1
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK loss but not FAK inhibition in endothelial cells of PYK2-null mice activates p53 tumor suppressor to prevent tumor growth. Mol Biol Cell 2025; 36:ar64. [PMID: 40202821 DOI: 10.1091/mbc.e24-12-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Focal adhesion kinase (FAK) and the related tyrosine kinase PYK2 are signaling and scaffolding proteins co-expressed in endothelial cells (ECs) that regulate blood vessel function and tumor growth. As FAK-PYK2 share overlapping cellular roles, we generated PYK2-/- FAKfl/fl mice with tamoxifen-inducible EC-specific Cre expression. EC FAK inactivation in PYK2-/- but not PYK2+/+ mice led to increased heart and lung mass, vascular leakage, and created a tumor microenvironment that was repressive to syngeneic melanoma, breast, and lung carcinoma implanted tumor growth. Tumor suppression was associated with defective vessel sprouting, enhanced p53 tumor suppressor and p21CIP1 protein expression in ECs, elevated markers of DNA damage, and altered blood cytokine levels in tumor-bearing mice. However, EC-specific hemizygous kinase-defective (KD) FAK expression in EC FAK-/KD PYK2-/- mice was not associated with elevated p53 levels. Instead, EC FAK-/KD PYK2-/- mice supported primary tumor growth but prevented metastasis, implicating EC FAK activity in tumor spread. In vitro, combined genetic or small molecule FAK-PYK2 knockdown in ECs or tumor cells elevated p21CIP1 and prevented cell proliferation in a p53-dependent manner, highlighting a linkage between EC FAK-PYK2 loss and p53 activation in tumor regulation.
Collapse
Affiliation(s)
- Xiao Lei Chen
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Marjaana Ojalill
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Isabelle Tancioni
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Shulin Jiang
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Antonia Boyer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Duygu Ozmadenci
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Sean Uryu
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David Tarin
- Department of Pathology, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520
| | - Dwayne G Stupack
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| | - David D Schlaepfer
- Department of Obstetrics, Gynecology, and Reproductive Medicine, Moores UCSD Cancer Center, La Jolla, CA 92093
| |
Collapse
|
2
|
Chen Y, Egawa N, Zheng K, Doorbar J. How can HPV E6 manipulate host cell differentiation process to maintain the reservoir of infection. Tumour Virus Res 2025; 19:200313. [PMID: 39832674 PMCID: PMC11847044 DOI: 10.1016/j.tvr.2025.200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Affiliation(s)
- Yuwen Chen
- Department of Pathology, University of Cambridge, UK.
| | | | - Ke Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - John Doorbar
- Department of Pathology, University of Cambridge, UK.
| |
Collapse
|
3
|
Chen XL, Ojalill M, Jean C, Tancioni I, Jiang S, Boyer A, Ozmadenci D, Uryu S, Tarin D, Schlessinger J, Stupack DG, Schlaepfer DD. Inducible FAK Deletion but not FAK Inhibition in Endothelial Cells Activates p53 to Suppress Tumor Growth in PYK2-null Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.622008. [PMID: 39574770 PMCID: PMC11580918 DOI: 10.1101/2024.11.04.622008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Focal adhesion kinase (FAK) functions as a signaling and scaffolding protein within endothelial cells (ECs) impacting blood vessel function and tumor growth. Interpretations of EC FAK-null phenotypes are complicated by related PYK2 (protein tyrosine kinase 2) expression, and to test this, we created PYK2 -/- FAK fl/fl mice with tamoxifen-inducible EC-specific Cre recombinase expression. At 11 weeks of age, EC FAK inactivation resulted in increased heart and lung mass and vascular leakage only on a PYK2 -/- background. Surprisingly, ∼90% of PYK2 -/- EC FAK -/- mice survived to 75 weeks of age. Syngeneic melanoma, breast, or lung carcinoma tumors did not grow in PYK2 -/- EC FAK -/- mice, but tumors grew normally in PYK2 -/- EC FAK fl/fl mice lacking Cre. This tumor inhibitory phenotype was associated with abortive EC vessel sprouting, enhanced EC p53 tumor suppressor and p21CIP1 (cyclin-dependent inhibitor 1) expression, and alterations in serum cytokine levels. To discern the role of FAK kinase versus scaffolding activity in ECs, we generated kinase defective (FAK K454R, KD) PYK2 -/- EC FAK fl/KD and PYK2 -/- EC FAK fl/WT (WT, wildtype) mice. Hemizygous EC FAK -/KD expression supported primary tumor growth but not metastasis, implicating EC FAK activity in tumor dissemination. In vitro , hemizygous expression of either WT or KD FAK suppressed EC p21CIP1 levels and cell death observed in primary PYK2 -/- EC FAK -/- ECs. Combined FAK and PYK2 knockdown in tumor cells also increased p21CIP1 and PARP1 (poly ADP-ribose polymerase 1) levels in a p53-associated manner impacting anchorage-independent growth. Together, these results underscore the linkage between PYK2 and FAK loss with p53 activation impacting tumor growth. Impact Statement PYK2-null combined with endothelial cell-specific FAK transgenic mouse models show that loss of FAK activity limits tumor spread and that genetic or chemical degradation preventing combined FAK-PYK2 expression may be an approach to induce a p53-associated anti-tumor response.
Collapse
|
4
|
Zhang J, Kong X, Yang HJ, Mohibi S, Lucchesi CA, Zhang W, Chen X. Ninjurin 2, a Cell Adhesion Molecule and a Target of p53, Modulates Wild-Type p53 in Growth Suppression and Mutant p53 in Growth Promotion. Cancers (Basel) 2024; 16:229. [PMID: 38201656 PMCID: PMC10778559 DOI: 10.3390/cancers16010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
The nerve injury-induced protein 1 (NINJ1) and NINJ2 constitute a family of homophilic adhesion molecules and are involved in nerve regeneration. Previously, we showed that NINJ1 and p53 are mutually regulated and the NINJ1-p53 loop plays a critical role in p53-dependent tumor suppression. However, the biology of NINJ2 has not been well-explored. By using multiple in vitro cell lines and genetically engineered mouse embryo fibroblasts (MEFs), we showed that NINJ2 is induced by DNA damage in a p53-dependent manner. Moreover, we found that the loss of NINJ2 promotes p53 expression via mRNA translation and leads to growth suppression in wild-type p53-expressing MCF7 and Molt4 cells and premature senescence in MEFs in a wild-type p53-dependent manner. Interestingly, NINJ2 also regulates mutant p53 expression, and the loss of NINJ2 promotes cell growth and migration in mutant p53-expressing MIA-PaCa2 cells. Together, these data indicate that the mutual regulation between NINJ2 and p53 represents a negative feedback loop, and the NINJ2-p53 loop has opposing functions in wild-type p53-dependent growth suppression and mutant p53-dependent growth promotion.
Collapse
Affiliation(s)
- Jin Zhang
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| | - Hee Jung Yang
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| | - Shakur Mohibi
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| | - Christopher August Lucchesi
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, The University of California, Davis, CA 95616, USA;
| | - Xinbin Chen
- Comparative Oncology Laboratory, The University of California, Davis, CA 95616, USA; (X.K.); (H.J.Y.); (S.M.); (C.A.L.)
| |
Collapse
|
5
|
Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. Eur J Nutr 2019; 59:1607-1618. [DOI: 10.1007/s00394-019-02016-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 11/27/2022]
|
6
|
Cisatracurium-induced proliferation impairment and death of colorectal cancer cells, HCT116 is mediated by p53 dependent intrinsic apoptotic pathway in vitro. Biomed Pharmacother 2017; 91:320-329. [DOI: 10.1016/j.biopha.2017.04.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023] Open
|
7
|
Giordano C, Rovito D, Barone I, Mancuso R, Bonofiglio D, Giordano F, Catalano S, Gabriele B, Andò S. Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21 Cip/WAF1 gene expression in p53-independent manner. DNA Repair (Amst) 2017; 51:20-30. [PMID: 28108275 DOI: 10.1016/j.dnarep.2017.01.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common malignancy and the leading cause of cancer-related death in women worldwide. High toxicity of used chemotherapeutics and resistance of cancer cells to treatments are a driving force for searching the new drug candidates for breast cancer therapy. In this study, we tested the antiproliferative effects of a series of benzofuran-2-acetic methyl ester derivatives, synthesized by a palladium-catalyzed carbonylative heterocyclization approach, on breast cancer cells. We observed that benzofuran compounds bearing a phenyl or tert-butyl substituent α to the methoxycarbonyl group significantly inhibited anchorage-dependent and -independent cell growth, and induced G0/G1 cell cycle arrest in human estrogen receptor alpha positive (MCF-7 and T47D) and in triple negative MDA-MB-231 breast cancer cells, without affecting growth of MCF-10A normal breast epithelial cells. Mechanistically, benzofuran derivatives enhanced the cyclin-dependent kinase inhibitor p21Cip/WAF1 expression at both mRNA and protein levels and this occurs transcriptionally in an Sp1-dependent manner. Moreover, benzofuran derivatives induced apoptosis, increased poly (ADP-ribose) polymerase cleavage and Bax/Bcl-2 ratio along with a marked DNA fragmentation along with a marked DNA fragmentation and a strong increase in TUNEL-positive breast cancer cells. Overall, we provide evidence that the newly tested benzofuran derivatives showed antiproliferative and pro-apoptotic activities against breast cancer cells regardless estrogen receptor status, suggesting their possible clinical development as anticancer agents.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Rovito
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy.
