 09/11/2010] [Accepted: 09/16/2010] [Indexed: 12/25/2022] Open
Abstract
Hematological malignancies in humans typically involve two types of genetic changes: those that promote hematopoietic cell proliferation and survival (often the result of activation of tyrosine kinases) and those that impair hematopoietic cell differentiation (often the result of changes in transcription factors). The multi-stage erythroleukemia induced in mice by Friend spleen focus-forming virus (SFFV) is an excellent animal model for studying the molecular basis for both of these changes. Significant progress has been made in understanding the molecular basis for the multi-stage erythroleukemia induced by Friend SFFV. In the first stage of leukemia, the envelope protein encoded by SFFV interacts with and activates the erythropoietin (Epo) receptor and the receptor tyrosine kinase sf-Stk in erythroid cells, causing their Epo-independent proliferation, differentiation and survival. In the second stage, SFFV integration into the Sfpi1 locus activates the myeloid transcription factor PU.1, blocking erythroid cell differentiation, and in conjunction with the loss of p53 tumor suppressor activity, results in the outgrowth of malignant cells. In this review, we discuss the current level of understanding of how SFFV alters the growth and differentiation of erythroid cells and results in the development of erythroleukemia. Our knowledge of how SFFV causes erythroleukemia in mice may give us clues as to how the highly related human retrovirus XMRV causes malignancies in humans.
Collapse
Affiliation(s)
| | - Sandra Ruscetti
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-846-5740; Fax: +1-301-846-6164
| |
Collapse
|
16
|
Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ. The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008; 67:39-61. [PMID: 18434185 DOI: 10.1016/j.critrevonc.2008.03.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 02/25/2008] [Accepted: 03/19/2008] [Indexed: 01/27/2023] Open
Abstract
The hormone erythropoietin (EPO) is essential for the survival, proliferation and differentiation of the erythrocytic progenitors. The EPO receptor (EPO-R) of erythrocytic cells belongs to the cytokine class I receptor family and signals through various protein kinases and STAT transcription factors. The EPO-R is also expressed in many organs outside the bone marrow, suggesting that EPO is a pleiotropic anti-apoptotic factor. The controversial issue as to whether the EPO-R is functional in tumor tissue is critically reviewed. Importantly, most studies of EPO-R detection in tumor tissue have provided falsely positive results because of the lack of EPO-R specific antibodies. However, endogenous EPO appears to be necessary to maintain the viability of endothelial cells and to promote tumor angiogenesis. Although there is no clinical proof that the administration of erythropoiesis stimulating agents (ESAs) promotes tumor growth and mortality, present recommendations are that (i) ESAs should be administered at the lowest dose sufficient to avoid the need for red blood cell transfusions, (ii) ESAs should not be used in patients with active malignant disease not receiving chemotherapy or radiotherapy, (iii) ESAs should be discontinued following the completion of a chemotherapy course, (iv) the target Hb should be 12 g/dL and not higher and (v) the risks of shortened survival and tumor progression have not been excluded when ESAs are dosed to target Hb <12 g/dL.
Collapse
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany.
| | | | | | | |
Collapse
|
17
|
Gao E, Boucher M, Chuprun JK, Zhou RH, Eckhart AD, Koch WJ. Darbepoetin alfa, a long-acting erythropoietin analog, offers novel and delayed cardioprotection for the ischemic heart. Am J Physiol Heart Circ Physiol 2007; 293:H60-8. [PMID: 17384131 DOI: 10.1152/ajpheart.00227.2007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies from our lab and others have shown that the hematopoietic cytokine erythropoietin (EPO) can protect the heart from ischemic damage in a red blood cell-independent manner. Here we examined any protective effects of the long-acting EPO analog darbepoetin alfa (DA) in a rat model of ischemia-reperfusion (I/R) injury. Rats were subjected to 30-min ischemia followed by 72-h reperfusion. In a dose-response study, DA (2, 7, 11, and 30 μg/kg) or vehicle was administered as a single bolus at the start of ischemia. To determine the time window of potential cardioprotection, a single high dose of DA (30 μg/kg) was given at either the initiation or the end of ischemia or at 1 or 24 h after reperfusion. After 3 days, cardiac function and infarct size were assessed. Acute myocyte apoptosis was quantified by TUNEL staining on myocardial sections and by caspase-3 activity assays. DA significantly reduced infarct size from 32.8 ± 3.5% (vehicle) to 11.0 ± 3.3% in a dose-dependent manner, while there was no difference in ischemic area between groups. Treatment with DA as late as 24 h after the beginning of reperfusion still demonstrated a significant reduction in infarct size (17.0 ± 1.6%). Consistent with infarction data, DA improved in vivo cardiac reserve compared with vehicle. Finally, DA significantly decreased myocyte apoptosis and caspase-3 activity after I/R. These data indicate that DA protects the heart against I/R injury and improves cardiac function, apparently through a reduction of myocyte apoptosis. Of clinical importance pointing toward a relevant therapeutic utility, we report that even if given 24 h after I/R injury, DA can significantly protect the myocardium.
Collapse
Affiliation(s)
- Erhe Gao
- Center for Translational Medicine, George Zallie and Family Laboratory for Cardiovascular Gene Therapy, Thomas Jefferson University, 1025 Walnut Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
18
|
Geering B, Cutillas PR, Vanhaesebroeck B. Regulation of class IA PI3Ks: is there a role for monomeric PI3K subunits? Biochem Soc Trans 2007; 35:199-203. [PMID: 17371237 DOI: 10.1042/bst0350199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Class IA PI3Ks (phosphoinositide 3-kinases) consist of a p110 catalytic subunit bound to one of five regulatory subunits, known as p85s. Under unstimulated conditions, p85 stabilizes the labile p110 protein, while inhibiting its catalytic activity. Recruitment of the p85–p110 complex to receptors and adaptor proteins via the p85 SH2 (Src homology 2) domains alleviates this inhibition, leading to PI3K activation and production of PIP3 (phosphatidylinositol 3,4,5-trisphosphate). Four independent p85 KO (knockout) mouse lines have been generated. Remarkably, PI3K signalling in insulin-sensitive tissues of these mice is increased. The existence of p110-free p85 in insulin-responsive cells has been invoked to explain this observation. Such a monomeric p85 would compete with heterodimeric p85–p110 for pTyr (phosphotyrosine) recruitment, and thus repress PI3K activity. Reduction in the pool of p110-free p85 in p85 KO mice was thought to allow recruitment of functional heterodimeric p85–p110, leading to increased PI3K activity. However, recent results indicate that monomeric p85, like p110, is unstable in cells. Moreover, overexpressed free p85 does not necessarily compete with heterodimeric p85–p110 for receptor binding. Using a variety of approaches, we have observed a 1:1 ratio between the p85 and p110 subunits in murine cell lines and primary tissues. Alternative models to explain the increase in PI3K signalling in insulin-responsive cells of p85 KO mice, based on possible effects of p85 deletion on phosphatases acting on PIP3, are discussed.
