1
|
Yu S, Jiang C, Yang Y, Cheng F, Liu F, Liu C, Gong X. Purine-rich element binding protein alpha: a DNA/RNA binding protein with multiple roles in cancers. Mol Med 2025; 31:20. [PMID: 39844051 PMCID: PMC11755881 DOI: 10.1186/s10020-025-01087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Proteins that bind to DNA/RNA are typically evolutionarily conserved with multiple regulatory functions in transcription initiation, mRNA translation, stability of RNAs, and RNA splicing. Therefore, dysregulation of DNA/RNA binding proteins such as purine-rich element binding protein alpha (PURα) disrupts signaling transduction and often leads to human diseases including cancer. PURα was initially recognized as a tumor suppressor in acute myeloid leukemia (AML) and prostate cancer (PC). Most recently, several studies have revealed that PURα is dysregulated in multiple cancers, such as breast cancer (BC) and esophageal squamous cell carcinoma (ESCC). The oncogenic or tumor-suppressive functions of PURα are realized via regulating RNA/protein interaction, mRNA translation, formation of stress granules (SGs), and transcriptional regulation of several oncogenes and tumor suppressors. Although DNA/RNA binding proteins are hardly targeted, novel strategies have been applied to identify compounds targeting PURα and have demonstrated promising anti-tumor efficacy in the preclinical study. The present review summarizes the most recently discovered critical roles of PURα in various cancer types, providing an overview of the biomarker and therapeutic target potential of PURα for patients with cancer.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengyang Jiang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yawen Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fei Cheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fangchen Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chang Liu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xue Gong
- Nanjing Women and Children's Healthcare Hospital, Maternal and Child Health Institute, Women's Hospital of Nanjing Medical University, 123 Tianfei Alley, Mochou Road, Nanjing, China.
| |
Collapse
|
2
|
Darbinian N, Gallia GL, Darbinyan A, Vadachkoria E, Merabova N, Moore A, Goetzl L, Amini S, Selzer ME. Effects of In Utero EtOH Exposure on 18S Ribosomal RNA Processing: Contribution to Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:13714. [PMID: 37762017 PMCID: PMC10531167 DOI: 10.3390/ijms241813714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are leading causes of neurodevelopmental disability. The mechanisms by which alcohol (EtOH) disrupts fetal brain development are incompletely understood, as are the genetic factors that modify individual vulnerability. Because the phenotype abnormalities of FASD are so varied and widespread, we investigated whether fetal exposure to EtOH disrupts ribosome biogenesis and the processing of pre-ribosomal RNAs and ribosome assembly, by determining the effect of exposure to EtOH on the developmental expression of 18S rRNA and its cleaved forms, members of a novel class of short non-coding RNAs (srRNAs). In vitro neuronal cultures and fetal brains (11-22 weeks) were collected according to an IRB-approved protocol. Twenty EtOH-exposed brains from the first and second trimester were compared with ten unexposed controls matched for gestational age and fetal gender. Twenty fetal-brain-derived exosomes (FB-Es) were isolated from matching maternal blood. RNA was isolated using Qiagen RNA isolation kits. Fetal brain srRNA expression was quantified by ddPCR. srRNAs were expressed in the human brain and FB-Es during fetal development. EtOH exposure slightly decreased srRNA expression (1.1-fold; p = 0.03). Addition of srRNAs to in vitro neuronal cultures inhibited EtOH-induced caspase-3 activation (1.6-fold, p = 0.002) and increased cell survival (4.7%, p = 0.034). The addition of exogenous srRNAs reversed the EtOH-mediated downregulation of srRNAs (2-fold, p = 0.002). EtOH exposure suppressed expression of srRNAs in the developing brain, increased activity of caspase-3, and inhibited neuronal survival. Exogenous srRNAs reversed this effect, possibly by stabilizing endogenous srRNAs, or by increasing the association of cellular proteins with srRNAs, modifying gene transcription. Finally, the reduction in 18S rRNA levels correlated closely with the reduction in fetal eye diameter, an anatomical hallmark of FASD. The findings suggest a potential mechanism for EtOH-mediated neurotoxicity via alterations in 18S rRNA processing and the use of FB-Es for early diagnosis of FASD. Ribosome biogenesis may be a novel target to ameliorate FASD in utero or after birth. These findings are consistent with observations that gene-environment interactions contribute to FASD vulnerability.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Gary L. Gallia
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD 21287, USA;
| | - Armine Darbinyan
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA;
| | - Ekaterina Vadachkoria
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Nana Merabova
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Medical College of Wisconsin-Prevea Health, Green Bay, WI 54304, USA
| | - Amos Moore
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
| | - Laura Goetzl
- Department of Obstetrics & Gynecology, University of Texas, Houston, TX 77030, USA;
| | - Shohreh Amini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Michael E. Selzer
- Center for Neural Repair and Rehabilitation Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (E.V.); (N.M.); (A.M.)
- Departments of Neurology and Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
3
|
Molitor L, Klostermann M, Bacher S, Merl-Pham J, Spranger N, Burczyk S, Ketteler C, Rusha E, Tews D, Pertek A, Proske M, Busch A, Reschke S, Feederle R, Hauck S, Blum H, Drukker M, Fischer-Posovszky P, König J, Zarnack K, Niessing D. Depletion of the RNA-binding protein PURA triggers changes in posttranscriptional gene regulation and loss of P-bodies. Nucleic Acids Res 2023; 51:1297-1316. [PMID: 36651277 PMCID: PMC9943675 DOI: 10.1093/nar/gkac1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 01/19/2023] Open
Abstract
The RNA-binding protein PURA has been implicated in the rare, monogenetic, neurodevelopmental disorder PURA Syndrome. PURA binds both DNA and RNA and has been associated with various cellular functions. Only little is known about its main cellular roles and the molecular pathways affected upon PURA depletion. Here, we show that PURA is predominantly located in the cytoplasm, where it binds to thousands of mRNAs. Many of these transcripts change abundance in response to PURA depletion. The encoded proteins suggest a role for PURA in immune responses, mitochondrial function, autophagy and processing (P)-body activity. Intriguingly, reduced PURA levels decrease the expression of the integral P-body components LSM14A and DDX6 and strongly affect P-body formation in human cells. Furthermore, PURA knockdown results in stabilization of P-body-enriched transcripts, whereas other mRNAs are not affected. Hence, reduced PURA levels, as reported in patients with PURA Syndrome, influence the formation and composition of this phase-separated RNA processing machinery. Our study proposes PURA Syndrome as a new model to study the tight connection between P-body-associated RNA regulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nadine Spranger
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Carolin Ketteler
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ejona Rusha
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Daniel Tews
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Anna Pertek
- Induced Pluripotent Stem Cell Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Marcel Proske
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, 81377 Munich, Germany
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89070 Ulm, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
4
|
Circular RNA Cwc27 contributes to Alzheimer's disease pathogenesis by repressing Pur-α activity. Cell Death Differ 2022; 29:393-406. [PMID: 34504314 PMCID: PMC8817017 DOI: 10.1038/s41418-021-00865-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) have gained growing attention in participating in various biological processes and referring to multiply kinds of diseases. Although differentially expressed circRNA profiling in Alzheimer's disease (AD) has been established, little is known about the precise characteristic and functions of key circRNAs with direct relevance to AD in gene expression and disease-related cognition. Herein, we screened and identified circCwc27 as a novel circRNA implicated in AD. CircCwc27 was a neuronal-enriched circRNA that abundantly expressed in the brain and significantly upregulated in AD mice and patients. Knockdown of circCwc27 markedly improved AD-related pathological traits and ameliorated cognitive dysfunctions. Mechanistically, we excluded the miRNA decoy mechanism and focused on the important function of circRNA-RNA-binding protein (RBP) interaction in AD. CircCwc27 directly bound to purine-rich element-binding protein A (Pur-α), increased retention of cytoplasmic Pur-α, and suppressed Pur-α recruitment to the promoters of a cluster of AD genes, including amyloid precursor protein (APP), dopamine receptor D1 (Drd1), protein phosphatase 1, regulatory inhibitor subunit1B (Ppp1r1b), neurotrophic tyrosine kinase, receptor, type 1 (Ntrk1), and LIM homeobox 8 (Lhx8). Downregulation of circCwc27 enhanced the affinity of Pur-α binding to these promoters, leading to altered transcription of Pur-α targets. Moreover, Pur-α overexpression largely phenocopied circCwc27 knockdown in preventing Aβ deposition and cognitive decline. Together, our findings suggest significant functional consequences of a circRNA-protein interaction, that circCwc27, by associating with the regulatory protein Pur-α, may act as a crucial player in AD pathogenesis and represent a promising AD therapeutic target with clinical translational potential.
