1
|
Zhou HP, Wang DR, Xu CL, Zhang YW. Combination of engineering the substrate and Ca 2+ binding domains of heparinase I to improve the catalytic activity. Prep Biochem Biotechnol 2023; 53:1297-1305. [PMID: 37040156 DOI: 10.1080/10826068.2023.2197029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Heparinase I (EC 4.2.2.7), is an enzyme that cleaves heparin, showing great potential for eco-friendly production of low molecular weight heparin (LMWH). However, owing to its poor catalytic activity and thermal stability, the industrial application of heparinase I has been severely hindered. To improve the catalytic activity, we proposed to engineer both the substrate and Ca2+ binding domains of heparinase I. Several heparinases I from different organisms were selected for multiple sequence alignment and molecular docking to screen the key residues in the binding domain. Nine single-point mutations were selected to enhance the catalytic activity of heparinase I. Among them, T250D was the most highly active one, whereas mutations around Ca2+ binding domain yielded two active mutants. Mutant D152S/R244K/T250D with significantly increased catalytic activity was obtained by combined mutation. The catalytic efficiency of the mutant was 118,875.8 min-1·µM-1, which was improved 5.26 times. Molecular modeling revealed that the improved activity and stability of the mutants were probably attributed to the formation of new hydrogen bonds. The highly active mutant had great potential applications in industry and the strategy could be used to improve the performance of other enzymes.
Collapse
Affiliation(s)
- Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang, P.R. China
| | - Ding-Ran Wang
- School of Pharmacy, Jiangsu University, Zhenjiang, P.R. China
| | - Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang, P.R. China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
2
|
Pei JL, Wei W, Wang DR, Liu CY, Zhou HP, Xu CL, Zhang YW. Cloning, Expression, and Characterization of a Highly Stable Heparinase I from Bacteroides xylanisolvens. Polymers (Basel) 2023; 15:polym15071776. [PMID: 37050390 PMCID: PMC10097318 DOI: 10.3390/polym15071776] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Heparinase I (Hep I), which specifically degrades heparin to oligosaccharide or unsaturated disaccharide, has an important role in the production of low molecular weight heparin (LMWH). However, low productivity and stability of heparinase I hinders its applications. Here, a novel heparinase I (BxHep-I) was cloned from Bacteroides xylanisolvens and overexpressed in soluble form in Escherichia coli. The expression conditions of BxHep-I were optimized for an activity of 7144 U/L. BxHep-I had a specific activity of 57.6 U/mg at the optimal temperature and pH of 30 °C and pH 7.5, with the Km and Vmax of 0.79 mg/mL and 124.58 U/mg, respectively. BxHep-I catalytic activity could be enhanced by Ca2+ and Mg2+, while strongly inhibited by Zn2+ and Co2+. Purified BxHep-I displayed an outstanding thermostability with half-lives of 597 and 158 min at 30 and 37 °C, respectively, which are the highest half-lives ever reported for heparinases I. After storage at 4 °C for one week, BxHep-I retained 73% of its initial activity. Molecular docking revealed that the amino acids Asn25, Gln27, Arg88, Lys116, His156, Arg161, Gln228, Tyr356, Lys358, and Tyr362 form 13 hydrogen bonds with the substrate heparin disaccharides in the substrate binding domain and are mainly involved in the substrate binding of BxHep-I. These results suggest that the BxHep-I with high stability could be a candidate catalyst for the industrial production of LMWH.
Collapse
Affiliation(s)
- Jia-Lu Pei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Wei Wei
- Zhongshiduqing Biotechnology Co., Ltd., Heze 274100, China
| | - Ding-Ran Wang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Yun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Hua-Ping Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Chen-Lu Xu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Production, characteristics and applications of microbial heparinases. Biochimie 2022; 198:109-140. [DOI: 10.1016/j.biochi.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
|
4
|
Li PY, Chen Y, Chen CH, Liu Y. Amphiphilic multi-charged cyclodextrins and vitamin K co-assembly as a synergistic coagulant. Chem Commun (Camb) 2019; 55:11790-11793. [PMID: 31524903 DOI: 10.1039/c9cc06545h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Balancing and neutralizing heparin dosing after surgeries and hemodialysis treatment is of great importance in medical and clinical fields. In this study, a series of new amphiphilic multi-charged cyclodextrins (AMCD)s as anti-heparin coagulants were designed and synthesized. The AMCD assembly was capable of selective heparin binding through multivalent bonding and showed a better neutralizing effect towards both unfractionated heparin and low molecular weight heparin than protamine in plasma. Meanwhile, an AMCD and vitamin K (VK) co-assembly was prepared to realize heparin-responsive VK release and provide a novel VK deficiency treatment for hemodialysis patients. This AMCD-VK co-assembly for heparin neutralization & vitamin K supplementation synergistic coagulation represents a promising candidate as a clinical anti-heparin coagulant.
