1
|
Acharya TK, Mahapatra P, Kumar S, Dubey NK, Rajalaxmi S, Ghosh A, Kumar A, Goswami C. Conserved and Unique Mitochondrial Target Sequence of TRPV4 Can Independently Regulate Mitochondrial Functions. Proteins 2025; 93:908-919. [PMID: 39648544 PMCID: PMC11878201 DOI: 10.1002/prot.26772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 12/10/2024]
Abstract
Though mitochondria have their own genome and protein synthesis machineries, the majority of the mitochondrial proteins are actually encoded by the nuclear genome. Most of these mitochondrial proteins are imported into specific compartments of the mitochondria due to their mitochondrial target sequence (MTS). Unlike the nuclear target sequence, the MTS of most of the mitochondrial localized proteins remain poorly understood, mainly due to their variability, heterogeneity, unconventional modes of action, mitochondrial potential-dependent transport, and other complexities. Recently, we reported that transient receptor potential vanilloid subtype 4 (TRPV4), a thermosensitive cation channel, is physically located at the mitochondria. Here we characterize a small segment (AA 592-630) located at the TM4-loop4-TM5 segment of TRPV4 that acts as a novel MTS. The same region remains highly conserved in all vertebrates and contains a large number of point mutations each of which causes an diverse spectrum of diseases in human. Using confocal and super-resolution microscopy, we show that this MTS of TRPV4 or its mutants localizes to the mitochondria independently and also induces functional and quantitative changes in the mitochondria. By using conformal microscopy, we could detect the presence of the MTS region within the isolated mitochondria. These findings may be important to understand the complexity of MTS and TRPV4-induced channelopathies better.
Collapse
Affiliation(s)
- Tusar Kanta Acharya
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Parnasree Mahapatra
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Shamit Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Nishant Kumar Dubey
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Srujanika Rajalaxmi
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Arijit Ghosh
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Ashutosh Kumar
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| | - Chandan Goswami
- National Institute of Science Education and Research Bhubaneswar, School of Biological SciencesKhurdaOdishaIndia
- Homi Bhabha National Institute, Training School ComplexMumbaiIndia
| |
Collapse
|
2
|
Bouin A, Wu G, Koyuncu OO, Ye Q, Kim KY, Wu MY, Tong L, Chen L, Phan S, Mackey MR, Ramachandra R, Ellisman MH, Holmes TC, Semler BL, Xu X. New rabies viral resources for multi-scale neural circuit mapping. Mol Psychiatry 2024; 29:1951-1967. [PMID: 38355784 PMCID: PMC11322437 DOI: 10.1038/s41380-024-02451-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.
Collapse
Affiliation(s)
- Alexis Bouin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Ginny Wu
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Orkide O Koyuncu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Qiao Ye
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Keun-Young Kim
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Michele Y Wu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Liqi Tong
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Lujia Chen
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA
| | - Sebastien Phan
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mason R Mackey
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ranjan Ramachandra
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mark H Ellisman
- The National Center for Microscopy and Imaging Research (NCMIR) and the Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Todd C Holmes
- Physiology & Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| | - Xiangmin Xu
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Department Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
- The Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Sohn YS, Losub-Amir A, Cardenas AE, Karmi O, Yahana MD, Gruman T, Rowland L, Marjault HB, Webb LJ, Mittler R, Elber R, Friedler A, Nechushtai R. A peptide-derived strategy for specifically targeting the mitochondria and ER of cancer cells: a new approach in fighting cancer. Chem Sci 2022; 13:6929-6941. [PMID: 35774163 PMCID: PMC9200128 DOI: 10.1039/d2sc01934e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 12/13/2022] Open
Abstract
An effective anti-cancer therapy should exclusively target cancer cells and trigger in them a broad spectrum of cell death pathways that will prevent avoidance. Here, we present a new approach in cancer therapy that specifically targets the mitochondria and ER of cancer cells. We developed a peptide derived from the flexible and transmembrane domains of the human protein NAF-1/CISD2. This peptide (NAF-144-67) specifically permeates through the plasma membranes of human epithelial breast cancer cells, abolishes their mitochondria and ER, and triggers cell death with characteristics of apoptosis, ferroptosis and necroptosis. In vivo analysis revealed that the peptide significantly decreases tumor growth in mice carrying xenograft human tumors. Computational simulations of cancer vs. normal cell membranes reveal that the specificity of the peptide to cancer cells is due to its selective recognition of their membrane composition. NAF-144-67 represents a promising anti-cancer lead compound that acts via a unique mechanism.
Collapse
Affiliation(s)
- Yang Sung Sohn
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Anat Losub-Amir
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Alfredo E Cardenas
- Institute for Computational Engineering and Science and Department of Chemistry, University of Texas at Austin Austin Texas 78712 USA
| | - Ola Karmi
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri. 1201 Rollins St Columbia MO 65201 USA
| | - Merav Darash Yahana
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Tal Gruman
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Linda Rowland
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri. 1201 Rollins St Columbia MO 65201 USA
| | - Henri-Baptiste Marjault
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Lauren J Webb
- Department of Chemistry, The University of Texas at Austin 2506 Speedway STOP A5300 Austin TX 78712 USA
| | - Ron Mittler
- Department of Surgery, University of Missouri School of Medicine, Christopher S. Bond Life Sciences Center University of Missouri. 1201 Rollins St Columbia MO 65201 USA
| | - Ron Elber
- Institute for Computational Engineering and Science and Department of Chemistry, University of Texas at Austin Austin Texas 78712 USA
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus at Givat Ram Jerusalem 9190401 Israel
| |
Collapse
|
4
|
Le Vasseur M, Friedman J, Jost M, Xu J, Yamada J, Kampmann M, Horlbeck MA, Salemi MR, Phinney BS, Weissman JS, Nunnari J. Genome-wide CRISPRi screening identifies OCIAD1 as a prohibitin client and regulatory determinant of mitochondrial Complex III assembly in human cells. eLife 2021; 10:67624. [PMID: 34034859 PMCID: PMC8154037 DOI: 10.7554/elife.67624] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/10/2021] [Indexed: 01/01/2023] Open
Abstract
Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.
Collapse
Affiliation(s)
- Maxence Le Vasseur
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Jonathan Friedman
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States.,Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Department of Microbiology and Immunology, University of California at San Francisco, San Francisco, United States
| | - Jiawei Xu
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Justin Yamada
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Institute for Neurodegenerative Diseases and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, United States.,Chan-Zuckerberg Biohub, San Francisco, United States
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States
| | - Michelle R Salemi
- Proteomics Core Facility, University of California, Davis, Davis, United States
| | - Brett S Phinney
- Proteomics Core Facility, University of California, Davis, Davis, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California at San Francisco, San Francisco, United States.,Whitehead Institute, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Jodi Nunnari
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, United States
| |
Collapse
|
5
|
Needs HI, Protasoni M, Henley JM, Prudent J, Collinson I, Pereira GC. Interplay between Mitochondrial Protein Import and Respiratory Complexes Assembly in Neuronal Health and Degeneration. Life (Basel) 2021; 11:432. [PMID: 34064758 PMCID: PMC8151517 DOI: 10.3390/life11050432] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022] Open
Abstract
The fact that >99% of mitochondrial proteins are encoded by the nuclear genome and synthesised in the cytosol renders the process of mitochondrial protein import fundamental for normal organelle physiology. In addition to this, the nuclear genome comprises most of the proteins required for respiratory complex assembly and function. This means that without fully functional protein import, mitochondrial respiration will be defective, and the major cellular ATP source depleted. When mitochondrial protein import is impaired, a number of stress response pathways are activated in order to overcome the dysfunction and restore mitochondrial and cellular proteostasis. However, prolonged impaired mitochondrial protein import and subsequent defective respiratory chain function contributes to a number of diseases including primary mitochondrial diseases and neurodegeneration. This review focuses on how the processes of mitochondrial protein translocation and respiratory complex assembly and function are interlinked, how they are regulated, and their importance in health and disease.