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Arcavacata di Rende, CS, Italy
| | - Sebastiano Andò
- Centro Sanitario,University of Calabria, Arcavacata di Rende, CS, Italy; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, CS, Italy.
| |
Collapse
|
8
|
Chen F, Yao H, Wang M, Yu B, Liu Q, Li J, He Z, Hu YP. Suppressing Pitx2 inhibits proliferation and promotes differentiation of iHepSCs. Int J Biochem Cell Biol 2016; 80:154-162. [PMID: 27697592 DOI: 10.1016/j.biocel.2016.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 01/05/2023]
Abstract
Induced hepatic stem cells (iHepSCs) have great potential as donors for liver cell therapy due to their abilities for self-renewal and bi-potential differentiation. However, the molecular mechanism regulating proliferation and differentiation of iHepSCs is poorly understood. In this study, we provide evidence that the homeodomain transcription factor, Pitx2, is essential to maintain iHepSCs stem cell characteristics. Suppressing Pitx2 expression in iHepSCs by lentivirus mediated specific shRNA markedly reduced the expression of the hepatic stem cell-associated genes (Lgr5, EpCAM, and Sox9) with concomitant inhibition of proliferation by blocking the G1/S phase transition, and these phenotypic changes were reversed upon re-expression of Pitx2. Pitx2 knockdown also resulted in up-regulation of the p53-induced Cdk inhibitor p21, and down-regulation of its downstream effector CDK2-Cyclin E kinase complex. Furthermore, we observed that iHepSCs were more efficiently induced to differentiate into both hepatocytes and cholangiocytes when Pitx2 expression was suppressed, as compared to unmanipulated iHepSCs. These findings reveal that Pitx2 expression may be leveraged to control the status of iHepSCs during expansion in vitro to provide a strategy for further application of iHepSCs in liver cell therapy.
Collapse
Affiliation(s)
- Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Hao Yao
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Minjun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Bing Yu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Qinggui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Jianxiu Li
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Zhiying He
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China
| | - Yi-Ping Hu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University, PR China.
| |
Collapse
|
9
|
Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Sci Rep 2015; 5:9850. [PMID: 25984967 PMCID: PMC4650781 DOI: 10.1038/srep09850] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/18/2015] [Indexed: 12/18/2022] Open
Abstract
The physical properties of particles used in radiation therapy, such as protons, have been well characterized, and their dose distributions are superior to photon-based treatments. However, proton therapy may also have inherent biologic advantages that have not been capitalized on. Unlike photon beams, the linear energy transfer (LET) and hence biologic effectiveness of particle beams varies along the beam path. Selective placement of areas of high effectiveness could enhance tumor cell kill and simultaneously spare normal tissues. However, previous methods for mapping spatial variations in biologic effectiveness are time-consuming and often yield inconsistent results with large uncertainties. Thus the data needed to accurately model relative biological effectiveness to guide novel treatment planning approaches are limited. We used Monte Carlo modeling and high-content automated clonogenic survival assays to spatially map the biologic effectiveness of scanned proton beams with high accuracy and throughput while minimizing biological uncertainties. We found that the relationship between cell kill, dose, and LET, is complex and non-unique. Measured biologic effects were substantially greater than in most previous reports, and non-linear surviving fraction response was observed even for the highest LET values. Extension of this approach could generate data needed to optimize proton therapy plans incorporating variable RBE.
Collapse
|
10
|
Benjamin AB, Zhou X, Isaac O, Zhao H, Song Y, Chi X, Sun B, Hao L, Zhang L, Liu L, Guan H, Shao S. PRP19 upregulation inhibits cell proliferation in lung adenocarcinomas by p21-mediated induction of cell cycle arrest. Biomed Pharmacother 2014; 68:463-70. [DOI: 10.1016/j.biopha.2014.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/04/2014] [Indexed: 11/25/2022] Open
|
11
|
Oronsky B, Fanger GR, Oronsky N, Knox S, Scicinski J. The implications of hyponitroxia in cancer. Transl Oncol 2014; 7:167-73. [PMID: 24731473 PMCID: PMC4101386 DOI: 10.1016/j.tranon.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 01/07/2014] [Accepted: 01/30/2014] [Indexed: 01/31/2023] Open
Abstract
Tumors are spatially heterogeneous, with regions of relative hypoxia and normoxia. The tumor microenvironment is an important determinant of both tumor growth and response to a variety of cytotoxic and targeted therapies. In the tumor microenvironment, reactive oxygen species and nitric oxide (NO) are important mediators of the level of expression of many transcription factors and signaling cascades that affect tumor growth and responses to therapy. The primary objective of this review is to explore and discuss the seemingly dichotomous actions of NO in cancer biology as both a tumor promoter and suppressor with an emphasis on understanding the role of persistently low NO concentrations or hyponitroxia as a key mediator in tumor progression. This review will also discuss the potential role of hyponitroxia as a novel therapeutic target to treat cancer and outline an approach that provides new opportunities for pharmacological intervention.
Collapse
Affiliation(s)
| | | | | | - Susan Knox
- Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA, USA
| | | |
Collapse
|
12
|
Abstract
Human securin, also known as human pituitary tumor-transforming gene 1 (pttg1), plays a key role in cell-cycle regulation. Two homologous genes, pttg2 and pttg3, have been identified although very little is known about their physiological function. In this study, we aimed at the characterization of these two pttg1 homologs. Real-time PCR analysis using specific probes demonstrated that Pttg2 is expressed at very low levels in various cell lines and tissues whereas Pttg3 was largely undetectable. We focused on the study of Pttg2 and found that, unlike PTTG1, PTTG2 lacks transactivation activity and does not bind to separase, making improbable a role in the control of sister chromatids separation. To further investigate the biological role of pttg2, we used short hairpin RNA inhibition of Pttg2 and found that cells with reduced Pttg2 levels assumed a rounded morphology compatible with a defect in cell adhesion and died by apoptosis in a p53- and p21-dependent manner. Using microarray technology, we generated a gene expression profile of Pttg2-depleted cells versus wild-type cells and found that knockdown of PTTG2 results in concomitant downregulation of E-cadherin and elevated vimentin levels, consistent with EMT induction. The observation of aberrant cellular behaviors in Pttg2-silenced cells reveals functions for pttg2 in cell adhesion and provides insights into a potential role in cell invasion.
Collapse
|
13
|
Hu YC, Hsieh BS, Cheng HL, Huang LW, Huang TC, Huang IY, Chang KL. Osteoblasts survive the arsenic trioxide treatment by activation of ATM-mediated pathway. Biochem Pharmacol 2013; 85:1018-26. [PMID: 23337567 DOI: 10.1016/j.bcp.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse effects. We recently found that, in primary osteoblasts, ATO produces oxidative stress and causes DNA tailing, but does not induce apoptosis. We further examined the signaling pathway by which osteoblasts survive ATO treatment, and found that they were arrested at G2/M phase of the cell cycle at 30h and overrode the G2/M boundary at 48h. After treatment for 30h, there was increased Cdc2 phosphorylation and expression of Wee1, a Cdc2 kinase, and expression of the cell cycle inhibitor, p21(waf1/cip1), which interacts with Cdc2. Furthermore, levels of the phosphatase Cdc25C, which activates Cdc2, were decreased, while the ratio of its phosphorylated/inactivated form to the total amount was increased. Moreover, phosphorylation/activation of the checkpoint kinases Chk1, Chk2 and p53 levels were increased, as were levels of activated ATM and γ-H2AX. The cell viability was decreased as an ATM inhibitor was added. Additionally, these effects of ATO on γ-H2AX, Chk1, Chk2, p53, and p21(waf1/cip1) were reduced by an ATM inhibitor. These findings suggest that G2/M phase arrest of osteoblasts is mediated by Chk1/Chk2 activation via an ATM-dependent pathway by which osteoblasts survive.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Mori K, Hamanaka H, Oshima Y, Araki Y, Ishikawa F, Nose K, Shibanuma M. A HIC-5- and KLF4-dependent mechanism transactivates p21(Cip1) in response to anchorage loss. J Biol Chem 2012; 287:38854-65. [PMID: 23007394 DOI: 10.1074/jbc.m112.377721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Anchorage loss elicits a set of responses in cells, such as transcriptional changes, in order to prevent inappropriate cell growth in ectopic environments. However, the mechanisms underlying these responses are poorly understood. In this study, we investigated the transcriptional up-regulation of cyclin-dependent kinase inhibitor p21(Cip1) during anchorage loss, which is important for cell cycle arrest of nonadherent cells in the G1 phase. Up-regulation was mediated by an upstream element, designated as the detachment-responsive element (DRE), that contained Kruppel-like factor 4 (KLF4) and runt-related transcription factor 1 (RUNX1) recognition sites; both of these together were necessary for transactivation, as individually they were insufficient. RNAi experiments revealed that KLF4 and a multidomain adaptor protein, hydrogen peroxide-inducible clone 5 (HIC-5), were critically involved in DRE transactivation. The role of HIC-5 in this mechanism was to tether KLF4 to DNA sites in response to cellular detachment. In addition, further analysis suggested that oligomerization and subsequent nuclear matrix localization of HIC-5, which was accelerated spontaneously in cells during anchorage loss, was assumed to potentiate the scaffolding function of HIC-5 in the nucleus and consequently regulate p21(Cip1) transcription in a manner responding to anchorage loss. At the RUNX1 site, a LIM-only protein, CRP2, imposed negative regulation on transcription, which appeared to be removed by anchorage loss and contributed to increased transcriptional activity of DRE together with regulation at the KLF4 sites. In conclusion, this study revealed a novel transcriptional mechanism that regulated gene expression in a detachment-dependent manner, thereby contributing to anchorage-dependent cell growth.
Collapse
Affiliation(s)
- Kazunori Mori
- Department of Molecular Biology, Division of Cancer Cell Biology, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Hsu CC, Lee YC, Yeh SH, Chen CH, Wu CC, Wang TY, Chen YN, Hung LY, Liu YW, Chen HK, Hsiao YT, Wang WS, Tsou JH, Tsou YH, Wu MH, Chang WC, Lin DY. 58-kDa microspherule protein (MSP58) is novel Brahma-related gene 1 (BRG1)-associated protein that modulates p53/p21 senescence pathway. J Biol Chem 2012; 287:22533-22548. [PMID: 22563078 PMCID: PMC3391125 DOI: 10.1074/jbc.m111.335331] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 05/04/2012] [Indexed: 12/17/2022] Open
Abstract
The nucleolar 58-kDa microspherule protein (MSP58) protein is a candidate oncogene implicated in modulating cellular proliferation and malignant transformation. In this study, we show that knocking down MSP58 expression caused aneuploidy and led to apoptosis, whereas ectopic expression of MSP58 regulated cell proliferation in a context-dependent manner. Specifically, ectopic expression of MSP58 in normal human IMR90 and Hs68 diploid fibroblasts, the H184B5F5/M10 mammary epithelial cell line, HT1080 fibrosarcoma cells, primary mouse embryonic fibroblasts, and immortalized NIH3T3 fibroblasts resulted in induction of premature senescence, an enlarged and flattened cellular morphology, and increased senescence-associated β-galactosidase activity. MSP58-driven senescence was strictly dependent on the presence of functional p53 as revealed by the fact that normal cells with p53 knockdown by specific shRNA or cells with a mutated or functionally impaired p53 pathway were effective in bypassing MSP58-induced senescence. At least two senescence mechanisms are induced by MSP58. First, MSP58 activates the DNA damage response and p53/p21 signaling pathways. Second, MSP58, p53, and the SWI/SNF chromatin-remodeling subunit Brahma-related gene 1 (BRG1) form a ternary complex on the p21 promoter and collaborate to activate p21. Additionally, MSP58 protein levels increased in cells undergoing replicative senescence and stress-induced senescence. Notably, the results of analyzing expression levels of MSP58 between tumors and matched normal tissues showed significant changes (both up- and down-regulation) in its expression in various types of tumors. Our findings highlight new aspects of MSP58 in modulating cellular senescence and suggest that MSP58 has both oncogenic and tumor-suppressive properties.