Collapse
|
5
|
Hypotonic Infant with PURA Syndrome-related Channelopathy Successfully Treated with Pyridostigmine. Neuromuscul Disord 2022; 32:166-169. [DOI: 10.1016/j.nmd.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/31/2021] [Accepted: 01/12/2022] [Indexed: 11/21/2022]
|
6
|
Analysis of the role of Purα in the pathogenesis of Alzheimer's disease based on RNA-seq and ChIP-seq. Sci Rep 2021; 11:12178. [PMID: 34108502 PMCID: PMC8190037 DOI: 10.1038/s41598-021-90982-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 05/19/2021] [Indexed: 11/18/2022] Open
Abstract
Purine rich element binding protein A (Purα), encoded by the Purα gene, is an important transcriptional regulator that binds to DNA and RNA and is involved in processes such as DNA replication and RNA translation. Purα also plays an important role in the nervous system. To identify the function of Pura, we performed RNA sequence (RNA-seq) analysis of Purɑ-KO mouse hippocampal neuron cell line (HT22) to analyze the effect of Purα deletion on neuronal expression profiles. And combined with ChIP-seq analysis to explore the mechanism of Purα on gene regulation. In the end, totaly 656 differentially expressed genes between HT22 and Purα-KO HT22 cells have been found, which include 7 Alzheimer’s disease (AD)-related genes and 5 Aβ clearance related genes. 47 genes were regulated by Purα directly, the evidence based on CHIP-seq, which include Insr, Mapt, Vldlr, Jag1, etc. Our study provides the important informations of Purα in neuro-development. The possible regulative effects of Purα on AD-related genes consist inthe direct and indirect pathways of Purα in the pathogenesis of AD.
Collapse
|
7
|
Molitor L, Bacher S, Burczyk S, Niessing D. The Molecular Function of PURA and Its Implications in Neurological Diseases. Front Genet 2021; 12:638217. [PMID: 33777106 PMCID: PMC7990775 DOI: 10.3389/fgene.2021.638217] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
In recent years, genome-wide analyses of patients have resulted in the identification of a number of neurodevelopmental disorders. Several of them are caused by mutations in genes that encode for RNA-binding proteins. One of these genes is PURA, for which in 2014 mutations have been shown to cause the neurodevelopmental disorder PURA syndrome. Besides intellectual disability (ID), patients develop a variety of symptoms, including hypotonia, metabolic abnormalities as well as epileptic seizures. This review aims to provide a comprehensive assessment of research of the last 30 years on PURA and its recently discovered involvement in neuropathological abnormalities. Being a DNA- and RNA-binding protein, PURA has been implicated in transcriptional control as well as in cytoplasmic RNA localization. Molecular interactions are described and rated according to their validation state as physiological targets. This information will be put into perspective with available structural and biophysical insights on PURA’s molecular functions. Two different knock-out mouse models have been reported with partially contradicting observations. They are compared and put into context with cell biological observations and patient-derived information. In addition to PURA syndrome, the PURA protein has been found in pathological, RNA-containing foci of patients with the RNA-repeat expansion diseases such as fragile X-associated tremor ataxia syndrome (FXTAS) and amyotrophic lateral sclerosis (ALS)/fronto-temporal dementia (FTD) spectrum disorder. We discuss the potential role of PURA in these neurodegenerative disorders and existing evidence that PURA might act as a neuroprotective factor. In summary, this review aims at informing researchers as well as clinicians on our current knowledge of PURA’s molecular and cellular functions as well as its implications in very different neuronal disorders.
Collapse
Affiliation(s)
- Lena Molitor
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sabrina Bacher
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Sandra Burczyk
- Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, Germany
| |
Collapse
|
8
|
Sun Y, Gao J, Jing Z, Zhao Y, Sun Y, Zhao X. PURα Promotes the Transcriptional Activation of PCK2 in Oesophageal Squamous Cell Carcinoma Cells. Genes (Basel) 2020; 11:genes11111301. [PMID: 33142842 PMCID: PMC7692967 DOI: 10.3390/genes11111301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most lethal gastrointestinal malignancies due to its characteristics of local invasion and distant metastasis. Purine element binding protein α (PURα) is a DNA and RNA binding protein, and recent studies have showed that abnormal expression of PURα is associated with the progression of some tumors, but its oncogenic function, especially in ESCC progression, has not been determined. Based on the bioinformatic analysis of RNA-seq and ChIP-seq data, we found that PURα affected metabolic pathways, including oxidative phosphorylation and fatty acid metabolism, and we observed that it has binding peaks in the promoter of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). Meanwhile, PURα significantly increased the activity of the PCK2 gene promoter by binding to the GGGAGGCGGA motif, as determined though luciferase assay and ChIP-PCR/qPCR. The results of Western blotting and qRT-PCR analysis showed that PURα overexpression enhances the protein and mRNA levels of PCK2 in KYSE510 cells, whereas PURα knockdown inhibits the protein and mRNA levels of PCK2 in KYSE170 cells. In addition, measurements of the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) indicated that PURα promoted the metabolism of ESCC cells. Taken together, our results help to elucidate the molecular mechanism by which PURα activates the transcription and expression of PCK2, which contributes to the development of a new therapeutic target for ESCC.
Collapse
|
9
|
Dorboz I, Dumay-Odelot H, Boussaid K, Bouyacoub Y, Barreau P, Samaan S, Jmel H, Eymard-Pierre E, Cances C, Bar C, Poulat AL, Rousselle C, Renaldo F, Elmaleh-Bergès M, Teichmann M, Boespflug-Tanguy O. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. NEUROLOGY-GENETICS 2018; 4:e289. [PMID: 30584594 PMCID: PMC6283457 DOI: 10.1212/nxg.0000000000000289] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Objective To identify the genetic cause of hypomyelinating leukodystrophy in 2 consanguineous families. Methods Homozygosity mapping combined with whole-exome sequencing of consanguineous families was performed. Mutation consequences were determined by studying the structural change of the protein and by the RNA analysis of patients' fibroblasts. Results We identified a biallelic mutation in a gene coding for a Pol III–specific subunit, POLR3K (c.121C>T/p.Arg41Trp), that cosegregates with the disease in 2 unrelated patients. Patients expressed neurologic and extraneurologic signs found in POLR3A- and POLR3B-related leukodystrophies with a peculiar severe digestive dysfunction. The mutation impaired the POLR3K-POLR3B interactions resulting in zebrafish in abnormal gut development. Functional studies in the 2 patients' fibroblasts revealed a severe decrease (60%–80%) in the expression of 5S and 7S ribosomal RNAs in comparison with control. Conclusions These analyses underlined the key role of ribosomal RNA regulation in the development and maintenance of the white matter and the cerebellum as already reported for diseases related to genes involved in transfer RNA or translation initiation factors.