Collapse
Affiliation(s)
- Pei-Yu Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Chang-Hui Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
5
|
Ourri B, Francoia JP, Monard G, Gris JC, Leclaire J, Vial L. Dendrigraft of Poly-l-lysine as a Promising Candidate To Reverse Heparin-based Anticoagulants in Clinical Settings. ACS Med Chem Lett 2019; 10:917-922. [PMID: 31223448 DOI: 10.1021/acsmedchemlett.9b00090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
By using a combination of experimental and computational experiments, we demonstrated that a second-generation dendrigraft of poly-l-lysine neutralizes the anticoagulant activity of unfractionated heparin, low-molecular-weight heparin, and fondaparinux more efficiently than protamine does in human plasma, making this synthetic polymer a promising surrogate of this problematic protein in clinical settings.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Jean-Patrick Francoia
- Univ. Montpellier, IBMM UMR 5247 CNRS, Place Eugène Bataillon, 34296 Montpellier Cedex 5, France
| | - Gerald Monard
- Univ. Lorraine, LPCT UMR 7019 CNRS, Boulevard des Aiguillettes B.P. 70239, 54506 Vandoeuvre-les-Nancy, France
| | - Jean-Christophe Gris
- Department of Hematology, Nı̂mes University Hospital, University of Montpellier, 30029 Nîmes Cedex 9, France
- The First I.M. Sechenov Moscow State Medical University, Moscow 119146, Russian Federation
| | - Julien Leclaire
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
- Univ. Montpellier, IBMM UMR 5247 CNRS, Place Eugène Bataillon, 34296 Montpellier Cedex 5, France
| |
Collapse
|
6
|
|
7
|
Yang BC, Zhang C, Wang C, Zhou H, Li ZY, Song YJ, Zhang TC, Luo XG. Soluble expression and purification of heparinase I in Escherichia coli using a hexahistidine-tagged small ubiquitin-like modifier as a fusion partner. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1355264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bao-Cheng Yang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Chuan Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Chang Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Hao Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Zhong-Yuan Li
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Ya-Jian Song
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, PR China
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin University of Science and Technology, Tianjin, PR China
| |
Collapse
|
8
|
Hashimoto W, Maruyama Y, Nakamichi Y, Mikami B, Murata K. Crystal structure of Pedobacter heparinus heparin lyase Hep III with the active site in a deep cleft. Biochemistry 2014; 53:777-86. [PMID: 24437462 DOI: 10.1021/bi4012463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pedobacter heparinus (formerly known as Flavobacterium heparinum) is a typical glycosaminoglycan-degrading bacterium that produces three heparin lyases, Hep I, Hep II, and Hep III, which act on heparins with 1,4-glycoside bonds between uronate and amino sugar residues. Being different from Hep I and Hep II, Hep III is specific for heparan sulfate. Here we describe the crystal structure of Hep III with the active site located in a deep cleft. The X-ray crystallographic structure of Hep III was determined at 2.20 Å resolution using single-wavelength anomalous diffraction. This enzyme comprised an N-terminal α/α-barrel domain and a C-terminal antiparallel β-sheet domain as its basic scaffold. Overall structures of Hep II and Hep III were similar, although Hep III exhibited an open form compared with the closed form of Hep II. Superimposition of Hep III and heparin tetrasaccharide-bound Hep II suggested that an active site of Hep III was located in the deep cleft at the interface between its two domains. Three mutants (N240A, Y294F, and H424A) with mutations at the active site had significantly reduced enzyme activity. This is the first report of the structure-function relationship of P. heparinus Hep III.
Collapse
Affiliation(s)
- Wataru Hashimoto
- Laboratory of Basic and Applied Molecular Biotechnology, Graduate School of Agriculture, Kyoto University , Uji, Kyoto 611-0011, Japan
| | | | | | | | | |
Collapse
|
9
|
Kamiński K, Kałaska B, Koczurkiewicz P, Michalik M, Szczubiałka K, Mogielnicki A, Buczko W, Nowakowska M. New arginine substituted derivative of poly(allylamine hydrochloride) for heparin reversal. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00374d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
10
|
Fernandes CL, Escouto GB, Verli H. Structural glycobiology of heparinase II from Pedobacter heparinus. J Biomol Struct Dyn 2013; 32:1092-102. [PMID: 23808670 DOI: 10.1080/07391102.2013.809604] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The current work presents a conformational evaluation of heparinase II (hepII) from Pedobacter heparinus, employing molecular dynamics (MD) simulations, in order to characterize the main features of the enzyme dynamics, as well as the role of the glycan and metal components on the protein scaffold. Accordingly, four systems were simulated, encompassing nonglycosylated hepII without structural ions, nonglycosylated hepII with Zn(2+), nonglycosylated hepII with Ca(2+), and glycosylated hepII with Zn(2+). The obtained data suggest a role for Zn(2+) in modulating the protein flexibility at specific loop regions. Such flexibility pattern is not properly maintained in the absence of such structural ion or when the ion is replaced by Ca(2+). Still, semiempirical calculations suggest more favorable interactions with Zn(2+). These events correlate with the experimentally reported inhibitory effect of calcium over hepII. Additionally, the glycan chain seems able to promote an additional stabilization on hepII dynamics. Taken together, these results improve our understanding of the structural and dynamical features of hepII, as well as atomic-level comprehension of previous experimental data.