Collapse
Affiliation(s)
- Hope I. Needs
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Margherita Protasoni
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Jeremy M. Henley
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Julien Prudent
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK; (H.I.N.); (J.M.H.)
| | - Gonçalo C. Pereira
- Medical Research Council-Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; (M.P.); (J.P.)
| |
Collapse
|
6
|
Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci 2021; 22:ijms22020586. [PMID: 33435522 PMCID: PMC7827222 DOI: 10.3390/ijms22020586] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are ubiquitous intracellular organelles found in almost all eukaryotes and involved in various aspects of cellular life, with a primary role in energy production. The interest in this organelle has grown stronger with the discovery of their link to various pathologies, including cancer, aging and neurodegenerative diseases. Indeed, dysfunctional mitochondria cannot provide the required energy to tissues with a high-energy demand, such as heart, brain and muscles, leading to a large spectrum of clinical phenotypes. Mitochondrial defects are at the origin of a group of clinically heterogeneous pathologies, called mitochondrial diseases, with an incidence of 1 in 5000 live births. Primary mitochondrial diseases are associated with genetic mutations both in nuclear and mitochondrial DNA (mtDNA), affecting genes involved in every aspect of the organelle function. As a consequence, it is difficult to find a common cause for mitochondrial diseases and, subsequently, to offer a precise clinical definition of the pathology. Moreover, the complexity of this condition makes it challenging to identify possible therapies or drug targets.
Collapse
|
7
|
Laleve A, Panozzo C, Kühl I, Bourand-Plantefol A, Ostojic J, Sissoko A, Tribouillard-Tanvier D, Cornu D, Burg A, Meunier B, Blondel M, Clain J, Bonnefoy N, Duval R, Dujardin G. Artemisinin and its derivatives target mitochondrial c-type cytochromes in yeast and human cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118661. [PMID: 31987792 DOI: 10.1016/j.bbamcr.2020.118661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/27/2022]
Abstract
Artemisinin and its derivatives kill malaria parasites and inhibit the proliferation of cancer cells. In both processes, heme was shown to play a key role in artemisinin bioactivation. We found that artemisinin and clinical artemisinin derivatives are able to compensate for a mutation in the yeast Bcs1 protein, a key chaperon involved in biogenesis of the mitochondrial respiratory complex III. The equivalent Bcs1 variant causes an encephalopathy in human by affecting complex III assembly. We show that artemisinin derivatives decrease the content of mitochondrial cytochromes and disturb the maturation of the complex III cytochrome c1. This last effect is likely responsible for the compensation by decreasing the detrimental over-accumulation of the inactive pre-complex III observed in the bcs1 mutant. We further show that a fluorescent dihydroartemisinin probe rapidly accumulates in the mitochondrial network and targets cytochromes c and c1 in yeast, human cells and isolated mitochondria. In vitro this probe interacts with purified cytochrome c only under reducing conditions and we detect cytochrome c-dihydroartemisinin covalent adducts by mass spectrometry analyses. We propose that reduced mitochondrial c-type cytochromes act as both targets and mediators of artemisinin bioactivation in yeast and human cells.
Collapse
Affiliation(s)
- Anais Laleve
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Cristina Panozzo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Inge Kühl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Alexa Bourand-Plantefol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Jelena Ostojic
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Abdoulaye Sissoko
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Déborah Tribouillard-Tanvier
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Angélique Burg
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Brigitte Meunier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marc Blondel
- Inserm UMR1078, Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, 29200 Brest, France
| | - Jerome Clain
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Nathalie Bonnefoy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Duval
- Université de Paris, MERIT, IRD, 4 Avenue de l'Observatoire, 75006 Paris, France
| | - Geneviève Dujardin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
8
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
9
|
Ndi M, Marin-Buera L, Salvatori R, Singh AP, Ott M. Biogenesis of the bc 1 Complex of the Mitochondrial Respiratory Chain. J Mol Biol 2018; 430:3892-3905. [PMID: 29733856 DOI: 10.1016/j.jmb.2018.04.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.
Collapse
Affiliation(s)
- Mama Ndi
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roger Salvatori
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abeer Prakash Singh
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
10
|
Park K, Jung SJ, Kim H, Kim H. Mode of membrane insertion of individual transmembrane segments in Mdl1 and Mdl2, multi-spanning mitochondrial ABC transporters. FEBS Lett 2014; 588:3445-53. [DOI: 10.1016/j.febslet.2014.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
11
|
Trypanosome alternative oxidase possesses both an N-terminal and internal mitochondrial targeting signal. EUKARYOTIC CELL 2014; 13:539-47. [PMID: 24562910 DOI: 10.1128/ec.00312-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recognition of mitochondrial targeting signals (MTS) by receptor translocases of outer and inner membranes of mitochondria is one of the prerequisites for import of nucleus-encoded proteins into this organelle. The MTS for a majority of trypanosomatid mitochondrial proteins have not been well defined. Here we analyzed the targeting signal for trypanosome alternative oxidase (TAO), which functions as the sole terminal oxidase in the infective form of Trypanosoma brucei. Deleting the first 10 of 24 amino acids predicted to be the classical N-terminal MTS of TAO did not affect its import into mitochondria in vitro. Furthermore, ectopically expressed TAO was targeted to mitochondria in both forms of the parasite even after deletion of first 40 amino acid residues. However, deletion of more than 20 amino acid residues from the N terminus reduced the efficiency of import. These data suggest that besides an N-terminal MTS, TAO possesses an internal mitochondrial targeting signal. In addition, both the N-terminal MTS and the mature TAO protein were able to target a cytosolic protein, dihydrofolate reductase (DHFR), to a T. brucei mitochondrion. Further analysis identified a cryptic internal MTS of TAO, located within amino acid residues 115 to 146, which was fully capable of targeting DHFR to mitochondria. The internal signal was more efficient than the N-terminal MTS for import of this heterologous protein. Together, these results show that TAO possesses a cleavable N-terminal MTS as well as an internal MTS and that these signals act together for efficient import of TAO into mitochondria.