Collapse
Affiliation(s)
- Che-Chia Hsu
- From the Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology
| | - Yi-Chao Lee
- Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Chang-Han Chen
- Center for Translational Research in Biomedical Sciences and
| | - Chih-Ching Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | | | | | - Liang-Yi Hung
- From the Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology
| | - Yao-Wen Liu
- Department of Pathology, Kuo General Hospital, Tainan 700, Taiwan, and
| | - Han-Ku Chen
- Department of Pathology, Fooyin University Hospital, Pingtung 928, Taiwan
| | - Yi-Ting Hsiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wei-Sheng Wang
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Jen-Hui Tsou
- From the Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology
| | | | - Mei-Hsiang Wu
- From the Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology
| | - Wen-Chang Chang
- Department of Pharmacology, College of Medicine
- Center for Gene Regulation and Signal Transduction Research, and
- Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan 70101, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine and
| | - Ding-Yen Lin
- From the Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology
- Department of Pharmacology, College of Medicine
- Center for Gene Regulation and Signal Transduction Research, and
- Infectious Diseases and Signaling Research Center, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
16
|
Wang WM, Liu ST, Huang SM, Lin WS, Chen SG, Chang YL. Zac1 functional interactions mediate AP-1 transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:2050-60. [DOI: 10.1016/j.bbamcr.2011.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 02/06/2023]
|
17
|
Mizuno S, Bogaard HJ, Kraskauskas D, Alhussaini A, Gomez-Arroyo J, Voelkel NF, Ishizaki T. p53 Gene deficiency promotes hypoxia-induced pulmonary hypertension and vascular remodeling in mice. Am J Physiol Lung Cell Mol Physiol 2011; 300:L753-61. [PMID: 21335523 DOI: 10.1152/ajplung.00286.2010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic hypoxia induces pulmonary arterial remodeling, resulting in pulmonary hypertension and right ventricular hypertrophy. Hypoxia has been implicated as a physiological stimulus for p53 induction and hypoxia-inducible factor-1α (HIF-1α). However, the subcellular interactions between hypoxic exposure and expression of p53 and HIF-1α remain unclear. To examine the role of p53 and HIF-1α expression on hypoxia-induced pulmonary arterial remodeling, wild-type (WT) and p53 knockout (p53KO) mice were exposed to either normoxia or hypoxia for 8 wk. Following chronic hypoxia, both genotypes demonstrated elevated right ventricular pressures, right ventricular hypertrophy as measured by the ratio of the right ventricle to the left ventricle plus septum weights, and vascular remodeling. However, the right ventricular systolic pressures, the ratio of the right ventricle to the left ventricle plus septum weights, and the medial wall thickness of small vessels were significantly greater in the p53KO mice than in the WT mice. The p53KO mice had lower levels of p21 and miR34a expression, and higher levels of HIF-1α, VEGF, and PDGF expression than WT mice following chronic hypoxic exposure. This was associated with a higher proliferating cell nuclear antigen expression of pulmonary artery in p53KO mice. We conclude that p53 plays a critical role in the mitigation of hypoxia-induced small pulmonary arterial remodeling. By interacting with p21 and HIF-1α, p53 may suppress hypoxic pulmonary arterial remodeling and pulmonary arterial smooth muscle cell proliferation under hypoxia.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Fukui, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Mizuno S, Bogaard HJ, Voelkel NF, Umeda Y, Kadowaki M, Ameshima S, Miyamori I, Ishizaki T. Hypoxia regulates human lung fibroblast proliferation via p53-dependent and -independent pathways. Respir Res 2009; 10:17. [PMID: 19267931 PMCID: PMC2663549 DOI: 10.1186/1465-9921-10-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 03/06/2009] [Indexed: 11/16/2022] Open
Abstract
Background Hypoxia induces the proliferation of lung fibroblasts in vivo and in vitro. However, the subcellular interactions between hypoxia and expression of tumor suppressor p53 and cyclin-dependent kinase inhibitors p21 and p27 remain unclear. Methods Normal human lung fibroblasts (NHLF) were cultured in a hypoxic chamber or exposed to desferroxamine (DFX). DNA synthesis was measured using bromodeoxyuridine incorporation, and expression of p53, p21 and p27 was measured using real-time RT-PCR and Western blot analysis. Results DNA synthesis was increased by moderate hypoxia (2% oxygen) but was decreased by severe hypoxia (0.1% oxygen) and DFX. Moderate hypoxia decreased p21 synthesis without affecting p53 synthesis, whereas severe hypoxia and DFX increased synthesis of both p21 and p53. p27 protein expression was decreased by severe hypoxia and DFX. Gene silencing of p21 and p27 promoted DNA synthesis at ambient oxygen concentrations. p21 and p53 gene silencing lessened the decrease in DNA synthesis due to severe hypoxia or DFX exposure. p21 gene silencing prevented increased DNA synthesis in moderate hypoxia. p27 protein expression was significantly increased by p53 gene silencing, and was decreased by wild-type p53 gene transfection. Conclusion These results indicate that in NHLF, severe hypoxia leads to cell cycle arrest via the p53-p21 pathway, but that moderate hypoxia enhances cell proliferation via the p21 pathway in a p53-independent manner. In addition, our results suggest that p27 may be involved in compensating for p53 in cultured NHLF proliferation.
Collapse
Affiliation(s)
- Shiro Mizuno
- Third Department of Internal Medicine, University of Fukui, Yoshida-gun, Fukui, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Anchorage-independent growth of pocket protein-deficient murine fibroblasts requires bypass of G2 arrest and can be accomplished by expression of TBX2. Mol Cell Biol 2008; 28:7263-73. [PMID: 18936168 DOI: 10.1128/mcb.00313-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse embryonic fibroblasts (MEFs) deficient for pocket proteins (i.e., pRB/p107-, pRB/p130-, or pRB/p107/p130-deficient MEFs) have lost proper G(1) control and are refractory to Ras(V12)-induced senescence. However, pocket protein-deficient MEFs expressing Ras(V12) were unable to exhibit anchorage-independent growth or to form tumors in nude mice. We show that depending on the level of pocket proteins, loss of adhesion induces G(1) and G(2) arrest, which could be alleviated by overexpression of the TBX2 oncogene. TBX2-induced transformation occurred only in the absence of pocket proteins and could be attributed to downregulation of the p53/p21(CIP1) pathway. Our results show that a balance between the pocket protein and p53 pathways determines the level of transformation of MEFs by regulating cyclin-dependent kinase activities. Since transformation of human fibroblasts also requires ablation of both pathways, our results imply that the mechanisms underlying transformation of human and mouse cells are not as different as previously claimed.
Collapse
|
20
|
Trichosanthin suppresses HeLa cell proliferation through inhibition of the PKC/MAPK signaling pathway. Cell Biol Toxicol 2008; 25:479-88. [PMID: 18751959 DOI: 10.1007/s10565-008-9102-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
Abstract
Trichosanthin (TCS) possesses a broad spectrum of biological and pharmacological activities, including anti-tumor activities. Our previous studies have shown that TCS inhibits HeLa cell proliferation by activating the apoptotic pathway. In particular, the transcriptional factor cAMP response element binding (CREB) protein plays a pivotal role in apoptotic HeLa cells. However, no information, to date, is available about the signaling pathways involved in the inhibition of cell proliferation induced by TCS. The present study showed that PKA and PKC activities were significantly inhibited by TCS treatment. However, specific inhibitor of PKA activity failed to affect the inhibition of HeLa cell proliferation induced by TCS, even in the presence of cAMP agonists. In contrast, PKC activator/inhibitor significantly attenuated/enhanced the inhibitory effect of TCS on cell proliferation. In particular, the reversed effect of cAMP agonist on cell proliferation was partly prevented by PKC, ERK1/2, and p38 MAPK blockade. Consistent with these results, the reversed effect of cAMP agonists on CREB phosphorylation was significantly decreased by inhibitors of these kinases, but not PKA inhibitor. Therefore, our results suggested that HeLa cell proliferation was inhibited by TCS via suppression of PKC/MAPK signaling pathway.
Collapse
|
21
|
Tu HP, Fu E, Chen YT, Wu MH, Cheng LC, Yang SF. Expression of p21 and p53 in rat gingival and human oral epithelial cells after cyclosporine A treatment. J Periodontal Res 2008; 43:32-9. [PMID: 18230104 DOI: 10.1111/j.1600-0765.2007.00991.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND AND OBJECTIVE Expression of p21 and p53 were examined, at gene and protein levels, in edentulous gingival epithelial cells from rats and from a human oral epidermoid carcinoma cell line, OECM1, after cyclosporine A therapy. MATERIAL AND METHODS In vivo: 20 partially edentulous SD rats were assigned into cyclosporine A feeding and control groups. After the rats were killed, p21 and p53 in gingiva were evaluated by reverse transcription-polymerase chain reaction and immunohistochemistry. In vitro: after cyclosporine A treatment, p21 and p53 of OECM1 cells were evaluated by western blot and the luciferase assay. The distribution of OECM1 cells in each phase of the cell cycle was evaluated by flow cytometry. RESULTS The mRNA expression of p21 was significantly higher in the cyclosporine A group than in the control group. A greater number of positive anti-p21-stained cells were observed in the gingival epithelium of the cyclosporine A group than in the control group. Significantly higher levels of p21 protein and activity were observed in OECM1 cells after cyclosporine A treatment than in cells without treatment. A relative increase of cells in G0/G1 phases, and a decrease of cells in G2/M phases, were observed in OECM1 cells after cyclosporine A treatment. CONCLUSION In the present study, higher p21 mRNA and protein expressions were observed after cyclosporine A treatment. Thus, an up-regulation of p21 expression, via a p53-independent pathway, by cyclosporine A in gingival and oral epithelial cells was suggested.
