1
|
Dias Da Silva I, Wuidar V, Zielonka M, Pequeux C. Unraveling the Dynamics of Estrogen and Progesterone Signaling in the Endometrium: An Overview. Cells 2024; 13:1236. [PMID: 39120268 PMCID: PMC11312103 DOI: 10.3390/cells13151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
The endometrium is crucial for the perpetuation of human species. It is a complex and dynamic tissue lining the inner wall of the uterus, regulated throughout a woman's life based on estrogen and progesterone fluctuations. During each menstrual cycle, this multicellular tissue undergoes cyclical changes, including regeneration, differentiation in order to allow egg implantation and embryo development, or shedding of the functional layer in the absence of pregnancy. The biology of the endometrium relies on paracrine interactions between epithelial and stromal cells involving complex signaling pathways that are modulated by the variations of estrogen and progesterone levels across the menstrual cycle. Understanding the complexity of estrogen and progesterone receptor signaling will help elucidate the mechanisms underlying normal reproductive physiology and provide fundamental knowledge contributing to a better understanding of the consequences of hormonal imbalances on gynecological conditions and tumorigenesis. In this narrative review, we delve into the physiology of the endometrium, encompassing the complex signaling pathways of estrogen and progesterone.
Collapse
Grants
- J.0165.24, 7.6529.23, J.0153.22, 7.4580.21F, 7.6518.21, J.0131.19 Fund for Scientific Research
- FSR-F-2023-FM, FSR-F-2022-FM, FSR-F-2021-FM, FSR-F-M-19/6761 University of Liège
- 2020, 2021, 2022 Fondation Léon Fredericq
Collapse
Affiliation(s)
| | | | | | - Christel Pequeux
- Tumors and Development, Estrogen-Sensitive Tissues and Cancer Team, GIGA-Cancer, Laboratory of Biology, University of Liège, 4000 Liège, Belgium; (I.D.D.S.); (V.W.); (M.Z.)
| |
Collapse
|
2
|
Li W, Xu L, Cao J, Ge J, Liu X, Liu P, Teng Y, Wang S, Sun Y, Liu M, Tian L. DACH1 regulates macrophage activation and tumour progression in hypopharyngeal squamous cell carcinoma. Immunology 2023; 170:253-269. [PMID: 37243970 DOI: 10.1111/imm.13667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2023] [Indexed: 05/29/2023] Open
Abstract
Dachshund family transcription factor 1 (DACH1) has been shown to exhibit a tumour-suppressive role in a number of human cancers. However, the role of DACH1 in hypopharyngeal squamous cell carcinoma (HPSCC) and its function in the tumour microenvironment (TME) are still not clear. Crosstalk between cancer cells and tumour-associated macrophages (TAMs) mediates tumour progression in HPSCC. The expression of DACH1, CD86 and CD163 was detected in 71 matched HPSCC-non-cancerous tissue pairs using quantitative real-time polymerase chain reaction and IHC analysis. Cell proliferation, migration and invasion were monitored by colony formation, Transwell and EdU incorporation assays. ChIP-qPCR and dual-luciferase reporter assays were applied to verify the targeting relationships between DACH1 and IGF-1. Stably transfected HPSCC cells were co-cultured with MΦ macrophages to assess macrophage polarization and secretory signals. DACH1 was decreased in HPSCC tissues and was indicative of a poor prognosis for HPSCC patients. Decreased DACH1 expression in HPSCC was associated with fewer CD86+ TAMs and more CD163+ TAMs. Knockdown of DACH1 inhibited the proliferation, migration and invasion of FaDu cells via Akt/NF-κB/MMP2/9 signalling. Additionally, DACH1 was found to directly bind to the promoter region of IGF-1 to downregulate the secretion of IGF-1, which inhibited TAMs polarization through the IGF-1R/JAK1/STAT3 axis. Furthermore, in nude mice, the effects of DACH1 inhibition on tumour progression and M2-like TAMs polarization were confirmed. These findings suggest that IGF-1 is a critical downstream effector of DACH1 that suppresses cell migration and invasion and inhibits TAMs polarization. DACH1 could be a therapeutic target and prognostic marker for HPSCC.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Licheng Xu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Jing Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingchun Ge
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengyan Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yujian Teng
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shunpeng Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Linli Tian
- Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Acconcia F, Fiocchetti M, Busonero C, Fernandez VS, Montalesi E, Cipolletti M, Pallottini V, Marino M. The extra-nuclear interactome of the estrogen receptors: implications for physiological functions. Mol Cell Endocrinol 2021; 538:111452. [PMID: 34500041 DOI: 10.1016/j.mce.2021.111452] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023]
Abstract
Over the last decades, a great body of evidence has defined a novel view of the cellular mechanism of action of the steroid hormone 17β-estradiol (E2) through its estrogen receptors (i.e., ERα and ERβ). It is now clear that the E2-activated ERs work both as transcription factors and extra-nuclear plasma membrane-localized receptors. The activation of a plethora of signal transduction cascades follows the E2-dependent engagement of plasma membrane-localized ERs and is required for the coordination of gene expression, which ultimately controls the occurrence of the pleiotropic effects of E2. The definition of the molecular mechanisms by which the ERs locate at the cell surface (i.e., palmitoylation and protein association) determined the quest for understanding the specificity of the extra-nuclear E2 signaling. The use of mice models lacking the plasma membrane ERα localization unveiled that the extra-nuclear E2 signaling is operational in vivo but tissue-specific. However, the underlying molecular details for such ERs signaling diversity in the perspective of the E2 physiological functions in the different cellular contexts are still not understood. Therefore, to gain insights into the tissue specificity of the extra-nuclear E2 signaling to physiological functions, here we reviewed the known ERs extra-nuclear interactors and tried to extrapolate from available databases the ERα and ERβ extra-nuclear interactomes. Based on literature data, it is possible to conclude that by specifically binding to extra-nuclear localized proteins in different sub-cellular compartments, the ERs fine-tune their molecular activities. Moreover, we report that the context-dependent diversity of the ERs-mediated extra-nuclear E2 actions can be ascribed to the great flexibility of the physical structures of ERs and the spatial-temporal organization of the logistics of the cells (i.e., the endocytic compartments). Finally, we provide lists of proteins belonging to the potential ERα and ERβ extra-nuclear interactomes and propose that the systematic experimental definition of the ERs extra-nuclear interactomes in different tissues represents the next step for the research in the ERs field. Such characterization will be fundamental for the identification of novel druggable targets for the innovative treatment of ERs-related diseases.
Collapse
Affiliation(s)
- Filippo Acconcia
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| | - Marco Fiocchetti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Claudia Busonero
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Virginia Solar Fernandez
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Emiliano Montalesi
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Manuela Cipolletti
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Valentina Pallottini
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy
| | - Maria Marino
- Department of Sciences, Section Biomedical Sciences, and Technology, University Roma Tre, Viale Guglielmo Marconi, 446, I-00146, Rome, Italy.
| |
Collapse
|
4
|
Sekulovski N, Whorton AE, Shi M, Hayashi K, MacLean JA. Insulin signaling is an essential regulator of endometrial proliferation and implantation in mice. FASEB J 2021; 35:e21440. [PMID: 33749878 DOI: 10.1096/fj.202002448r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
Abstract
Insulin signaling is critical for the development of preovulatory follicles and progression through the antral stage. Using a conditional knockout model that escapes this blockage, we recently described the role of insulin signaling in granulosa cells during the periovulatory window in mice lacking Insr and Igf1r driven by Pgr-Cre. These mice were infertile, exhibiting defects in ovulation, luteinization, steroidogenesis, and early embryo development. Herein, we demonstrate that while these mice exhibit normal uterine receptivity, uterine cell proliferation and decidualization are compromised resulting in complete absence of embryo implantation in uteri lacking both receptors. While the histological organization of double knockout mice appeared normal, the thickness of their endometrium was significantly reduced. This was supported by the reduced proliferation of both epithelial and stromal cells during the preimplantation stages of pregnancy. Expression and localization of the main drivers of uterine proliferation, ESR1 and PGR, was normal in knockouts, suggesting that insulin signaling acts downstream of these two receptors. While AKT/PI3K signaling was unaffected by insulin receptor ablation, activation of p44/42 MAPK was significantly reduced in both single and double knockout uteri at 3.5 dpc. Overall, we conclude that both INSR and IGF1R are necessary for optimal endometrial proliferation and implantation.