Collapse
Affiliation(s)
- B Geering
- Ludwig Institute for Cancer Research, London, UK
| | | | | |
Collapse
|
19
|
Meyer L, Deau B, Forejtníková H, Duménil D, Margottin-Goguet F, Lacombe C, Mayeux P, Verdier F. beta-Trcp mediates ubiquitination and degradation of the erythropoietin receptor and controls cell proliferation. Blood 2007; 109:5215-22. [PMID: 17327410 DOI: 10.1182/blood-2006-10-055350] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Control of intensity and duration of erythropoietin (Epo) signaling is necessary to tightly regulate red blood cell production. We have recently shown that the ubiquitin/proteasome system plays a major role in the control of Epo-R signaling. Indeed, after Epo stimulation, Epo-R is ubiquitinated and its intracellular part is degraded by the proteasome, preventing further signal transduction. The remaining part of the receptor and associated Epo are internalized and degraded by the lysosomes. We show that beta-Trcp is responsible for Epo-R ubiquitination and degradation. After Epo stimulation, beta-Trcp binds to the Epo-R. This binding, like Epo-R ubiquitination, requires Jak2 activation. The Epo-R contains a typical DSG binding sequence for beta-Trcp that is highly conserved among species. Interestingly, this sequence is located in a region of the Epo-R that is deleted in patients with familial polycythemia. Mutation of the serine residue of this motif to alanine (Epo-RS462A) abolished beta-Trcp binding, Epo-R ubiquitination, and degradation. Epo-RS462A activation was prolonged and BaF3 cells expressing this receptor are hypersensitive to Epo, suggesting that part of the hypersensitivity to Epo in familial polycythemia could be the result of the lack of beta-Trcp recruitment to the Epo-R.
Collapse
Affiliation(s)
- Laure Meyer
- Institut Cochin, Département d'Hématologie, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Wojchowski DM, Menon MP, Sathyanarayana P, Fang J, Karur V, Houde E, Kapelle W, Bogachev O. Erythropoietin-dependent erythropoiesis: New insights and questions. Blood Cells Mol Dis 2006; 36:232-8. [PMID: 16524748 DOI: 10.1016/j.bcmd.2006.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 01/11/2006] [Indexed: 11/19/2022]
Abstract
Committed erythroid progenitor cells require exposure to erythropoietin (Epo) for their survival and for their quantitatively regulated transition to red blood cells. With regard to Epo signal transduction mechanisms, much has been learned from analyses in cell line models, fetal liver or spleen-derived primary erythroblasts and human CD34pos progenitor cells from cord blood or mobilized bone marrow. Presently, we have developed an ex vivo system that efficiently supports the expansion and development of murine adult bone-marrow-derived erythroid progenitor cells. This system is outlined together with its demonstrated utility in studying (for the first time) the signaling capacities of two knocked-in phosphotyrosine-deficient Epo receptor alleles (EpoR-H and EpoR-HM). Ways in which these studies advance an understanding of core Epo signal transduction events are outlined. Also introduced are two new putative negative regulators of Epo-dependent erythropoiesis, DYRK3 and DAPK2 kinases.
Collapse
Affiliation(s)
- Don M Wojchowski
- Maine Medical Center Research Institute and Program in Stem Cell Biology and Regenerative Medicine, ME 04074-7205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood 2005; 107:2662-72. [PMID: 16332976 PMCID: PMC1895369 DOI: 10.1182/blood-2005-02-0684] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Critical signals for erythroblast formation are transduced by activated, tyrosine-phosphorylated erythropoietin receptor (EpoR) complexes. Nonetheless, steady-state erythropoiesis is supported effectively by EpoR alleles that are deficient in cytoplasmic phosphotyrosine sites. To better define core EpoR action mechanisms, signaling capacities of minimal PY-null (EpoR-HM) and PY343-retaining (EpoR-H) alleles were analyzed for the first time in bone marrow-derived erythroblasts. Jak2 activation via each allele was comparable. Stat5 (and several Stat5-response genes) were induced via EpoR-H but not via EpoR-HM. Stat1 and Stat3 activation was nominal for all EpoR forms. For both EpoR-HM and EpoR-H, Akt and p70S6-kinase activation was decreased multifold, and JNK activation was minimal. ERKs, however, were hyperactivated uniquely via EpoR-HM. In vivo, Epo expression in EpoR-HM mice was elevated, while Epo-induced reticulocyte production was diminished. In vitro, EpoR-HM erythroblast maturation also was attenuated (based on DNA content, forward-angle light scatter, and hemoglobinization). These EpoR-HM-specific defects were corrected not only upon PY343 site restoration in EpoR-H, but also upon MEK1,2 inhibition. Core EpoR PY site-independent signals for erythroblast formation therefore appear to be Stat5, Stat1, Stat3, p70S6-kinase, and JNK independent, but ERK dependent. Wild-type signaling capacities, however, depend further upon signals provided via an EpoR/PY343/Stat5 axis.
Collapse
Affiliation(s)
- Madhu P Menon
- Program in Stem Cell Biology, Maine Medical Center Research Institute, 81 Research Dr, Scarborough, ME 04074, USA
| | | | | |
Collapse
|
22
|
Nyga R, Pecquet C, Harir N, Gu H, Dhennin-Duthille I, Régnier A, Gouilleux-Gruart V, Lassoued K, Gouilleux F. Activated STAT5 proteins induce activation of the PI 3-kinase/Akt and Ras/MAPK pathways via the Gab2 scaffolding adapter. Biochem J 2005; 390:359-66. [PMID: 15833084 PMCID: PMC1188271 DOI: 10.1042/bj20041523] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The active forms of STAT5A (signal transducer and activator of transcription 5A) and STAT5B are able to relieve the cytokine dependence of haematopoietic cells and to induce leukaemia in mice. We have demonstrated previously that activation of the PI3K (phosphoinositide 3-kinase) signalling cascade plays a major role in cell growth and survival induced by these proteins. Interaction between STAT5 and p85, the regulatory subunit of the PI3K, has been suggested to be required for this activation. We show in the present study that the scaffolding protein Gab2 [Grb2 (growth-factor-receptor-bound protein 2)-associated binder-2] is an essential component of this interaction. Gab2 is persistently tyrosine-phosphorylated in Ba/F3 cells expressing caSTAT5 (constitutively activated STAT5), independent of JAK2 (Janus kinase 2) activation where it interacts with STAT5, p85 and Grb2, but not with Shp2 [SH2 (Src homology 2)-domain-containing tyrosine phosphatase] proteins. Interaction of STAT5 with Gab2 was also observed in Ba/F3 cells stimulated with interleukin-3 or expressing the oncogenic fusion protein Tel-JAK2. The MAPKs (mitogen-activated protein kinases) ERK1 (extracellular-signal-regulated kinase 1) and ERK2 were constitutively activated in the caSTAT5-expressing cells and were found to be required for caSTAT5-induced cell proliferation. Overexpression of Gab2-3YF, a mutant of Gab2 incapable of binding PI3K, inhibited the proliferation and survival of caSTAT5-expressing cells as well as ERK1/2 and Akt/protein kinase B phosphorylation. Taken together, our results indicate that Gab2 is required for caSTAT5-induced cell proliferation by regulating both the PI3K/Akt and the Ras/MAPK pathways.