Collapse
Affiliation(s)
- H-P Tu
- Institute of Oral Biology, National Yang-Ming University, Taipei, Taiwan, China
| | | | | | | | | | | |
Collapse
|
22
|
Gupta V, Samuleson CG, Su S, Chen TC. Nelfinavir potentiation of imatinib cytotoxicity in meningioma cells via survivin inhibition. Neurosurg Focus 2007; 23:E9. [PMID: 17961046 DOI: 10.3171/foc-07/10/e9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although most meningiomas are treated surgically, it may not be possible to completely remove atypical, malignant, and surgically inaccessible meningiomas; in the majority of these cases there is tumor recurrence. The authors have already reported initial preclinical results on the efficacy of imatinib in the treatment of meningiomas; however, a recent Phase II trial of imatinib in patients with recurrent meningiomas did not demonstrate significant antitumor activity. To enhance the activity of imatinib, the authors investigated the use of a combination therapy with nelfinavir on primary meningioma cells and meningioma cell lines IOMM-Lee and CH157. Cytotoxicity was measured using methylthiotetrazole and colony formation assays. In low-dose combination therapy with imatinib, nelfinavir potentiated the antiproliferative and anti-colony formation effects of imatinib. Primary meningioma cells responded better to combination therapy than to imatinib alone. Treatment induced a dose-dependent antiproliferative effect, decreased cell survival, and inhibited colony formation. Western blotting demonstrated decreased levels of survivin protein on combination therapy. Because meningiomas have very high levels of survivin protein, survivin inhibition by nelfinavir may represent a potential mechanism for the additive effect observed with imatinib. Moreover, an increase in the proapoptotic Bax/Bcl-2 protein ratio was demonstrated with the combination of imatinib and nelfinavir. The authors propose that nelfinavir not only potentiates imatinib efficacy, it also abrogates resistance to imatinib by decreasing survivin protein levels in meningiomas. In an in vivo assay, this combination therapy was found to be more effective than imatinib alone. More preclinical work with in vivo models is needed to determine if this new combination therapy will translate into a viable future therapy for meningiomas.
Collapse
Affiliation(s)
- Vinay Gupta
- Department of Pathology, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|
23
|
Wang P, Yan H, Li JC. CREB-mediated Bcl-2 expression in trichosanthin-induced Hela cell apoptosis. Biochem Biophys Res Commun 2007; 363:101-5. [PMID: 17825790 DOI: 10.1016/j.bbrc.2007.08.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2007] [Accepted: 08/20/2007] [Indexed: 12/22/2022]
Abstract
Bcl-2 plays a pivotal role in the control of cell death and is down-regulated in trichosanthin (TCS)-induced cell apoptosis. Because Bcl-2 expression is regulated by the transcription factor cyclic AMP response element-binding protein (CREB), we investigated the role of CREB activation in TCS-induced Hela cells apoptosis. Our results showed that TCS-caused Hela cell apoptosis was accompanied by the decrease of Bcl-2 and phosphorylated CREB protein levels. Interesting, this inhibitive effect can be abolished by the combined treatment of TCS/cAMP agonists. Furthermore, TCS-mediated Bcl-2 protein was abrogated by the suppression of CREB expression with antisense treatment, and blocking the interaction between CREB-binding protein and the Bcl-2 cyclic AMP-responsive element (CRE) by a CRE decoy oligonucleotide. Therefore, these data support the hypothesis that CREB plays a critical role in the regulation of Bcl-2 expression in TCS-induced Hela cell death.
Collapse
Affiliation(s)
- Ping Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou 310058, PR China
| | | | | |
Collapse
|
24
|
Liu YT, Kardosh A, Cooc J, Schönthal AH. Potential misidentification of cyclooxygenase-2 by Western blot analysis and prevention through the inclusion of appropriate controls. Mol Biotechnol 2007; 34:329-35. [PMID: 17284780 DOI: 10.1385/mb:34:3:329] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/10/2023]
Abstract
Cyclooxygenase (COX)-2 plays an important role in the development of cancer and has been recognized as a potential therapeutic target. Because nonsteroidal anti-inflammatory drugs (NSAIDs) are able to inhibit the activity of this enzyme, the potential efficacy of such drugs for purposes of cancer prevention or therapy is an area of intense research. Therefore, it is of critical importance to unequivocally determine the expression levels of COX-2 protein in tumor cells. In this regard, there are several conflicting reports in the literature where the same type of tumor cell lines were reported as COX-2 positive and as COX-2 negative. We found that during Western blot analysis of COX-2 positive and COX-2 negative cells, different antibodies to COX-2 protein are able to generate strong signals, which are false-positives and can be confused with COX-2. Thus, we believe that some of the conflicting reports on COX-2 expression in tumor cell lines could be the result of improper interpretation of the Western blot signals. Here, we present some of these pitfalls and suggest the inclusion of appropriate controls to unequivocally identify COX-2 protein levels.
Collapse
Affiliation(s)
- Yen-Ting Liu
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Ave., HMR-405, Los Angeles, CA 90089-9094, USA
| | | | | | | |
Collapse
|
25
|
Kardosh A, Soriano N, Pyrko P, Liu YT, Jabbour M, Hofman FM, Schönthal AH. Reduced survivin expression and tumor cell survival during chronic hypoxia and further cytotoxic enhancement by the cyclooxygenase-2 inhibitor celecoxib. J Biomed Sci 2007; 14:647-62. [PMID: 17440835 DOI: 10.1007/s11373-007-9173-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 03/27/2007] [Indexed: 11/25/2022] Open
Abstract
Hypoxia is a characteristic feature of advanced solid tumors and may worsen prognosis. The development of tumor-targeted and hypoxia-inducible gene therapy vectors holds promise to selectively deliver and express suicidal or cytotoxic genes in hypoxic regions of tumors. In this regard, the promoter of the survivin gene, which encodes an anti-apoptotic protein that is strongly expressed in tumor tissue, has received attention because of its supposed inducibility by hypoxia. However, in our present study we demonstrate that treatment of various tumor cell lines with chronic hypoxia or with the hypoxia-mimetic CoCl(2) does not result in increased expression of survivin, but rather strongly suppresses this gene's activity. In contrast, expression of glucose-regulated protein 78 (GRP78/Bip) is substantially elevated under chronic hypoxia in vitro and in hypoxic areas of tumor tissue in vivo. Although tumor cells in general exhibit increased chemoresistance under hypoxic conditions, we found that hypoxic glioblastoma cells are more sensitive to killing by the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib, and this effect is reflected by further decreased expression of survivin. Intriguingly, 2,5-dimethyl-celecoxib (DMC), a close structural analog of celecoxib that lacks the ability to inhibit COX-2, is able to potently mimic the anti-tumor effects of its parent compound, indicating that inhibition of COX-2 is not involved in these processes. Taken together, our results caution against the use of survivin-based promoters to target hypoxic areas of tumors, but favor constructs that include the strongly hypoxia-inducible GRP78 promoter. In addition, our data introduce celecoxib as a drug with increased cytotoxicity against hypoxic tumor cells.
Collapse
Affiliation(s)
- Adel Kardosh
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, 2011 Zonal Ave., HMR-405, Los Angeles, CA 90089-9094, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Pyrko P, Kardosh A, Liu YT, Soriano N, Xiong W, Chow RH, Uddin J, Petasis NA, Mircheff AK, Farley RA, Louie SG, Chen TC, Schönthal AH. Calcium-activated endoplasmic reticulum stress as a major component of tumor cell death induced by 2,5-dimethyl-celecoxib, a non-coxib analogue of celecoxib. Mol Cancer Ther 2007; 6:1262-75. [PMID: 17431104 DOI: 10.1158/1535-7163.mct-06-0629] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A drawback of extensive coxib use for antitumor purposes is the risk of life-threatening side effects that are thought to be a class effect and probably due to the resulting imbalance of eicosanoid levels. 2,5-Dimethyl-celecoxib (DMC) is a close structural analogue of the selective cyclooxygenase-2 inhibitor celecoxib that lacks cyclooxygenase-2-inhibitory function but that nonetheless is able to potently mimic the antitumor effects of celecoxib in vitro and in vivo. To further establish the potential usefulness of DMC as an anticancer agent, we compared DMC and various coxibs and nonsteroidal anti-inflammatory drugs with regard to their ability to stimulate the endoplasmic reticulum (ER) stress response (ESR) and subsequent apoptotic cell death. We show that DMC increases intracellular free calcium levels and potently triggers the ESR in various tumor cell lines, as indicated by transient inhibition of protein synthesis, activation of ER stress-associated proteins GRP78/BiP, CHOP/GADD153, and caspase-4, and subsequent tumor cell death. Small interfering RNA-mediated knockdown of the protective chaperone GRP78 further sensitizes tumor cells to killing by DMC, whereas inhibition of caspase-4 prevents drug-induced apoptosis. In comparison, celecoxib less potently replicates these effects of DMC, whereas none of the other tested coxibs (rofecoxib and valdecoxib) or traditional nonsteroidal anti-inflammatory drugs (flurbiprofen, indomethacin, and sulindac) trigger the ESR or cause apoptosis at comparable concentrations. The effects of DMC are not restricted to in vitro conditions, as this drug also generates ER stress in xenografted tumor cells in vivo, concomitant with increased apoptosis and reduced tumor growth. We propose that it might be worthwhile to further evaluate the potential of DMC as a non-coxib alternative to celecoxib for anticancer purposes.