Collapse
Affiliation(s)
- Nikola Sekulovski
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Allison E Whorton
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Mingxin Shi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - James A MacLean
- Department of Physiology, Southern Illinois School of Medicine, Carbondale, IL, USA.,Center for Reproductive Biology, Washington State University, Pullman, WA, USA.,School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
5
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Estrogen Receptors and Estrogen-Induced Uterine Vasodilation in Pregnancy. Int J Mol Sci 2020; 21:ijms21124349. [PMID: 32570961 PMCID: PMC7352873 DOI: 10.3390/ijms21124349] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Normal pregnancy is associated with dramatic increases in uterine blood flow to facilitate the bidirectional maternal–fetal exchanges of respiratory gases and to provide sole nutrient support for fetal growth and survival. The mechanism(s) underlying pregnancy-associated uterine vasodilation remain incompletely understood, but this is associated with elevated estrogens, which stimulate specific estrogen receptor (ER)-dependent vasodilator production in the uterine artery (UA). The classical ERs (ERα and ERβ) and the plasma-bound G protein-coupled ER (GPR30/GPER) are expressed in UA endothelial cells and smooth muscle cells, mediating the vasodilatory effects of estrogens through genomic and/or nongenomic pathways that are likely epigenetically modified. The activation of these three ERs by estrogens enhances the endothelial production of nitric oxide (NO), which has been shown to play a key role in uterine vasodilation during pregnancy. However, the local blockade of NO biosynthesis only partially attenuates estrogen-induced and pregnancy-associated uterine vasodilation, suggesting that mechanisms other than NO exist to mediate uterine vasodilation. In this review, we summarize the literature on the role of NO in ER-mediated mechanisms controlling estrogen-induced and pregnancy-associated uterine vasodilation and our recent work on a “new” UA vasodilator hydrogen sulfide (H2S) that has dramatically changed our view of how estrogens regulate uterine vasodilation in pregnancy.
Collapse
|
7
|
Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and Estrogen Signaling in the Endometrium: What Goes Wrong in Endometriosis? Int J Mol Sci 2019; 20:E3822. [PMID: 31387263 PMCID: PMC6695957 DOI: 10.3390/ijms20153822] [Citation(s) in RCA: 257] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
In the healthy endometrium, progesterone and estrogen signaling coordinate in a tightly regulated, dynamic interplay to drive a normal menstrual cycle and promote an embryo-receptive state to allow implantation during the window of receptivity. It is well-established that progesterone and estrogen act primarily through their cognate receptors to set off cascades of signaling pathways and enact large-scale gene expression programs. In endometriosis, when endometrial tissue grows outside the uterine cavity, progesterone and estrogen signaling are disrupted, commonly resulting in progesterone resistance and estrogen dominance. This hormone imbalance leads to heightened inflammation and may also increase the pelvic pain of the disease and decrease endometrial receptivity to embryo implantation. This review focuses on the molecular mechanisms governing progesterone and estrogen signaling supporting endometrial function and how they become dysregulated in endometriosis. Understanding how these mechanisms contribute to the pelvic pain and infertility associated with endometriosis will open new avenues of targeted medical therapies to give relief to the millions of women suffering its effects.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA
| | - Jung-Ho Shin
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Guro Hospital, Korea University Medical Center, Seoul 08318, Korea
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, Grand Rapids, MI 49503, USA.
| |
Collapse
|
8
|
Hewitt SC, Winuthayanon W, Lierz SL, Hamilton KJ, Donoghue LJ, Ramsey JT, Grimm SA, Arao Y, Korach KS. Role of ERα in Mediating Female Uterine Transcriptional Responses to IGF1. Endocrinology 2017; 158:2427-2435. [PMID: 28586424 PMCID: PMC5551553 DOI: 10.1210/en.2017-00349] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/01/2017] [Indexed: 01/31/2023]
Abstract
Estrogen (E2) signaling through its nuclear receptor, E2 receptor α (ERα) increases insulinlike growth factor 1 (IGF1) in the rodent uterus, which then initiates further signals via the IGF1 receptor. Directly administering IGF1 results in similar biological and transcriptional uterine responses. Our studies using global ERα-null mice demonstrated a loss of uterine biological responses of the uterus to E2 or IGF1 treatment, while maintaining transcriptional responses to IGF1. To address this discrepancy in the need for uterine ERα in mediating the IGF1 transcriptional vs growth responses, we assessed the IGF1 transcriptional responses in PgrCre+Esr1f/f (called ERαUtcKO) mice, which selectively lack ERα in progesterone receptor (PGR) expressing cells, including all uterine cells, while maintaining ERα expression in other tissues and cells that do not express Pgr. Additionally, we profiled IGF1-induced ERα binding sites in uterine chromatin using chromatin immunoprecipitation sequencing. Herein, we explore the transcriptional and molecular signaling that underlies our findings to refine our understanding of uterine IGF1 signaling and identify ERα-mediated and ERα-independent uterine transcriptional responses. Defining these mechanisms in vivo in whole tissue and animal contexts provides details of nuclear receptor mediated mechanisms that impact biological systems and have potential applicability to reproductive processes of humans, livestock and wildlife.
Collapse
Affiliation(s)
- Sylvia C. Hewitt
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - Wipawee Winuthayanon
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
- 2School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington 99164
| | - Sydney L. Lierz
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - Katherine J. Hamilton
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - Lauren J. Donoghue
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - J. Tyler Ramsey
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - Sara A. Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina 27709
| | - Yukitomo Arao
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| | - Kenneth S. Korach
- Receptor Biology Group, Reproductive and Developmental Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina 27709
| |
Collapse
|
9
|
Zhang W, Chen L, Ma K, Zhao Y, Liu X, Wang Y, Liu M, Liang S, Zhu H, Xu N. Polarization of macrophages in the tumor microenvironment is influenced by EGFR signaling within colon cancer cells. Oncotarget 2016; 7:75366-75378. [PMID: 27683110 PMCID: PMC5342747 DOI: 10.18632/oncotarget.12207] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/13/2016] [Indexed: 02/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth.
Collapse
Affiliation(s)
- Weina Zhang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lechuang Chen
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Kai Ma
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yahui Zhao
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xianghe Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yu Wang
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, P.R. China
| |
Collapse
|
10
|
Hantak AM, Bagchi IC, Bagchi MK. Role of uterine stromal-epithelial crosstalk in embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2015; 58:139-46. [PMID: 25023679 DOI: 10.1387/ijdb.130348mb] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Embryo implantation is a crucial step for successful pregnancy. Prior to implantation, the luminal epithelium undergoes steroid hormone-induced structural and functional changes that render it competent for embryo attachment. Subsequent invasion of the embryo into the maternal tissue triggers differentiation of the underlying stromal cells to form the decidua, a transient tissue which supports the developing embryo. Many molecular cues of both stromal and epithelial origin have been identified that are critical mediators of this process. An important aspect of uterine biology is the elaborate crosstalk that occurs between these tissue compartments during early pregnancy through expression of paracrine factors regulated by the steroid hormones estrogen and progesterone. Aberrant expression of these factors often leads to implantation failure and infertility. Genetically-engineered mouse models have been instrumental in elucidating what these paracrine factors are, what drives their expression, and what their effects are on neighboring cells. This review provides an overview of several well-characterized signaling pathways that span both epithelial and stromal compartments and their function during implantation in the mouse.
Collapse
Affiliation(s)
- Alison M Hantak
- Departments of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | | |
Collapse
|
11
|
KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc Natl Acad Sci U S A 2012; 109:E1334-43. [PMID: 22538816 DOI: 10.1073/pnas.1118515109] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the epithelial compartment of the uterus, estradiol-17β (E(2)) induces cell proliferation while progesterone (P(4)) inhibits this response and causes differentiation of the cells. In this study, we identified the mechanism whereby E(2) and P(4) reciprocally regulate the expression of minichromosome maintenance (MCM)-2, a protein that is an essential component of the hexameric MCM-2 to 7 complex required for DNA synthesis initiation. We show in the uterine epithelium that Kruppel-like transcription (KLF) factors, KLF 4 and 15, are inversely expressed; most importantly, they bind to the Mcm2 promoter under the regulation of E(2) and P(4)E(2), respectively. After P(4)E(2) exposure and in contrast to E(2) treated mice, the Mcm2 promoter displays increased histone 3 (H3) methylation and the recruitment of histone deacetylase 1 and 3 with the concomitant deacetylation of H3. This increased methylation and decreased acetylation is associated with an inhibition of RNA polymerase II binding, indicating an inactive Mcm2 promoter following P(4)E(2) treatment. Using transient transfection assays in the Ishikawa endometrial cell line, we demonstrate that Mcm2 promoter activity is hormonally stimulated by E(2) and that KLF15 inhibits this E(2) enhanced transcription. KLF15 expression also blocks Ishikawa cell proliferation through inhibition of MCM2 protein level. Importantly, in vivo expression of KLF15 in an estrogenized uterus mimics P(4)'s action by inhibiting E(2)-induced uterine epithelial MCM-2 expression and DNA synthesis. KLF15 is therefore a downstream physiological mediator of progesterone's cell cycle inhibitory action in the uterine epithelium.