Collapse
Affiliation(s)
- Rémy Nyga
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Christian Pecquet
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Noria Harir
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Haihua Gu
- †Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, U.S.A
| | - Isabelle Dhennin-Duthille
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Aline Régnier
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Valérie Gouilleux-Gruart
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Kaïss Lassoued
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
| | - Fabrice Gouilleux
- *INSERM E0351, Laboratoire d'Immunologie, Faculté de Médecine, Université de Picardie Jule Verne, 3 rue des Louvels, 80036 Amiens, France
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Zhang J, Lodish HF. Identification of K-ras as the major regulator for cytokine-dependent Akt activation in erythroid progenitors in vivo. Proc Natl Acad Sci U S A 2005; 102:14605-10. [PMID: 16203968 PMCID: PMC1253609 DOI: 10.1073/pnas.0507446102] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite intensive investigation, controversial results have been obtained concerning the precise signaling pathway(s) regulated by K-ras in different cell types. We show that in primary fetal liver erythroid progenitors, erythropoietin activates all three Ras isoforms, but preferentially N- and K-ras. In K-ras(-/-) fetal liver cells (FLC), erythropoietin- or stem cell factor-dependent Akt activation is greatly reduced, whereas other pathways including Stat5 and p44/p42 MAP kinase are activated normally. We further studied the effects of reduced cytokine-dependent Akt activation in erythroid differentiation. We find that freshly isolated K-ras(-/-) FLC show an approximately 7-fold increase of apoptosis and delayed erythroid differentiation, but only at the stage of erythroid progenitors and very early erythroblasts. When K-ras(-/-) erythroid progenitors are cultured in vitro, there is a significant delay in erythroid differentiation but little increase in apoptosis. Furthermore, we show that partial pharmacologic inhibition of the phosphatidylinositol 3-kinase/Akt pathway in wild-type erythroid progenitors leads to a delay in erythroid differentiation similar to that observed in K-ras(-/-) FLC. Taken together, our data identify K-ras as the major regulator for cytokine-dependent Akt activation, which is important for erythroid differentiation in vivo.
Collapse
Affiliation(s)
- Jing Zhang
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
24
|
Montoye T, Lemmens I, Catteeuw D, Eyckerman S, Tavernier J. A systematic scan of interactions with tyrosine motifs in the erythropoietin receptor using a mammalian 2-hybrid approach. Blood 2005; 105:4264-71. [PMID: 15644415 DOI: 10.1182/blood-2004-07-2733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractSignaling via the erythropoietin receptor (EpoR) depends on the interaction of several proteins with phosphorylated tyrosine-containing motifs in its cytosolic domain. Detailed mapping of these interactions is required for an accurate insight into Epo signaling. We recently developed a mammalian protein-protein interaction trap (MAPPIT), a cytokine receptor-based 2-hybrid method that operates in intact Hek293-T mammalian cells. As baits, we used intracellular segments of the EpoR containing 1 or 2 tyrosines. Several known signaling molecules, including cytokine-inducible SH2-containing protein (CIS), suppressor of cytokine signaling-2 (SOCS2), phosphatidylinositol 3′-kinase (PI3-K), phospholipase C-γ (PLC-γ), and signal transducer and activator of transcription 5 (STAT5) were used as prey. We also extended the MAPPIT method to enable interaction analysis with wild-type EpoR. In this relay MAPPIT approach, instead of using isolated EpoR fragments as bait, we used the full-length EpoR itself as a “receptor bait.” Finally, we introduced MAPPIT in the erythroleukemic TF-1 cell line, which is a more natural setting of the EpoR. With these strategies several known interactions with the EpoR were analyzed and evidence for new interactions was obtained.
Collapse
Affiliation(s)
- Tony Montoye
- Flanders Interiniversity Institute for Biotechnology, Department of Medical Protein Research, Faculty of Medicine and Health Sciences, Ghent University, Belgium
| | | | | | | | | |
Collapse
|
25
|
Walrafen P, Verdier F, Kadri Z, Chrétien S, Lacombe C, Mayeux P. Both proteasomes and lysosomes degrade the activated erythropoietin receptor. Blood 2005; 105:600-8. [PMID: 15358619 DOI: 10.1182/blood-2004-03-1216] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
AbstractActivation of the erythropoietin receptor (EpoR) after Epo binding is very transient because of the rapid activation of strong down-regulation mechanisms that quickly decrease Epo sensitivity of the cells. Among these down-regulation mechanisms, receptor internalization and degradation are probably the most efficient. Here, we show that the Epo receptor was rapidly ubiquitinated after ligand stimulation and that the C-terminal part of the Epo receptor was degraded by the proteasomes. Both ubiquitination and receptor degradation by the proteasomes occurred at the cell surface and required Janus kinase 2 (Jak2) activation. Moreover, Epo-EpoR complexes were rapidly internalized and targeted to the lysosomes for degradation. Neither Jak2 nor proteasome activities were required for internalization. In contrast, Jak2 activation was necessary for lysosome targeting of the Epo-EpoR complexes. Blocking Jak2 with the tyrphostin AG490 led to some recycling of internalized Epo-Epo receptor complexes to the cell surface. Thus, activated Epo receptors appear to be quickly degraded after ubiquitination by 2 proteolytic systems that proceed successively: the proteasomes remove part of the intracellular domain at the cell surface, and the lysosomes degrade the remaining part of the receptor-hormone complex. The efficiency of these processes probably explains the short duration of intracellular signaling activated by Epo.
Collapse
Affiliation(s)
- Pierre Walrafen
- Département d'Hématologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Henry MK, Nimbalkar D, Hohl RJ, Quelle FW. Cytokine-induced phosphoinositide 3-kinase activity promotes Cdk2 activation in factor-dependent hematopoietic cells. Exp Cell Res 2004; 299:257-66. [PMID: 15302592 DOI: 10.1016/j.yexcr.2004.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/05/2004] [Indexed: 02/06/2023]
Abstract
Cytokine growth factors regulate the proliferation of hematopoietic cells through activation of several distinct signaling pathways. We have assessed the contribution of phosphoinositide 3-kinase (PI3K) pathways to erythropoietin (Epo) and interleukin (IL)-3-induced proliferation of factor-dependent hematopoietic cells. Lack of cytokine-induced PI3K activation caused by receptor mutation or treatment with a specific inhibitor (LY294002) did not prevent proliferation but resulted in an increase in the G1 phase content and doubling time of cell cultures. The reduced proliferation of cells lacking cytokine-induced PI3K activity could be partially restored by overexpressing constitutively active Akt. Inhibition of PI3K activity decreased the proportion of cytokine-treated cells entering S phase and was associated with a significant reduction in cytokine-induced phosphorylation and activation of Cdk2. By contrast, Cdk4 activity and p27(Kip1) expression were not significantly altered by inhibition of PI3K. Together, these observations identify a mechanism through which cytokine-activated PI3K contributes to G1 to S phase progression in factor-dependent hematopoietic cells by enhancing the phosphorylation and activation of Cdk2.
Collapse
Affiliation(s)
- Matthew K Henry
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
27
|
Van Maerken T, Hunninck K, Callewaert L, Benoit Y, Laureys G, Verlooy J. Familial and congenital polycythemias: a diagnostic approach. J Pediatr Hematol Oncol 2004; 26:407-16. [PMID: 15218413 DOI: 10.1097/00043426-200407000-00002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rare absolute polycythemias with an innate and hereditary character can be grouped together under the heading "familial and congenital polycythemias" (FCPs). Primary forms, due to an intrinsic defect in the erythroid progenitor cells, and secondary forms, resulting from extrinsic factors such as an elevated erythropoietin level, have both been reported. Despite the widely divergent characteristics of the different FCPs, the range of possible diagnoses is much more restricted and the distribution of disorders markedly different compared with polycythemias in general. Therefore, in FCP, one can argue against following the algorithm of the Polycythemia Vera Study Group for the evaluation of an elevated hematocrit level, following instead a more specific algorithm. In this article the authors describe a child with primary FCP, review the different FCPs, and propose an adapted work-up scheme.