Collapse
Affiliation(s)
- Imen Dorboz
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Hélene Dumay-Odelot
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Karima Boussaid
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Yosra Bouyacoub
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Pauline Barreau
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Simon Samaan
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Haifa Jmel
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Eleonore Eymard-Pierre
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Claude Cances
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Céline Bar
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Anne-Lise Poulat
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Christophe Rousselle
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Florence Renaldo
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Monique Elmaleh-Bergès
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Martin Teichmann
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| | - Odile Boespflug-Tanguy
- INSERM UMR 1141 PROTECT (I.D., P.B., S.S., O.B.-T.), Université Paris Diderot- Sorbonne Paris Cité; INSERM U1212-CNRS UMR 5320 (H.D.-O., M.T.), Université de Bordeaux; Neurologie Pédiatrique et Maladies Métaboliques (K.B., F.R., O.B-.T.), Centre de référence des leucodystrophies et leucoencéphalopathies de cause rare (LEUKOFRANCE), CHU APHP Robert-Debré, Paris, France; LR11IPT05, Biomedical Genomics and Oncogenetics Laboratory (H.J., Y.B.), Institut Pasteur de Tunis; Department of Medical Genetics, UF Molecular Genetics (S.S.), CHU APHP Robert-Debré Paris; Service de Cytogénétique Médicale (E.E.P.), CHU Clermont-Ferrand; Neurologie Pédiatrique (C.C.), Endocrinologie Pédiatrique (C.B.), CHU Hôpital des Enfants, Toulouse; Hôpital Femme Mère Enfant, Neurologie Pédiatrique (A.L.P., C.R.), Hospices Civils de Lyon, Bron; Department of Pediatric Radiology (M.E.-B.), CHU APHP Robert-Debré, Paris, France
| |
Collapse
|
10
|
Daniel DC, Johnson EM. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene 2017; 643:133-143. [PMID: 29221753 DOI: 10.1016/j.gene.2017.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/20/2022]
Abstract
The PURA gene encodes Pur-alpha, a 322 amino acid protein with repeated nucleic acid binding domains that are highly conserved from bacteria through humans. PUR genes with a single copy of this domain have been detected so far in spirochetes and bacteroides. Lower eukaryotes possess one copy of the PUR gene, whereas chordates possess 1 to 4 PUR family members. Human PUR genes encode Pur-alpha (Pura), Pur-beta (Purb) and two forms of Pur-gamma (Purg). Pur-alpha is a protein that binds specific DNA and RNA sequence elements. Human PURA, located at chromosome band 5q31, is under complex control of three promoters. The entire protein coding sequence of PURA is contiguous within a single exon. Several studies have found that overexpression or microinjection of Pura inhibits anchorage-independent growth of oncogenically transformed cells and blocks proliferation at either G1-S or G2-M checkpoints. Effects on the cell cycle may be mediated by interaction of Pura with cellular proteins including Cyclin/Cdk complexes and the Rb tumor suppressor protein. PURA knockout mice die shortly after birth with effects on brain and hematopoietic development. In humans environmentally induced heterozygous deletions of PURA have been implicated in forms of myelodysplastic syndrome and progression to acute myelogenous leukemia. Pura plays a role in AIDS through association with the HIV-1 protein, Tat. In the brain Tat and Pura association in glial cells activates transcription and replication of JC polyomavirus, the agent causing the demyelination disease, progressive multifocal leukoencephalopathy. Tat and Pura also act to stimulate replication of the HIV-1 RNA genome. In neurons Pura accompanies mRNA transcripts to sites of translation in dendrites. Microdeletions in the PURA locus have been implicated in several neurological disorders. De novo PURA mutations have been related to a spectrum of phenotypes indicating a potential PURA syndrome. The nucleic acid, G-rich Pura binding element is amplified as expanded polynucleotide repeats in several brain diseases including fragile X syndrome and a familial form of amyotrophic lateral sclerosis/fronto-temporal dementia. Throughout evolution the Pura protein plays a critical role in survival, based on conservation of its nucleic acid binding properties. These Pura properties have been adapted in higher organisms to the as yet unfathomable development of the human brain.
Collapse
Affiliation(s)
- Dianne C Daniel
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
11
|
Guo S, Zhang B, Yuan C, Li P, Sun T, Cui J. The role of Purα in neuronal development, the relationship between Purα and epilepsy in the current researches. BIO WEB OF CONFERENCES 2017. [DOI: 10.1051/bioconf/20170801056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
12
|
Weber J, Bao H, Hartlmüller C, Wang Z, Windhager A, Janowski R, Madl T, Jin P, Niessing D. Structural basis of nucleic-acid recognition and double-strand unwinding by the essential neuronal protein Pur-alpha. eLife 2016; 5:e11297. [PMID: 26744780 PMCID: PMC4764581 DOI: 10.7554/elife.11297] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023] Open
Abstract
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Janine Weber
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Han Bao
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Christoph Hartlmüller
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
| | - Zhiqin Wang
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Almut Windhager
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Munich, Germany
- Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, Graz, Austria
- Omics Center Graz, BioTechMed Graz, Graz, Austria
| | - Peng Jin
- Department of Human Genetics, Emory University, Atlanta, United States
| | - Dierk Niessing
- Institute of Structural Biology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- Department Cell Biology, Biomedical Center of the Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Jutras BL, Chenail AM, Carroll DW, Miller MC, Zhu H, Bowman A, Stevenson B. Bpur, the Lyme disease spirochete's PUR domain protein: identification as a transcriptional modulator and characterization of nucleic acid interactions. J Biol Chem 2013; 288:26220-26234. [PMID: 23846702 PMCID: PMC3764826 DOI: 10.1074/jbc.m113.491357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The PUR domain is a nucleic acid-binding motif found in critical regulatory proteins of higher eukaryotes and in certain species of bacteria. During investigations into mechanisms by which the Lyme disease spirochete controls synthesis of its Erp surface proteins, it was discovered that the borrelial PUR domain protein, Bpur, binds with high affinity to double-stranded DNA adjacent to the erp transcriptional promoter. Bpur was found to enhance the effects of the erp repressor protein, BpaB. Bpur also bound single-stranded DNA and RNA, with relative affinities RNA > double-stranded DNA > single-stranded DNA. Rational site-directed mutagenesis of Bpur identified amino acid residues and domains critical for interactions with nucleic acids, and it revealed that the PUR domain has a distinct mechanism of interaction with each type of nucleic acid ligand. These data shed light on both gene regulation in the Lyme spirochete and functional mechanisms of the widely distributed PUR domain.
Collapse
Affiliation(s)
- Brandon L Jutras
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Alicia M Chenail
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Dustin W Carroll
- the Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - M Clarke Miller
- the James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky 40202, and
| | - Haining Zhu
- the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Amy Bowman
- From the Department of Microbiology, Immunology, and Molecular Genetics and
| | - Brian Stevenson
- From the Department of Microbiology, Immunology, and Molecular Genetics and.
| |
Collapse
|
14
|
Johnson EM, Daniel DC, Gordon J. The pur protein family: genetic and structural features in development and disease. J Cell Physiol 2013; 228:930-7. [PMID: 23018800 PMCID: PMC3747735 DOI: 10.1002/jcp.24237] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/21/2012] [Indexed: 12/19/2022]
Abstract
The Pur proteins are an ancient family of sequence-specific single-stranded nucleic acid-binding proteins. They bind a G-rich element in either single- or double-stranded nucleic acids and are capable of displacing the complementary C-rich strand. Recently several reports have described Pur family member knockouts, mutations, and disease aberrations. Together with a recent crystal structure of Purα, these data reveal conserved structural features of these proteins that have been adapted to serve functions unique to higher eukaryotes. In humans Pur proteins are critical for myeloid cell development, muscle development, and brain development, including trafficking of mRNA to neuronal dendrites. Pur family members have been implicated in diseases as diverse as cancer, premature aging, and fragile-X mental retardation syndrome.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507-1696, USA.