Collapse
|
12
|
Estrogen and insulin-like growth factor-I (IGF-I) independently down-regulate critical repressors of breast cancer growth. Breast Cancer Res Treat 2011; 132:61-73. [PMID: 21541704 DOI: 10.1007/s10549-011-1540-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 12/21/2022]
Abstract
Although estrogen receptor alpha (ERα) and insulin-like growth factor (IGF) signaling are important for normal mammary development and breast cancer, cross-talk between these pathways, particularly at the level of transcription, remains poorly understood. We performed microarray analysis on MCF-7 breast cancer cells treated with estradiol (E2) or IGF-I for 3 or 24 h. IGF-I regulated mRNA of five to tenfold more genes than E2, and many genes were co-regulated by both ligands. Importantly, expression of these co-regulated genes correlated with poor prognosis of human breast cancer. Closer examination revealed enrichment of repressed transcripts. Interestingly, a number of potential tumor suppressors, for example, B-cell linker (BLNK), were down-regulated by IGF-I and E2. Analysis of three down-regulated genes showed that E2-mediated repression occurred independently of IGF-IR, and IGF-I-mediated repression occurred independently of ERα. However, repression by IGF-I or E2 required common kinases, such as PI3K and MEK, suggesting downstream convergence of the two pathways. In conclusion, E2 and IGF-I co-regulate a set of genes that affect breast cancer outcome. There is enrichment of repressed transcripts, and, for some genes, the down-regulation is independent at the receptor level. This may be important clinically, as tumors with active ERα and IGF-IR signaling may require co-targeting of both pathways.
Collapse
|
13
|
Walker MP, Diaugustine RP, Zeringue E, Bunger MK, Schmitt M, Archer TK, Richards RG. An IGF1/insulin receptor substrate-1 pathway stimulates a mitotic kinase (cdk1) in the uterine epithelium during the proliferative response to estradiol. J Endocrinol 2010; 207:225-35. [PMID: 20798132 PMCID: PMC4766979 DOI: 10.1677/joe-10-0102] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Estrogens are potent mitogens for some target organs, such as the uterus, and cancers that develop in this organ might be linked to the proliferative action of these hormones. However, the mechanism by which estrogens influence the cell cycle machinery is not known. We found that a null mutation for the insulin receptor substrate (IRS)-1, a docking protein that is important for IGF1 signaling, compromised hormone-induced mitosis in the uterine epithelium; BrdU incorporation was not affected. This selective effect on mitosis was associated with a reduction in uterine cyclin B-associated kinase activity; cyclin A-associated kinase activity was not changed. The null mutation also reduced the extent of hormone-induced phosphorylation of endogenous uterine histone H1, as determined with phospho-specific antiserum. Uterine epithelial cyclin dependent kinase (cdk)1 was induced in response to hormone, but the level of the kinase protein, as determined by immunoblotting, was noticeably less in the irs1 null mutant than that in the wild-type (WT) mouse, especially around the time of peak mitosis (24 h). Since IRS-1 binds/activates phosphatidylinositol 3-kinase (PI3K), the absence of this docking protein could impair signaling of a known pathway downstream of AKT that stimulates translation of cell cycle components. Indeed, we found that phosphorylation of uterine AKT (Ser473) in irs1 null mutants was less than that in WTs following treatment. Based on earlier studies, it is also possible that an IGF1/IRS-1/PI3K/AKT pathway regulates posttranslational changes in cdk1. This model may provide insights as to how a growth factor pathway can mediate hormone action on cell proliferation.
Collapse
Affiliation(s)
- Michael P Walker
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Mail Drop D4-01, PO Box 12233, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tong W, Niklaus A, Zhu L, Pan H, Chen B, Aubuchon M, Santoro N, Pollard JW. Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/9780203091500.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
15
|
Koricanac G, Milosavljevic T, Stojiljkovic M, Zakula Z, Tepavcevic S, Ribarac-Stepic N, Isenovic ER. Impact of estradiol on insulin signaling in the rat heart. Cell Biochem Funct 2009; 27:102-10. [DOI: 10.1002/cbf.1542] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Jones RA, Campbell CI, Petrik JJ, Moorehead RA. Characterization of a novel primary mammary tumor cell line reveals that cyclin D1 is regulated by the type I insulin-like growth factor receptor. Mol Cancer Res 2008; 6:819-28. [PMID: 18505926 DOI: 10.1158/1541-7786.mcr-07-2157] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of type I insulin-like growth factor receptor (IGF-IR) overexpression in mammary tumorigenesis was recently shown in two separate transgenic models. One of these models, the MTB-IGFIR transgenics, was generated in our lab to overexpress IGF-IR in mammary epithelial cells in a doxycycline (Dox)-inducible manner. To complement this transgenic model, primary cells that retained Dox-inducible expression of IGF-IR were isolated from a transgenic mammary tumor. This cell line, RM11A, expressed high levels of IGF-IR, phosphorylated Akt, and phosphorylated extracellular signal-regulated kinase 1/2 in the presence of Dox. IGF-IR overexpression provided the primary tumor cells with a survival advantage in serum-free media and seemed to induce ligand-independent activation of the IGF-IR because RM11A cells cultured in the presence of Dox were largely nonresponsive to exogenous IGFs. IGF-IR overexpression also augmented the growth of RM11A cells in vivo because injection of these cells into mammary glands of wild-type mice produced palpable tumors in 15.8 +/- 3.4 days when the mice were administered Dox, compared with 57.8 +/- 6.3 days in the absence of Dox. DNA microarray analysis revealed a number of genes regulated by IGF-IR, one of which was cyclin D1. Suppression of IGF-IR expression in vitro or in vivo was associated with a decrease in cyclin D1 protein, suggesting that at least some of the proliferative actions of IGF-IR are mediated through cyclin D1. Therefore, this article characterizes the first primary murine mammary tumor cell line with inducible IGF-IR expression. These cells provide a powerful in vitro/in vivo model to examine the function of IGF-IR in mammary tumorigenesis.
Collapse
Affiliation(s)
- Robert A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G2W1
| | | | | | | |
Collapse
|
17
|
Koricanac G, Milosavljevic T, Stojiljkovic M, Zakula Z, Ribarac-Stepic N, Isenovic ER. Insulin signaling in the liver and uterus of ovariectomized rats treated with estradiol. J Steroid Biochem Mol Biol 2008; 108:109-16. [PMID: 17931855 DOI: 10.1016/j.jsbmb.2007.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 06/01/2007] [Indexed: 10/22/2022]
Abstract
We used rat hepatic and uterine tissues to examine the impact of estradiol (E2) on insulin (INS) signaling. Ovariectomized (OVX) female Wistar rats were treated with E2 (20 microg/kg b.wt., i.p.) and used for the experiment 6h after E2 administration. To highlight E2 effects on tyrosine phosphorylation of INS receptor (IR) and INS receptor substrates (IRSs) and IRSs association with p85 subunit of phosphatidylinositol 3-kinase (PI3-K) in the context of INS signaling, E2-treated OVX rats were also injected with INS (20 IU, i.p.), 30 min before the experiment. Treatment with E2 did not change the levels of plasma INS and glucose (Glu). However, it significantly decreased the free fatty acid (FFA) level and increased uterine weight. Furthermore, the results show that E2 had no effect on the content of hepatic IR protein, but significantly increased IR protein content in the uterus and decreased IR tyrosine phosphorylation in both the liver and uterus. Compared to the control, hepatic IRS-1 and IRS-2 were significantly decreased and increased, respectively, after E2 treatment. Protein content of both molecules, IRS-1 and IRS-2, was increased in uterine tissue after E2 administration. Protein content of the p85 subunit of PI3-K and that of protein kinase B (Akt) were increased in the uterus, with no changes in the liver. The results suggest that E2 treatment induces tissue-specific changes in INS signaling. The consequences of E2 treatment on INS signaling molecules are more apparent in the uterus, but their physiological relevance for INS action is probably greater in the liver.