Collapse
Affiliation(s)
- Peter Pyrko
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang SM, Huang SP, Wang SL, Liu PY. Importin alpha1 is involved in the nuclear localization of Zac1 and the induction of p21WAF1/CIP1 by Zac1. Biochem J 2007; 402:359-66. [PMID: 17109628 PMCID: PMC1798434 DOI: 10.1042/bj20061295] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Zac1, a novel seven-zinc-finger transcription factor, preferentially binds GC-rich DNA elements and has intrinsic transactivation activity. To date, the NLS (nuclear localization signal) of Zac1 has not been empirically determined. We generated a series of EGFP (enhanced green fluorescence protein)-tagged deletion mutants of Zac1 and examined their subcellular localization, from which we defined two NLSs within the DNA-binding (or zinc-finger) domain. Fusion proteins consisting of the two EGFP-tagged zinc-finger clusters (zinc finger motifs 1-3 and 4-7) were located exclusively in the nucleus, demonstrating that each of the zinc-finger clusters is sufficient for nuclear localization. Physical interactions between these two zinc-finger clusters and importin alpha1 were demonstrated using an in vitro glutathione S-transferase pull-down assay. Finally, our results indicate that the association of Zac1 with importin alpha1 is also involved in regulating the transactivation activity of Zac1 on the p21WAF1/CIP1 gene and protein expression.
Collapse
Affiliation(s)
- Shih-Ming Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
- To whom correspondence should be addressed (email )
| | - Sheng-Ping Huang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Sung-Ling Wang
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| | - Pei-Yao Liu
- Department of Biochemistry and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan 114, Republic of China
| |
Collapse
|
28
|
Gupta V, Su YS, Samuelson CG, Liebes LF, Chamberlain MC, Hofman FM, Schönthal AH, Chen TC. Irinotecan: a potential new chemotherapeutic agent for atypical or malignant meningiomas. J Neurosurg 2007; 106:455-62. [PMID: 17367069 DOI: 10.3171/jns.2007.106.3.455] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
There is currently no effective chemotherapy for meningiomas. Although most meningiomas are treated surgically, atypical or malignant meningiomas and surgically inaccessible meningiomas may not be removed completely. The authors have investigated the effects of the topoisomerase I inhibitor irinotecan (CPT-11) on primary meningioma cultures and a malignant meningioma cell line in vitro and in vivo.
Methods
The effects of irinotecan on cellular proliferation in primary meningioma cultures and the IOMM-Lee malignant meningioma cell line were measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry. Apoptosis following drug treatment was evaluated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and the DNA laddering assays. The effects of irinotecan in vivo on a meningioma model were determined with a subcutaneous murine tumor model using the IOMM-Lee cell line.
Irinotecan induced a dose-dependent antiproliferative effect with subsequent apoptosis in the primary meningioma cultures (at doses up to 100 μM) as well as in the IOMM-Lee human malignant meningioma cell line (at doses up to 20 μM) irinotecan. In the animal model, irinotecan treatment led to a statistically significant decrease in tumor growth that was accompanied by a decrease in Bcl-2 and survivin levels and an increase in apoptotic cell death.
Conclusions
Irinotecan demonstrated growth-inhibitory effects in meningiomas both in vitro and in vivo. Irinotecan was much more effective against the malignant meningioma cell line than against primary meningioma cultures. Therefore, this drug may have an important therapeutic role in the treatment of atypical or malignant meningiomas and should be evaluated further for this purpose.
Collapse
Affiliation(s)
- Vinay Gupta
- Department of Pathology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Takahashi R, Kawawa A, Kubota S. Short time exposure to hypoxia promotes H9c2 cell growth. Biochim Biophys Acta Gen Subj 2006; 1760:1293-7. [PMID: 16890360 DOI: 10.1016/j.bbagen.2006.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 05/10/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
The effects of short time (15 min) exposure to hypoxia on rat cardiomyocytes (H9c2) were examined. Exposure to hypoxia inhibited cell death via activation of MEK/extracellular signal-regulated kinase (ERK). Further, exposure to hypoxia promoted cell growth by down-regulation of p27 and phosphorylation of cyclin-dependent kinase 2 (CDK2) and retinoblastoma protein (Rb).
Collapse
Affiliation(s)
- Rie Takahashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
30
|
Pyrko P, Soriano N, Kardosh A, Liu YT, Uddin J, Petasis NA, Hofman FM, Chen CS, Chen TC, Schönthal AH. Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo. Mol Cancer 2006; 5:19. [PMID: 16707021 PMCID: PMC1479836 DOI: 10.1186/1476-4598-5-19] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 05/18/2006] [Indexed: 12/19/2022] Open
Abstract
Background 2,5-Dimethyl-celecoxib (DMC) is a close structural analog of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib (Celebrex®) that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood. Results We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib) or traditional NSAIDs (flurbiprofen, indomethacin, sulindac) do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo. Conclusion In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a manner that does not require the inhibition of cyclooxygenase-2. Because inhibition of COX-2 appears to be negligible, it might be worthwhile to further evaluate DMC's potential as a non-coxib alternative to celecoxib for anti-cancer purposes.
Collapse
Affiliation(s)
- Peter Pyrko
- Department of Pathology, University of Southern California, Los Angeles, USA
| | - Nathaniel Soriano
- Department of Pathology, University of Southern California, Los Angeles, USA
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| | - Adel Kardosh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| | - Yen-Ting Liu
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| | - Jasim Uddin
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | - Nicos A Petasis
- Department of Chemistry, University of Southern California, Los Angeles, USA
| | - Florence M Hofman
- Department of Pathology, University of Southern California, Los Angeles, USA
| | - Ching-Shih Chen
- Division of Medical Chemistry and Pharmacognosy, The Ohio State University, Columbus, USA
| | - Thomas C Chen
- Department of Pathology, University of Southern California, Los Angeles, USA
- Department of Neurosurgery, University of Southern California, Los Angeles, USA
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| |
Collapse
|
31
|
Gupta V, Su YS, Wang W, Kardosh A, Liebes LF, Hofman FM, Schönthal AH, Chen TC. Enhancement of glioblastoma cell killing by combination treatment with temozolomide and tamoxifen or hypericin. Neurosurg Focus 2006; 20:E20. [PMID: 16709026 DOI: 10.3171/foc.2006.20.4.13] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECT The chemotherapeutic agent temozolomide has demonstrated antitumor activity in patients with recurrent malignant glioma. Because responses are not enduring and recurrence is nearly universal, further improvements are urgently needed. METHODS In an effort to increase the clinical activity of temozolomide, the authors investigated whether its antitumor activity could be enhanced by adding tamoxifen or hypericin, two drugs that are known to inhibit the activity of protein kinase C. Human glioblastoma multiforme cell lines A172 and LA567 were treated with combinations of temozolomide and tamoxifen or hypericin in vitro, and cell survival was analyzed using various methods. Tamoxifen and hypericin were able to greatly increase the growth-inhibitory and apoptosis-stimulatory potency of temozolomide via the downregulation of critical cell cycle-regulatory and prosurvival components. Furthermore, with the use of an in vivo xenograft mouse model, the authors demonstrated that hypericin was able to enhance the antiglioma effects of temozolomide in the in vivo setting as well. CONCLUSIONS Taken together, analysis of the results indicated that combination therapy involving temozolomide and tamoxifen or hypericin potently inhibited tumor growth by inducing apoptosis and provided an effective means of treating malignant glioma.
Collapse
Affiliation(s)
- Vinay Gupta
- Department of Pathology, K. Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kardosh A, Soriano N, Liu YT, Uddin J, Petasis NA, Hofman FM, Chen TC, Schönthal AH. Multitarget inhibition of drug-resistant multiple myeloma cell lines by dimethyl-celecoxib (DMC), a non–COX-2 inhibitory analog of celecoxib. Blood 2005; 106:4330-8. [PMID: 16123214 DOI: 10.1182/blood-2005-07-2819] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
2,5-dimethyl-celecoxib (DMC) is a close structural analog of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib that lacks COX-2 inhibitory function. We and others have demonstrated that DMC, despite its inability to block COX-2, is able to potently mimic the antitumor effects of celecoxib in vitro and in vivo. In this current study, we investigated whether DMC would also be able to inhibit the growth of highly drug-resistant tumor cell variants. We focused on human multiple myeloma (MM) cells, as patients with MM frequently develop drug-resistant disease and ultimately succumb to death. Here we show that DMC (and celecoxib) inhibits the proliferation of various multiple myeloma cell lines, including several (multi) drug-resistant variants. Growth inhibition in drug-sensitive and drug-resistant cells is mediated via multiple effects, which include diminished signal transducer and activator of transcription 3 (STAT-3) and mitogen-activated protein (MAP) kinase kinase (MEK) activity, reduced expression of survivin and various cyclins, and is followed by apoptotic cell death. Thus, our study demonstrates that inhibition of proliferation and induction of apoptosis by DMC (and celecoxib) can be accomplished even in highly drug-resistant multiple myeloma cells, and that this effect is achieved via the blockage of multiple targets that are critical for multiple myeloma cell growth and survival.
Collapse
Affiliation(s)
- Adel Kardosh
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tkemaladze JV, Chichinadze KN. Centriolar Mechanisms of Differentiation and Replicative Aging of Higher Animal Cells. BIOCHEMISTRY (MOSCOW) 2005; 70:1288-303. [PMID: 16336191 DOI: 10.1007/s10541-005-0261-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The centrosome (centriole) and the cytoskeleton produced by it are structures, which probably determine differentiation, morphogenesis, and switching on the mechanism of replicative aging in all somatic cells of multicellular animals. The mechanism of such programming of the events seems to include cytoskeleton influences and small RNAs related to the centrosome. 1) If these functions are really related with centrioles, the multicellular organism's cells which: a) initially lack centrioles (e.g., higher plant cells and also zygote and early blastomeres of some animals) or cytoskeleton (e.g., embryonic stem cells); or b) generate centrioles de novo (e.g., zygote and early blastomeres of some animals), will be totipotent and lack replicative aging. Consequently, the absence (constant or temporary) of the structure determining the counting of divisions also means the absence of counting of differentiation processes. 2) Although a particular damage to centrioles or cytoskeleton (e.g., in tumor cells) fails to make the cells totipotent (because the morphogenetic status of these cells, as differentiated from that of totipotent ones, is not zero), but such a transformation can suppress the initiation of the aging mechanism induced by these structures and, thus, make such cells replicatively "immortal".