Collapse
|
12
|
Hewitt VL, Gabriel K, Traven A. The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochim Biophys Acta Gen Subj 2013; 1840:1246-53. [PMID: 23994494 DOI: 10.1016/j.bbagen.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). SCOPE OF REVIEW Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. MAJOR CONCLUSIONS There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. GENERAL SIGNIFICANCE We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Kipros Gabriel
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
13
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
14
|
Reprint of: Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1817:872-82. [PMID: 22564912 DOI: 10.1016/j.bbabio.2012.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/24/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
|
15
|
Park K, Botelho SC, Hong J, Österberg M, Kim H. Dissecting stop transfer versus conservative sorting pathways for mitochondrial inner membrane proteins in vivo. J Biol Chem 2012. [PMID: 23184936 DOI: 10.1074/jbc.m112.409748] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial inner membrane proteins that carry an N-terminal presequence are sorted by one of two pathways: stop transfer or conservative sorting. However, the sorting pathway is known for only a small number of proteins, in part due to the lack of robust experimental tools with which to study. Here we present an approach that facilitates determination of inner membrane protein sorting pathways in vivo by fusing a mitochondrial inner membrane protein to the C-terminal part of Mgm1p containing the rhomboid cleavage region. We validated the Mgm1 fusion approach using a set of proteins for which the sorting pathway is known, and determined sorting pathways of inner membrane proteins for which the sorting mode was previously uncharacterized. For Sdh4p, a multispanning membrane protein, our results suggest that both conservative sorting and stop transfer mechanisms are required for insertion. Furthermore, the sorting process of Mgm1 fusion proteins was analyzed under different growth conditions and yeast mutant strains that were defective in the import motor or the m-AAA protease function. Our results show that the sorting of mitochondrial proteins carrying moderately hydrophobic transmembrane segments is sensitive to cellular conditions, implying that mitochondrial import and membrane sorting in the physiological environment may be dynamically tuned.
Collapse
Affiliation(s)
- Kwangjin Park
- School of Biological Sciences, Seoul National University, Building 504-421, Seoul 151-747, South Korea
| | | | | | | | | |
Collapse
|
16
|
Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta). Mol Phylogenet Evol 2012; 64:166-76. [PMID: 22724135 DOI: 10.1016/j.ympev.2012.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.
Collapse
|
17
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
18
|
Gong L, Ramm G, Devenish RJ, Prescott M. HcRed, a genetically encoded fluorescent binary cross-linking agent for cross-linking of mitochondrial ATP synthase in Saccharomyces cerevisiae. PLoS One 2012; 7:e35095. [PMID: 22496895 PMCID: PMC3319629 DOI: 10.1371/journal.pone.0035095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/08/2012] [Indexed: 12/02/2022] Open
Abstract
Genetically encoded fluorescent cross-linking agents represent powerful tools useful both for visualising and modulating protein interactions in living cells. The far-red fluorescent protein HcRed, which is fluorescent only in a dimer form, can be used to promote the homo-dimerisation of target proteins, and thereby yield useful information about biological processes. We have in yeast cells expressed HcRed fused to a subunit of mitochondrial ATP synthase (mtATPase). This resulted in cross-linking of the large multi-subunit mtATPase complex within the inner-membrane of the mitochondrion. Fluorescence microscopy revealed aberrant mitochondrial morphology, and mtATPase complexes isolated from mitochondria were recovered as fluorescent dimers under conditions where complexes from control mitochondria were recovered as monomers. When viewed by electron microscopy normal cristae were absent from mitochondria in cells in which mATPase complexes were cross-linked. mtATPase dimers are believed to be the building blocks that are assembled into supramolecular mtATPase ribbons that promote the formation of mitochondrial cristae. We propose that HcRed cross-links mATPase complexes in the mitochondrial membrane hindering the normal assembly/disassembly of the supramolecular forms of mtATPase.
Collapse
Affiliation(s)
- Lan Gong
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Victoria, Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| | - Rodney J. Devenish
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton Campus, Victoria, Australia
| | - Mark Prescott
- Department of Biochemistry and Molecular Biology, Monash University, Clayton Campus, Victoria, Australia
| |
Collapse
|
19
|
Smith PM, Fox JL, Winge DR. Biogenesis of the cytochrome bc(1) complex and role of assembly factors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:276-86. [PMID: 22138626 DOI: 10.1016/j.bbabio.2011.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/10/2011] [Accepted: 11/11/2011] [Indexed: 11/28/2022]
Abstract
The cytochrome bc(1) complex is an essential component of the electron transport chain in most prokaryotes and in eukaryotic mitochondria. The catalytic subunits of the complex that are responsible for its redox functions are largely conserved across kingdoms. In eukarya, the bc(1) complex contains supernumerary subunits in addition to the catalytic core, and the biogenesis of the functional bc(1) complex occurs as a modular assembly pathway. Individual steps of this biogenesis have been recently investigated and are discussed in this review with an emphasis on the assembly of the bc(1) complex in the model eukaryote Saccharomyces cerevisiae. Additionally, a number of assembly factors have been recently identified. Their roles in bc(1) complex biogenesis are described, with special emphasis on the maturation and topogenesis of the yeast Rieske iron-sulfur protein and its role in completing the assembly of functional bc(1) complex. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Pamela M Smith
- Department of Biochemistry, University of Utah Health Sciences Center, Salt Lake City, UT, USA
| | | | | |
Collapse
|
20
|
Abstract
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.
Collapse
Affiliation(s)
- James W A Allen
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
21
|
Galopier A, Hermann-Le Denmat S. Mitochondria of the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis contain nuclear rDNA-encoded proteins. PLoS One 2011; 6:e16325. [PMID: 21283537 PMCID: PMC3026818 DOI: 10.1371/journal.pone.0016325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 12/10/2010] [Indexed: 12/03/2022] Open
Abstract
In eukaryotes, the nuclear ribosomal DNA (rDNA) is the source of the structural 18S, 5.8S and 25S rRNAs. In hemiascomycetous yeasts, the 25S rDNA sequence was described to lodge an antisense open reading frame (ORF) named TAR1 for Transcript Antisense to Ribosomal RNA. Here, we present the first immuno-detection and sub-cellular localization of the authentic product of this atypical yeast gene. Using specific antibodies against the predicted amino-acid sequence of the Saccharomyces cerevisiae TAR1 product, we detected the endogenous Tar1p polypeptides in S. cerevisiae (Sc) and Kluyveromyces lactis (Kl) species and found that both proteins localize to mitochondria. Protease and carbonate treatments of purified mitochondria further revealed that endogenous Sc Tar1p protein sub-localizes in the inner membrane in a Nin-Cout topology. Plasmid-versions of 5′ end or 3′ end truncated TAR1 ORF were used to demonstrate that neither the N-terminus nor the C-terminus of Sc Tar1p were required for its localization. Also, Tar1p is a presequence-less protein. Endogenous Sc Tar1p was found to be a low abundant protein, which is expressed in fermentable and non-fermentable growth conditions. Endogenous Sc TAR1 transcripts were also found low abundant and consistently 5′ flanking regions of TAR1 ORF exhibit modest promoter activity when assayed in a luciferase-reporter system. Using rapid amplification of cDNA ends (RACE) PCR, we also determined that endogenous Sc TAR1 transcripts possess heterogeneous 5′ and 3′ ends probably reflecting the complex expression of a gene embedded in actively transcribed rDNA sequence. Altogether, our results definitively ascertain that the antisense yeast gene TAR1 constitutes a functional transcription unit within the nuclear rDNA repeats.