Collapse
Affiliation(s)
- Cláudia L Fernandes
- a Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Av Bento Gonçalves, 9500, CP 15005, Porto , Alegre , 91500-970 , Brazil
| | | | | |
Collapse
|
11
|
Bromfield SM, Wilde E, Smith DK. Heparin sensing and binding – taking supramolecular chemistry towards clinical applications. Chem Soc Rev 2013; 42:9184-95. [DOI: 10.1039/c3cs60278h] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Hyun YJ, Jung IH, Kim DH. Expression of heparinase I of Bacteroides stercoris HJ-15 and its degradation tendency toward heparin-like glycosaminoglycans. Carbohydr Res 2012; 359:37-43. [PMID: 22925762 DOI: 10.1016/j.carres.2012.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/22/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Recombinant heparinase I was cloned from Bacteroides stercoris HJ-15 (BSrhepI), overexpressed in Escherichia coli, and intensively characterized. The complete gene of BSrhepI was identified by Southern blotting, and was overexpressed as an inclusion body. The inclusion body was solubilized with 4 M guanidine-HCl, and the denatured BSrhepI was easily purified using Ni(2+)-affinity column chromatography. The purified but denatured enzyme was then successfully refolded by dialysis against 50 mM Tris-HCl (pH 7.0) containing 1mM DTT and CaCl(2). BSrhepI was most active in 50mM Tris-HCl buffer containing 300 mM NaCl, 10 mM CaCl(2), and 1 mM DTT (pH 7.0) at 37°C. This enzyme digested not only heparin, but also heparan sulfate. Through comparative HPLC-analysis of each degraded product of heparin and heparan sulfate by digestion with BSrhepI or flavobacterial heparinase I, we verified that BSrhepI has a broader spectrum of substrate specificities than other reported heparinases.
Collapse
Affiliation(s)
- Yang-Jin Hyun
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Dongdaemun-ku, Seoul 130-701, Republic of Korea
| | | | | |
Collapse
|
13
|
Banga J, Tripathi C. Rapid purification and characterization of a novel heparin degrading enzyme from Acinetobacter calcoaceticus. N Biotechnol 2009; 26:99-104. [DOI: 10.1016/j.nbt.2009.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/04/2009] [Accepted: 04/28/2009] [Indexed: 11/15/2022]
|
14
|
Banga J, Tripathi CKM. Purification and Characterization of a Novel Heparin Degrading Enzyme from Aspergillus flavus (MTCC-8654). Appl Biochem Biotechnol 2009; 160:1004-16. [DOI: 10.1007/s12010-009-8530-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
|
15
|
Linhardt RJ, Avci FY, Toida T, Kim YS, Cygler M. CS lyases: structure, activity, and applications in analysis and the treatment of diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:187-215. [PMID: 17239767 PMCID: PMC4114251 DOI: 10.1016/s1054-3589(05)53009-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert J Linhardt
- Department of Chemistry and Chemical Biology, Biology and Chemical and Biological Engineering Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | | | | | | | |
Collapse
|
16
|
Kim WS, Kim BT, Kim DH, Kim YS. Purification and characterization of heparin lyase I from Bacteroides stercoris HJ-15. BMB Rep 2005; 37:684-90. [PMID: 15607027 DOI: 10.5483/bmbrep.2004.37.6.684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparin lyase I was purified to homogeneity from Bacteroides stercoris HJ-15 isolated from human intestine, by a combination of DEAE-Sepharose, gel-filtration, hydroxyapatite, and CM-Sephadex C-50 column chromatography. This enzyme preferred heparin to heparan sulfate, but was inactive at cleaving acharan sulfate. The apparent molecular mass of heparin lyase I was estimated as 48,000 daltons by SDS-PAGE and its isoelectric point was determined as 9.0 by IEF. The purified enzyme required 500 mM NaCl in the reaction mixture for maximal activity and the optimal activity was obtained at pH 7.0 and 50 degrees C. It was rather stable within the range of 25 to 50 degrees C but lost activity rapidly above 50 degrees C. The enzyme was activated by Co(2+) or EDTA and stabilized by dithiothreitol. The kinetic constants, K(m) and V(max) for heparin were 1.3 10(-5) M and 8.8 micromol/min.mg. The purified heparin lyase I was an eliminase that acted best on porcine intestinal heparin, and to a lesser extent on porcine intestinal mucosa heparan sulfate. It was inactive in the cleavage of N-desulfated heparin and acharan sulfate. In conclusion, heparin lyase I from Bacteroides stercoris was specific to heparin rather than heparan sulfate and its biochemical properties showed a substrate specificity similar to that of Flavobacterial heparin lyase I.