Collapse
Affiliation(s)
- J V Tkemaladze
- Georgian Systemic Research Center, Tbilisi, 0160, Georgia
| | | |
Collapse
|
34
|
Chesnokova V, Kovacs K, Castro AV, Zonis S, Melmed S. Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol Endocrinol 2005; 19:2371-9. [PMID: 15919720 PMCID: PMC1201444 DOI: 10.1210/me.2005-0137] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pituitary tumor transforming gene (Pttg) is induced in pituitary tumors and associated with increased tumor invasiveness. Pttg-null mice do not develop tumors, but exhibit pituitary hypoplasia, whereas mice heterozygous for the retinoblastoma (Rb) deletion develop pituitary tumors with high penetrance. Pttg-null mice were therefore cross-bred with Rb+/- mice to test the impact of pituitary hypoplasia on tumor development. Before tumor development, Rb+/-Pttg-/- mice have smaller pituitary glands with fewer cycling pituitary cells and exhibit induction of pituitary p21 levels. Pttg silencing in vitro with specific short hairpin interfering RNA in AtT20 mouse corticotrophs led to a marked induction of p21 mRNA and protein levels, decreased RB phosphorylation, and subsequent 24% decrease in S-phase cells. Eighty-six percent of Rb+/-Pttg+/+ mice develop pituitary adenomas by 13 months, in contrast to 30% of double-crossed Rb+/-Pttg-/- animals (P < 0.01). Pituitary hypoplasia, associated with suppressed cell proliferation, prevents the high penetrance of pituitary tumors in Rb+/- animals, and is therefore a protective determinant for pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vera Chesnokova
- Cedars-Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Anna-Valeria Castro
- Cedars-Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Svetlana Zonis
- Cedars-Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Shlomo Melmed
- Cedars-Sinai Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- *Shlomo Melmed, MD. Academic Affairs, Room 2015, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, Tel: (310) 423 4691, Fax: (310) 423 0119, E- mail:
| |
Collapse
|
35
|
LaRue KEA, Khalil M, Freyer JP. Microenvironmental regulation of proliferation in multicellular spheroids is mediated through differential expression of cyclin-dependent kinase inhibitors. Cancer Res 2004; 64:1621-31. [PMID: 14996720 DOI: 10.1158/0008-5472.can-2902-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multicellular spheroids composed of transformed cells are known to mimic the growth characteristics of tumors and to develop gradients in proliferation with increasing size. This progressive accumulation of quiescent cells is presumably an active process that occurs in response to the microenvironmental stresses that develop within the three-dimensional structure, and, yet, little is known regarding either the signals that induce the cell cycle arrest or the molecular basis for the halt in proliferation. We have previously reported that regulation of cyclin-dependent kinase (CDK) inhibitors (CKIs) differs in monolayer versus spheroid cell culture. In this study, we have examined the expression of three CKIs in EMT6 mouse mammary carcinoma and MEL28 human melanoma spheroids, as a function both of spheroid size and of location within the spheroid. We report that expression of the CKIs p18(INK4c), p21(waf1/cip1), and p27(Kip1) all increase as the spheroid grows and develops a quiescent cell fraction. However, by examining protein expression in discrete regions of the spheroid, we have found that only p18(INK4c) and p27(Kip1) expression positively correlate with growth arrest, whereas p21(waf1/cip1) is expressed predominantly in proliferating cells. Further analysis indicated that, in the quiescent cells, p18(INK4c) is found in increasing association with CDK6, whereas p27(Kip1) associates predominantly with CDK2. In MEL28 cells, CDK2 activity is completely abrogated in the inner regions of the spheroid, whereas in EMT6 cells, CDK2 activity decreases in accordance with a decrease in expression. We also observed a decrease in all cell cycle regulatory proteins in the innermost spheroid fraction, including CDKs, CKIs, and cyclins. Induction of CKIs from separate families, as well as their association with distinct target CDKs, suggests that there may be multiple checkpoints activated to ensure cell cycle arrest in non-growth-conducive environments. Furthermore, because very similar observations were made in both a human melanoma cell line and a mouse mammary carcinoma cell line, our results indicate that these checkpoints, as well as the signal transduction pathways that activate them, are highly conserved.
Collapse
Affiliation(s)
- Karen E A LaRue
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | |
Collapse
|
36
|
Cordes N, van Beuningen D. Arrest of human lung fibroblasts in G2 phase after irradiation is regulated by converging phosphatidylinositol-3 kinase and β1-integrin signaling in vitro. Int J Radiat Oncol Biol Phys 2004; 58:453-62. [PMID: 14751515 DOI: 10.1016/j.ijrobp.2003.09.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE Cell-matrix interactions might confer cellular radioresistance in vitro. As a function of radiation, the impact of fibronectin (FN) and phosphatidylinositol-3 kinase (PI3K)-related signaling on survival, the cell cycle, and the beta1-integrin signaling kinases integrin-linked kinase (ILK), protein kinase Balpha/Akt (PKBalpha/Akt), and glycogen synthase kinase-3beta (GSK-3beta) was examined in normal lung fibroblasts in vitro. METHODS AND MATERIALS Normal human CCD32 lung fibroblasts grown on polystyrene, FN, or poly-L-lysine were irradiated with 0-8 Gy. Colony forming assays, flow cytometric DNA analysis, immunoblotting (Chk1, Chk2, Cdc25C, Cdk1, 14-3-3, p53, p21), and protein kinase assays (ILK, PKBalpha/Akt, GSK-3beta) were performed with or without PI3K inhibition using LY294002 or wortmannin. RESULTS FN significantly elevated clonogenic survival of CCD32 cells after irradiation compared with polystyrene or poly-L-lysine. FN improved accumulation of irradiated cells in G(2)/M (60%) compared with polystyrene (43%). LY294002 prevented radiation-dependent G(2) blockage on polystyrene; on FN, G(2) arrest was only slightly reduced. Radiation- and PI3K inhibition-related changes in expression and phosphorylation of the various cell cycle proteins tested correlated with the cell cycle data acquired. The kinase activities of ILK, PKBalpha/Akt, and GSK-3beta were strongly induced by irradiation on polystyrene, but not on FN, which was a result of a FN-mediated increase of basal kinase activities. In contrast to polystyrene, FN enabled radiation-dependent induction of ILK and GSK-3beta in a PI3K-independent manner. CONCLUSION The data indicate a tight convergence of cell-matrix and cell-growth factor interactions that seem to optimize the cellular responsiveness to ionizing radiation in terms of survival and G(2) arrest. ILK, PKBalpha/Akt, and GSK-3beta involved in integrin signaling were uncovered as new molecular factors within the cellular radiation response. Our findings might also provide insight into normal tissue effects and cellular radioresistance.
Collapse
Affiliation(s)
- Nils Cordes
- Institute of Radiobiology, German Armed Forces, Neuherbergstrasse 11, Munich 80937, Germany.
| | | |
Collapse
|
37
|
Picache ER, Hassanieh L, Broek D, Schönthal AH. Inhibition of tumor cell growth by triton X-100 through specific effects on cell-cycle-regulatory components. J Biomed Sci 2004; 11:95-103. [PMID: 14730213 DOI: 10.1007/bf02256552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Accepted: 08/07/2003] [Indexed: 11/28/2022] Open
Abstract
A cross-linked form of the detergent Triton X-100, called Triton WR-1339, has been shown to reduce the spread of tumor cells in laboratory animals. However, some of these effects were controversial, probably due to the use of different tumor cell lines and varying sites of injection. In order to better understand these processes, we have used Triton X-100 and performed a molecular analysis of its growth-inhibitory function. Using the T24 bladder carcinoma cell line, we have shown that treatment of cells with this detergent caused a potent antiproliferative effect resulting from the downregulation of the key cell cycle regulators, the cyclin-dependent kinases (CDKs). CDK activity was lost due to a twofold effect, the increased expression of the CDK inhibitors p21(Cip1) and p27(Kip1) in combination with the reduced expression of cyclin A, a regulatory CDK subunit that is essential for CDK function. Taken together, our results provide a molecular basis for the antiproliferative effects of the Triton detergent, namely its differential effects on various parts of the cell cycle machinery.
Collapse
Affiliation(s)
- Esther R Picache
- Department of Molecular Microbiology and Immunology, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089-9094, USA
| | | | | | | |
Collapse
|
38
|
Blumenthal M, Kardosh A, Dubeau L, Borok Z, Schönthal AH. Suppression of the transformed phenotype and induction of differentiation-like characteristics in cultured ovarian tumor cells by chronic treatment with progesterone. Mol Carcinog 2003; 38:160-9. [PMID: 14639655 DOI: 10.1002/mc.10155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epidemiological evidence suggests that elevated levels of the pregnancy hormone progesterone might play a role in the reduced risk of women to develop ovarian cancer. In vitro studies have supported this hypothesis by demonstrating negative effects of this hormone on the growth and proliferation of cultured ovarian carcinoma cells. However, little is known about the underlying molecular processes and how progesterone might decrease the risk for ovarian tumors. Therefore, we investigated the effects of chronic hormone treatment on the cell-cycle and transformed phenotype of ovarian carcinoma cell lines in vitro. We found that long-term treatment of these cells with progesterone caused a concomitant reduction of cyclin-dependent kinase (CDK) activity. In parallel, these cells lost their transformed phenotype as indicated by the acquisition of contact inhibition and the loss of anchorage-independence, as well as the reduced expression of tumor markers such as heat shock protein (HSP) 72 and carcinoma antigen (CA) 125. In addition, progesterone-treated cells exhibited characteristics that resembled a more differentiated phenotype. Taken together, our data indicated that progesterone was able to suppress the transformed phenotype of ovarian tumor cells. This observation could serve to explain progesterone's alleged protective effect in ovarian carcinogenesis.