Collapse
|
22
|
Michel V, Bakovic M. The solute carrier 44A1 is a mitochondrial protein and mediates choline transport. FASEB J 2009; 23:2749-58. [PMID: 19357133 DOI: 10.1096/fj.08-121491] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Choline oxidation to betaine takes place in the mitochondria; however, a protein regulating mitochondrial choline transport was never identified. The purpose of this study was to analyze subcellular localization of the solute carrier 44A1 (SLC44A1), a plasma membrane choline transporter sensitive to inhibition by hemicholinium-3. We generated N- and C-terminal-SLC44A1-specific antibodies and analyzed localization of endogenous and overexpressed SLC44A1 in C2C12 mouse muscle cells, MCF7 human breast cancer cells, and mouse tissues using confocal microscopy, differential centrifugation, and Western blotting. We further performed choline uptake competition studies on isolated mitochondria using the specific inhibitor hemicholinium-3 and SLC44A1 antibodies, and analyzed mitochondria of FL83B hepatocytes after the targeted knock-down of SLC44A1 using siRNA technology. In addition, we analyzed SLC44A1 expression during choline deficiency. Localization studies revealed plasma membrane, cytosolic, microsomal, and mitochondrial localization of endogenous and His-tagged SLC44A1. Uptake studies in isolated mitochondria show an accumulation of (3)H-choline, which is strongly inhibited by hemicholinium-3 (60%), by an excess of unlabeled choline (97%), and by both SLC44A1 antibodies. SLC44A1 mRNA and protein expression were down-regulated during choline deficiency. These data clearly establish SLC44A1 as an important mediator of choline transport across both the plasma membrane and the mitochondrial membrane.
Collapse
Affiliation(s)
- Vera Michel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
23
|
Hamel P, Corvest V, Giegé P, Bonnard G. Biochemical requirements for the maturation of mitochondrial c-type cytochromes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:125-38. [DOI: 10.1016/j.bbamcr.2008.06.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/18/2008] [Accepted: 06/26/2008] [Indexed: 11/26/2022]
|
24
|
Giegé P, Grienenberger J, Bonnard G. Cytochrome c biogenesis in mitochondria. Mitochondrion 2008; 8:61-73. [DOI: 10.1016/j.mito.2007.10.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 01/04/2023]
|
25
|
van der Laan M, Chacinska A, Lind M, Perschil I, Sickmann A, Meyer HE, Guiard B, Meisinger C, Pfanner N, Rehling P. Pam17 is required for architecture and translocation activity of the mitochondrial protein import motor. Mol Cell Biol 2005; 25:7449-58. [PMID: 16107694 PMCID: PMC1190294 DOI: 10.1128/mcb.25.17.7449-7458.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Import of mitochondrial matrix proteins involves the general translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated motor (PAM) drives the completion of preprotein translocation into the matrix. Five subunits of PAM are known: the preprotein-binding matrix heat shock protein 70 (mtHsp70), the nucleotide exchange factor Mge1, Tim44 that directs mtHsp70 to the inner membrane, and the membrane-bound complex of Pam16-Pam18 that regulates the ATPase activity of mtHsp70. We have identified a sixth motor subunit. Pam17 (encoded by the open reading frame YKR065c) is anchored in the inner membrane and exposed to the matrix. Mitochondria lacking Pam17 are selectively impaired in the import of matrix proteins and the generation of an import-driving activity of PAM. Pam17 is required for formation of a stable complex between the cochaperones Pam16 and Pam18 and promotes the association of Pam16-Pam18 with the presequence translocase. Our findings suggest that Pam17 is required for the correct organization of the Pam16-Pam18 complex and thus contributes to regulation of mtHsp70 activity at the inner membrane translocation site.
Collapse
|
26
|
Graf SA, Haigh SE, Corson ED, Shirihai OS. Targeting, import, and dimerization of a mammalian mitochondrial ATP binding cassette (ABC) transporter, ABCB10 (ABC-me). J Biol Chem 2004; 279:42954-63. [PMID: 15215243 DOI: 10.1074/jbc.m405040200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP binding cassette (ABC) transporters are a diverse superfamily of energy-dependent membrane translocases. Although responsible for the majority of transmembrane transport in bacteria, they are relatively uncommon in eukaryotic mitochondria. Organellar trafficking and import, in addition to quaternary structure assembly, of mitochondrial ABC transporters is poorly understood and may offer explanations for the paucity of their diversity. Here we examine these processes in ABCB10 (ABC-me), a mitochondrial inner membrane erythroid transporter involved in heme biosynthesis. We report that ABCB10 possesses an unusually long 105-amino acid mitochondrial targeting presequence (mTP). The central subdomain of the mTP (amino acids (aa) 36-70) is sufficient for mitochondrial import of enhanced green fluorescent protein. The N-terminal subdomain (aa 1-35) of the mTP, although not necessary for the trafficking of ABCB10 to mitochondria, participates in the proper import of the molecule into the inner membrane. We performed a series of amino acid mutations aimed at changing specific properties of the mTP. The mTP requires neither arginine residues nor predictable alpha-helices for efficient mitochondrial targeting. Disruption of its hydrophobic character by the mutation L46Q/I47Q, however, greatly diminishes its efficacy. This mutation can be rescued by cryptic downstream (aa 106-715) mitochondrial targeting signals, highlighting the redundancy of this protein's targeting qualities. Mass spectrometry analysis of chemically cross-linked, immunoprecipitated ABCB10 indicates that ABCB10 embedded in the mitochondrial inner membrane homodimerizes and homo-oligomerizes. A deletion mutant of ABCB10 that lacks its mTP efficiently targets to the endoplasmic reticulum. Quaternary structure assembly of ABCB10 in the ER appears to be similar to that in the mitochondria.
Collapse
Affiliation(s)
- Solomon A Graf
- BioCurrents Research Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA
| | | | | | | |
Collapse
|
27
|
Frazier AE, Dudek J, Guiard B, Voos W, Li Y, Lind M, Meisinger C, Geissler A, Sickmann A, Meyer HE, Bilanchone V, Cumsky MG, Truscott KN, Pfanner N, Rehling P. Pam16 has an essential role in the mitochondrial protein import motor. Nat Struct Mol Biol 2004; 11:226-33. [PMID: 14981507 DOI: 10.1038/nsmb735] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/23/2004] [Indexed: 11/09/2022]
Abstract
Mitochondrial preproteins destined for the matrix are translocated by two channel-forming transport machineries, the translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated protein import motor (PAM) contains four essential subunits: the matrix heat shock protein 70 (mtHsp70) and its three cochaperones Mge1, Tim44 and Pam18. Here we report that the PAM contains a fifth essential subunit, Pam16 (encoded by Saccharomyces cerevisiae YJL104W), which is selectively required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 interacts with Pam18 and is needed for the association of Pam18 with the presequence translocase and for formation of a mtHsp70-Tim44 complex. Thus, Pam16 is a newly identified type of motor subunit and is required to promote a functional PAM reaction cycle, thereby driving preprotein import into the matrix.