Collapse
Affiliation(s)
- Tom Van Maerken
- Department of Pediatric Hematology-Oncology, University Hospital Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
28
|
Kalesnikoff J, Sly LM, Hughes MR, Büchse T, Rauh MJ, Cao LP, Lam V, Mui A, Huber M, Krystal G. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol 2004; 149:87-103. [PMID: 12692707 DOI: 10.1007/s10254-003-0016-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphatidylinositol (PI)-3 kinase (PI3K) pathway plays a central role in regulating many biological processes via the generation of the key second messenger PI-3,4,5-trisphosphate (PI-3,4,5-P3). This membrane-associated phospholipid, which is rapidly, albeit transiently, synthesized from PI-4,5-P2 by PI3K in response to a diverse array of extracellular stimuli, attracts pleckstrin homology (PH) domain-containing proteins to membranes to mediate its many effects. To ensure that the activation of this pathway is appropriately suppressed/terminated, the ubiquitously expressed tumor suppressor PTEN hydrolyzes PI-3,4,5-P3 back to PI-4,5-P2 while the 145-kDa hemopoietic-restricted SH2-containing inositol 5'- phosphatase, SHIP (also known as SHIP1), the 104-kDa stem cell-restricted SHIP (sSHIP) and the more widely expressed 150-kDa SHIP2 hydrolyze PI-3,4,5-P3 to PI-3,4-P2. In this review we will concentrate on the properties of the three SHIPs, with special emphasis being placed on the role that SHIP plays in cytokine-induced signaling.
Collapse
Affiliation(s)
- J Kalesnikoff
- The Terry Fox Laboratory, BC Cancer Agency, Vancouver, V5Z 1L3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huddleston H, Tan B, Yang FC, White H, Wenning MJ, Orazi A, Yoder MC, Kapur R, Ingram DA. Functional p85alpha gene is required for normal murine fetal erythropoiesis. Blood 2003; 102:142-5. [PMID: 12623844 DOI: 10.1182/blood-2002-10-3245] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro studies suggest that activation of class IA phosphatidylinositol 3 (PI-3) kinase is necessary for normal erythroid cell development. However, when class IA PI-3 kinase-deficient mice were generated by a targeted deletion of the p85alpha regulatory subunit, fetal erythropoiesis was reportedly unaffected. Given the discrepancies between these studies, we performed a more detailed in vivo analysis of class IA PI-3 kinase-deficient embryos. Day-14.5 p85alpha-/- embryos are pale with a marked reduction of mature erythrocytes in their peripheral blood. Further, the absolute number and frequency of both early (erythroid burst-forming unit [BFU-E]) and late erythroid progenitors (erythroid colony-forming unit [CFU-E]) are reduced in p85alpha-/- fetal livers compared with wild-type controls, which is associated with reduced proliferation. Taken together, these data establish an important role for p85alpha and class IA PI-3 kinase in regulating the development of both early and late erythroid progenitors in fetal liver.
Collapse
Affiliation(s)
- Hannah Huddleston
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut St, R4/470, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Although first proposed to be the primary regulator of platelet production 45 years ago, the gene for thrombopoietin was cloned only within the last decade. Since then, our understanding of megakaryocyte and platelet production has increased substantially, and it is now appreciated that in addition to its critical role in regulating thrombopoiesis, the hormone affects multiple aspects of hematopoiesis, including playing a non-redundant role in stem cell survival, self-renewal and expansion. In addition to this greater physiological understanding of thrombopoietin biology, the molecular mechanisms by which the hormone affects cell survival and proliferation are coming under increased scrutiny. At least four signaling pathways have been identified that play important and non-overlapping roles in stem cell and megakaryocyte growth and development, potentially providing new strategies to therapeutically intervene in hematopoiesis. This review will focus on our current understanding of these processes.
Collapse
Affiliation(s)
- K Kaushansky
- Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
31
|
Bouscary D, Pene F, Claessens YE, Muller O, Chrétien S, Fontenay-Roupie M, Gisselbrecht S, Mayeux P, Lacombe C. Critical role for PI 3-kinase in the control of erythropoietin-induced erythroid progenitor proliferation. Blood 2003; 101:3436-43. [PMID: 12506011 DOI: 10.1182/blood-2002-07-2332] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The production of red blood cells is tightly regulated by erythropoietin (Epo). The phosphoinositide 3-kinase (PI 3-kinase) pathway was previously shown to be activated in response to Epo. We studied the role of this pathway in the control of Epo-induced survival and proliferation of primary human erythroid progenitors. We show that phosphoinositide 3 (PI 3)-kinase associates with 4 tyrosine-phosphorylated proteins in primary human erythroid progenitors, namely insulin receptor substrate-2 (IRS2), Src homology 2 domain-containing inositol 5'-phosphatase (SHIP), Grb2-associated binder-1 (Gab1), and the Epo receptor (EpoR). Using different in vitro systems, we demonstrate that 3 alternative pathways independently lead to Epo-induced activation of PI 3-kinase and phosphorylation of its downstream effectors, Akt, FKHRL1, and P70S6 kinase: through direct association of PI 3-kinase with the last tyrosine residue (Tyr479) of the Epo receptor (EpoR), through recruitment and phosphorylation of Gab proteins via either Tyr343 or Tyr401 of the EpoR, or through phosphorylation of IRS2 adaptor protein. The mitogen-activated protein (MAP) kinase pathway was also activated by Epo in erythroid progenitors, but we found that this process is independent of PI 3-kinase activation. In erythroid progenitors, the functional role of PI 3-kinase was both to prevent apoptosis and to stimulate cell proliferation in response to Epo stimulation. Finally, our results show that PI 3-kinase-mediated proliferation of erythroid progenitors in response to Epo occurs mainly through modulation of the E3 ligase SCF(SKP2), which, in turn, down-regulates p27(Kip1) cyclin-dependent kinase (CDK) inhibitor via proteasome degradation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Apoptosis
- Cell Cycle Proteins/metabolism
- Cell Division
- Cell Survival
- Cells, Cultured/cytology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chromones/pharmacology
- Cyclin-Dependent Kinase Inhibitor p27
- Cysteine Endopeptidases/metabolism
- DNA-Binding Proteins/metabolism
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Erythroid Precursor Cells/cytology
- Erythroid Precursor Cells/drug effects
- Erythroid Precursor Cells/enzymology
- Erythropoietin/pharmacology
- Erythropoietin/physiology
- Fetal Blood/cytology
- Forkhead Box Protein O1
- Forkhead Box Protein O3
- Forkhead Transcription Factors
- Humans
- Infant, Newborn