| | | | | |
Collapse
|
15
|
Hokkanen S, Feldmann HM, Ding H, Jung CKE, Bojarski L, Renner-Müller I, Schüller U, Kretzschmar H, Wolf E, Herms J. Lack of Pur-alpha alters postnatal brain development and causes megalencephaly. Hum Mol Genet 2011; 21:473-84. [PMID: 22010047 DOI: 10.1093/hmg/ddr476] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pur-alpha (Purα) plays an important role in a variety of cellular processes including transcriptional regulation, cell proliferation and oncogenic transformation. To better understand the role of Purα in the developing and mature brain, we generated Purα-deficient mice, which we were able to raise to the age of six months. Purα(-/-) mice were born with no obvious pathological condition. We obtained convincing evidence that lack of Purα prolongs the postnatal proliferation of neuronal precursor cells both in the hippocampus and in the cerebellum, however, without affecting the overall number of postmitotic neurons. Independent of these findings, we observed alterations in the expression and distribution of the dendritic protein MAP2, the translation of which has been proposed previously to be Purα-dependent. At the age of 2 weeks, Purα(-/-) mice generated a continuous tremor which persisted throughout lifetime. Finally, adult Purα(-/-) mice displayed a megalencephaly and histopathological findings including axonal swellings and hyperphosphorylation of neurofilaments. Our studies underline the importance of Purα in the proliferation of neuronal precursor cells during postnatal brain development and suggest a role for Purα in the regulation of the expression and cellular distribution of dendritic and axonal proteins. Since recent studies implicate a link between Purα and the fragile X tremor/ataxia syndrome, our Purα(-/-) mouse model will provide new opportunities for understanding the mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Suvi Hokkanen
- Center of Neuropathology and Prion Research, Ludwig-Maximilians-Universität and German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
White MK, Johnson EM, Khalili K. Multiple roles for Puralpha in cellular and viral regulation. Cell Cycle 2009; 8:1-7. [PMID: 19182532 DOI: 10.4161/cc.8.3.7585] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pur-alpha is a ubiquitous multifunctional protein that is strongly conserved throughout evolution, binds to both DNA and RNA and functions in the initiation of DNA replication, control of transcription and mRNA translation. In addition, it binds to several cellular regulatory proteins including the retinoblastoma protein, E2F-1, Sp1, YB-1, cyclin T1/Cdk9 and cyclin A/Cdk2. These observations and functional studies provide evidence that Puralpha is a major player in the regulation of the cell cycle and oncogenic transformation. Puralpha also binds to viral proteins such as the large T-antigen of JC virus (JCV) and the Tat protein of human immunodeficiency virus-1 (HIV-1) and plays a role in the cross-communication of these viruses in the opportunistic polyomavirus JC (JCV) brain infection, progressive multifocal leukoencephalopathy (PML). The creation of transgenic mice with inactivation of the PURA gene that encodes Puralpha has revealed that Puralpha is critical for postnatal brain development and has unraveled an essential role of Puralpha in the transport of specific mRNAs to the dendrites and the establishment of the postsynaptic compartment in the developing neurons. Finally, the availability of cell cultures from the PURA knockout mice has allowed studies that have unraveled a role for Puralpha in DNA repair.
Collapse
Affiliation(s)
- Martyn K White
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
17
|
Kaminski R, Darbinian N, Sawaya BE, Slonina D, Amini S, Johnson EM, Rappaport J, Khalili K, Darbinyan A. Puralpha as a cellular co-factor of Rev/RRE-mediated expression of HIV-1 intron-containing mRNA. J Cell Biochem 2008; 103:1231-45. [PMID: 17722108 PMCID: PMC2575347 DOI: 10.1002/jcb.21503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To ensure successful replication, HIV-1 has developed a Rev-mediated RNA transport system that promotes the export of unspliced genomic RNA from nuclei to cytoplasm. This process requires the Rev responsive element (RRE) that is positioned in the viral transcript encoding Env protein, as well as in unspliced and singly spliced viral transcripts. We identified Puralpha, a single-stranded nucleic acid binding protein as a cellular partner for Rev that augments the appearance of unspliced viral RNAs in the cytoplasm. A decrease in the level of Puralpha expression by siRNA diminishes the level of Rev-dependent expression of viral RNA. Through its nucleic acid binding domain, Puralpha exhibits the ability to interact with the multimerization and RBD domains of Rev. Similar to Rev, Puralpha associates with RRE and in the presence of Rev forms a complex with slower electrophoretic mobility than those from Rev:RRE and Puralpha:RRE. The interaction of Puralpha with RRE occurs in the cytoplasm where enhanced association of Rev with RRE is observed. Our data indicate that the partnership of Puralpha with Rev is beneficial for Rev-mediated expression of the HIV-1 genome.
Collapse
Affiliation(s)
- Rafal Kaminski
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Post-transcriptional regulation of myelin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:486-94. [PMID: 18590840 DOI: 10.1016/j.bbagrm.2008.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 05/15/2008] [Accepted: 06/03/2008] [Indexed: 12/21/2022]
Abstract
Myelin is a specialized structure of the nervous system that both enhances electrical conductance and protects neurons from degeneration. In the central nervous system, extensively polarized oligodendrocytes form myelin by wrapping cellular processes in a spiral pattern around neuronal axons. Myelin formation requires the oligodendrocyte to regulate gene expression in response to changes in its extracellular environment. Because these changes occur at a distance from the cell body, post-transcriptional control of gene expression allows the cell to fine-tune its response. Here, we review the RNA-binding proteins that control myelin formation in the brain, highlighting the molecular mechanisms by which they control gene expression and drawing parallels from studies in other cell types.
Collapse
|
19
|
Mehler MF, Mattick JS. Noncoding RNAs and RNA Editing in Brain Development, Functional Diversification, and Neurological Disease. Physiol Rev 2007; 87:799-823. [PMID: 17615389 DOI: 10.1152/physrev.00036.2006] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The progressive maturation and functional plasticity of the nervous system in health and disease involve a dynamic interplay between the transcriptome and the environment. There is a growing awareness that the previously unexplored molecular and functional interface mediating these complex gene-environmental interactions, particularly in brain, may encompass a sophisticated RNA regulatory network involving the twin processes of RNA editing and multifaceted actions of numerous subclasses of non-protein-coding RNAs. The mature nervous system encompasses a wide range of cell types and interconnections. Long-term changes in the strength of synaptic connections are thought to underlie memory retrieval, formation, stabilization, and effector functions. The evolving nervous system involves numerous developmental transitions, such as neurulation, neural tube patterning, neural stem cell expansion and maintenance, lineage elaboration, differentiation, axonal path finding, and synaptogenesis. Although the molecular bases for these processes are largely unknown, RNA-based epigenetic mechanisms appear to be essential for orchestrating these precise and versatile biological phenomena and in defining the etiology of a spectrum of neurological diseases. The concerted modulation of RNA editing and the selective expression of non-protein-coding RNAs during seminal as well as continuous state transitions may comprise the plastic molecular code needed to couple the intrinsic malleability of neural network connections to evolving environmental influences to establish diverse forms of short- and long-term memory, context-specific behavioral responses, and sophisticated cognitive capacities.
Collapse
Affiliation(s)
- Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Department of Neurology, Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
20
|
Abstract
Puralpha is a ubiquitously expressed multifunctional nucleic acid-binding protein that is involved in many cellular processes including transcriptional regulation, the cell cycle, oncogenic transformation, and post-natal brain development. Previously, Puralpha protein was found to bind to E2F-1, inhibit E2F-1 transcriptional activity, and reverse the effects of ectopic E2F-1 expression on cell growth. Also Puralpha binds to a GC/GA-rich sequence within its own promoter and inhibits gene expression, that is, Puralpha is autoregulated. We now report that the Puralpha promoter (pPuralpha) is induced by E2F-1 and that this activity maps to a consensus E2F-1 binding motif that is juxtaposed to the Puralpha binding site. Deletion mutants of the E2F-1 protein showed that the region between amino acid residues 88-241 is important for this activity. E2F-1-associated activation of the pPuralpha was inhibited by co-expression of Puralpha, pRb, and an RNA species with specific binding to E2F-1. Chromatin immunoprecipitation (ChIP) assay using primers that flanked the juxtaposed Puralpha and E2F-1 binding sites verified the presence of Puralpha and E2F-1 on the pPuralpha in vivo. In a Tet-inducible cell line, Puralpha delayed cell cycle progression. Thus, E2F-1 and Puralpha interplay appears to be involved in the regulation of Puralpha expression and the cell cycle.