Collapse
Affiliation(s)
- G Koricanac
- Laboratory for Molecular Biology and Endocrinology, Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
18
|
Zhu L, Pollard JW. Estradiol-17beta regulates mouse uterine epithelial cell proliferation through insulin-like growth factor 1 signaling. Proc Natl Acad Sci U S A 2007; 104:15847-51. [PMID: 17895382 PMCID: PMC2000402 DOI: 10.1073/pnas.0705749104] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Estradiol-17beta (E(2)) causes cell proliferation in the uterine epithelium of mice and humans by signaling through its transcription factor receptor alpha (ERalpha). In this work we show that this signaling is mediated by the insulin-like growth factor 1 receptor (IGF1R) expressed in the epithelium, whose activation leads to the stimulation of the phosphoinositide 3-kinase/protein kinase B pathway leading to cyclin D1 nuclear accumulation and engagement with the canonical cell cycle machinery. This cyclin D1 nuclear accumulation results from the inhibition of glycogen synthase kinase 3beta (GSK3beta) activity caused by an inhibitory phosphorylation by protein kinase B. Once the IGF1 pathway is activated, inhibition of ER signaling demonstrates that it is independent of ER. Inhibition of GSK3beta in the absence of E(2) is sufficient to induce uterine epithelial cell proliferation, and GSK3beta is epistatic to IGF1 signaling, indicating a linear pathway from E(2) to cyclin D1. Exposure to E(2) is the major risk factor for endometrial cancer, suggesting that downstream activation of this IGF1-mediated pathway by mutation could be causal in the progression to ER-independent tumors.
Collapse
Affiliation(s)
- Liyin Zhu
- Departments of *Developmental and Molecular Biology and
| | - Jeffrey W. Pollard
- Departments of *Developmental and Molecular Biology and
- Obstetrics and Gynecology and Women's Health, Center of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
- To whom correspondence should be addressed at:
Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461. E-mail:
| |
Collapse
|
19
|
Song RXD, Zhang Z, Chen Y, Bao Y, Santen RJ. Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. Endocrinology 2007; 148:4091-101. [PMID: 17525128 PMCID: PMC2727866 DOI: 10.1210/en.2007-0240] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We present an integrated model of an extranuclear, estrogen receptor-alpha (ERalpha)-mediated, rapid MAPK activation pathway in breast cancer cells. In noncancer cells, IGF-I initiates a linear process involving activation of the IGF-I receptor (IGF-IR) and matrix metalloproteinases (MMP), release of heparin-binding epidermal growth factor (HB-EGF), and activation of EGF receptor (EGFR)-dependent MAPK. 17beta-Estradiol (E2) rapidly activates IGF-IR in breast cancer cells. We hypothesize that E2 induces a similar linear pathway involving IGF-IR, MMP, HB-EGF, EGFR, and MAPK. Using MCF-7 breast cancer cells, we for the first time demonstrated that a sequential activation of IGF-IR, MMP, and EGFR existed in E2 and IGF-I actions, which was supported by evidence that the selective inhibitors of IGF-IR and MMP or knockdown of IGF-IR all inhibited E2- or IGF-I-induced EGFR phosphorylation. Using the inhibitors and small inhibitory RNA strategies, we also demonstrated that the same sequential activation of the receptors occurred in E2-, IGF-I-, but not EGF-induced MAPK phosphorylation. Additionally, a HB-EGF neutralizing antibody significantly blocked E2-induced MAPK activation, further supporting our hypothesis. The biological effects of sequential activation of IGF-IR and EGFR on E2 stimulation of cell proliferation were also investigated. Knockdown or blockade of IGF-IR significantly inhibited E2- or IGF-I-stimulated but not EGF-induced cell growth. Knockdown or blockade of EGFR abrogated cell growth induced by E2, IGF-I, and EGF, indicating that EGFR is a downstream molecule of IGF-IR in E2 and IGF-I action. Together, our data support the novel view that E2 can activate a linear pathway involving the sequential activation of IGF-IR, MMP, HB-EGF, EGFR, and MAPK.
Collapse
Affiliation(s)
- Robert X-D Song
- Department of Internal Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | | | | | | | | |
Collapse
|
20
|
The insulin-like growth factor-1 ligand in breast cancer management. METASTASIS OF BREAST CANCER 2007. [DOI: 10.1007/978-1-4020-5867-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, Moorehead RA. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene 2006; 26:1636-44. [PMID: 16953219 DOI: 10.1038/sj.onc.1209955] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression and hyperactivation of the type I insulin-like growth factor receptor (IGF-IR) has been observed in human breast tumor biopsies. In addition, in vitro studies indicate that overexpression of IGF-IR is sufficient to transform cells such as mouse embryo fibroblasts and this receptor promotes proliferation and survival in breast cancer cell lines. To fully understand the function of the IGF-IR in tumor initiation and progression, transgenic mice containing human IGF-IR under a doxycycline-inducible MMTV promoter system were generated. Administration of 2 mg/ml doxycycline in the animals' water supply beginning at 21 days of age resulted in elevated levels of IGF-IR in mammary epithelial cells as detected by Western blotting and immunohistochemistry. Whole mount analysis of 55-day-old mouse mammary glands revealed that IGF-IR overexpression significantly impaired ductal elongation. Moreover, histological analyses revealed multiple hyperplasic lesions in the mammary glands of these 55-day-old mice. The formation of palpable mammary tumors was evident at approximately 2 months of age and was associated with increased levels of IGF-IR signaling molecules including phosphorylated Akt, Erk1/Erk2 and STAT3. Therefore, these transgenic mice provide evidence that IGF-IR overexpression is sufficient to induce mammary epithelial hyperplasia and tumor formation in vivo and provide a model to further understand the function of IGF-IR in mammary epithelial transformation.
Collapse
Affiliation(s)
- R A Jones
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Chong YM, Colston K, Jiang WG, Sharma AK, Mokbel K. The relationship between the insulin-like growth factor-1 system and the oestrogen metabolising enzymes in breast cancer tissue and its adjacent non-cancerous tissue. Breast Cancer Res Treat 2006; 99:275-88. [PMID: 16752221 DOI: 10.1007/s10549-006-9215-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/02/2006] [Indexed: 12/12/2022]
Abstract
AIMS Previous studies have shown that oestrogen and Insulin-like Growth Factor-1 (IGF-1) act synergistically and cross-stimulatory while the oestrogen receptor (ER) and IGF-1R downstream signalling pathways interact at many levels. We investigate the relationship between the ER, and IGF-1R and their ligands in a series of human breast cancer tissue and adjacent non-cancerous tissue (ANCT). METHODS A series of 139 pairs of breast cancer tissue and ANCT were obtained and divided into ER positive and ER negative groups based on tumour ER alpha immunostaining. All samples were processed for real-time quantitative-PCR to measure IGF-1, IGF-1R, ER alpha, STS and Cyp-19 mRNA levels. In addition, ER positive MCF-7 and ER negative MDA-MB-231 cell lines were treated separately with IGF-1 and an IGF-1R inhibitor called Tyrphostin AG1024 to see the effects of stimulating and inhibiting the IGF-1R. MCF-7 cell line was also treated with 4-hydroxytamoxifen. The mRNA levels of IGF-1, IGF-1R, ER alpha, STS and Cyp-19 of treated cell lines were measured and compared to those of non-treated controls. Data generated was normalised to Cytokeratin-19 mRNA levels. RESULTS IGF-1R expression was higher in tumour tissue compared to ANCT (P = 0.038) while IGF-1 expression was marginally higher in ANCT compared to tumour tissue only in the ER positive samples (P = 0.098). ER positive tumours had a higher expression of IGF-1 compared to ER negative tumours (P = 0.001) while IGF-1R, STS and Cyp-19 expression were higher in ER negative tumours (P = 0.000, 0.000 and 0.006 respectively). There was no difference in STS or Cyp-19 expression in tumours or ANCT. Using Spearman's Correlation test, IGF-1 positively correlated with STS, Cyp-19 and ER alpha in ER positive and negative groups (Coefficient = +0.497, +0.662 and +0.651 respectively, P = 0.000 in all). IGF-1R correlated with IGF-1, STS, Cyp-19 and ER alpha only in the ER negative tumours (Coefficient = +0.620, +0.394, +0.692 and +0.662 respectively, P = 0.000, 0.012, 0.000 and 0.000 respectively). In cell lines, IGF-1 treatment led to an increase in the mean expression of IGF-1, IGF-1R, STS and Cyp-19 in both cell lines while ER alpha expression increased only in MCF-7. IGF-1R inhibition caused a decrease in expression of all five genes in MDA-MB-231 but not in the MCF-7 cell line. Treatment with 4-hydroxytamoxifen caused a decrease in expression of all five genes. CONCLUSIONS IGF-1R is over-expressed in malignant tissue. IGF-1 is expressed at higher levels in ER positive tumours probably as a result of oestrogen stimulation while IGF-1R expression is higher in ER negative samples as an adaptation to lower local IGF-1 levels. An IGF-1 paracrine relationship may exist between tumour and ANCT but for STS and Cyp-19, there may be an autocrine-paracrine relationship. The IGF-1 ligand-receptor system is an important regulator of oestrogen production while oestrogen may be involved in stimulating IGF-1 expression. The expression of oestrogen synthesising enzymes is higher in ER negative breast cancers which may be due to the lack of oestrogen negative feedback or contribution from the overexpression of IGF-1R.