Collapse
Affiliation(s)
- Ann E Frazier
- Institut für Biochemie und Molekularbiologie, und Fakultät für Biologie, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Endo T, Yamamoto H, Esaki M. Functional cooperation and separation of translocators in protein import into mitochondria, the double-membrane bounded organelles. J Cell Sci 2003; 116:3259-67. [PMID: 12857785 DOI: 10.1242/jcs.00667] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nearly all mitochondrial proteins are synthesized in the cytosol and subsequently imported into mitochondria with the aid of translocators: the TOM complex in the outer membrane, and the TIM23 and TIM22 complexes in the inner membrane. The TOM complex and the TIM complexes cooperate to achieve efficient transport of proteins to the matrix or into the inner membrane and several components, including Tom22, Tim23, Tim50 and small Tim proteins, mediate functional coupling of the two translocator systems. The TOM complex can be disconnected from the TIM systems and their energy sources (ATP and DeltaPsi), however, using alternative mechanisms to achieve vectorial protein translocation across the outer membrane
Collapse
Affiliation(s)
- Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | |
Collapse
|
29
|
Renné P, Dressen U, Hebbeker U, Hille D, Flügge UI, Westhoff P, Weber APM. The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:316-31. [PMID: 12887583 DOI: 10.1046/j.1365-313x.2003.01806.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The Arabidopsis mutant dicarboxylate transport (dct) is one of the classic mutants in the photorespiratory pathway. It requires high CO2 levels for survival. Physiologic and biochemical characterization of dct indicated that dct is deficient in the transport of dicarboxylates across the chloroplast envelope membrane. Hence, re-assimilation of ammonia generated by the photorespiratory cycle is blocked. However, the defective gene in dct has not been identified at the molecular level. Here, we report on the molecular characterization of the defective gene in dct, on the complementation of the mutant phenotype with a wild-type cDNA, and on the functional characterization of the gene product, DiT2, in a recombinant reconstituted system. Furthermore, we provide the kinetic constants of recombinant DiT1 and DiT2, and we discuss these data with respect to their functions in ammonia assimilation. Moreover, an analysis of the transcript levels of DiT1 and DiT2 in different C3- and C4-type plant species is presented, and we demonstrate that the substrate specificity of DiT2 from the C4-plant Flaveria bidentis is similar to its counterpart from C3 plants.
Collapse
Affiliation(s)
- Petra Renné
- Lehrstuhl Botanik II, Universität zu Köln, Gyrhofstr. 15, D-50931, Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Priest JW, Hajduk SL. Trypanosoma brucei cytochrome c1 is imported into mitochondria along an unusual pathway. J Biol Chem 2003; 278:15084-94. [PMID: 12578826 DOI: 10.1074/jbc.m212956200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most eukaryotic organisms, cytochrome c(1) is encoded in the nucleus, translated on cytosolic ribosomes, and directed to its final destination in the mitochondrial inner membrane by a bipartite, cleaved, amino-terminal presequence. However, in the kinetoplastids and euglenoids, the cytochrome c(1) protein has been shown to lack a cleaved presequence; a single methionine is removed from the amino terminus upon maturation, and the sequence upstream of the heme-binding site is generally shorter than that of the other eukaryotic homologs. We have used a newly developed mitochondrial protein import assay system from Trypanosoma brucei to demonstrate that the T. brucei cytochrome c(1) protein is imported along a non-conservative pathway similar to that described for the inner membrane carrier proteins of other organisms. This pathway requires external ATP and an external protein receptor but is not absolutely dependent on a membrane potential or on ATP hydrolysis in the mitochondrial matrix. We propose the cytochrome c(1) import in T. brucei is a two-step process first involving a membrane potential independent translocation across the outer mitochondrial membrane followed by heme attachment and a membrane potential-dependent insertion into the inner membrane.
Collapse
Affiliation(s)
- Jeffrey W Priest
- Departments of Biochemistry and Molecular Genetics, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
31
|
Mukhopadhyay A, Heard TS, Wen X, Hammen PK, Weiner H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J Biol Chem 2003; 278:13712-8. [PMID: 12551941 DOI: 10.1074/jbc.m212743200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins destined for the mitochondrial matrix space have leader sequences that are typically present at the most N-terminal end of the nuclear-encoded precursor protein. The leaders are rich in positive charges and usually deficient of negative charges. This observation led to the acid-chain hypothesis to explain how the leader sequences interact with negatively charged receptor proteins. Here we show using both chimeric leaders and one from isopropyl malate synthase that possesses a negative charge that the leader need not be at the very N terminus of the precursor. Experiments were performed with modified non-functioning leader sequences fused to either the native or a non-functioning leader of aldehyde dehydrogenase so that an internal leader sequence could exist. The internal leader is sufficient for the import of the modified precursor protein. It appears that this leader still needs to form an amphipathic helix just like the normal N-terminal leaders do. This internal leader could function even if the most N-terminal portion contained negative charges in the first 7-11 residues. If the first 11 residues were deleted from isopropyl malate synthase, the resulting protein was imported more successfully than the native protein. It appears that precursors that carry negatively charged leaders use an internal signal sequence to compensate for the non-functional segment at the most N-terminal portion of the protein.
Collapse
Affiliation(s)
- Abhijit Mukhopadhyay
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, USA
| | | | | | | | | |
Collapse
|
32
|
Stan T, Brix J, Schneider-Mergener J, Pfanner N, Neupert W, Rapaport D. Mitochondrial protein import: recognition of internal import signals of BCS1 by the TOM complex. Mol Cell Biol 2003; 23:2239-50. [PMID: 12640110 PMCID: PMC150725 DOI: 10.1128/mcb.23.7.2239-2250.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCS1, a component of the inner membrane of mitochondria, belongs to the group of proteins with internal, noncleavable import signals. Import and intramitochondrial sorting of BCS1 are encoded in the N-terminal 126 amino acid residues. Three sequence elements were identified in this region, namely, the transmembrane domain (amino acid residues 51 to 68), a presequence type helix (residues 69 to 83), and an import auxiliary region (residues 84 to 126). The transmembrane domain is not required for stable binding to the TOM complex. The Tom receptors (Tom70, Tom22 and Tom20), as determined by peptide scan analysis, interact with the presequence-like helix, yet the highest binding was to the third sequence element. We propose that the initial recognition of BCS1 precursor at the surface of the organelle mainly depends on the auxiliary region and does not require the transmembrane domain. This essential region represents a novel type of signal with targeting and sorting functions. It is recognized by all three known mitochondrial import receptors, demonstrating their capacity to decode various targeting signals. We suggest that the BCS1 precursor crosses the TOM complex as a loop structure and that once the precursor emerges from the TOM complex, all three structural elements are essential for the intramitochondrial sorting to the inner membrane.