Collapse
Affiliation(s)
- Nune Darbinian
- Center for Neurovirology, Department of Neuroscience, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
21
|
Johnson EM, Kinoshita Y, Weinreb DB, Wortman MJ, Simon R, Khalili K, Winckler B, Gordon J. Role of Purα in targeting mRNA to sites of translation in hippocampal neuronal dendrites. J Neurosci Res 2006; 83:929-43. [PMID: 16511857 DOI: 10.1002/jnr.20806] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Using genetic inactivation in the mouse, PURA, encoding Pur alpha, is demonstrated to be essential for developmentally-timed dendrite formation in the cerebellum and hippocampus. Comparison of RNA species bound by Pur alpha prompts the hypothesis that Pur alpha functions with non-coding RNA in transport of certain mRNA molecules to sites of translation in dendrites. Pur alpha binds to human BC200 RNA, implicated in dendritic targeting, and this has homologies to 7SL RNA, implicated in compartmentalized translation. Results using hippocampal rat neurons in situ show that Pur alpha binds to BC1 RNA, implicated in dendritic targeting as a mouse counterpart of BC200, and to mRNA molecules translated in dendrites; Pur alpha is specifically located in dendrites, where it is colocalized with Map2, but not in axons, where it fails to colocalize with Ankyrin G. Pur alpha and Staufen are colocalized at dendritic sites of mRNA translation. Microtubule disruptors inhibit Pur alpha dendritic targeting and allow its mislocalization to axons. Using mouse brain, double-RNA immunoprecipitation places Pur alpha together with Staufen or FMRP on BC1 RNA and specific mRNA species in vivo. These results help define a mechanism by which Pur alpha targets specific mRNA molecules to sites of dendritic translation.
Collapse
Affiliation(s)
- Edward M Johnson
- Department of Pathology, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei Q, Miskimins WK, Miskimins R. Stage-specific expression of myelin basic protein in oligodendrocytes involves Nkx2.2-mediated repression that is relieved by the Sp1 transcription factor. J Biol Chem 2005; 280:16284-94. [PMID: 15695521 DOI: 10.1074/jbc.m500491200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The homeodomain-containing protein Nkx2.2 is critical for the development of oligodendrocyte lineage cells, but the target genes of Nkx2.2 regulation have not been identified. In the present study, we found that the myelin basic protein gene is one of the genes that is regulated by Nkx2.2. Expression of Nkx2.2 represses the expression of myelin basic protein in oligodendrocyte progenitors. Two regulatory elements in the myelin basic protein promoter were identified and found to interact with Nkx2.2 in vitro. Despite their sequence divergence, both sites were involved in the Nkx2.2-mediated repression of the myelin basic protein promoter. Binding of Nkx2.2 also blocked and disrupted the binding of the transcriptional activator Puralpha to the myelin basic protein promoter. Additionally Nkx2.2 recruited a histone deacetylase 1-mSin3A complex to the myelin basic protein promoter. We also found that the transcription factor Sp1 was able to compete off the binding of Nkx2.2 to its consensus binding site in vitro and reversed the repressive effect of Nkx2.2 in vivo. Our data revealed a novel role for Nkx2.2 in preventing the precocious expression of myelin basic protein in immature oligodendrocytes. Based on this study and our previous reports, a model for myelin basic protein gene control is proposed.
Collapse
Affiliation(s)
- Qiou Wei
- Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, Vermillion, South Dakota 57069, USA
| | | | | |
Collapse
|
23
|
Daniel DC, Kinoshita Y, Khan MA, Del Valle L, Khalili K, Rappaport J, Johnson EM. Internalization of exogenous human immunodeficiency virus-1 protein, Tat, by KG-1 oligodendroglioma cells followed by stimulation of DNA replication initiated at the JC virus origin. DNA Cell Biol 2005; 23:858-67. [PMID: 15684713 DOI: 10.1089/dna.2004.23.858] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
JC virus (JCV) is the etiological agent of an opportunistic brain infection, progressive multifocal leukoencephalopathy (PML), in AIDS. PML is fatal in approximately 4% of HIV-infected individuals, and although the overall incidence has fallen due to highly aggressive antiretroviral therapy (HAART), this percent has remained steady. It has been shown that the Tat protein of human immunodeficiency virus-1 (HIV-1) interacts in cells with cellular protein Puralpha. This interaction can stimulate transcription of both HIV-1 and JCV genes. HIV-1, however, infects primarily microglia and astrocytes in the brain, whereas JCV infects primarily oligodendrocytes. Although HIV-1 has been shown capable of infecting oligodendrocytes in vitro (Albright et al., 1996), no instance of viral coinfection of such cells with JCV has been reported. Tat is known to be secreted from cells in which it is made. Here we ask whether such exogenous Tat can influence JCV replication in oligodendrocytes. We find that glial cells infected with either HIV-1 or JCV are in proximity at the outer edge of PML lesions. Exogenous Tat is avidly incorporated into cultured KG-1 oligodendroglioma cells over a 72-h period and is colocalized with endogenous Puralpha both nuclear and juxtanuclear. At concentrations in the medium well below the pM range, Tat stimulates several-fold the replication in vivo of DNA initiated at the JCV origin. These results define a pathway by which a protein made by HIV-1 can directly affect the course of infection by another disease-causing virus.
Collapse
Affiliation(s)
- Dianne C Daniel
- Department of Pathology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Kelm RJ, Wang SX, Polikandriotis JA, Strauch AR. Structure/function analysis of mouse Purbeta, a single-stranded DNA-binding repressor of vascular smooth muscle alpha-actin gene transcription. J Biol Chem 2003; 278:38749-57. [PMID: 12874279 DOI: 10.1074/jbc.m306163200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plasticity of smooth muscle alpha-actin gene expression in fibroblasts and vascular smooth muscle cells is mediated by opposing effects of transcriptional activators and repressors. Among these factors, three single-stranded DNA-binding proteins, Puralpha, Purbeta, and MSY1, have been implicated as coregulators of a cryptic 5'-enhancer module. In this study, a molecular analysis of Purbeta, the least well characterized member of this group, was conducted. Southwestern and Northwestern blotting of purified Purbeta deletion mutants using smooth muscle alpha-actin-derived probes mapped the minimal single-stranded DNA/RNA-binding domain to a conserved region spanning amino acids 37-263. Quantitative binding assays indicated that the relative affinity and specificity of Purbeta for single-stranded DNA were influenced by purine/pyrimidine content; by non-conserved regions outside amino acids 37-263; and by cell-derived proteins, specifically MSY1. When overexpressed in A7r5 vascular smooth muscle cells, Purbeta (but not Puralpha) inhibited transcription of a smooth muscle-specific mouse alpha-actin promoter transgene. Structural domains required for Purbeta repressor activity included the minimal DNA-binding region and a C-terminal domain required for stabilizing high affinity protein and nucleic acid interactions. Purbeta inhibitory activity in transfected A7r5 cells was potentiated by MSY1, but antagonized by serum response factor, reinforcing the idea that interplay among activators and repressors may account for phenotypic changes in smooth muscle alpha-actin-expressing cell types.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Animals
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- Cell Line
- DNA/metabolism
- DNA, Complementary/metabolism
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Enzyme-Linked Immunosorbent Assay
- Escherichia coli/metabolism
- Gene Deletion
- Genes, Reporter
- Immunoblotting
- Mice
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Oligonucleotides/chemistry
- Phenotype
- Plasmids/metabolism
- Protein Binding
- Protein Structure, Tertiary
- Rats
- Recombinant Proteins/metabolism
- Serum Response Factor/metabolism
- Structure-Activity Relationship
- Time Factors
- Transcription, Genetic
- Transfection
- Transgenes
Collapse
Affiliation(s)
- Robert J Kelm
- Department of Medicine, University of Vermont College of Medicine, Colchester, Vermont 05446, USA.