- Insulin Receptor Substrate Proteins
- Intracellular Signaling Peptides and Proteins
- Ligases/metabolism
- MAP Kinase Signaling System
- Mice
- Morpholines/pharmacology
- Multienzyme Complexes/metabolism
- Phosphatidylinositol 3-Kinases/physiology
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoproteins/metabolism
- Phosphoric Monoester Hydrolases/metabolism
- Phosphorylation
- Proteasome Endopeptidase Complex
- Protein Processing, Post-Translational
- Protein Serine-Threonine Kinases
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptors, Erythropoietin/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Signal Transduction/drug effects
- Sirolimus/pharmacology
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
- Didier Bouscary
- Département d'Hématologie, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U567, Centre National de la Recherche Scientifique, UMR 8104, Université René Descartes, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Boudot C, Dassé E, Lambert E, Kadri Z, Mayeux P, Chrétien S, Haye B, Billat C, Petitfrère E. Involvement of the Src kinase Lyn in phospholipase C-gamma 2 phosphorylation and phosphatidylinositol 3-kinase activation in Epo signalling. Biochem Biophys Res Commun 2003; 300:437-42. [PMID: 12504103 DOI: 10.1016/s0006-291x(02)02866-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We examined the role of the Src kinase Lyn in phospholipase C-gamma 2 (PLC-gamma 2) and phosphatidylinositol (PI) 3-kinase activation in erythropoietin (Epo)-stimulated FDC-P1 cells transfected with a wild type (WT) Epo-receptor (Epo-R). We showed that two inhibitors of Src kinases, PP1 and PP2, abolish both PLC-gamma 2 tyrosine phosphorylation and PI 3-kinase activity in WT Epo-R FDC-P1 cells. We also demonstrated that Epo-phosphorylated Lyn is associated with tyrosine phosphorylated PLC-gamma 2 and PI 3-kinase in WT Epo-R FDC-P1-stimulated cells. Moreover Epo-activated Lyn phosphorylates in vitro PLC-gamma 2 immunoprecipitated from unstimulated cells. Our results suggest that the Src kinase Lyn is involved in PLC-gamma 2 phosphorylation and PI 3-kinase activation induced by Epo.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
This minireview is an update of a 1997 review on erythropoietin (EPO) in this journal. EPO is a 30,400-dalton glycoprotein that regulates red cell production. In the human, EPO is produced by peritubular cells in the kidneys of the adult and in hepatocytes in the fetus. Small amounts of extra-renal EPO are produced by the liver in adult human subjects. EPO binds to an erythroid progenitor cell surface receptor that includes a p66 chain, and, when activated, the p66 protein becomes dimerized. EPO receptor activation induces a JAK2 tyrosine kinase, which leads to tyrosine phosphorylation of the EPO receptor and several proteins. EPO receptor binding leads to intracellular activation of the Ras/mitogen-activated kinase pathway, which is involved with cell proliferation, phosphatidylinositol 3-kinase, and STATS 1, 3, 5A, and 5B transcriptional factors. EPO acts primarily to rescue erythroid cells from apoptosis (programmed cell death) to increase their survival. EPO acts synergistically with several growth factors (SCF, GM-CSF, 1L-3, and IGF-1) to cause maturation and proliferation of erythroid progenitor cells (primarily colony-forming unit-E). Oxygen-dependent regulation of EPO gene expression is postulated to be controlled by a hypoxia-inducible transcription factor (HIF-1alpha). Hypoxia-inducible EPO production is controlled by a 50-bp hypoxia-inducible enhancer that is approximately 120 bp 3' to the polyadenylation site. Hypoxia signal transduction pathways involve kinases A and C, phospholipase A(2), and transcription factors ATF-1 and CREB-1. A model has been proposed for adenosine activation of EPO production that involves protein kinases A and C and the phospholipase A(2) pathway. Other effects of EPO include a hematocrit-independent, vasoconstriction-dependent hypertension, increased endothelin production, upregulation of tissue renin, change in vascular tissue prostaglandins production, stimulation of angiogenesis, and stimulation of endothelial and vascular smooth muscle cell proliferation. Recombinant human EPO (rHuEPO) is currently being used to treat patients with anemias associated with chronic renal failure, AIDS patients with anemia due to treatment with zidovudine, nonmyeloid malignancies in patients treated with chemotherapeutic agents, perioperative surgical patients, and autologous blood donation. A novel erythropoiesis-stimulating factor (NESP, darbepoetin) has been synthesized and when compared with rHuEPO, NESP has a higher carbohydrate content (52% vs 40%), a longer plasma half-life, the amino acid sequence differs from that of native human EPO at five positions, and has been reported to maintain hemoglobin levels just as effectively in patients with chronic renal failure as rHuEPO at less frequent dosing. The use of rHuEPO and darbepoetin to enhance athletic performance is officially banned by most sports-governing bodies because the excessive erythrocytosis can lead to increased thrombogenicity and can cause deep vein, coronary, and cerebral thromboses.
Collapse
Affiliation(s)
- James W Fisher
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA
| |
Collapse
|
34
|
Lin Y, Brown L, Hedley DW, Barber DL, Benchimol S. The death-promoting activity of p53 can be inhibited by distinct signaling pathways. Blood 2002; 100:3990-4000. [PMID: 12393587 DOI: 10.1182/blood-2002-02-0504] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various cytokines have been shown to protect cells from p53-dependent apoptosis. To investigate the mechanism underlying cytokine-mediated survival, we used a Friend virus-transformed erythroleukemia cell line that expresses a temperature-sensitive p53 allele. These cells express the spleen focus-forming virus-encoded envelope glycoprotein gp55 that allows the cells to proliferate in the absence of erythropoietin (EPO). These cells respond to p53 activation at 32 degrees C by undergoing G(1) cell cycle arrest and apoptosis. In the presence of EPO, p53 activation leads only to prolonged but viable G(1) arrest. These findings indicate that EPO functions as a survival factor and that gp55/EPO receptor signaling is distinct from EPO/EPO receptor signaling. We demonstrate that p53-dependent apoptosis results in mitochondrial damage as shown by loss of mitochondrial membrane potential, increase in intracellular calcium, and release of mitochondrial cytochrome c into the cytosol. EPO prevented all of these changes including the subsequent activation of caspases. We identify an intrinsic phosphatidylinositol-3'-OH kinase/protein kinase B (PI3'K/PKB)-dependent survival pathway that is constitutively active in these cells. This survival pathway limits p53-dependent apoptosis. We propose that EPO promotes survival through a distinct pathway that is dependent on JAK2 but independent of STAT5 and PI3'K.