Collapse
Affiliation(s)
- Yoon Mann Chong
- Department of Cellular & Molecular Medicine, St George's Hospital, London, UK.
| | | | | | | | | |
Collapse
|
23
|
Karl M, Potier M, Schulman IH, Rivera A, Werner H, Fornoni A, Elliot SJ. Autocrine activation of the local insulin-like growth factor I system is up-regulated by estrogen receptor (ER)-independent estrogen actions and accounts for decreased ER expression in type 2 diabetic mesangial cells. Endocrinology 2005; 146:889-900. [PMID: 15550505 DOI: 10.1210/en.2004-1121] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autocrine activation of the IGF-I system in mesangial cells (MC) promotes glomerular scarring in a model of type 1 diabetes. Although estrogens protect against progressive nondiabetic glomerulosclerosis (GS), women with diabetes seem to loose the estrogen-mediated protection against cardiovascular disease. However, little is known about the local IGF-I system and its interactions with estrogens in the pathogenesis of type 2 diabetic GS. Therefore, we examined db/db B6 (db/db) mice, a model of type 2 diabetes and diabetic GS. The IGF-I system was activated in the glomeruli and MC of female diabetic db/db mice, but not in nondiabetic db/+ littermates. We found increased IGF-I receptor (IGFR) expression and activation, including activation of MAPK. Surprisingly, estrogens, via an estrogen receptor (ER)-independent mechanism(s), increased IGFR expression, IGFR and insulin receptor substrate phosphorylation, and extracellular signal-regulated kinase activation in db/db MC. In contrast, ER expression was decreased in MC and glomeruli of db/db mice. Treatment with a neutralizing antibody to IGF-I or the MAPK inhibitor PD98059 increased ER expression and transcriptional activity. This suggests that the local prosclerotic IGF-I system is activated in type 2 diabetes and diminishes ER-mediated protection against GS. Although estrogens may stimulate protective ER signaling, they also activate the IGF-I system via ER-independent mechanisms in db/db MC. The later estrogen effects appear to outweigh the antisclerotic effects of ER activation. This may in part account for loss of estrogen protection against the progression of diabetic GS in women with type 2 diabetes.
Collapse
Affiliation(s)
- Michael Karl
- Vascular Biology Institute, University of Miami School of Medicine, 1600 N.W. 10th Avenue, RMSB, Room 1043-R104, Miami, Florida 33136, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Yu X, Rajala RVS, McGinnis JF, Li F, Anderson RE, Yan X, Li S, Elias RV, Knapp RR, Zhou X, Cao W. Involvement of Insulin/Phosphoinositide 3-Kinase/Akt Signal Pathway in 17β-Estradiol-mediated Neuroprotection. J Biol Chem 2004; 279:13086-94. [PMID: 14711819 DOI: 10.1074/jbc.m313283200] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we tested the hypothesis that 17beta-estradiol (betaE2) is a neuroprotectant in the retina, using two experimental approaches: 1) hydrogen peroxide (H(2)O(2))-induced retinal neuron degeneration in vitro, and 2) light-induced photoreceptor degeneration in vivo. We demonstrated that both betaE2 and 17alpha-estradiol (alphaE2) significantly protected against H(2)O(2)-induced retinal neuron degeneration; however, progesterone had no effect. betaE2 transiently increased the phosphoinositide 3-kinase (PI3K) activity, when phosphoinositide 4,5-bisphosphate and [(32)gammaATP] were used as substrate. Phospho-Akt levels were also transiently increased by betaE2 treatment. Addition of the estrogen receptor antagonist tamoxifen did not reverse the protective effect of betaE2, whereas the PI3K inhibitor LY294002 inhibited the protective effect of betaE2, suggesting that betaE2 mediates its effect through some PI3K-dependent pathway, independent of the estrogen receptor. Pull-down experiments with glutathione S-transferase fused to the N-Src homology 2 domain of p85, the regulatory subunit of PI3K, indicated that betaE2 and alphaE2, but not progesterone, identified phosphorylated insulin receptor beta-subunit (IRbeta) as a binding partner. Pretreatment with insulin receptor inhibitor, HNMPA, inhibited IRbeta activation of PI3K. Systemic administration of betaE2 significantly protected the structure and function of rat retinas against light-induced photoreceptor cell degeneration and inhibited photoreceptor apoptosis. In addition, systemic administration of betaE2 activated retinal IRbeta, but not the insulin-like growth factor receptor-1, and produced a transient increase in PI3K activity and phosphorylation of Akt in rat retinas. The results show that estrogen has retinal neuroprotective properties in vivo and in vitro and suggest that the insulin receptor/PI3K/Akt signaling pathway is involved in estrogen-mediated retinal neuroprotection.
Collapse
Affiliation(s)
- Xiaorui Yu
- Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor alpha to the plasma membrane. Proc Natl Acad Sci U S A 2004; 101:2076-81. [PMID: 14764897 PMCID: PMC357054 DOI: 10.1073/pnas.0308334100] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Our previous studies demonstrated that 17beta-estradiol (E2) rapidly induces the interaction of estrogen receptor alpha (ERalpha) with the adapter protein Shc, the translocation of ERalpha to the cell membrane, and the formation of dynamic membrane structures in MCF-7 breast cancer cells. The present study examined how E2 causes ERalpha to translocate to the region of the plasma membrane and focused on mechanisms whereby Shc and the insulin-like growth factor-1 receptor (IGF-1R) mediate this process. Shc physically interacts with IGF-1R in the plasma membrane, and E2 activates IGF-1R. We reasoned that ERalpha, when bound to Shc, would be directed to the region of the plasma membrane by the same processes, causing membrane translocation of Shc. We confirmed that E2 rapidly induced IGF-1R phosphorylation and demonstrated that E2 induced formation of a ternary protein complex among Shc, ERalpha, and IGF-1R. Knock down of Shc with a specific small inhibitory RNA decreased the association of ERalpha with IGF-1R by 87%, suggesting that Shc is a crucial molecule in the formation of this ternary complex. Confocal microscopy studies provided further confirmation of the functional roles of Shc and the IGF-1R in the translocation of ERalpha to the region of the membrane. Down-regulation of Shc, ERalpha, or IGF-1R with specific small inhibitory RNAs all blocked E2-induced mitogen-activated protein kinase phosphorylation. Together, our results demonstrate that Shc and IGF-1R serve as key elements in the translocation of ERalpha to the cell membrane and in the facilitation of ERalpha-mediated rapid E2 action.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Cell Line, Tumor
- Cell Membrane/metabolism
- Estradiol/pharmacology
- Estrogen Receptor alpha
- Humans
- Macromolecular Substances
- Mitogen-Activated Protein Kinases/metabolism
- Phosphorylation/drug effects
- Protein Binding
- Protein Transport
- RNA Interference
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- Robert X Song
- Department of Internal Medicine and Biomolecular Research Facility, University of Virginia School of Medicine, Charlottesville, VA 22903, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Cao W, Rajala RVS, Li F, Anderson RE, Wei N, Soliman CE, McGinnis JF. Neuroprotective Effect of Estrogen upon Retinal Neurons in Vitro. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:395-402. [PMID: 15180290 DOI: 10.1007/978-1-4615-0067-4_50] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Wei Cao
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean A. McGee Eye Institute, 608 Stanton L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Moschos SJ, Mantzoros CS. The role of the IGF system in cancer: from basic to clinical studies and clinical applications. Oncology 2002; 63:317-32. [PMID: 12417786 DOI: 10.1159/000066230] [Citation(s) in RCA: 247] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Insulin-like growth factors (IGFs) are important mediators of growth, development, and survival, are synthesized by almost any tissue in the body, and their action is modulated by a complex network of molecules, including binding proteins, proteases and receptors, which all comprise the IGF system. Evidence from in vitro and animal studies suggests that overexpression of IGFs by cancer cells and/or the nearby stroma as well as the type IGF-I receptor by the cancer cells may play a significant role in establishing a transformed phenotype in an increasing number of malignancies. More specifically, IGFs may promote cell cycle progression and inhibition of apoptosis either by directly associating with other growth factors or indirectly by interacting with other molecular systems which have an established role in carcinogenesis and cancer promotion, such as the steroid hormones and integrins. In addition, a growing number of epidemiologic studies suggest that increased serum levels of IGFs and/or altered levels of their binding proteins are associated with increased risk for developing several malignancies. These data indicate that IGF dysregulation should now be considered as an important independent factor for cancer risk, and a potential target for novel antineoplastic therapies and/or preventative strategies in high-risk groups.