| | | | | | | |
Collapse
|
25
|
Khalili K, Del Valle L, Muralidharan V, Gault WJ, Darbinian N, Otte J, Meier E, Johnson EM, Daniel DC, Kinoshita Y, Amini S, Gordon J. Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol Cell Biol 2003; 23:6857-75. [PMID: 12972605 PMCID: PMC193944 DOI: 10.1128/mcb.23.19.6857-6875.2003] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-stranded DNA- and RNA-binding protein, Puralpha, has been implicated in many biological processes, including control of transcription of multiple genes, initiation of DNA replication, and RNA transport and translation. Deletions of the PURA gene are frequent in acute myeloid leukemia. Mice with targeted disruption of the PURA gene in both alleles appear normal at birth, but at 2 weeks of age, they develop neurological problems manifest by severe tremor and spontaneous seizures and they die by 4 weeks. There are severely lower numbers of neurons in regions of the hippocampus and cerebellum of PURA(-/-) mice versus those of age-matched +/+ littermates, and lamination of these regions is aberrant at time of death. Immunohistochemical analysis of MCM7, a protein marker for DNA replication, reveals a lack of proliferation of precursor cells in these regions in the PURA(-/-) mice. Levels of proliferation were also absent or low in several other tissues of the PURA(-/-) mice, including those of myeloid lineage, whereas those of PURA(+/-) mice were intermediate. Evaluation of brain sections indicates a reduction in myelin and glial fibrillary acidic protein labeling in oligodendrocytes and astrocytes, respectively, indicating pathological development of these cells. At postnatal day 5, a critical time for cerebellar development, Puralpha and Cdk5 were both at peak levels in bodies and dendrites of Purkinje cells of PURA(+/+) mice, but both were absent in dendrites of PURA(-/-) mice. Puralpha and Cdk5 can be coimmunoprecipitated from brain lysates of PURA(+/+) mice. Immunohistochemical studies reveal a dramatic reduction in the level of both phosphorylated and nonphosphorylated neurofilaments in dendrites of the Purkinje cell layer and of synapse formation in the hippocampus. Overall results are consistent with a role for Puralpha in developmentally timed DNA replication in specific cell types and also point to a newly emerging role in compartmentalized RNA transport and translation in neuronal dendrites.
Collapse
Affiliation(s)
- Kamel Khalili
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu H, Johnson EM. Distinct proteins encoded by alternative transcripts of the PURG gene, located contrapodal to WRN on chromosome 8, determined by differential termination/polyadenylation. Nucleic Acids Res 2002; 30:2417-26. [PMID: 12034829 PMCID: PMC117198 DOI: 10.1093/nar/30.11.2417] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A gene encoding a new member of the Pur protein family, Purgamma, has been detected upstream of, and contrapodal to, the gene encoding the Werner syndrome helicase, Wrn, at human chromosome band 8p11-12. Both the PURG and WRN genes initiate transcription at multiple sites, the major clusters of which are approximately 90 bp apart. A segment containing this region strongly promotes transcription of a reporter gene in both directions. Both promoters are TATA-less and CAAT-less and both are positively regulated by Sp1 elements. While promoter elements for the two genes are interleaved, in the contrapodal direction, certain elements critical for each gene are distinct. Sequencing of cDNAs for Purgamma mRNA reveals that two alternative coding sequences are generated from a single gene, resulting in different Purgamma C-termini. PURG-A mRNA consists of a single intronless transcript of approximately 3 kb. PURG-B mRNA results from transcription through the PURG-A polyadenylation site and splicing out of an intron of >30 kb. In this unique example of a switch, splicing of a single intron either occurs or does not occur depending upon differential termination/polyadenylation. PURG-B is the primary PURG transcript detected in testis, but it is undetectable in all members of a normal adult tissue cDNA panel. PURG-A levels are low or undetectable in the normal tissue panel, but they are greatly elevated in all members of a tumor tissue panel. PURG-B is detected in several tumor panel members.
Collapse
Affiliation(s)
- Hong Liu
- Department of Pathology and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Gallia GL, Darbinian N, Jaffe N, Khalili K. Single-stranded nucleic acid-binding protein, Pur alpha, interacts with RNA homologous to 18S ribosomal RNA and inhibits translation in vitro. J Cell Biochem 2001; 83:355-63. [PMID: 11596104 DOI: 10.1002/jcb.1247] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pur alpha is a highly conserved, eukaryotic sequence-specific DNA- and RNA-binding protein involved in diverse cellular and viral functions including transcription, replication, and cell growth. Pur alpha exerts its activity in part by interacting with other viral and cellular proteins. One such protein is the human immunodeficiency virus (HIV) type I regulatory protein Tat. Earlier studies have demonstrated that this interaction is mediated by Pur alpha-associated RNA (PARNA) and that RNA immunopurified from mammalian expressed Pur alpha was capable of reconstituting the interaction between these two proteins. In the current study, we characterize four RNA species which were immunopurified with Pur alpha. Northern blot analysis with one of the PARNAs revealed a highly abundant signal of approximately 2.0 kilobases (kb) present in all cell lines tested. Sequence analysis of each of the four PARNA clones revealed a high homology to different regions of the human 18S ribosomal RNA sequence. Based on this homology, we investigated the influence of Pur alpha on translation. Luciferase assays were performed after coupled in vitro transcription/translation reactions with a vector containing a luciferase reporter construct and increasing concentrations of BSA, GST, and GST-Pur alpha. Inclusion of GST-Pur alpha in these reactions resulted in a dose-dependent inhibition of luciferase activity. Similar inhibition was observed with in vitro translation reactions performed with in vitro transcribed luciferase RNA and increasing concentrations of GST-Pur alpha. In control experiments, inclusion of increasing concentrations of GST-Pur alpha with luciferase protein resulted in no effect on luciferase activity. Taken together, these data demonstrate that Pur alpha inhibits translation reactions in vitro. Moreover, this Pur alpha-mediated inhibition of translation can be abrogated by HIV-1 Tat protein.
Collapse
Affiliation(s)
- G L Gallia
- Center for NeuroVirology and Cancer Biology, Laboratory of Molecular Neurovirology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA
| | | | | | | |
Collapse
|
28
|
Daniel DC, Wortman MJ, Schiller RJ, Liu H, Gan L, Mellen JS, Chang CF, Gallia GL, Rappaport J, Khalili K, Johnson EM. Coordinate effects of human immunodeficiency virus type 1 protein Tat and cellular protein Puralpha on DNA replication initiated at the JC virus origin. J Gen Virol 2001; 82:1543-1553. [PMID: 11413364 DOI: 10.1099/0022-1317-82-7-1543] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JC virus (JCV) causes progressive multifocal leukoencephalopathy, a demyelinating disease in brains of individuals with AIDS. Previous work has shown that the Tat protein, encoded by human immunodeficiency virus type 1 (HIV-1), can interact with cellular protein Puralpha to enhance both TAR-dependent HIV-1 transcription and JCV late gene transcription. Tat has been shown to activate JCV transcription through interaction with Puralpha, which binds to promoter sequence elements near the JCV origin of replication. DNA footprinting has shown that Puralpha and large T-antigen cooperatively interact at several binding sites in the origin and transcriptional control region. Overexpression of Puralpha inhibits replication initiated at the JCV origin by T-antigen. In transfected glial cells Tat reversed this inhibition and enhanced DNA replication. In an in vitro replication system maximal activation by Tat, more than sixfold the levels achieved with T-antigen alone, was achieved in the presence of Puralpha. Effects of mutant Tat proteins on both activation of replication and binding to Puralpha have revealed that Cys22 exerts a conformational effect that affects both activities. The origin of an archetypal strain of JCV was less susceptible to activation of replication by Tat relative to the rearranged Mad-1 strain. These results have revealed a previously undocumented role for Tat in DNA replication and have indicated a regulatory role for JCV origin auxiliary sequences in replication and activation by Tat.