Collapse
Affiliation(s)
- Tincuta Stan
- Institut für Physiologische Chemie der Universität München, D-81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Jensen RE, Dunn CD. Protein import into and across the mitochondrial inner membrane: role of the TIM23 and TIM22 translocons. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1592:25-34. [PMID: 12191765 DOI: 10.1016/s0167-4889(02)00261-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Import of nuclear-encoded mitochondrial proteins requires the action of at least two different import machines, called translocons, in the mitochondrial inner membrane (IM). The TIM23 complex mediates the translocation of proteins into the mitochondria matrix, whereas the TIM22 complex is required for the insertion of polytopic proteins into the IM. While the two translocons are distinct and composed of separate subunits, the essential reactions in each complex are carried out by homologous proteins. In addition, the core components of both the TIM23 and TIM22 translocons have been shown to form aqueous pores in the mitochondrial IM. In this review, we summarize what is known about import of proteins across the mitochondrial IM.
Collapse
Affiliation(s)
- Robert E Jensen
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| | | |
Collapse
|
34
|
Baumann F, Neupert W, Herrmann JM. Insertion of bitopic membrane proteins into the inner membrane of mitochondria involves an export step from the matrix. J Biol Chem 2002; 277:21405-13. [PMID: 11932259 DOI: 10.1074/jbc.m201670200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial inner membrane contains a large number of polytopic proteins that are derived from prokaryotic ancestors of mitochondria. Little is known about the intramitochondrial sorting of these proteins. We chose two proteins of known topology as examples to study the pathway of insertion into the inner membrane; Mrs2 and Yta10 are bitopic proteins that expose negatively charged loops of different complexity into the intermembrane space. Here we show that both Mrs2 and Yta10 transiently accumulate as sorting intermediates in the matrix before they integrate into the inner membrane. The sorting pathway of both proteins can be separated into two sequential reactions: (i) import into the matrix and (ii) insertion from the matrix into the inner membrane. The latter process was found to depend on the membrane potential and, in this respect, is similar to the insertion of membrane proteins in bacteria. A comparison of the charge distribution of intermembrane space loops in a variety of mitochondrial inner membrane proteins suggests that this mode of "conservative sorting" might be the typical insertion route for polytopic inner membrane proteins that originated from bacterial ancestors.
Collapse
Affiliation(s)
- Frank Baumann
- Institut für Physiologische Chemie, Butenandtstrasse 5, 81377 München, Germany
| | | | | |
Collapse
|
35
|
Emanuelsson O, von Heijne G, Schneider G. Analysis and prediction of mitochondrial targeting peptides. Methods Cell Biol 2002; 65:175-87. [PMID: 11381593 DOI: 10.1016/s0091-679x(01)65011-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- O Emanuelsson
- Stockholm Bioinformatics Center, Stockholm University, S-10691 Stockholm, Sweden
| | | | | |
Collapse
|
36
|
Diekert K, de Kroon AI, Ahting U, Niggemeyer B, Neupert W, de Kruijff B, Lill R. Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane. EMBO J 2001; 20:5626-35. [PMID: 11598006 PMCID: PMC125676 DOI: 10.1093/emboj/20.20.5626] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The import of proteins into the mitochondrial intermembrane space differs in various aspects from the classical import pathway into the matrix. Apocytochrome c defines one of several pathways known to reach the intermembrane space, yet the components and pathways involved in outer membrane translocation are poorly defined. Here, we report the reconstitution of the apocytochrome c import reaction using proteoliposomes harbouring purified components. Import specifically requires the protease-resistant part of the TOM complex and is driven by interactions of the apoprotein with internal parts of the complex (involving Tom40) and the 'trans-side receptor' cytochrome c haem lyase. Despite the necessity of TOM complex function, the translocation pathway of apocytochrome c does not overlap with that of presequence-containing preproteins. We conclude that the TOM complex is a universal preprotein translocase that mediates membrane passage of apocytochrome c and other preproteins along distinct pathways. Apocytochrome c may provide a paradigm for the import of other small proteins into the intermembrane space such as factors used in apoptosis and protection from stress.
Collapse
Affiliation(s)
| | - Anton I.P.M. de Kroon
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg,
Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, 81377 München, Germany and
Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author e-mail:
| | - Uwe Ahting
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg,
Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, 81377 München, Germany and
Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author e-mail:
| | | | - Walter Neupert
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg,
Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, 81377 München, Germany and
Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author e-mail:
| | - Ben de Kruijff
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg,
Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, 81377 München, Germany and
Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author e-mail:
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie der Philipps-Universität Marburg, Robert-Koch-Strasse 5, 35033 Marburg,
Adolf-Butenandt-Institut für Physiologische Chemie der Universität München, Butenandtstrasse 5, 81377 München, Germany and
Department Biochemistry of Membranes, Centre for Biomembranes and Lipid Enzymology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands Corresponding author e-mail:
| |
Collapse
|
37
|
Takata K, Yoshida H, Hirose F, Yamaguchi M, Kai M, Oshige M, Sakimoto I, Koiwai O, Sakaguchi K. Drosophila mitochondrial transcription factor A: characterization of its cDNA and expression pattern during development. Biochem Biophys Res Commun 2001; 287:474-83. [PMID: 11554753 DOI: 10.1006/bbrc.2001.5528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We cloned a cDNA for Drosophila mitochondrial transcription factor A (D-mtTFA) and characterized the recombinant protein. In Drosophila Kc cells, D-mtTFA was localized in the mitochondria, but not in the nucleus. By repetitive precipitation with His-tag and PCR amplification, the consensus nucleotide sequence for D-mtTFA-binding was determined to be 5'-TTATC/G. The binding sequence was found to be clustered in the A + T region of mitochondrial DNA which is suggested to be a replication origin and promoter region for light strand and heavy strand. We found a DNA replication-related element (DRE)-like sequence located upstream of the transcription initiation site of the D-mtTFA gene and obtained results indicating that DRE-binding factor (DREF) can bind to the DRE-like sequence of the D-mtTFA gene. The data suggest that transcription of the D-mtTFA gene is under control of the DRE/DREF regulatory system. Based on these results, the functions of D-mtTFA were discussed in relation to mitochondrial biogenesis of Drosophila melanogaster.
Collapse
Affiliation(s)
- K Takata
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Most mitochondrial proteins are nuclear-encoded and synthesised as preproteins on polysomes in the cytosol. They must be targeted to and translocated into mitochondria. Newly synthesised preproteins interact with cytosolic factors until their recognition by receptors on the surface of mitochondria. Import into or across the outer membrane is mediated by a dynamic protein complex coined the translocase of the outer membrane (TOM). Preproteins that are imported into the matrix or inner membrane of mitochondria require the action of one of two translocation complexes of the inner membrane (TIMs). The import pathway of preproteins is predetermined by their intrinsic targeting and sorting signals. Energy input in the form of ATP and the electrical gradient across the inner membrane is required for protein translocation into mitochondria. Newly imported proteins may require molecular chaperones for their correct folding.