Collapse
Affiliation(s)
- Stergios J Moschos
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass 02215, USA
| | | |
Collapse
|
28
|
Klotz DM, Hewitt SC, Ciana P, Raviscioni M, Lindzey JK, Foley J, Maggi A, DiAugustine RP, Korach KS. Requirement of estrogen receptor-alpha in insulin-like growth factor-1 (IGF-1)-induced uterine responses and in vivo evidence for IGF-1/estrogen receptor cross-talk. J Biol Chem 2002; 277:8531-7. [PMID: 11751931 DOI: 10.1074/jbc.m109592200] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the uterus insulin-like growth factor-1 (IGF-1) signaling can be initiated by estradiol acting through its nuclear receptor (estrogen receptor (ER)) to stimulate the local synthesis of IGF-1. Conversely, in vitro studies have demonstrated that estradiol-independent ER transcriptional activity can be induced by IGF-1 signaling, providing evidence for a cross-talk mechanism between IGF-1 and ER. To investigate whether ER alpha is required for uterine responses to IGF-1 in vivo, both wild-type (WT) and ER alpha knockout (alpha ERKO) mice were administered IGF-1, and various uterine responses to IGF-1 were compared. In both WT and alpha ERKO mice, IGF-1 treatment resulted in phosphorylation of uterine IGF-1 receptor (IGF-1R) and formation of an IGF-1R/insulin receptor substrate-1/ phosphatidylinositol 3-kinase signaling complex. In addition, IGF-1 stimulated phosphorylation of uterine Akt and MAPK in both WT and alpha ERKO mice. However, IGF-1 treatment stimulated BrdUrd incorporation and proliferating cell nuclear antigen expression in WT uteri only. To determine whether ER alpha can be activated in vivo by IGF-1 signaling, transgenic mice carrying a luciferase gene driven by two estrogen response elements (ERE-luciferase mice) were utilized. Treatment of ovariectomized ERE-luciferase mice with IGF-1 resulted in an increase in uterine luciferase activity that was attenuated in the presence of the ER antagonist ICI 182,780. Together these data demonstrate that 1) functional signaling proximal to IGF-1R is maintained in the alpha ERKO mouse uterus, 2) ER alpha is necessary for IGF-1 induction of uterine nuclear proliferative responses, and 3) cross-talk between IGF-1R and ER signaling pathways exists in vivo.
Collapse
Affiliation(s)
- Diane M Klotz
- Laboratory of Molecular Carcinogenesis, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Gray CA, Bartol FF, Tarleton BJ, Wiley AA, Johnson GA, Bazer FW, Spencer TE. Developmental biology of uterine glands. Biol Reprod 2001; 65:1311-23. [PMID: 11673245 DOI: 10.1095/biolreprod65.5.1311] [Citation(s) in RCA: 334] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17 beta, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.
Collapse
Affiliation(s)
- C A Gray
- Center for Animal Biotechnology and Genomics, Department of Animal Science, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Richards RG, Klotz DM, Bush MR, Walmer DK, DiAugustine RP. E2-induced degradation of uterine insulin receptor substrate-2: requirement for an IGF-I-stimulated, proteasome-dependent pathway. Endocrinology 2001; 142:3842-9. [PMID: 11517161 DOI: 10.1210/endo.142.9.8370] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The insulin receptor substrates are docking proteins that bind various receptor tyrosine kinases and signaling proteins. Previous studies have shown that E2 or progesterone can regulate the relative abundance of insulin receptor substrate-1 and -2 in cells and tissues. For instance, uterine insulin receptor substrate-2 was decreased markedly at 24 h after E2 treatment of mice. In the present study we used various in vivo experimental approaches to examine the mechanism by which E2 influences uterine insulin receptor substrate-2 expression. Uterine insulin receptor substrate-2 mRNA levels were diminished after E2 treatment, but this diminution did not account for the total reduction in insulin receptor substrate-2 protein, suggesting that the E2-induced decrease in insulin receptor substrate-2 is not regulated solely at the mRNA level. Cotreatment with progesterone prevented the E2-stimulated reduction in insulin receptor substrate-2 protein at 24 h after hormone exposure. In addition, MG-132 and epoxomicin, inhibitors of proteasomal protease activity, inhibited the E2-induced decrease in uterine insulin receptor substrate-2 protein levels, and this correlated to an increase in uterine protein ubiquitination. Insulin receptor substrate-2 protein was diminished in uteri of E2-treated insulin receptor substrate-1-null mutant mice, but not in E2-treated IGF-I-null mutant mice. Furthermore, E2-induced diminution of uterine insulin receptor substrate-2 protein was only partially inhibited in the presence of wortmannin, a PI3K inhibitor. Collectively, these data suggest that the E2-induced decrease in uterine insulin receptor substrate-2 requires IGF-I signaling, is not dependent solely on insulin receptor substrate-1 and PI3K, and is blocked by progesterone as well as by pharmacological inhibition of proteasomal protease activity. We speculate that the IGF-I-activated IGF-I receptor, in response to E2, directly or indirectly modifies insulin receptor substrate-2, probably through phosphorylation, leading to ubiquitination and subsequent degradation of this docking protein by the proteasome. This degradation could be a regulatory step to inhibit insulin receptor substrate-2-dependent signaling in the uterus.
Collapse
Affiliation(s)
- R G Richards
- Hormones and Cancer Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental and Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
31
|
Lai A, Sarcevic B, Prall OW, Sutherland RL. Insulin/insulin-like growth factor-I and estrogen cooperate to stimulate cyclin E-Cdk2 activation and cell Cycle progression in MCF-7 breast cancer cells through differential regulation of cyclin E and p21(WAF1/Cip1). J Biol Chem 2001; 276:25823-33. [PMID: 11337496 DOI: 10.1074/jbc.m100925200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogens and insulin/insulin-like growth factor-I (IGF-I) are potent mitogens for breast epithelial cells and, when co-administered, induce synergistic stimulation of cell proliferation. To investigate the molecular basis of this effect, a MCF-7 breast cancer cell model was established where serum deprivation and concurrent treatment with the pure estrogen antagonist, ICI 182780, inhibited growth factor and estrogen action and arrested cells in G(0)/G(1) phase. Subsequent stimulation with insulin or IGF-I alone failed to induce significant S-phase entry. However, these treatments increased cyclin D1, cyclin E, and p21 gene expression and induced the formation of active Cdk4 complexes but resulted in only minor increases in cyclin E-Cdk2 activity, likely due to recruitment of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1/Cip1) into these complexes. Treatment with estradiol alone resulted in a greater increase in cyclin D1 gene expression but markedly decreased p21 expression, with a concurrent increase in Cdk4 and Cdk2 activity and subsequent synchronous entry of cells into S phase. Co-administration of insulin/IGF-I and estrogen induced synergistic stimulation of S-phase entry coincident with synergistic activation of high molecular mass (approximately 350 kDa) cyclin E-Cdk2 complexes lacking p21. To determine if the ability of estrogen to deplete p21 was central to these effects, cells stimulated with insulin and estradiol were infected with an adenovirus expressing p21. Induction of p21 to levels equivalent to those following treatment with insulin alone markedly inhibited the synergism between estradiol and insulin on S-phase entry. Thus the ability of estradiol to antagonize the insulin-induced increase in p21 gene expression, with consequent activation of cyclin E-Cdk2, is a central component of the synergistic stimulation of breast epithelial cell proliferation induced by simultaneous activation of the estrogen and insulin/IGF-I signaling pathways.