Collapse
Affiliation(s)
- Dianne C Daniel
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Margaret J Wortman
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Robin J Schiller
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Hong Liu
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Li Gan
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Jonathan S Mellen
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| | - Chun-F Chang
- Center for Neurovirology and Cancer Biology, Temple University, Bio-Life Sciences Building, 1900 N. 12th Street, Philadelphia, PA 19122, USA2
| | - Gary L Gallia
- Center for Neurovirology and Cancer Biology, Temple University, Bio-Life Sciences Building, 1900 N. 12th Street, Philadelphia, PA 19122, USA2
| | - Jay Rappaport
- Center for Neurovirology and Cancer Biology, Temple University, Bio-Life Sciences Building, 1900 N. 12th Street, Philadelphia, PA 19122, USA2
| | - Kamel Khalili
- Center for Neurovirology and Cancer Biology, Temple University, Bio-Life Sciences Building, 1900 N. 12th Street, Philadelphia, PA 19122, USA2
| | - Edward M Johnson
- Department of Pathology, Department of Molecular Biology and Biochemistry and the D. H. Ruttenberg Cancer Center, Box 1194, Mount Sinai School of Medicine, New York, NY 10029, USA1
| |
Collapse
|
29
|
Muralidharan V, Sweet T, Nadraga Y, Amini S, Khalili K. Regulation of Puralpha gene transcription: evidence for autoregulation of Puralpha promoter. J Cell Physiol 2001; 186:406-13. [PMID: 11169980 DOI: 10.1002/1097-4652(2000)9999:999<000::aid-jcp1039>3.0.co;2-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The single-stranded DNA and RNA binding protein, Puralpha, has recently received special attention as this protein, by associating with the specific nucleotide sequence (GGN repeats) and/or several important cellular and viral proteins regulates crucial biological events such as transcription, replication, and cell proliferation. In this study, we focused on the promoter activity of the Puralpha upstream DNA sequence and demonstrated that the sequence spanning 6,000 nucleotides upstream of the Puralpha transcription start site has promoter activity in various cell types. Results from promoter deletion studies revealed that this region encompasses various regulatory motifs which differentially participate in the promoter activity of Puralpha in various cells. The transcription start site of Puralpha is surrounded by the GA/GC-rich sequence which exhibits the ability to interact with Puralpha, suggesting a role for autoregulation of Puralpha transcription. Results from co-transfection studies revealed that ectopic expression of Puralpha reduced transcriptional activity of the Puralpha promoter and the region located between amino acid residues, 1-85 of Puralpha is important for the observed autoregulatory event. The regulatory protein of the human neurotropic virus, JCV, T-antigen, which interacts with Puralpha, decreased transcriptional activity of the Puralpha promoter. Co-expression of JCV T-antigen and Puralpha had no significant effect on the suppression of Puralpha gene transcription by either protein. The importance of this finding in light of earlier results showing down regulation of Puralpha during JCV infection of glial cells is discussed.
Collapse
Affiliation(s)
- V Muralidharan
- Center for Neurovirology and Cancer Biology, College of Science and Technology, Temple University, 1900 North 12th Street, Philadelphia, PA 19122, USA
| | | | | | | | | |
Collapse
|
30
|
Li Y, Koike K, Ohashi S, Funakoshi T, Tadano M, Kobayashi S, Anzai K, Shibata N, Kobayashi M. Pur alpha protein implicated in dendritic RNA transport interacts with ribosomes in neuronal cytoplasm. Biol Pharm Bull 2001; 24:231-5. [PMID: 11256476 DOI: 10.1248/bpb.24.231] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously reported that pur alpha, known to be a regulator of DNA replication and transcription, links neural BC1 RNA to microtubules via dendrite-targeting RNA motifs. Here we demonstrate the subcellular localization of pur proteins within the brain. Pur proteins were detected in neurons but not in glia. Immunohistochemical staining was prominent in perikarya and proximal dendrites and also extended into primary dendritic processes, but no significant signals were detected in the distal regions of dendrite. When homogenates of mouse brain were fractionated, pur alpha was most concentrated in the microsomal pellet. Consistently, pur alpha co-fractionated with free polysomes as well as with membrane-bound polysomes and the association with polysomes was mediated by binding ribosomal subunits. Levels of ribosomes with pur alpha progressively increased during postnatal development of the brain.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry, College of Pharmacy, Nihon University, Funabashi, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi S, Agui K, Kamo S, Li Y, Anzai K. Neural BC1 RNA associates with pur alpha, a single-stranded DNA and RNA binding protein, which is involved in the transcription of the BC1 RNA gene. Biochem Biophys Res Commun 2000; 277:341-7. [PMID: 11032728 DOI: 10.1006/bbrc.2000.3683] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BC1 RNA is preferentially expressed in neural cells by RNA polymerase III (Pol III) and forms ribonucleoprotein particles (RNP) in the somatodendritic domain of neurons. Our previous studies have suggested that, in the nucleus, BC1 RNA forms an RNP containing a nuclear protein(s) that participates in the transcription of the BC1 RNA gene. In this study, we have shown that newly synthesized BC1 RNA in purified brain nuclear extracts is immunoprecipitated by an antibody against Pur alpha. Pur alpha is a protein that binds single-stranded DNA and RNA and is known to regulate transcription of Pol II system. Although BC1 RNA is transcribed by Pol III, the BC1 RNA gene has two putative Pur alpha binding sites, which Pur alpha specifically recognizes. Point mutations within these sites reduced transcriptional activity in vitro. Furthermore, transcription was inhibited by depletion of Pur alpha from the nuclear extracts, either by the coexistence of its binding region of BC1 RNA or by the antibody that was able to precipitate the nuclear BC1 RNP. These observations suggest that BC1 RNA associates with Pur alpha which is involved in the transcription of the BC1 RNA gene.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Brain/metabolism
- Cell Nucleus/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation
- Models, Genetic
- Molecular Sequence Data
- Neurons/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- RNA/metabolism
- RNA, Long Noncoding
- RNA, Untranslated
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Wistar
- Ribonucleoproteins, Small Cytoplasmic/genetics
- Ribonucleoproteins, Small Cytoplasmic/metabolism
- Time Factors
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- S Kobayashi
- Department of Biochemistry, College of Pharmacy, Nihon University, Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | | | | | | | | |
Collapse
|
32
|
Gallia GL, Johnson EM, Khalili K. Puralpha: a multifunctional single-stranded DNA- and RNA-binding protein. Nucleic Acids Res 2000; 28:3197-205. [PMID: 10954586 PMCID: PMC110688 DOI: 10.1093/nar/28.17.3197] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Puralpha is a ubiquitous, sequence-specific DNA- and RNA-binding protein which is highly conserved in eukaryotic cells. Puralpha has been implicated in diverse cellular functions, including transcriptional activation and repression, translation and cell growth. Moreover, this protein has been shown to be involved in regulating several human viruses which replicate in the central nervous system (CNS), including human immunodeficiency virus type I (HIV-1) and JC virus (JCV). Puralpha exerts part of its activity by interacting with cellular proteins, including pRb, E2F, cyclin A, Sp1 and members of the Y-box family of proteins, including YB-1 and MSY1, as well as viral proteins such as polyomavirus large T-antigen and HIV-1 Tat. The ability of Puralpha to interact with its target DNA sequence and to associate with several viral and cellular proteins is modulated by RNA. Puralpha has also been shown to be involved in cell growth and proliferation. Its association with pRb, E2F and cyclin A coupled with its fluctuating levels throughout the cell cycle, position Puralpha as a crucial factor in the cell cycle. Moreover, microinjection studies demonstrate that Puralpha causes either a G(1) or G(2) arrest depending on the cell cycle time of injection. The gene encoding Puralpha has been localized to a human locus which is frequently deleted in myelogenous leukemias and other cancers and Puralpha gene deletions have been detected in many cases of lymphoid cancers. The following review details the structural characteristics of Puralpha, its family members and the involvement of this protein in regulating various cellular and viral genes, viral replication and cell growth.