Collapse
Affiliation(s)
- Wan-Seok Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 110-460, Korea
| | | | | | | |
Collapse
|
17
|
Liu J, Shriver Z, Pope RM, Thorp SC, Duncan MB, Copeland RJ, Raska CS, Yoshida K, Eisenberg RJ, Cohen G, Linhardt RJ, Sasisekharan R. Characterization of a heparan sulfate octasaccharide that binds to herpes simplex virus type 1 glycoprotein D. J Biol Chem 2002; 277:33456-67. [PMID: 12080045 DOI: 10.1074/jbc.m202034200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpes simplex virus type 1 utilizes cell surface heparan sulfate as receptors to infect target cells. The unique heparan sulfate saccharide sequence offers the binding site for viral envelope proteins and plays critical roles in assisting viral infections. A specific 3-O-sulfated heparan sulfate is known to facilitate the entry of herpes simplex virus 1 into cells. The 3-O-sulfated heparan sulfate is generated by the heparan sulfate d-glucosaminyl-3-O-sulfotransferase isoform 3 (3-OST-3), and it provides binding sites for viral glycoprotein D (gD). Here, we report the purification and structural characterization of an oligosaccharide that binds to gD. The isolated gD-binding site is an octasaccharide, and has a binding affinity to gD around 18 microm, as determined by affinity coelectrophoresis. The octasaccharide was prepared and purified from a heparan sulfate oligosaccharide library that was modified by purified 3-OST-3 enzyme. The molecular mass of the isolated octasaccharide was determined using both nanoelectrospray ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry. The results from the sequence analysis suggest that the structure of the octasaccharide is a heptasulfated octasaccharide. The proposed structure of the octasaccharide is DeltaUA-GlcNS-IdoUA2S-GlcNAc-UA2S-GlcNS-IdoUA2S-GlcNH(2)3S6S. Given that the binding of 3-O-sulfated heparan sulfate to gD can mediate viral entry, our results provide structural information about heparan sulfate-assisted viral entry.
Collapse
Affiliation(s)
- Jian Liu
- Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Capila I, Wu Y, Rethwisch DW, Matte A, Cygler M, Linhardt RJ. Role of arginine 292 in the catalytic activity of chondroitin AC lyase from Flavobacterium heparinum. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1597:260-70. [PMID: 12044904 DOI: 10.1016/s0167-4838(02)00304-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chondroitin AC lyase (chondroitinase EC 4.2.2.5), an eliminase from Flavobacterium heparinum, cleaves chondroitin sulfate glycosaminoglycans (GAGs) at 1,4 glycosidic linkages between N-acetylgalactosamine and glucuronic acid residues. Cleavage occurs through beta-elimination in a random endolytic action pattern. Crystal structures of chondroitin AC lyase (wild type) complexed with oligosaccharides reveal a binding site within a narrow and shallow protein channel, suggesting several amino acids as candidates for the active site residues. Site-specific mutagenesis studies on residues within the active-site tunnel revealed that only the Arg to Ala 292 mutation (R292A) retained activity. Furthermore, structural data suggested that R292 was primarily involved in recognition of N-acetyl or O-sulfo moieties of galactosamine residues and did not directly participate in catalysis. The current study demonstrates that the R292A mutation affords approximately 10-fold higher K(m) values but no significant change in V(max), consistent with hypothesis that R292 is involved in binding the O-sulfo moiety of the saccharide residues. Change in chondroitin sulfate viscosity, as a function of its enzymatic cleavage, affords a shallower concave curve for the R292A mutant, suggesting its action pattern is neither purely random endolytic nor purely random exolytic. Product studies using gel electrophoresis confirm the altered action pattern of this mutant. Thus, these data suggest that the R292A mutation effectively reduces binding affinity, making it possible for the oligosaccharide chain, still bound after initial endolytic cleavage, to slide through the tunnel to the catalytic site for subsequent, processive, step-wise, exolytic cleavage.