Collapse
Affiliation(s)
- A Lai
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | |
Collapse
|
32
|
Camper-Kirby D, Welch S, Walker A, Shiraishi I, Setchell KD, Schaefer E, Kajstura J, Anversa P, Sussman MA. Myocardial Akt Activation and Gender. Circ Res 2001; 88:1020-7. [PMID: 11375271 DOI: 10.1161/hh1001.090858] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
—Cardiovascular disease risk is higher in men than women, but the basis for this discrepancy remains controversial. Estrogenic stimulation of the myocardium or isolated cardiomyocytes has been purported to exert multiple beneficial effects associated with inhibition of maladaptive responses to pathogenic insults. This report describes a significant difference between the sexes in myocardial activation of Akt, a protein kinase that regulates a broad range of physiological responses including metabolism, gene transcription, and cell survival. We find that young women possess higher levels of nuclear-localized phospho-Akt
473
relative to comparably aged men or postmenopausal women. Both localization of phospho-Akt
473
in myocardial nuclei of sexually mature female mice versus males and Akt kinase activity in nuclear extracts of hearts from female mice versus males are elevated. Cytosolic localization of phospho-forkhead, a downstream nuclear target of Akt, is also increased in female relative to male mice, suggesting a potential mechanism for cardioprotective nuclear signaling resulting from Akt activation. Phospho-Akt
473
levels and localization at cardiac nuclei are similarly increased in transgenic mice with myocardium-specific expression of insulin-like growth factor I, a proven stimulus for Akt activation. Phospho-Akt
473
is also localized to the nucleus of cultured cardiomyocytes after exposure to 17β-estradiol or genistein (a phytoestrogen in soy protein–based diets), and neonatal exposure of litters to genistein elevated nuclear phospho-Akt
473
localization. The activation of Akt in a gender-dependent manner may help explain differences observed in cardiovascular disease risk between the sexes and supports the potential beneficial effects of estrogenic stimulation.
Collapse
Affiliation(s)
- D Camper-Kirby
- Division of Molecular Cardiovascular Biology, The Children's Hospital Research Foundation, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Taylor KM, Chen C, Gray CA, Bazer FW, Spencer TE. Expression of messenger ribonucleic acids for fibroblast growth factors 7 and 10, hepatocyte growth factor, and insulin-like growth factors and their receptors in the neonatal ovine uterus. Biol Reprod 2001; 64:1236-46. [PMID: 11259272 DOI: 10.1095/biolreprod64.4.1236] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In sheep, uterine development begins during fetal life but is only completed postnatally with proliferation and branching morphogenetic differentiation of the endometrial glandular epithelium (G) from the luminal epithelium (L) between birth or Postnatal Day (PND) 0 and PND 56. In other epithelial-mesenchymal organs, fibroblast growth factor (FGF)-7 and FGF-10, hepatocyte growth factor (HGF), and insulin-like growth factor (IGF)-I and IGF-II play essential roles in ductal branching morphogenesis. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization analyses were used to study temporal and spatial alterations in expression of mRNAs for growth factors (FGF-7, FGF-10, HGF, IGF-I, IGF-II) and their respective receptors (FGF receptor or FGFR2IIIb, c-met, and IGF-IR) in the developing neonatal ovine uterus. The RT-PCR analyses indicated that expression of FGF-10, HGF, IGF-I, and IGF-II mRNAs increased in the neonatal uterus between PND 1 and 56. In situ hybridization analyses indicated that FGFR2IIIb and c-met mRNAs were expressed solely in uterine L and developing G, whereas IGF-IR was expressed in all uterine cell types, with highest levels in L and developing G. Both IGF-I and IGF-II mRNAs were expressed in the endometrial stroma and myometrium, with IGF-I predominantly in the intercaruncular endometrial stroma. The highest levels of IGF-I and IGF-II mRNA expression were detected in the intercaruncular endometrial stroma surrounding the nascent and proliferating glands. Immunohistochemistry revealed that phosphorylated extracellular regulated kinases-1 and -2 were most abundantly expressed in the nascent and proliferating glands of the developing neonatal uterine wall. These results implicate FGF-7, FGF-10, HGF, IGF-I, IGF-II, and their epithelial receptors in epithelial-mesenchymal interactions regulating endometrial gland morphogenesis in the neonatal sheep uterus.
Collapse
Affiliation(s)
- K M Taylor
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas 77843-2471, USA
| | | | | | | | | |
Collapse
|
34
|
Cardona-Gómez GP, DonCarlos L, Garcia-Segura LM. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2001; 99:751-60. [PMID: 10974438 DOI: 10.1016/s0306-4522(00)00228-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Several findings indicate that there is a close interaction between estrogen and insulin-like growth factor I in different brain regions. In adult brain, both estrogen and insulin-like growth factor I have co-ordinated effects in the regulation of neuroendocrine events, synaptic plasticity and neural response to injury. In this study we have qualitatively assessed whether estrogen receptors and insulin-like growth factor I receptor are colocalized in the same cells in the preoptic area, hypothalamus, hippocampus, cerebral cortex and cerebellum of female rat brain using confocal microscopy. Immunoreactivity for estrogen receptors alpha and beta was colocalized with immunoreactivity for insulin-like growth factor I receptor in many neurons from the preoptic area, hypothalamus, hippocampus and cerebral cortex. Furthermore, estrogen receptor beta and insulin-like growth factor I receptor immunoreactivities were colocalized in the Purkinje cells of the cerebellum. Colocalization of estrogen receptor beta and insulin-like growth factor I receptor was also detected in cells with the morphology of astrocytes in all regions assessed. The co-expression of estrogen receptors and insulin-like growth factor I receptor in the same neurons may allow a cross-coupling of their signaling pathways. Furthermore, the colocalization of immunoreactivity for estrogen receptor beta and insulin-like growth factor I receptor in glial cells suggests that glia may also play a role in the interactions of insulin-like growth factor I and estrogen in the rat brain. In conclusion, the co-expression of estrogen receptors and insulin-like growth factor I receptors in the same neural cells suggests that the co-ordinated actions of estrogen and insulin-like growth factor I in the brain may be integrated at the cellular level.
Collapse
|
35
|
Dupont J, Karas M, LeRoith D. The potentiation of estrogen on insulin-like growth factor I action in MCF-7 human breast cancer cells includes cell cycle components. J Biol Chem 2000; 275:35893-901. [PMID: 10967123 DOI: 10.1074/jbc.m006741200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To gain insight into the mechanisms involved in the cross-talk between IGF-1 receptor (IGF-1R) and estrogen receptor signaling pathways, we used MCF-7-derived cells (SX13), which exhibit a 50% reduction in IGF-1R expression. Growth of NEO cells (control MCF-7 cells) was stimulated by both IGF-1 and estradiol (E2), and the addition of both mitogens resulted in a synergistic response. Estrogen enhanced IGF-1R signaling in NEO cells, but this effect was markedly diminished in SX13 cells. Estrogen was also able to potentiate the IGF-1 effect on the expression of cyclin D1 and cyclin E and on the phosphorylation of retinoblastoma protein in control but not in SX13 cells. IGF-1 increased the protein level of p21 and the luciferase activity of the p21 promoter, whereas it only reduced the protein level of p27 without affecting p27 promoter activity. Estrogen did not affect the p21 inhibitor, but it decreased the protein level of p27 and the p27 promoter luciferase activity. These effects of both mitogens were also observed at the level of association of both cyclin-dependent kinase inhibitors with CDK2 suggesting that IGF-1 and E2 affect the activity of both p21 and p27. Taken together, these data suggest that in MCF-7 cells, estrogen potentiates the IGF-1 effect on IGF-1R signaling as well as on the cell cycle components. Moreover, IGF-1 and E2 regulate the expression of p21 and p27 and their association with CDK2 differently.