Collapse
Affiliation(s)
- Martina Blumenthal
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
39
|
Saeed RW, Peng T, Metz CN. Ascorbic acid blocks the growth inhibitory effect of tumor necrosis factor-alpha on endothelial cells. Exp Biol Med (Maywood) 2003; 228:855-65. [PMID: 12876306 DOI: 10.1177/15353702-0322807-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Impaired endothelial cell proliferation has been proposed to be an early, critical defect contributing to the development of atherosclerosis. Recent studies show that high plasma tumor necrosis factor (TNF)-alpha levels and low serum ascorbic acid (AA) levels correlate with atherosclerosis severity. Additionally, AA has been reported to have potential beneficial effects in preventing atherosclerosis. Based on these studies, we investigated the role of AA (< or =1mM) on TNF-alpha-mediated vascular endothelial cell growth inhibition in vitro. In accordance with previous reports, we found that TNF-alpha alone inhibited endothelial cell proliferation. Further studies revealed that AA alone enhanced endothelial cell proliferation and that AA blocked endothelial cell growth inhibition induced by TNF-alpha. By contrast, we observed no effect of AA on endothelial cell activation or nuclear entry of nuclear factor-kappaB in response to TNF-alpha. The protective effect of AA on endothelial cell proliferation was not simply the result of its antioxidant activity but did correlate with collagen IV expression by endothelial cells. AA pre-treatment of proliferating endothelial cells promoted retinoblastoma protein (Rb) phosphorylation and decreased p53 levels when compared to untreated cells. Furthermore, the addition of AA to TNF-alpha-treated proliferating endothelial cells blocked both the inhibition of retinoblastoma protein phosphorylation and enhanced p53 expression induced by TNF-alpha. Consistent with these results, we found that AA protects endothelial cells against TNF-alpha-induced apoptosis. These studies highlight the potential therapeutic role of AA in promoting endothelial cell proliferation during inflammatory conditions, such as atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Rubina W Saeed
- Laboratory of Vascular Biology, Division of Medicinal Biochemistry, North Shore-Long Island Jewish Research Institute, Manhasset, New York 11030, USA
| | | | | |
Collapse
|
40
|
Cordes N, van Beuningen D. Cell adhesion to the extracellular matrix protein fibronectin modulates radiation-dependent G2 phase arrest involving integrin-linked kinase (ILK) and glycogen synthase kinase-3beta (GSK-3beta) in vitro. Br J Cancer 2003; 88:1470-9. [PMID: 12778079 PMCID: PMC2741045 DOI: 10.1038/sj.bjc.6600912] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion to extracellular matrix (ECM) is thought to confer resistance against cell-damaging agents, that is, drugs and radiation, in tumour and normal cells in vitro. The dependence of cell survival on beta1-integrin-linked kinase (ILK), protein kinase Balpha/Akt (PKBalpha/Akt) and glycogen synthase kinase-3beta (GSK-3beta) activity, which participate in beta1-integrin signalling and cell cycle progression was investigated as a function of radiation exposure. Colony-formation assays on polystyrene, fibronectin (FN), laminin (LA), bovine serum albumin (BSA) or poly-L-lysine (poly-L) (0-8 Gy), kinase assays, flow cytometric DNA and annexin-V analysis and immunoblotting were performed in nonirradiated and irradiated (2 or 6 Gy) A549 human lung cancer cells and CCD32 normal human lung fibroblasts. Cell contact to FN in contrast to polystyrene elevated basal ILK, PKBalpha/Akt and GSK-3beta kinase activities in A549 and CCD32 cells, as well as the basal amount of A549 G2 phase cells. Irradiation on FN or LA as compared to polystyrene, BSA or poly-L significantly improved cell survival. Following irradiation, kinase activities were stimulated strongly on polystyrene but showed to be less prominent on FN, which was because of the FN-related basal induction. Following irradiation, FN compared to polystyrene enlarged and prolonged G2 arrest in both the cell lines. For the analysis of phosphatidylinositol-3 kinase (PI3-K) dependence of protein kinases and cell cycle transition, the PI3-K inhibitors LY294002 and wortmannin were used showing decreased kinase activities, antiproliferative and radiation-dependent G2 accumulation-abrogating effects accompanied by downregulation of cyclin D1 and phospho-pRb in cells attached to polystyrene. Fibronectin partly abrogated these effects PI3-K-independently. These findings suggest a novel pathway that makes direct phosphorylation of GSK-3beta by ILK feasible after irradiation. Conclusively, the data indicate that ILK, PKBalpha/Akt and GSK-3beta are involved in modulations of the cell cycle after irradiation. These interactions are strictly dependent on ECM components in a cell line-specific manner. Our findings provide molecular insights into mechanisms likely to be important for ECM-dependent cell survival and cellular radioresistance as well as tumour growth.
Collapse
Affiliation(s)
- N Cordes
- Institute of Radiobiology, German Armed Forces Medical Academy, Neuherbergstrasse 11, 80937 Munich, Germany.
| | | |
Collapse
|
41
|
Nakatani F, Tanaka K, Sakimura R, Matsumoto Y, Matsunobu T, Li X, Hanada M, Okada T, Iwamoto Y. Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein. J Biol Chem 2003; 278:15105-15. [PMID: 12560328 DOI: 10.1074/jbc.m211470200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translocation t(11;22) is a karyotypic abnormality detected in over 90% of Ewing's family tumors. This translocation results in the EWS-Fli1 fusion gene, which has been shown to be a potent, single-step transforming gene. We reported previously that suppression of the EWS-Fli1 fusion protein altered the expression of G(1) regulatory cyclins and cyclin-dependent kinase inhibitors both at mRNA and protein levels, resulting in G(1) growth arrest in Ewing's family tumor cell lines. These data suggest that the G(1) regulatory molecules may be targets of the EWS-Fli1 fusion protein, which functions as an aberrant transcription factor. By using electrophoretic mobility shift assays, we show here the direct association of EWS-Fli1 fusion protein with ETS consensus sequences, which are in the promoter of the p21(WAF1/CIP1) gene. Reporter gene assays revealed that the activity of the p21(WAF1/CIP1) promoter is negatively regulated by EWS-Fli1 fusion protein through at least two ETS-binding sites in the promoter. EWS-Fli1 interacted with p300 cotransactivator and suppressed its histone acetyltransferase activity, which may explain the down-regulation of p21(WAF1/CIP1) by EWS-Fli1. In the presence of a histone deacetylase inhibitor, the histone acetyltransferase activity of the Ewing's family tumor cell was recovered resulting in the induction of p21, and the cell growth was dramatically inhibited. These results demonstrated that p21(WAF1/CIP1) might be one of the direct targets of EWS-Fli1, and that p21(WAF1/CIP1) could serve as a target for a molecularly based therapy for Ewing's family tumors.
Collapse
Affiliation(s)
- Fumihiko Nakatani
- Department of Orthopedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Maclaren A, Clark W, Black EJ, Gregory D, Fujii H, Gillespie DAF. v-Jun stimulates both cdk2 kinase activity and G1/S progression via transcriptional repression of p21 CIP1. Oncogene 2003; 22:2383-95. [PMID: 12717415 DOI: 10.1038/sj.onc.1206329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous studies have shown that the viral Jun (v-Jun) oncoprotein induces marked alterations in cell cycle control, which are associated with, and may be caused by, increased cdk2 kinase activity. Since p21 CIP1 is an important regulator of cdk2, we investigated whether aberrant expression of this cyclin-dependent kinase inhibitor might contribute to cell cycle deregulation by v-Jun. We find that the basal levels of p21 CIP1 mRNA and protein expression are greatly reduced in chick embryo fibroblasts (CEF) transformed by v-Jun, and that v-Jun blocks the increases in p21 CIP1 expression that normally accompany growth inhibition induced by serum deprivation or confluency in untransformed CEF. Importantly, ectopic expression of p21 CIP1 in v-Jun-transformed CEF inhibits both cdk2 kinase activity and cell cycle progression, indicating that these alterations in p21 CIP1 expression are likely to be functionally significant for growth deregulation. We also investigated the mechanism through which v-Jun disturbs p21 CIP1 expression and the possible involvement of a known p21 CIP1 regulator, p53, as an intermediate in this process. This analysis revealed that repression is mediated primarily at the level of p21 CIP1 gene transcription, however the mechanism is complex; both p53-dependent and -independent mechanisms contribute as judged by analysis of p21 CIP1 promoter mutants and other assays of p53 transcriptional activity.
Collapse
Affiliation(s)
- A Maclaren
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| | | | | | | | | | | |
Collapse
|
43
|
Wu RC, Blumenthal M, Li X, Schönthal AH. Loss of cellular adhesion to matrix induces p53-independent expression of PTEN tumor suppressor. BMC Mol Biol 2002; 3:11. [PMID: 12113656 PMCID: PMC117602 DOI: 10.1186/1471-2199-3-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2002] [Accepted: 07/12/2002] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The tumor suppressor gene PTEN has been found mutated in many types of advanced tumors. When introduced into tumor cells that lack the wild-type allele of the gene, exogenous PTEN was able to suppress their ability to grow anchorage-independently, and thus reverted one of the typical characteristics of tumor cells. As these findings indicated that PTEN might be involved in the regulation of anchorage-dependent cell growth, we analyzed this aspect of PTEN function in non-tumor cells with an anchorage-dependent phenotype. RESULTS We found that in response to the disruption of cell-matrix interactions, expression of endogenous PTEN was transcriptionally activated, and elevated levels of PTEN protein and activity were present in the cells. These events correlated with decreased phosphorylation of focal adhesion kinase, and occurred even in the absence of p53, a tumor suppressor protein and recently established stimulator of PTEN transcription. CONCLUSIONS In view of PTEN's potent growth-inhibitory capacity, we conclude that its induction after cell-matrix disruptions contributes to the maintenance of the anchorage-dependent phenotype of normal cells.