Collapse
Affiliation(s)
- Ishan Capila
- Department of Medicinal and Natural Products Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
19
|
Blain F, Tkalec AL, Shao Z, Poulin C, Pedneault M, Gu K, Eggimann B, Zimmermann J, Su H. Expression system for high levels of GAG lyase gene expression and study of the hepA upstream region in Flavobacterium heparinum. J Bacteriol 2002; 184:3242-52. [PMID: 12029040 PMCID: PMC135102 DOI: 10.1128/jb.184.12.3242-3252.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Accepted: 03/19/2002] [Indexed: 11/20/2022] Open
Abstract
A system for high-level expression of heparinase I, heparinase II, heparinase III, chondroitinase AC, and chondroitinase B in Flavobacterium heparinum is described. hepA, along with its regulatory region, as well as hepB, hepC, cslA, and cslB, cloned downstream of the hepA regulatory region, was integrated in the chromosome to yield stable transconjugant strains. The level of heparinase I and II expression from the transconjugant strains was approximately fivefold higher, while heparinase III expression was 10-fold higher than in wild-type F. heparinum grown in heparin-only medium. The chondroitinase AC and B transconjugant strains, grown in heparin-only medium, yielded 20- and 13-fold increases, respectively, in chondroitinase AC and B expression, compared to wild-type F. heparinum grown in chondroitin sulfate A-only medium. The hepA upstream region was also studied using cslA as a reporter gene, and the transcriptional start site was determined to be 26 bp upstream of the start codon in the chondroitinase AC transconjugant strain. The transcriptional start sites were determined for hepA in both the wild-type F. heparinum and heparinase I transconjugant strains and were shown to be the same as in the chondroitinase AC transconjugant strain. The five GAG lyases were purified from these transconjugant strains and shown to be identical to their wild-type counterparts.
Collapse
|
20
|
|
21
|
Abstract
Heparin, a sulfated polysaccharide belonging to the family of glycosaminoglycans, has numerous important biological activities, associated with its interaction with diverse proteins. Heparin is widely used as an anticoagulant drug based on its ability to accelerate the rate at which antithrombin inhibits serine proteases in the blood coagulation cascade. Heparin and the structurally related heparan sulfate are complex linear polymers comprised of a mixture of chains of different length, having variable sequences. Heparan sulfate is ubiquitously distributed on the surfaces of animal cells and in the extracellular matrix. It also mediates various physiologic and pathophysiologic processes. Difficulties in evaluating the role of heparin and heparan sulfate in vivo may be partly ascribed to ignorance of the detailed structure and sequence of these polysaccharides. In addition, the understanding of carbohydrate-protein interactions has lagged behind that of the more thoroughly studied protein-protein and protein-nucleic acid interactions. The recent extensive studies on the structural, kinetic, and thermodynamic aspects of the protein binding of heparin and heparan sulfate have led to an improved understanding of heparin-protein interactions. A high degree of specificity could be identified in many of these interactions. An understanding of these interactions at the molecular level is of fundamental importance in the design of new highly specific therapeutic agents. This review focuses on aspects of heparin structure and conformation, which are important for its interactions with proteins. It also describes the interaction of heparin and heparan sulfate with selected families of heparin-binding proteins.
Collapse
Affiliation(s)
- Ishan Capila
- S328 College of Pharmacy, University of Iowa, 115 S. Grand Avenue, Iowa City 52242, USA
| | | |
Collapse
|
22
|
|
23
|
|
24
|
Daud AN, Ahsan A, Iqbal O, Walenga JM, Silver PJ, Ahmad S, Fareed J. Synthetic heparin pentasaccharide depolymerization by heparinase I: molecular and biological implications. Clin Appl Thromb Hemost 2001; 7:58-64. [PMID: 11190907 DOI: 10.1177/107602960100700112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A synthetic pentasaccharide (SR90107/ ORG31540) representing the antithrombin III (ATIII) binding sequence in heparin is under clinical development for the prophylaxis and management of venous thromboembolism. This pentasaccharide exhibits potent anti-factor Xa (AXa) effects (>750 IU/mg) and does not exhibit any anti-factor IIa (AIIa) activity. Previous reports have suggested that synthetic heparin pentasaccharides are resistant to the digestive effects of heparinase I. To investigate the effect of heparinase I on the AXa activity of pentasaccharide SR90107/ORG31540, graded concentrations (1.25-100 microg/ml) were incubated with a fixed amount of heparinase I (0.1 U/ml). Heparinase I produced a strong neutralizing effect on this pentasaccharide, as measured by AXa activity. This observation led to further studies where high performance liquid chromatography (HPLC) analysis was employed to determine the potential breakdown products of the pentasaccharide. The experiment with the pentasaccharide included incubation (37 degrees C) at 1 mg/ml and exposure to graded concentrations of heparinase I (0.125-1 U/ml). After 30 min of incubation, the enzymatic activity was stopped by heat treatment and the mixture was analyzed using high performance size exclusion chromatography (HPSEC). Heparinase I concentration-dependent cleavage of the pentasaccharide was evident. The breakdown products exhibited a mass of 1,034 d and 743 d, respectively, suggesting the generation of a trisaccharide and a disaccharide moiety. The extinction of a disaccharide moiety in the UV region was high, indicating the presence of a double bond in this molecule. These data clearly suggest that pentasaccharide SR90107/ORG31540 is digestible by heparinase I into its two components. Furthermore, these data support the hypothesis that heparinase I can be used as a neutralizing agent for pentasaccharide overdose. Additionally, a highly methylated analog of the previously mentioned synthetic pentasaccharide. SanOrg34006, which has also been subjected to similar experiments, has shown complete resistance to the depolymerizing function of heparinase I; therefore, its use may be appropriate in chronic situations as a long-acting form of the pentasaccharide.