Collapse
Affiliation(s)
- K N Truscott
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | |
Collapse
|
39
|
Abstract
A systematic screen for dominant-negative mutations of the CYT1 gene, which encodes cytochrome c(1), revealed seven mutants after testing approximately 10(4) Saccharomyces cerevisiae strains transformed with a library of mutagenized multicopy plasmids. DNA sequence analysis revealed multiple nucleotide substitutions with six of the seven altered Cyt1p having a common R166G replacement, either by itself or accompanied with other amino acid replacements. A single R166G replacement produced by site-directed mutagenesis demonstrated that this change produced a nearly nonfunctional cytochrome c(1), with diminished growth on glycerol medium and diminished respiration but with the normal or near normal level of cytochrome c(1) having an attached heme group. In contrast, R166K, R166M, or R166L replacements resulted in normal or near normal function. Arg-166 is conserved in all cytochromes c(1) and lies on the surface of Cyt1p in close proximity to the heme group but does not seem to interact directly with any of the physiological partners of the cytochrome bc(1) complex. Thus, the large size of the side chain at position 166 is critical for the function of cytochrome c(1) but not for its assembly in the cytochrome bc(1) complex.
Collapse
Affiliation(s)
- Z Ahmad
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|
40
|
Brix J, Ziegler GA, Dietmeier K, Schneider-Mergener J, Schulz GE, Pfanner N. The mitochondrial import receptor Tom70: identification of a 25 kDa core domain with a specific binding site for preproteins. J Mol Biol 2000; 303:479-88. [PMID: 11054285 DOI: 10.1006/jmbi.2000.4120] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mitochondrial import receptor of 70 kDa, Tom70, preferentially recognizes precursors of membrane proteins with internal targeting signals. We report the identification of a stably folded 25 kDa core domain located in the middle portion of Tom70 that contains two of the seven tetratricopeptide repeat motifs of the receptor. The core domain binds non-cleavable and cleavable preproteins carrying internal targeting signals with a specificity indistinguishable from the full-length receptor. Competition studies indicate that both types of preproteins interact with overlapping binding sites of the core domain and that at least one additional interaction site is present in the full-length receptor. We suggest a model of Tom70 function in import of membrane proteins whereby a hydrophobic preprotein concomitantly interacts with several binding sites of the receptor.
Collapse
Affiliation(s)
- J Brix
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, Freiburg, D-79104, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Bertrand KI, Hajduk SL. Import of a constitutively expressed protein into mitochondria from procyclic and bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol 2000; 106:249-60. [PMID: 10699254 DOI: 10.1016/s0166-6851(99)00218-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosoma brucei developmentally regulates mitochondrial function during its life cycle. Numerous nuclear encoded mitochondrial proteins undergo posttranslational regulation in a developmental fashion, but exactly how that regulation is achieved is unclear. We are interested in mitochondrial import as a potential regulatory step for nuclear encoded mitochondrial proteins. Previously, an in vitro import system was developed for the procyclic lifestage. We report here the development of an in vitro import system for bloodstream trypanosomes using a crude mitochondrial preparation. NADH dehydrogenase subunit K (NdhK) is a nuclear encoded mitochondrial protein that is constitutively expressed in bloodstream and procyclic trypanosomes. We examined the import of NdhK into procylic and bloodstream mitochondria in vitro. In both lifestages import of NdhK requires a membrane potential across the inner mitochondrial membrane, mitochondrial matrix ATP, and is time dependent. The precursor protein is processed by a matrix associated metalloprotease in a single cleavage step to mature protein.
Collapse
Affiliation(s)
- K I Bertrand
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
42
|
Hell K, Tzagoloff A, Neupert W, Stuart RA. Identification of Cox20p, a novel protein involved in the maturation and assembly of cytochrome oxidase subunit 2. J Biol Chem 2000; 275:4571-8. [PMID: 10671482 DOI: 10.1074/jbc.275.7.4571] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified Cox20p, a 23.8-kDa protein of the mitochondrial inner membrane that is involved in the biogenesis of the yeast cytochrome oxidase complex. Cytochrome oxidase subunit 2 (Cox2p) accumulates as a precursor in cox20 mutants, suggesting a defect in biogenesis of this mitochondrially encoded protein. The inability of cox20 mutants to process the subunit 2 precursor (pCox2p) is not due to impaired export of the protein across the inner membrane or to an inactive Imp1p/Imp2p peptidase. Rather, Cox20p specifically binds the newly synthesized pCox2p, a step required to present the exported pCox2p as a substrate to the Imp1p peptidase. All of the endogenous pCox2p accumulated in an Deltaimp1 mutant, and a small fraction of Cox2p in wild type yeast, is detected in a complex with Cox20p. Following maturation Cox2p remained associated with Cox20p, prior to assembling into the cytochrome oxidase complex. We propose that Cox20p acts as a membrane-bound chaperone necessary for cleavage of pCox2p and for interaction of the mature protein with other subunits of cytochrome oxidase in a later step of the assembly process.
Collapse
Affiliation(s)
- K Hell
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
43
|
Yao J, Shoubridge EA. Expression and functional analysis of SURF1 in Leigh syndrome patients with cytochrome c oxidase deficiency. Hum Mol Genet 1999; 8:2541-9. [PMID: 10556303 DOI: 10.1093/hmg/8.13.2541] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an autosomal recessive neurodegenerative disorder caused by mutations in SURF1. Although SURF1 is ubiquitously expressed, its expression is lower in brain than in other highly aerobic tissues. All reported SURF1 mutations are loss of function, predicting a truncated protein (hSurf1) product. Western blot analysis with anti-hSurf1 antibodies demonstrated a specific 30 kDa protein in control fibroblasts, but no protein in LS patient cells. Steady-state levels of both nuclear- and mitochondrial-encoded COX subunits were also markedly reduced in patient cells, consistent with a failure to assemble or maintain a normal amount of the enzyme complex. An epitope (FLAG)-tagged hSurf1 was targeted to mitochondria in COS7 cells and a mitochondrial import assay showed that the hSurf1 precursor protein (35 kDa) was imported and processed to its mature form (30 kDa) in a membrane potential-dependent fashion. The protein was resistant to alkaline carbonate extraction and susceptible to proteinase K digestion in mitoplasts. Mutant proteins in which the N-terminal transmembrane domain or central loop were deleted, or the C-terminal transmembrane domain disrupted, did not accumulate and could not rescue COX activity in patient cells. Co-expression of the N- and C-terminal transmembrane domains as independent entities also failed to rescue the enzyme deficiency. These data demonstrate that hSurf1 is an integral inner membrane protein with an essential role in the assembly or maintenance of the COX complex and that insertion of both transmembrane domains in the intact protein is necessary for function.