Collapse
Affiliation(s)
- Ray-Chang Wu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Martina Blumenthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
| | - Xinwei Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
| | - Axel H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine
- K. Norris Jr. Comprehensive Cancer Center, University of Southern California, 2011 Zonal Ave, HMR-405, Los Angeles, CA 90089, USA
| |
Collapse
|
44
|
Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAK contributes to cell cycle progression. Mol Biol Cell 2001; 12:4066-77. [PMID: 11739801 PMCID: PMC60776 DOI: 10.1091/mbc.12.12.4066] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin-mediated cell adhesion to the extracellular matrix is required for normal cell growth. Cyclin D1 is a key regulator of G1-to-S phase progression of the cell cycle. Our previous studies have demonstrated that integrin signaling through focal adhesion kinase (FAK) plays a role in the regulation of cell cycle progression, which correlates with changes in the expression of cyclin D1 and the cdk inhibitor, p21, induced by FAK. In this report, we first investigated the roles of both cyclin D1 and p21 in the regulation of cell cycle progression by FAK. We found that overexpression of a dominant-negative FAK mutant DeltaC14 suppressed cell cycle progression in p21(-/-) cells as effectively as in the control p21(+/+) cells. Furthermore, we found that overexpression of ectopic cyclin D1 could rescue cell cycle inhibition by DeltaC14. These results suggested that cyclin D1, but not p21, was the primary functional target of FAK signaling pathways in cell cycle regulation. We then investigated the mechanisms underlying the regulation of cyclin D1 expression by FAK signaling. Using Northern blotting and cyclin D1 promoter/luciferase assays, we showed that FAK signaling regulated cyclin D1 expression at the transcriptional level. Using a series of cyclin D1 promoter mutants in luciferase assays as well as electrophoretic mobility shift assays (EMSA), we showed that the EtsB binding site mediated cyclin D1 promoter regulation by FAK. Finally, we showed that FAK regulation of cyclin D1 depends on integrin-mediated cell adhesion and is likely through its activation of the Erk signaling pathway. Together, these studies demonstrate that transcriptional regulation of cyclin D1 by FAK signaling pathways contributes to the regulation of cell cycle progression in cell adhesion.
Collapse
Affiliation(s)
- J Zhao
- Department of Molecular Medicine, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
45
|
Freyer AM, Johnson SR, Hall IP. Effects of growth factors and extracellular matrix on survival of human airway smooth muscle cells. Am J Respir Cell Mol Biol 2001; 25:569-76. [PMID: 11713098 DOI: 10.1165/ajrcmb.25.5.4605] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Airway remodeling complicates longstanding asthma. It is characterized by an increase in the number of airway smooth muscle cells (SMCs) as well as an increase in and alteration of the type of extra-cellular matrix (ECM) in the airways. Although the number of SMCs in the airways depends on the balance of cell proliferation and cell death, studies to date have concentrated on factors affecting SMC proliferation. Here we report the first study on airway SMC survival factors: these cells receive a strong survival signal, which is not dependent on the known growth factor mitogens. We identified the ECM factors fibronectin, laminin, and collagens I and IV as important anti-apoptotic elements, and characterized the expression of the ECM receptors (integrins) on cultured SMC. Functionally blocking antibody and peptide studies revealed the alpha(5)beta(1) integrin to be an important transducer of the ECM-derived survival signal in these cells. Confocal microscopy confirmed the striking effects that discrete ECM factors have on SMC phenotype, notably the cytoskeleton. In summary, our data improves the understanding of the mechanisms underlying airway remodeling by outlining the key survival factors for airway SMC and by highlighting the impact of the cell-matrix interactions on cell death and phenotype.
Collapse
Affiliation(s)
- A M Freyer
- Division of Therapeutics and Institute of Cell Signalling, University Hospital, Nottingham, United Kingdom.
| | | | | |
Collapse
|
46
|
Shi Y, Simmons MN, Seki T, Oh SP, Sugrue SP. Change in gene expression subsequent to induction of Pnn/DRS/memA: increase in p21(cip1/waf1). Oncogene 2001; 20:4007-18. [PMID: 11494129 DOI: 10.1038/sj.onc.1204507] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2000] [Revised: 03/29/2001] [Accepted: 04/04/2001] [Indexed: 12/26/2022]
Abstract
Pnn (PNN) is a nuclear and cell adhesion-related protein. Previous work has suggested that Pnn/DRS/memA is a potential tumor suppressor involved in the regulation of cell adhesion and cell migration. Using the ecdysone-inducible mammalian expression system, a stable inducible GFP-tagged human Pnn gene (PNNGFP) expressing 293 cell line was created (EcR293-PNNGFP). Cells induced to express PNNGFP not only exhibited increased cell-cell adhesion but also exhibited changes in cell growth and cell cycle progression. cDNA array analyses, together with real time PCR, revealed that the effects of exogenously expressed Pnn on cellular behavior may be linked to the regulation of the expression of specific subset genes. This subset includes cell cycle-related genes such as p21(cip1/waf1), CDK4, CPR2; cell migration and invasion regulatory genes such as RhoA, CDK5, TIMP-1, MMP-7, and EMMPRIN; and MIC-1. Concordant with previous observations of Pnn-induced phenotype changes, genes coding for epithelial associated processes and cell division controls were elevated, while those coding for increased cell motility and cellular reorganizations were downregulated. We utilized p21 promoter-luciferase reporter constructs and demonstrated that a marked stimulation of p21 promoter activity in 293 cells correlated with increased Pnn expression. Taken together, these data indicate that Pnn may participate in the regulation of gene expression, thereby, positively promoting cell-cell adhesion, and negatively affecting cell migration and cell proliferation.
Collapse
Affiliation(s)
- Y Shi
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Archer Road, Gainesville, Florida, FL 32610-0235, USA
| | | | | | | | | |
Collapse
|
47
|
Huang SM, Schönthal AH, Stallcup MR. Enhancement of p53-dependent gene activation by the transcriptional coactivator Zac1. Oncogene 2001; 20:2134-43. [PMID: 11360197 DOI: 10.1038/sj.onc.1204298] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2000] [Revised: 01/19/2001] [Accepted: 01/25/2001] [Indexed: 12/25/2022]
Abstract
A recently discovered potential tumor suppressor protein, Zac1, was previously shown to promote cell cycle arrest and apoptosis, and to act as a positive or negative transcriptional cofactor for nuclear receptors. Since these activities are common to Zac1 and p53, we tested for a functional interaction between these two proteins by investigating possible effects of Zac1 on the transcriptional activator function of p53. Zac1 specifically enhanced the activity of p53-responsive promoters in cells expressing wild type p53. The same promoters were not activated by Zac1 in cells lacking functional p53, but the Zac1 effect was restored by co-expression of p53. Zac1 bound to p53 and enhanced the activity of p53 or its N-terminal transcriptional activation domain fused to the DNA binding domain of Gal4. These results indicate that Zac1 served as a transcriptional coactivator for p53. The enhancement of p53 activity by Zac1 was much more dramatic in HeLa cells than in other cell lines tested. HeLa cells express human papillomavirus type 18 E6 protein which inactivates and causes the degradation of p53. Physical and functional interactions observed between Zac1 and E6 protein indicated that the dramatic activity of Zac1 in HeLa cells was due not only to Zac1's coactivator effect on p53, but also to the ability of Zac1 to reverse E6 inhibition of p53.
Collapse
Affiliation(s)
- S M Huang
- Department of Pathology, University of Southern California, Los Angeles, California, CA 90089, USA
| | | | | |
Collapse
|
48
|
Abstract
In vivo models of cerebral hypoxia-ischemia have shown that neuronal death may occur via necrosis or apoptosis. Necrosis is, in general, a rapidly occurring form of cell death that has been attributed, in part, to alterations in ionic homeostasis. In contrast, apoptosis is a delayed form of cell death that occurs as the result of activation of a genetic program. In the past decade, we have learned considerably about the mechanisms underlying apoptotic neuronal death following cerebral hypoxia-ischemia. With this growth in knowledge, we are coming to the realization that apoptosis and necrosis, although morphologically distinct, are likely part of a continuum of cell death with similar operative mechanisms. For example, following hypoxia-ischemia, excitatory amino acid release and alterations in ionic homeostasis contribute to both necrotic and apoptotic neuronal death. However, apoptosis is distinguished from necrosis in that gene activation is the predominant mechanism regulating cell survival. Following hypoxic-ischemic episodes in the brain, genes that promote as well as inhibit apoptosis are activated. It is the balance in the expression of pro- and anti-apoptotic genes that likely determines the fate of neurons exposed to hypoxia. The balance in expression of pro- and anti-apoptotic genes may also account for the regional differences in vulnerability to hypoxic insults. In this review, we will examine the known mechanisms underlying apoptosis in neurons exposed to hypoxia and hypoxia-ischemia.
Collapse
Affiliation(s)
- K J Banasiak
- Department of Pediatrics, Section of Critical Care, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
49
|
Casagrande F, Darbon JM. p21CIP1 is dispensable for the G2 arrest caused by genistein in human melanoma cells. Exp Cell Res 2000; 258:101-8. [PMID: 10912792 DOI: 10.1006/excr.2000.4914] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the effect of genistein on cell cycle distribution of the human choroidal melanoma cell line OCM-1. We report that this isoflavonoid arrested cells in G2. This effect was correlated with the induction of the CDK inhibitor p21CIP1. However, while CDK1 activity was markedly reduced following genistein treatment, CDK2 activity was not affected. This was in agreement with the absence of G1 arrest that we observed but caused some doubt about the functionality of p21CIP1. Attempts to demonstrate mutation or post-translational modification of p21CIP1 from OCM-1 cells were unsuccessful. In fact, the level of p21CIP1 induced by genistein was shown to be insufficient to cause CDK2 inhibition. The role of p21CIP1 in the inhibition of CDK1 was questionable, as we demonstrated that genistein impaired Tyr15 dephosphorylation of CDK1 and because CDK1-cyclin B1 complexes from treated cells could be reactivated upon exposure to CDC25 phosphatase. Finally, we report that p21CIP1 was not absolutely required for the genistein-induced G2 arrest, as the isoflavone caused at least partial G2 arrest in p21-deficient Rat-1 fibroblasts as well as in p21-/- mouse embryo fibroblasts.
Collapse
Affiliation(s)
- F Casagrande
- CJF 95-10 INSERM, IFR 30, CHU Purpan, Toulouse, France
| | | |
Collapse
|
50
|
Cao L, Yao Y, Lee V, Kiani C, Spaner D, Lin Z, Zhang Y, Adams ME, Yang BB. Epidermal growth factor induces cell cycle arrest and apoptosis of squamous carcinoma cells through reduction of cell adhesion. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000615)77:4<569::aid-jcb5>3.0.co;2-k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|