Collapse
Affiliation(s)
- Yunping Lin
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
35
|
Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C. Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells. Cell Signal 2002; 14:869-78. [PMID: 12135708 DOI: 10.1016/s0898-6568(02)00036-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Erythropoietin (Epo)-induced glycosylphosphatidylinositol (GPI) hydrolysis was previously described to be correlated with phospholipase C-gamma 2 (PLC-gamma2) activation. Here, we analyzed the involvement of phosphatidylinositol (PtdIns) 3-kinase in GPI hydrolysis through PLC-gamma2 tyrosine phosphorylation in response to Epo in FDC-P1 cells transfected with a wild type (WT) erythropoietin-receptor (Epo-R). We showed that phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor LY294002 inhibits Epo-induced hydrolysis of endogenous GPI and Epo-induced PLC-gamma2 tyrosine phosphorylation in a dose-dependent manner. Wortmannin, another PtdIns 3-kinase inhibitor, also suppressed Epo-induced PLC-gamma2 tyrosine phosphorylation. We also present evidence that PLC-gamma2 translocation to the membrane fraction on Epo stimulation is completely inhibited by LY294002. Upon Epo stimulation, the tyrosine-phosphorylated PLC-gamma2 was found to be associated with the tyrosine-phosphorylated Grb2-associated binder (GAB)2, SHC and SHP2 proteins. LY294002 cell preincubation did not affect GAB2, SHC and SHP2 tyrosine phosphorylation but inhibited the binding of PLC-gamma2 to GAB2 and SHP2. Taken together, these results show that PtdIns 3-kinase controls Epo-induced GPI hydrolysis through PLC-gamma2.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS, FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Erythropoietin receptor-dependent erythroid colony-forming unit development: capacities of Y343 and phosphotyrosine-null receptor forms. Blood 2002. [DOI: 10.1182/blood.v99.3.898.h80302000898_898_904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red cell development depends on the binding of erythropoietin (EPO) to receptors expressed by erythroid colony-forming units (CFUe) and the subsequent activation of receptor-bound Janus kinase (Jak2). Jak2 then mediates the phosphorylation of receptor tyrosine sites and the recruitment of 25 or more Src homology 2 domain-encoding proteins and associated factors. Previous studies have shown that an EPO receptor form containing Jak2-binding domains plus a single phosphotyrosine343 (PY343)–STAT5-binding site provides all signals needed for erythroid cell development. However, roles for PY343 and STAT5 remain controversial, and findings regarding PY-null receptor activities and erythropoiesis in STAT5-deficient mice are disparate. To study activities of a PY-null EPO receptor in primary cells while avoiding compensatory mechanisms, a form retaining domains for Jak2 binding and activation, but lacking all cytoplasmic tyrosine sites, was expressed in transgenic mice from aGATA1 gene-derived vector as a human epidermal growth factor receptor- murine EPO receptor chimera (EE-T-Y343F). The bio-signaling capacities of this receptor form were investigated in CFUe from thiamphenicol-treated mice. Interestingly, this PY-null EPO receptor form supported CFUe development (in the absence of detectable STAT5 activation) at efficiencies within 3-fold of those levels mediated by either an EE-T-Y343 form or the endogenous EPO receptor. However, EE-T-Y343F–dependent Ter119+ erythroblast maturation was attenuated. In tests of cosignaling with c-Kit, EE-T-Y343F nonetheless retained full capacity to synergize with c-Kit in promoting erythroid progenitor cell proliferation. Thus, EPO receptor PY-dependent events can assist late erythropoiesis but may be nonessential for EPO receptor–c-Kit synergy.
Collapse
|
37
|
Abstract
The recent discovery of thrombopoietin has enhanced our understanding of both hematopoiesis and platelet production. Thrombopoietin supports hematopoietic stem cell survival and expansion as well as promoting all aspects of megakaryocyte development. The hormone displays many structural similarities to other members of the hematopoietic cytokine family and some notable differences, and regulation of its expression requires both receptor-mediated removal and other mechanisms. Thrombopoietin induces receptor dimerization and tyrosine phosphorylation, and a series of signaling events including activation of JAK/STAT, Shc/Ras/MAPK and PI3K/Akt; these pathways overlap with those induced by other cytokines, but the differences that lead to the unique biological effects of the hormone are gradually being uncovered. Our growing appreciation of how cytokine signaling pathways are translated into megakaryocyte development is discussed.
Collapse
Affiliation(s)
- Amy E Geddis
- Division of Hematology, University of Washington School of Medicine, Box 357710, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
38
|
Miller CP, Heilman DW, Wojchowski DM. Erythropoietin receptor-dependent erythroid colony-forming unit development: capacities of Y343 and phosphotyrosine-null receptor forms. Blood 2002; 99:898-904. [PMID: 11806992 DOI: 10.1182/blood.v99.3.898] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Red cell development depends on the binding of erythropoietin (EPO) to receptors expressed by erythroid colony-forming units (CFUe) and the subsequent activation of receptor-bound Janus kinase (Jak2). Jak2 then mediates the phosphorylation of receptor tyrosine sites and the recruitment of 25 or more Src homology 2 domain-encoding proteins and associated factors. Previous studies have shown that an EPO receptor form containing Jak2-binding domains plus a single phosphotyrosine(343) (PY(343))-STAT5-binding site provides all signals needed for erythroid cell development. However, roles for PY(343) and STAT5 remain controversial, and findings regarding PY-null receptor activities and erythropoiesis in STAT5-deficient mice are disparate. To study activities of a PY-null EPO receptor in primary cells while avoiding compensatory mechanisms, a form retaining domains for Jak2 binding and activation, but lacking all cytoplasmic tyrosine sites, was expressed in transgenic mice from a GATA1 gene-derived vector as a human epidermal growth factor receptor- murine EPO receptor chimera (EE-T-Y343F). The bio-signaling capacities of this receptor form were investigated in CFUe from thiamphenicol-treated mice. Interestingly, this PY-null EPO receptor form supported CFUe development (in the absence of detectable STAT5 activation) at efficiencies within 3-fold of those levels mediated by either an EE-T-Y343 form or the endogenous EPO receptor. However, EE-T-Y343F-dependent Ter119(+) erythroblast maturation was attenuated. In tests of cosignaling with c-Kit, EE-T-Y343F nonetheless retained full capacity to synergize with c-Kit in promoting erythroid progenitor cell proliferation. Thus, EPO receptor PY-dependent events can assist late erythropoiesis but may be nonessential for EPO receptor-c-Kit synergy.
Collapse
Affiliation(s)
- Chris P Miller
- Department of Veterinary Science, Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|
39
|
Neri LM, Bortul R, Tabellini G, Borgatti P, Baldini G, Celeghini C, Capitani S, Martelli AM. Erythropoietin-induced erythroid differentiation of K562 cells is accompanied by the nuclear translocation of phosphatidylinositol 3-kinase and intranuclear generation of phosphatidylinositol (3,4,5) trisphosphate. Cell Signal 2002; 14:21-9. [PMID: 11747985 DOI: 10.1016/s0898-6568(01)00224-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
D-3 phosphorylated inositides are a peculiar class of lipids, synthesized by phosphatidylinositol 3-kinase (PtdIns 3-K), which are also present in the nucleus. In order to clarify a possible role for nuclear D-3 phosphorylated inositides during human erythroid differentiation, we have examined the issue of whether or not, in K562 human erythroleukemia cells, erythropoietin (EPO) may generate nuclear translocation of an active PtdIns 3-K. Immunoprecipitation with an anti-p85 regulatory subunit of PtdIns 3-K, revealed that both the intranuclear amount and the activity of the kinase increased rapidly and transiently in response to EPO. Enzyme translocation was blocked by the specific PtdIns 3-K pharmacological inhibitor, LY294002, which also inhibited erythroid differentiation. In vivo, intranuclear synthesis of phosphatidylinositol (3,4,5) trisphosphate (PtdIns (3,4,5)P(3)) was stimulated by EPO. Almost all PtdIns 3-K that translocated to the nucleus was highly phosphorylated on tyrosine residues of the p85 regulatory subunit. These findings strongly suggest that an important step in the signaling pathways that mediate EPO-induced erythroid differentiation may be represented by the intranuclear translocation of an active PtdIns 3-K.