Collapse
Affiliation(s)
- A N Daud
- Department of Pathology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, Parish CR. Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 2000; 39:15659-67. [PMID: 11123890 DOI: 10.1021/bi002080p] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparanase is a beta-D-endoglucuronidase that cleaves heparan sulfate (HS) and has been implicated in many important physiological and pathological processes, including tumor cell metastasis, angiogenesis, and leukocyte migration. We report herein the identification of active-site residues of human heparanase. Using PSI-BLAST and PHI-BLAST searches of sequence databases, similarities were identified between heparanase and members of several of the glycosyl hydrolase families (10, 39, and 51) from glycosyl hydrolase clan A (GH-A), including strong local identities to regions containing the critical active-site catalytic proton donor and nucleophile residues that are conserved in this clan of enzymes. Furthermore, secondary structure predictions suggested that heparanase is likely to contain an (alpha/beta)(8) TIM-barrel fold, which is common to the GH-A families. On the basis of sequence alignments with a number of glycosyl hydrolases from GH-A, Glu(225) and Glu(343) of human heparanase were identified as the likely proton donor and nucleophile residues, respectively. The substitution of these residues with alanine and the subsequent expression of the mutant heparanases in COS-7 cells demonstrated that the HS-degrading capacity of both was abolished. In contrast, the alanine substitution of two other glutamic acid residues (Glu(378) and Glu(396)), both predicted to be outside the active site, did not affect heparanase activity. These data suggest that heparanase is a member of the clan A glycosyl hydrolases and has a common catalytic mechanism that involves two conserved acidic residues, a putative proton donor at Glu(225) and a nucleophile at Glu(343).
Collapse
Affiliation(s)
- M D Hulett
- Division of Immunology and Cell Biology, John Curtin School of Medical Research, Australian National University, P.O. Box 334, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Khoury J, Langleben D. Heparin-like molecules inhibit pulmonary vascular pericyte proliferation in vitro. Am J Physiol Lung Cell Mol Physiol 2000; 279:L252-61. [PMID: 10926548 DOI: 10.1152/ajplung.2000.279.2.l252] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proliferation of vascular pericytes (PCs), smooth muscle-like cells found in the distal microvasculature, contributes to vascular remodeling in pulmonary hypertension. The factors controlling lung PC quiescence in normal states are poorly understood. We demonstrate that exogenous heparin and heparan sulfate proteoglycans inhibit rat lung PC proliferation in vitro as does pulmonary vascular subendothelial matrix, particularly its heparan sulfate component. Heparin inhibits the intracellular alkalinization essential to proliferation, and we show that inhibition of alkalinization by 5-(N, N-dimethyl)amiloride also reduces PC proliferation. As shown by DNA staining and fluorescence-activated cell sorting analysis, heparin does not induce apoptosis in PCs. However, heparin maintains lung PCs in the G(0)/G(1) growth phase. Heparin induces production of p21, a potent inhibitor of cyclin-dependent kinases, thereby potentially identifying a fundamental mechanism by which heparin inhibits proliferation in smooth muscle-like cells. These studies establish additional similarities between lung PCs and smooth muscle cells and provide further understanding of growth control in the lung microvasculature. They also further support the rationale that heparin-like molecules might be therapeutically beneficial in pulmonary hypertension.
Collapse
Affiliation(s)
- J Khoury
- Division of Cardiology and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | |
Collapse
|
27
|
Hallak LK, Collins PL, Knudson W, Peeples ME. Iduronic acid-containing glycosaminoglycans on target cells are required for efficient respiratory syncytial virus infection. Virology 2000; 271:264-75. [PMID: 10860881 DOI: 10.1006/viro.2000.0293] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory syncytial virus (RSV) is an important human respiratory pathogen, particularly in infants. Glycosaminoglycans (GAGs) have been implicated in the initiation of RSV infection of cultured cells, but it is not clear what type of GAGs and GAG components are involved, whether the important GAGs are on the virus or the cell, or what the magnitude is of their contribution to infection. We constructed and rescued a recombinant green fluorescent protein (GFP)-expressing RSV (rgRSV) and used this virus to develop a sensitive system to assess and quantify infection by flow cytometry. Evaluation of a panel of mutant Chinese hamster ovary cell lines that are genetically deficient in various aspects of GAG synthesis showed that infection was reduced up to 80% depending on the type of GAG deficiency. Enzymatic removal of heparan sulfate and/or chondroitin sulfate from the surface of HEp-2 cells also reduced infection, and the removal of both reduced infection even further. Blocking experiments in which RSV was preincubated with various soluble GAGs revealed the relative blocking order of: heparin > heparan sulfate > chondroitin sulfate B. Iduronic acid is a component common to these GAGs. GAGs that do not contain iduronic acid, namely, chondroitin sulfate A and C and hyaluronic acid, did not inhibit infection. A role for iduronic acid-containing GAGs in RSV infection was confirmed by the ability of basic fibroblast growth factor to block infection, because basic fibroblast growth factor binds to GAGs containing iduronic acid. Pretreatment of cells with protamine sulfate, which binds and blocks GAGs, also reduced infection. In these examples, infection was reduced by pretreatment of the virus with soluble GAGs, pretreatment of the cells with GAG-binding molecules, pretreatment of the cells with GAG-destroying enzymes or in cells genetically deficient in GAGs. These results establish that the GAGs involved in RSV infection are present on the cell rather than on the virus particle. Thus, the presence of cell surface GAGs containing iduronic acid, like heparan sulfate and chondroitin sulfate B, is required for efficient RSV infection in cell culture.