Collapse
Affiliation(s)
- J Yao
- Montreal Neurological Institute and Department of Human Genetics, McGill University, 3801 University Street, Montreal H3A 2B4, Canada
| | | |
Collapse
|
44
|
Lee CM, Sedman J, Neupert W, Stuart RA. The DNA helicase, Hmi1p, is transported into mitochondria by a C-terminal cleavable targeting signal. J Biol Chem 1999; 274:20937-42. [PMID: 10409639 DOI: 10.1074/jbc.274.30.20937] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified a novel mitochondrial targeting signal in the precursor of the DNA helicase Hmi1p of Saccharomyces cerevisiae that is located at the C terminus of the protein. Similar to classical N-terminal presequences, this C-terminal targeting signal consists of a stretch of positively charged amino acids that has the potential to form an amphipathic alpha-helix. Deletion of the C-terminal 36 amino acids of helicase resulted in loss of import into mitochondria, while deletion of the N-terminal 40 amino acids had no effect. When C-terminal regions of the helicase were placed at the C terminus of a passenger protein, dihydrofolate reductase, the resulting fusion proteins were directed into the mitochondrial matrix, and the C-terminal region of helicase became proteolytically processed. Import of helicase occurs in a C- to N-terminal direction; it requires a membrane potential and the TIM17-23 translocase together with mitochondrial Hsp70. Helicase is the only mitochondrial matrix protein identified thus far with a cleavable targeting signal at its C terminus.
Collapse
Affiliation(s)
- C M Lee
- Institut für Physiologische Chemie der Universität München, Goethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|
45
|
Brix J, Rüdiger S, Bukau B, Schneider-Mergener J, Pfanner N. Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J Biol Chem 1999; 274:16522-30. [PMID: 10347216 DOI: 10.1074/jbc.274.23.16522] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Preproteins destined for mitochondria either are synthesized with amino-terminal signal sequences, termed presequences, or possess internal targeting information within the protein. The preprotein translocase of the outer mitochondrial membrane (designated Tom) contains specific import receptors. The cytosolic domains of three import receptors, Tom20, Tom22, and Tom70, have been shown to interact with preproteins. Little is known about the internal targeting information in preproteins and the distribution of binding sequences for the three import receptors. We have studied the binding of the purified cytosolic domains of Tom20, Tom22, and Tom70 to cellulose-bound peptide scans derived from a presequence-carrying cleavable preprotein, cytochrome c oxidase subunit IV, and a non-cleavable preprotein with internal targeting information, the phosphate carrier. All three receptor domains are able to bind efficiently to linear 13-mer peptides, yet with different specificity. Tom20 preferentially binds to presequence segments of subunit IV. Tom22 binds to segments corresponding to the carboxyl-terminal part of the presequence and the amino-terminal part of the mature protein. Tom70 does not bind efficiently to any region of subunit IV. In contrast, Tom70 and Tom20 bind to multiple segments within the phosphate carrier, yet the amino-terminal region is excluded. Both charged and uncharged peptides derived from the phosphate carrier show specific binding properties for Tom70 and Tom20, indicating that charge is not a critical determinant of internal targeting sequences. This feature contrasts with the crucial role of positively charged amino acids in presequences. Our results demonstrate that linear peptide segments of preproteins can serve as binding sites for all three receptors with differential specificity and imply different mechanisms for translocation of cleavable and non-cleavable preproteins.
Collapse
Affiliation(s)
- J Brix
- Institut für Biochemie und Molekularbiologie, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
46
|
Clausmeyer S, Stürzebecher R, Peters J. An alternative transcript of the rat renin gene can result in a truncated prorenin that is transported into adrenal mitochondria. Circ Res 1999; 84:337-44. [PMID: 10024308 DOI: 10.1161/01.res.84.3.337] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterization of the local renin-angiotensin system in the rat adrenal zona glomerulosa indicated a dual targeting of renin both to the secretory pathway and mitochondria. To investigate the transport of renin into mitochondria, we constructed a series of amino-terminal deletion variants of preprorenin. One of these variants, lacking the complete signal sequence for the endoplasmic reticulum and 10 amino acids of the profragment, was transported efficiently into isolated mitochondria. The transport was further shown to be dependent on mitochondrial membrane potential and ATP synthesis. Analysis of adrenal RNA revealed the existence of 2 renin transcripts. While one of the transcripts corresponds to the known full-length transcript, the other one lacks exon 1; instead, exon 2 is preceded by a domain of 80 nucleotides originating from intron 1. This domain, as well as the following region of intron 1 being excised, shows all essential sequence elements defining an additional, so-far-unknown exon. The second mRNA possibly derives from an additional transcription start in intron 1 and an alternative splicing process. Translation of this mRNA could result in a truncated prorenin representing a cytosolic form of renin, which is required for transport into mitochondria. This truncated prorenin corresponds exactly to the deletion variant being imported into mitochondria in vitro.
Collapse
Affiliation(s)
- S Clausmeyer
- Department of Pharmacology, University of Heidelberg, Germany
| | | | | |
Collapse
|
47
|
Kranz R, Lill R, Goldman B, Bonnard G, Merchant S. Molecular mechanisms of cytochrome c biogenesis: three distinct systems. Mol Microbiol 1998; 29:383-96. [PMID: 9720859 DOI: 10.1046/j.1365-2958.1998.00869.x] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The past 10 years have heralded remarkable progress in the understanding of the biogenesis of c-type cytochromes. The hallmark of c-type cytochrome synthesis is the covalent ligation of haem vinyl groups to two cysteinyl residues of the apocytochrome (at a Cys-Xxx-Yyy-Cys-His signature motif). From genetic, genomic and biochemical studies, it is clear that three distinct systems have evolved in nature to assemble this ancient protein. In this review, common principles of assembly for all systems and the molecular mechanisms predicted for each system are summarized. Prokaryotes, plant mitochondria and chloroplasts use either system I or II, which are each predicted to use dedicated mechanisms for haem delivery, apocytochrome ushering and thioreduction. Accessory proteins of systems I and II co-ordinate the positioning of these two substrates at the membrane surface for covalent ligation. The third system has evolved specifically in mitochondria of fungi, invertebrates and vertebrates. For system III, a pivotal role is played by an enzyme called cytochrome c haem lyase (CCHL) in the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- R Kranz
- Department of Biology, Washington University, St Louis, MO 63130, USA.
| | | | | | | | | |
Collapse
|
48
|
Rojo EE, Guiard B, Neupert W, Stuart RA. Sorting of D-lactate dehydrogenase to the inner membrane of mitochondria. Analysis of topogenic signal and energetic requirements. J Biol Chem 1998; 273:8040-7. [PMID: 9525904 DOI: 10.1074/jbc.273.14.8040] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
D-Lactate dehydrogenase (D-LD) is located in the inner membrane of mitochondria. It spans the membrane once in an Nin-Cout orientation with the bulk of the protein residing as a folded domain in the intermembrane space. D-LD is synthesized as a precursor with an N-terminal cleavable presequence and is imported into the mitochondria in a Deltapsi-dependent, but mt-Hsp70-independent manner. Upon import in vitro D-LD folds in the intermembrane space to attain a conformation indistinguishable from endogenous D-LD. Sorting of D-LD to the inner membrane is directed by a composite topogenic signal consisting of the hydrophobic transmembrane segment and a cluster of charged amino acids C-terminal to it. We propose a model for the mode of operation of the sorting signal of D-LD. This model also accounts for the driving force of translocation across the outer membrane, in the apparent absence of mt-Hsp70-dependent assisted import and involves the folding of the D-LD in the intermembrane space.
Collapse
Affiliation(s)
- E E Rojo
- Institut für Physiologische Chemie, Geethestrasse 33, 80336 München, Germany
| | | | | | | |
Collapse
|