Collapse
Affiliation(s)
- Luca M Neri
- Dipartimento di Morfologia ed Embriologia, Sezione di Anatomia Umana, Università di Ferrara, via Fossato di Mortara 66, 44100 Ferrara, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Barnache S, Mayeux P, Payrastre B, Moreau-Gachelin F. Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Blood 2001; 98:2372-81. [PMID: 11588033 DOI: 10.1182/blood.v98.8.2372] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the cell transformation processes leading to erythroleukemia, erythroid progenitors often become erythropoietin (Epo)-independent for their proliferation. The biochemical events that could lead an erythroleukemic cell to growth factor-independence were investigated using spi-1 transgenic poerythroblasts. Spi-1/PU.1 is a myeloid and B-cell transcription factor of the ETS family and is activated by insertional mutagenesis during Friend erythroleukemia. Its overexpression in proerythroblasts induces their differentiation arrest without altering their erythropoietin requirement for proliferation (HS1 cells). At a later step, genetic alterations most probably occur allowing spi-1 transgenic poerythroblasts to proliferate in the absence of erythropoietin (HS2 cells). The signaling transduction pathways in HS1 and HS2 proerythroblasts were analyzed. The authors have previously shown that the Jak/STAT pathway was not activated in Epo-independent cells, but remained sensitive to Epo stimulation. In the present study, it is shown that the Epo-independent proliferation of HS2 cells requires active phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. In these cells, PI3K was constitutively associated with the molecular adapters Grb2 and Gab1, and with the phosphatases SHP-2 and SHIP. Moreover, PI3K activity was correlated with the constitutive phosphorylation of serine-threonine protein kinase (AKT) in HS2 cells. Lastly, a constitutive activation of the MAPKs extracellular signal-regulated kinases (ERK1/2) in HS2 cells was observed that occurs in a PI3K-independent manner, but depends strictly on the activity of the protein kinase C (PKC). These results suggest that constitutive activations of PI3K/AKT and PKC/MAPK pathways can act in synergy to lead a proerythroblast to proliferate without Epo.
Collapse
Affiliation(s)
- S Barnache
- Inserm U528, Institut Curie, Paris, France
| | | | | | | |
Collapse
|
41
|
Bagley CJ, Woodcock JM, Guthridge MA, Stomski FC, Lopez AF. Structural and functional hot spots in cytokine receptors. Int J Hematol 2001; 73:299-307. [PMID: 11345195 DOI: 10.1007/bf02981954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The activation of cytokine receptors is a stepwise process that depends on their specific interaction with cognate cytokines, the formation of oligomeric receptor complexes, and the initiation of cytoplasmic phosphorylation events. The recent determination of the structure of extracellular domains of several cytokine receptors allows comparison of their cytokine-binding surfaces. This comparison reveals a common structural framework that supports considerable diversity and adaptability of the binding surfaces that determine both the specificity and the orientation of subunits in the active receptor complex. These regions of the cytokine receptors have been targeted for the development of specific agonists and antagonists. The physical coupling of signaling intermediates to the intracellular domains of their receptors plays a major role in determining biological responses to cytokines. In this review, we focus principally on the receptors for cytokines of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family and, where appropriate, compare them with related cytokine receptors. Several paradigms are beginning to emerge that focus on the ability of the extracellular portion of the cytokine receptor to recognize the appropriate cytokine and on a phosphorylated motif in the intracellular region of the GM-CSF receptor that couples to a specific signaling pathway.
Collapse
MESH Headings
- Amino Acid Motifs
- Animals
- Cell Division
- Cytokines/pharmacology
- Granulocyte-Macrophage Colony-Stimulating Factor/drug effects
- Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Interleukin-3/physiology
- Interleukin-5/physiology
- Ligands
- Models, Molecular
- Phosphatidylinositol 3-Kinases/physiology
- Phosphorylation
- Phosphoserine/chemistry
- Phosphotyrosine/physiology
- Protein Conformation
- Protein Processing, Post-Translational
- Receptors, Cytokine/chemistry
- Receptors, Cytokine/drug effects
- Receptors, Cytokine/physiology
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/chemistry
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/drug effects
- Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/drug effects
- Receptors, Interleukin/physiology
- Receptors, Interleukin-3/chemistry
- Receptors, Interleukin-3/drug effects
- Receptors, Interleukin-3/physiology
- Receptors, Interleukin-5
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- C J Bagley
- Division of Human Immunology, Hanson Centre for Cancer Research, the Institute of Medical and Veterinary Science, Adelaide, Australia
| | | | | | | | | |
Collapse
|
42
|
Santos SC, Lacronique V, Bouchaert I, Monni R, Bernard O, Gisselbrecht S, Gouilleux F. Constitutively active STAT5 variants induce growth and survival of hematopoietic cells through a PI 3-kinase/Akt dependent pathway. Oncogene 2001; 20:2080-90. [PMID: 11360192 DOI: 10.1038/sj.onc.1204308] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2000] [Revised: 01/17/2001] [Accepted: 01/22/2001] [Indexed: 11/09/2022]
Abstract
Signal Transducer and Activator of Transcription (STATs) are important mediators of cytokine and growth factor-induced signal transduction. STAT5A and STAT5B have been shown to play a role in survival and proliferation of hematopoietic cells both in vitro and in vivo and to contribute to the growth and viability of cells transformed by the TEL-JAK2 oncoprotein. In this study, we investigated the molecular mechanisms by which constitutively active STAT5 proteins induce cell proliferation and survival of Ba/F3 cell lines expressing either dominant positive STAT5A or STAT5B variants or TEL-JAK2 or TEL-ABL fusion proteins. Our results showed that active STAT5 constitutively interacted with p85, the regulatory subunit of the PI 3-kinase. A constitutive activity of the PI 3-kinase/Akt pathway was observed in these cells and required for their cell cycle progression. In contrast, while activity of the PI 3-kinase/Akt pathway was required for survival of Ba/F3 cells expressing the constitutively active forms of STAT5A or STAT5B, it was dispensable for cells transformed by TEL-JAK2 or TEL-ABL fusion proteins, suggesting that additional survival pathways take place in these transformed cells.
Collapse
Affiliation(s)
- S C Santos
- Institut Cochin de Génétique Moléculaire (ICGM), Institut National de la Santé et de la Recherche Médicale (INSERM U363), Hôpital Cochin, 27 rue du Fbg St Jacques, 75014 Paris, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Zhang MY, Barber DL, Alessi DR, Bell LL, Stine C, Nguyen MH, Beattie BK, Cheung JY, Miller BA. A minimal cytoplasmic subdomain of the erythropoietin receptor mediates p70 S6 kinase phosphorylation. Exp Hematol 2001; 29:432-40. [PMID: 11301183 DOI: 10.1016/s0301-472x(00)00681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Erythropoietin (EPO) is a lineage-restricted growth factor that is required for erythroid proliferation and differentiation. EPO stimulates the phosphorylation and activation of p70 S6 kinase (p70 S6K), which is required for cell cycle progression. Here, the minimal cytoplasmic domains of the EPO receptor (EPO-R) required for p70 S6K activation were determined.Ba/F3 cells were stably transfected with wild-type (WT) EPO-R or EPO-R carboxyl-terminal deletion mutants, designated by the number of amino acids deleted from the cytoplasmic tail (-99, -131, -221). Transfected cells were growth factor deprived and then stimulated with EPO. p70 S6K, JAK2, IRS-2, and ERK1/2 phosphorylation/activation were examined. The ability of transfected 3-phosphoinositide-dependent protein kinase 1 (PDK1) to reconstitute p70 S6K phosphorylation in EPO-R mutants also was determined. Phosphorylation and activation of p70 S6K, JAK2, IRS-2, and ERK1/2 in Ba/F3 cells transfected with EPO-R-99 or EPO-R-99Y343F were similar to WT EPO-R. In contrast, EPO-dependent p70 S6K phosphorylation/activation, as well as IRS-2 and ERK1/2 phosphorylation, were minimal or absent in cells transfected with EPO-R-131 or EPO-R-221. JAK2 phosphorylation was reduced significantly in cells transfected with EPO-R-131 and abolished with EPO-R-221. To examine the role of PDK1, a kinase known to phosphorylate p70 S6K, Ba/F3 EPO-R-131 cells were transiently transfected with PDK1. WT constitutively active PDK1 restored p70 S6K phosphorylation in Ba/F3 EPO-R-131 cells but not in Ba/F3 EPO-R-221 cells. The results demonstrate that a minimal cytoplasmic subdomain of the EPO-R extending between -99 and -131 is required for p70 S6K phosphorylation and activation. The results also demonstrate that PDK1 is a critical component in this signaling pathway, which requires the presence of domains between -131 and -221 for its activation of p70 S6K.