Collapse
Affiliation(s)
- L K Hallak
- Immunology/Microbiology, Biochemistry and Pathology, Rush-Presbyterian-St. Luke's Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
28
|
Pojasek K, Shriver Z, Hu Y, Sasisekharan R. Histidine 295 and histidine 510 are crucial for the enzymatic degradation of heparan sulfate by heparinase III. Biochemistry 2000; 39:4012-9. [PMID: 10747789 DOI: 10.1021/bi992514k] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heparinases from Flavobacterium heparinum are powerful tools in understanding how heparin-like glycosaminoglycans function biologically. Heparinase III is the unique member of the heparinase family of heparin-degrading lyases that recognizes the ubiquitous cell-surface heparan sulfate proteoglycans as its primary substrate. Given that both heparinase I and heparinase II contain catalytically critical histidines, we examined the role of histidine in heparinase III. Through a series of diethyl pyrocarbonate modification experiments, it was found that surface-exposed histidines are modified in a concentration-dependent fashion and that this modification results in inactivation of the enzyme (k(inact) = 0.20 +/- 0.04 min(-)(1) mM(-)(1)). The DEPC modification was pH dependent and reversible by hydroxylamine, indicating that histidines are the sole residue being modified. As previously observed for heparinases I and II, substrate protection experiments slowed the inactivation kinetics, suggesting that the modified residue(s) was (were) in or proximal to the active site of the enzyme. Proteolytic mapping experiments, taken together with site-directed mutagenesis studies, confirm the chemical modification experiments and point to two histidines, histidine 295 and histidine 510, as being essential for heparinase III enzymatic activity.
Collapse
Affiliation(s)
- K Pojasek
- Division of Bioengineering & Environmental Health, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
29
|
Shriver Z, Liu D, Hu Y, Sasisekharan R. Biochemical investigations and mapping of the calcium-binding sites of heparinase I from Flavobacterium heparinum. J Biol Chem 1999; 274:4082-8. [PMID: 9933601 DOI: 10.1074/jbc.274.7.4082] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heparinases from Flavobacterium heparinum are lyases that specifically cleave heparin-like glycosaminoglycans. Previously, amino acids located in the active site of heparinase I have been identified and mapped. In an effort to further understand the mechanism by which heparinase I cleaves its polymer substrate, we sought to understand the role of calcium, as a necessary cofactor, in the enzymatic activity of heparinase I. Specifically, we undertook a series of biochemical and biophysical experiments to answer the question of whether heparinase I binds to calcium and, if so, which regions of the protein are involved in calcium binding. Using the fluorescent calcium analog terbium, we found that heparinase I tightly bound divalent and trivalent cations. Furthermore, we established that this interaction was specific for ions that closely approximate the ionic radius of calcium. Through the use of the modification reagents N-ethyl-5-phenylisoxazolium-3'-sulfonate (Woodward's reagent K) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride, we showed that the interaction between heparinase I and calcium was essential for proper functioning of the enzyme. Preincubation with either calcium alone or calcium in the presence of heparin was able to protect the enzyme from inactivation by these modifying reagents. In addition, through mapping studies of Woodward's reagent K-modified heparinase I, we identified two putative calcium-binding sites, CB-1 (Glu207-Ala219) and CB-2 (Thr373-Arg384), in heparinase I that not only are specifically modified by Woodward's reagent K, leading to loss of enzymatic activity, but also conform to the calcium-coordinating consensus motif.