Collapse
Affiliation(s)
- J Dupont
- Section on Cellular and Molecular Physiology, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1758, USA
| | | | | |
Collapse
|
36
|
Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 2000; 87:677-82. [PMID: 11029403 DOI: 10.1161/01.res.87.8.677] [Citation(s) in RCA: 413] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
17beta-Estradiol (E(2)) is a rapid activator of endothelial nitric oxide synthase (eNOS). The product of this activation event, NO, is a fundamental determinant of cardiovascular homeostasis. We previously demonstrated that E(2)-stimulated endothelial NO release can occur without an increase in cytosolic Ca(2+). Here we demonstrate for the first time, to our knowledge, that E(2) rapidly induces phosphorylation and activation of eNOS through the phosphatidylinositol 3 (PI3)-kinase-Akt pathway. E(2) treatment (10 ng/mL) of the human endothelial cell line, EA.hy926, resulted in increased NO production, which was abrogated by the PI3-kinase inhibitor, LY294002, and the estrogen receptor antagonist ICI 182, 780. E(2) stimulated rapid Akt phosphorylation on serine 473. As has been shown for vascular endothelial growth factor, eNOS is an E(2)-activated Akt substrate, demonstrated by rapid eNOS phosphorylation on serine 1177, a critical residue for eNOS activation and enhanced sensitivity to resting cellular Ca(2+) levels. Adenoviral-mediated EA.hy926 transduction confirmed functional involvement of Akt, because a kinase-deficient, dominant-negative Akt abolished E(2)-stimulated NO release. The membrane-impermeant E(2)BSA conjugate, shown to bind endothelial cell membrane sites, also induced rapid Akt and consequent eNOS phosphorylation. Thus, engagement of membrane estrogen receptors results in rapid endothelial NO release through a PI3-kinase-Akt-dependent pathway. This explains, in part, the reduced requirement for cytosolic Ca(2+) fluxes and describes an important pathway relevant to cardiovascular pathophysiology.
Collapse
Affiliation(s)
- M P Haynes
- Division of Cardiovascular Medicine and Molecular Cardiobiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06536-0812, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kahlert S, Nuedling S, van Eickels M, Vetter H, Meyer R, Grohe C. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 2000; 275:18447-53. [PMID: 10749889 DOI: 10.1074/jbc.m910345199] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Estrogen and insulin-like-growth factor 1 (IGF-1) are potent mitogenic stimuli that share important properties in the control of cellular proliferation. However, the coupling between the signaling cascades of estrogen receptors alpha and beta and the IGF-1 receptor (IGF-1R) is poorly understood. Therefore, we selectively transfected estrogen receptor alpha or beta in COS7 and HEK293 cells, which contain IGF-1R. In presence of estrogen receptor alpha but not beta, 17beta-estradiol (E2) rapidly induces phosphorylation of the IGF-1R and the extracellular signal-regulated kinases 1/2. Furthermore, upon stimulation with E2, estrogen receptor alpha but not beta bound rapidly to the IGF-1R in COS7 as well as L6 cells, which express all investigated receptors endogenously. Control experiments in the IGF-1R-deficient fibroblast cell line R(-) showed that after stimulation with E2 only estrogen receptor alpha bound to the transfected IGF-1R. Overexpression of dominant negative mitogen-activated protein kinases kinase inhibited this effect. Finally, estrogen receptor alpha but not beta is required to induce the activation of the estrogen receptor-responsive reporter ERE-LUC in IGF-1-stimulated cells. Taken together, these data demonstrate that ligand bound estrogen receptor alpha is required for rapid activation of the IGF-1R signaling cascade.
Collapse
Affiliation(s)
- S Kahlert
- Medizinische Poliklinik and the Institut für Physiologie II, University of Bonn, 53111 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Quesada A, Etgen AM. Tyrosine kinase effects on adrenoceptor-stimulated cyclic AMP accumulation in preoptic area and hypothalamus of female rats: modulation by estradiol. Brain Res 2000; 861:117-25. [PMID: 10751571 DOI: 10.1016/s0006-8993(00)02052-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
These studies examined the functional interactions between adrenergic G-protein coupled receptors and protein tyrosine kinases in the preoptic area and hypothalamus, brain regions that regulate reproductive function in female rats, and evaluated whether in vivo treatment with estradiol for 2 days modulates the cross-talk between these two signaling pathways. In hypothalamic slices genistein, a general tyrosine kinase inhibitor, enhances norepinephrine-stimulated cAMP synthesis independent of estradiol treatment. Genistein appears to act by increasing beta-adrenoceptor signaling. At high norepinephrine concentrations, estradiol potentiates genistein enhancement of the cAMP response in hypothalamic slices. This interaction between estradiol and genistein appears to involve modification of alpha(2)-adrenoceptor signaling mechanisms. In preoptic area slices, genistein enhancement of norepinephrine-stimulated cAMP synthesis is only observed in estradiol-treated rats. In this brain region, genistein enhances cAMP accumulation by modifying alpha(1)- and/or alpha(2)-adrenoceptor rather than beta-adrenoceptor signaling. Genistein amplification of norepinephrine-stimulated cAMP synthesis is not mediated by interactions with estrogen receptors, or by regulation of adenylyl cyclase or phosphodiesterase activities. At the concentration used, genistein inhibits tyrosine phosphorylation in slices from both brain regions. Daidzein, an inactive analogue of genistein, fails to enhance the norepinephrine-stimulated cAMP response in either brain region independent of hormone treatment. These results suggest that protein tyrosine kinases regulate adrenergic responses in the hypothalamus and preoptic area. Moreover, the functional interaction between adrenergic G-protein coupled receptor signaling and protein tyrosine kinases is modified in a brain region and receptor subtype specific manner by estradiol.
Collapse
Affiliation(s)
- A Quesada
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Avenue, F113, Bronx, NY 10461, USA.
| | | |
Collapse
|
39
|
Russell KS, Haynes MP, Caulin-Glaser T, Rosneck J, Sessa WC, Bender JR. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. Effects on calcium sensitivity and NO release. J Biol Chem 2000; 275:5026-30. [PMID: 10671543 DOI: 10.1074/jbc.275.7.5026] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Estradiol (E(2)) causes endothelium-dependent vasodilation, mediated, in part, by enhanced nitric oxide (NO) release. We have previously shown that E(2)-induced activation of endothelial nitric oxide synthase (eNOS) reduces its calcium dependence. This pathway of eNOS activation is unique to a limited number of stimuli, including shear stress, the response to which is herbimycin-inhibitable. Consistent with this, herbimycin and geldanamycin pretreatment of human umbilical vein endothelial cells (HUVEC) abrogated E(2)-stimulated NO release and cGMP production, respectively. These benzoquinone ansamycins are potent inhibitors of Hsp90 function, which has recently been shown to play a role in stimulus-dependent eNOS activation. As in response to shear, E(2) induced an Hsp90-eNOS association, peaking at 30 min and completely inhibited by the conventional estrogen receptor antagonist ICI 182,780. These findings suggest that Hsp90 plays an important role in the rapid, estrogen receptor-mediated modulation of eNOS activation by estrogen.
Collapse
Affiliation(s)
- K S Russell
- Division of Cardiovascular Medicine and Molecular Cardiobiology, Boyer Center for Molecular Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yee D, Lee AV. Crosstalk between the insulin-like growth factors and estrogens in breast cancer. J Mammary Gland Biol Neoplasia 2000; 5:107-15. [PMID: 10791773 DOI: 10.1023/a:1009575518338] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Once it was recognized that breast tumor growth was stimulated by estrogens, successful therapeutic strategies based on depriving the tumor of this hormone were developed. Since the growth stimulatory properties of the estrogens are governed by the estrogen receptor (ER), understanding the mechanisms that activate ER are highly relevant. In addition to estrogens, peptide growth factors can also activate the ER. The insulin-like growth factors (IGFs) are potent mitogens for ER-positive breast cancer cell lines. This review will examine the evidence for interaction between these two pathways. The IGFs can activate the ER, while ER transcriptionally regulates genes required for IGF action. Moreover, blockade of ER function can inhibit IGF-mediated mitogenesis and interruption of IGF action can similarly inhibit estrogenic stimulation of breast cancer cells. Taken together, these observations suggest that the two growth regulatory pathways are tightly linked and that a further understanding of the mechanism of this crosstalk could lead to new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- D Yee
- Department of Medicine, University of Minnesota Cancer Center, Minneapolis 55455, USA.
| | | |
Collapse
|