Collapse
Affiliation(s)
- M Y Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Erythropoietin is an obligatory growth factor for red blood cell production. The receptor for erythropoietin contains a single membrane-spanning domain with no intrinsic tyrosine kinase motifs. On binding to erythropoietin, the receptor dimerizes and activates multiple intracellular signaling molecules, including but not limited to JAK2, STAT5, PI 3-kinase, IRS-2, RAS, and Ca2+ channels. This review focuses on cytoplasmic signaling cascades involved in erythropoietin action.
Collapse
Affiliation(s)
- J Y Cheung
- Department of Medicine, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
45
|
Miyakawa Y, Rojnuckarin P, Habib T, Kaushansky K. Thrombopoietin induces phosphoinositol 3-kinase activation through SHP2, Gab, and insulin receptor substrate proteins in BAF3 cells and primary murine megakaryocytes. J Biol Chem 2001; 276:2494-502. [PMID: 11054408 DOI: 10.1074/jbc.m002633200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombopoietin (TPO) is a recently characterized member of the hematopoietic growth factor family that serves as the primary regulator of megakaryocyte (MK) and platelet production. The hormone acts by binding to the Mpl receptor, the product of the cellular proto-oncogene c-mpl. Although many downstream signaling targets of TPO have been identified in cell lines, primary MKs, and platelets, the molecular mechanism(s) by which many of these molecules are activated remains uncertain. In this report we demonstrate that the TPO-induced activation of phosphoinositol 3-kinase (PI3K), a signaling intermediate vital for cellular survival and proliferation, occurs through its association with inducible signaling complexes in both BaF3 cells engineered to express Mpl (BaF3/Mpl) and in primary murine MKs. Although a direct association between PI3K and Mpl could not be demonstrated, we found that several proteins, including SHP2, Gab2, and IRS2, undergo phosphorylation and association in BaF3/Mpl cells in response to TPO stimulation, complexes that recruit and enhance the enzymatic activity of PI3K. To verify the physiological relevance of the complex, SHP2-Gab2 association was disrupted by overexpressing a dominant negative SHP2 construct. TPO-induced Akt phosphorylation was significantly decreased in transfected cells suggesting an important role of SHP2 in the complex to enhance PI3K activity. In primary murine MKs, TPO also induced phosphorylation of SHP2, its association with p85 and enhanced PI3K activity, but in contrast to the results in cell lines, neither Gab2 nor IRS2 are phosphorylated in MKs. Instead, a 100-kDa tyrosine-phosphorylated protein (pp100) co-immunoprecipitated with the regulatory subunit of PI3K. These findings support a model where PI3K activity is dependent on its recruitment into TPO-induced multiphosphoprotein complexes, implicate the existence of a scaffolding protein in primary MKs distinct from the known Gab and IRS proteins, and suggest that, in contrast to erythroid progenitor cells that employ Gab1 in PI3K signaling complexes, utilization of an alternate member of the Gab/IRS family could be responsible for specificity in TPO signaling.
Collapse
Affiliation(s)
- Y Miyakawa
- Division of Hematology, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | |
Collapse
|
46
|
Guillard C, Chrétien S, Jockers R, Fichelson S, Mayeux P, Duprez V. Coupling of heterotrimeric Gi proteins to the erythropoietin receptor. J Biol Chem 2001; 276:2007-14. [PMID: 11053408 DOI: 10.1074/jbc.m003527200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify new proteins involved in erythropoietin (Epo) signal transduction, we purified the entire set of proteins reactive with anti-phosphotyrosine antibodies from Epo-stimulated UT7 cells. Antisera generated against these proteins were used to screen a lambdaEXlox expression library. One of the isolated cDNAs encodes Gbeta2, the beta2 subunit of heterotrimeric GTP-binding proteins. Gbeta and Galpha(i) coprecipitated with the Epo receptor (EpoR) in extracts from human and murine cell lines and from normal human erythroid progenitor cells. In addition, in vitro Gbeta associated with a fusion protein containing the intracellular domain of the EpoR. Using EpoR mutants, we found that the distal part of the EpoR (between amino acids 459-479) was required for Gi binding. Epo activation of these cells induced the release of the Gi protein from the EpoR. Moreover in isolated cell membranes, Epo treatment inhibited ADP-ribosylation of Gi and increased the binding of GTP. Our results show that heterotrimeric Gi proteins associate with the C-terminal end of the EpoR. Receptor activation leads to the activation and dissociation of Gi from the receptor, suggesting a functional role of Gi protein in Epo signal transduction.
Collapse
Affiliation(s)
- C Guillard
- INSERM, U 363 and CNRS-UPR 0415, Institut Cochin de Génétique Moléculaire, 75014 Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Müller G. The Molecular Mechanism of the Insulin-mimetic/sensitizing Activity of the Antidiabetic Sulfonylurea Drug Amaryl. Mol Med 2000. [DOI: 10.1007/bf03401827] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
48
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
49
|
A member of Forkhead family transcription factor, FKHRL1, is one of the downstream molecules of phosphatidylinositol 3-kinase-Akt activation pathway in erythropoietin signal transduction. Blood 2000. [DOI: 10.1182/blood.v96.3.941.015k14_941_949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is important for the regulation of a number of cellular responses. Serine/threonine kinase Akt (protein kinase B; PKB) is downstream of PI3K and activated by growth factors. This study found that erythropoietin (EPO) induced tyrosine phosphorylation of Akt in a time- and dose-dependent manner in EPO-dependent human leukemia cell line UT-7/EPO. In vitro kinase assay using histone H2B and glucose synthase kinase as substrates demonstrated that Akt was actually activated by EPO. EPO-induced phosphorylation of Akt was completely blocked by a PI3K-specific inhibitor, LY294002, at 10 μmol/L, indicating that activation of Akt by EPO is dependent on PI3K activity. In addition, overexpression of the constitutively active form of Akt on UT-7/EPO cells partially blocked apoptosis induced by withdrawal of EPO from the culture medium. This finding suggested that the PI3K-Akt activation pathway plays some role in the antiapoptotic effect of EPO. EPO induced phosphorylation of a member of the trancription factor Forkhead family, FKHRL1, at threonine 32 and serine 253 in a dose- and time-dependent manner in UT-7/EPO cells. Moreover, results showed that Akt kinase activated by EPO directly phosphorylated FKHRL1 protein and that FKHRL1 phosphorylation was completely dependent on PI3K activity as is the case for Akt. In conjunction with the evidence that FKHRL1 is expressed in normal human erythroid progenitor cells and erythroblasts, the results suggest that FKHRL1 plays an important role in erythropoiesis as one of the downstream target molecules of PI3K-Akt.
Collapse
|
50
|
Müller G, Wied S, Frick W. Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 2000; 20:4708-23. [PMID: 10848597 PMCID: PMC85892 DOI: 10.1128/mcb.20.13.4708-4723.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.
Collapse
Affiliation(s)
- G Müller
- Aventis Pharma Deutschland GmbH, 65926 Frankfurt am Main, Germany.
| | | | | |
Collapse
|