Collapse
Affiliation(s)
- Z Shriver
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
30
|
Liu D, Shriver Z, Godavarti R, Venkataraman G, Sasisekharan R. The calcium-binding sites of heparinase I from Flavobacterium heparinum are essential for enzymatic activity. J Biol Chem 1999; 274:4089-95. [PMID: 9933602 DOI: 10.1074/jbc.274.7.4089] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the accompanying paper (Shriver, Z., Liu, D., Hu, Y., and Sasisekharan, R. (1999) J. Biol. Chem. 274, 4082-4088), we have shown that calcium binds specifically to heparinase I and have identified two major calcium-binding sites (CB-1 and CB-2) that partly conform to the EF-hand calcium-binding motif. In this study, through systematic site-directed mutagenesis, we have confirmed the accompanying biochemical studies and have shown that both CB-1 and CB-2 are involved in calcium binding and enzymatic activity. More specifically, we identified critical residues (viz. Asp210, Asp212, Gly213, and Thr216 in CB-1 and Asn375, Tyr379, and Glu381 in CB-2) that are important for calcium binding and heparinase I enzymatic activity. Mutations in CB-1 resulted in a lower kcat, but did not change the product profile of heparinase I action on heparin; conversely, mutations in CB-2 not only altered the kcat for heparinase I, but also resulted in incomplete degradation, leading to longer saccharides. Fluorescence competition experiments along with heparin affinity chromatography suggested that mutations in CB-1 alter heparinase I activity primarily through decreasing the enzyme's affinity for its calcium cofactor without altering heparin binding to heparinase I. Compared with CB-1 mutations, mutations in CB-2 affected calcium binding to a lesser extent, but they had a more pronounced effect on heparinase I activity, suggesting a different role for CB-2 in the enzymatic action of heparinase I. These results, taken together with our accompanying study, led us to propose a model for calcium binding to heparinase I that includes both CB-1 and CB-2 providing critical interactions, albeit via a different mechanism. Through binding to CB-1 and/or CB-2, we propose that calcium may play a role in the catalytic mechanism and/or in the exolytic processive mechanism of heparin-like glycosaminoglycan depolymerization by heparinase I.
Collapse
Affiliation(s)
- D Liu
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
31
|
Shriver Z, Hu Y, Pojasek K, Sasisekharan R. Heparinase II from Flavobacterium heparinum. Role of cysteine in enzymatic activity as probed by chemical modification and site- directed mutagenesis. J Biol Chem 1998; 273:22904-12. [PMID: 9722510 DOI: 10.1074/jbc.273.36.22904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparinase II (no EC number) is one of three lyases isolated from Flavobacterium heparinum that degrade heparin-like complex polysaccharides. Heparinase II is unique among the heparinases in that it has broad substrate requirements and possesses the ability to degrade both heparin and heparan sulfate-like regions of glycosaminoglycans. This study set out to investigate the role of cysteines in heparinase II activity. Through a series of chemical modification experiments, it was found that one of the three cysteines in heparinase II is surface-accessible and possesses unusual chemical reactivity toward cysteine-specific chemical modifying reagents. Substrate protection experiments suggest that this surface-accessible cysteine is proximate to the active site, since addition of substrate shields the cysteine from modifying reagents. The cysteine, present in an ionic environment, was mapped by radiolabeling with N-[3H]ethylmaleimide and identified as cysteine 348. Site-directed mutagenesis of cysteine 348 to an alanine resulted in loss of activity toward heparin but not heparan sulfate, indicating that cysteine 348 is required for heparinase II activity toward heparin but is not essential for the breakdown of heparan sulfate. Furthermore, we show in this study that cysteine 164 and cysteine 189 are functionally unimportant for heparinase II.
Collapse
Affiliation(s)
- Z Shriver
- Division of Bioengineering and Environmental Health, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
32
|
Rhomberg AJ, Ernst S, Sasisekharan R, Biemann K. Mass spectrometric and capillary electrophoretic investigation of the enzymatic degradation of heparin-like glycosaminoglycans. Proc Natl Acad Sci U S A 1998; 95:4176-81. [PMID: 9539709 PMCID: PMC22461 DOI: 10.1073/pnas.95.8.4176] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/1998] [Indexed: 02/07/2023] Open
Abstract
Difficulties in determining composition and sequence of glycosaminoglycans, such as those related to heparin, have limited the investigation of these biologically important molecules. Here, we report methodology, based on matrix-assisted laser desorption ionization MS and capillary electrophoresis, to follow the time course of the enzymatic degradation of heparin-like glycosaminoglycans through the intermediate stages to the end products. MS allows the determination of the molecular weights of the sulfated carbohydrate intermediates and their approximate relative abundances at different time points of the experiment. Capillary electrophoresis subsequently is used to follow more accurately the abundance of the components and also to measure sulfated disaccharides for which MS is not well applicable. For those substrates that produce identical or isomeric intermediates, the reducing end of the carbohydrate chain was converted to the semicarbazone. This conversion increases the molecular weight of all products retaining the reducing terminus by the "mass tag" (in this case 56 Da) and thus distinguishes them from other products. A few picomoles of heparin-derived, sulfated hexa- to decasaccharides of known structure were subjected to heparinase I digestion and analyzed. The results indicate that the enzyme acts primarily exolytically and in a processive mode. The methodology described should be equally useful for other enzymes, including those modified by site-directed mutagenesis, and may lead to the development of an approach to the sequencing of complex glycosaminoglycans.
Collapse
Affiliation(s)
- A J Rhomberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|