Collapse
Affiliation(s)
- G L Gallia
- Center for NeuroVirology and Cancer Biology, Laboratory of Molecular NeuroVirology, College of Science and Technology, Temple University, 1900 North 12th Street, 015-96, Room 203, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
33
|
Wortman MJ, Krachmarov CP, Kim JH, Gordon RG, Chepenik LG, Brady JN, Gallia GL, Khalili K, Johnson EM. Interaction of HIV-1 Tat with Puralpha in nuclei of human glial cells: characterization of RNA-mediated protein-protein binding. J Cell Biochem 2000; 77:65-74. [PMID: 10679817 DOI: 10.1002/(sici)1097-4644(20000401)77:1<65::aid-jcb7>3.0.co;2-u] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A complex between the Tat protein, encoded by human immunodeficiency virus type 1 (HIV-1), and the cellular protein, Puralpha, has been implicated in activation of the late promoter of JC virus (JCV) and in enhancement of JCV DNA replication. JCV is the causative agent of progressive multifocal leukoencephalopathy (PML), an acquired immunodeficiency syndrome (AIDS) opportunistic infection of the brain. Puralpha also binds the HIV-1 TAR RNA element and activates HIV-1 transcription, suggesting a role for RNA binding in the action of this protein. Using immunoelectron microscopy, we find that in human glial cells expressing both proteins, Tat and Puralpha are colocalized in extranucleolar chromatin structural elements. The colocalized Puralpha and Tat are nearly exclusively nuclear, although individual proteins can be seen in both nucleus and cytoplasm, suggesting a preferential tropism of the complex for the nucleus. Analysis of the interaction between purified proteins indicates that the Tat-Puralpha interaction is strongly enhanced by the presence of RNA. Tat amino acids from 37-48 are essential for Tat binding. Residues 49-72, including the TAR RNA-binding domain, are critical for binding to Puralpha, while Cys(22), in the Tat transactivation domain, is responsible for an important global effect. Puralpha repeat II domains are involved in the interaction, and a polypeptide based on one such sequence inhibits binding. After RNase treatment of Puralpha enhancement of Tat binding can be partially restored by addition of a single-stranded JCV DNA PUR element, to which Tat does not bind. The results indicate that the Tat-Puralpha interaction is direct, rather than through an RNA link, and that RNA binding configures Puralpha for optimal interaction with Tat.
Collapse
Affiliation(s)
- M J Wortman
- Department of Pathology and Brookdale Center for Molecular and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kelm RJ, Elder PK, Getz MJ. The single-stranded DNA-binding proteins, Puralpha, Purbeta, and MSY1 specifically interact with an exon 3-derived mouse vascular smooth muscle alpha-actin messenger RNA sequence. J Biol Chem 1999; 274:38268-75. [PMID: 10608902 DOI: 10.1074/jbc.274.53.38268] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amino acids 44-53 of mouse vascular smooth muscle alpha-actin are encoded by a region of exon 3 that bears structural similarity to an essential MCAT enhancer element in the 5' promoter of the gene. The single-stranded DNA-binding proteins, Puralpha, Purbeta, and MSY1, interact with each other and with opposite strands of the enhancer to repress transcription in fibroblasts (Sun, S., Stoflet, E. S., Cogan, J. G., Strauch, A. R., and Getz, M. J. (1995) Mol. Cell. Biol. 15, 2429-2436; Kelm, R. J., Jr., Cogan, J. G., Elder, P. K., Strauch, A. R., and Getz, M. J. (1999) J. Biol. Chem. 274, 14238-14245). In this study, we employed both recombinant and fibroblast-derived proteins to demonstrate that all three proteins specifically interact with the mRNA counterpart of the exon 3 sequence in cell-free binding assays. When placed in the 5'-untranslated region of a reporter mRNA, the exon 3-derived sequence suppressed mRNA translation in transfected fibroblasts. Translational efficiency was restored by mutations that impaired mRNA binding of Puralpha, Purbeta, and MSY1, implying that these proteins can also participate in messenger ribonucleoprotein formation in living cells. Additionally, primary structure determinants required for interaction of Purbeta with single-stranded DNA, mRNA, and protein ligands were mapped by deletion mutagenesis. These experiments reveal highly specific protein-mRNA interactions that are potentially important in regulating expression of the vascular smooth muscle alpha-actin gene in fibroblasts.
Collapse
MESH Headings
- Actins/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- DNA Primers
- DNA, Complementary
- DNA, Single-Stranded/metabolism
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Exons
- Genes, Reporter
- Mice
- Molecular Sequence Data
- Muscle, Smooth, Vascular/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- R J Kelm
- Department of Biochemistry, Molecular Biology Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA.
| | | | | |
Collapse
|
35
|
Tretiakova A, Steplewski A, Johnson EM, Khalili K, Amini S. Regulation of myelin basic protein gene transcription by Sp1 and Pur?: Evidence for association of Sp1 and Pur? in brain. J Cell Physiol 1999. [DOI: 10.1002/(sici)1097-4652(199910)181:1%3c160::aid-jcp17%3e3.0.co;2-h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
36
|
Tretiakova A, Steplewski A, Johnson EM, Khalili K, Amini S. Regulation of myelin basic protein gene transcription by Sp1 and Puralpha: evidence for association of Sp1 and Puralpha in brain. J Cell Physiol 1999; 181:160-8. [PMID: 10457364 DOI: 10.1002/(sici)1097-4652(199910)181:1<160::aid-jcp17>3.0.co;2-h] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Direct interaction between transcription factors may provide a mechanism for the regulatory function of these proteins on transcription of the responsive genes. These interactions may be facilitated if the target DNA sequences for the participant regulatory proteins are overlapped or positioned in close proximity to each other within the promoter of the responsive genes. In earlier studies, we identified a cellular protein, named Puralpha, which upon binding to the MB1 regulatory DNA sequence of the myelin basic protein (MBP) gene, stimulates its transcription in central nervous system (CNS) cells. Here, we provide evidence for binding of the ubiquitous DNA binding transcription factor, Sp1, to the MB1 DNA motif at the region that partially overlaps with the Puralpha binding site. We demonstrate that binding of Puralpha to its target sequence is enhanced by inclusion of Sp1 in the binding reaction. Under this condition, binding of Sp1 to the MB1 regulatory sequence remained fairly unchanged, and no evidence for the formation of Puralpha:MB1:Sp1 was observed. This observation suggests that transient interaction of Puralpha and Sp1 may result in stable association of Puralpha and the MB1 element. In support of this notion, results from immunoprecipitation/Western blot studies have established association of Puralpha and Sp1 in nuclear extracts from mouse brain. Of interest, Puralpha appears to bind to the phosphorylated form of Sp1 which is developmentally regulated and that coincides with the periods when MBP gene expression is at its maximum level. Results from cotransfection studies revealed that ectopic expression of Puralpha and Sp1 synergistically stimulates MBP promoter activity in CNS cells. The importance of these findings in stage-specific expression of MBP during brain development is discussed.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University School of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | |
Collapse
|
37
|
Gallia GL, Darbinian N, Tretiakova A, Ansari SA, Rappaport J, Brady J, Wortman MJ, Johnson EM, Khalili K. Association of HIV-1 Tat with the cellular protein, Puralpha, is mediated by RNA. Proc Natl Acad Sci U S A 1999; 96:11572-7. [PMID: 10500218 PMCID: PMC18075 DOI: 10.1073/pnas.96.20.11572] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The interaction between two regulatory proteins plays a crucial role in the control of several biological events, including gene transcription. In this report, we demonstrate that the interaction between the cellular sequence-specific single-stranded DNA binding protein Puralpha and the HIV type 1 (HIV-1) Tat protein is mediated by specific ribonucleic acids. The region of Tat that is important for its interaction with Puralpha includes the region demonstrated to bind Tat's viral RNA target, TAR. A 10-nucleotide GC-rich consensus sequence identified in RNAs associated with Puralpha derived from human U-87MG cells plays an important role in the Puralpha:Tat interaction as examined by an in vitro reconstitution assay. Furthermore, expression of the Puralpha-associated RNA in these cells enhances transcriptional activation of the HIV-1 promoter by Tat and Puralpha.
Collapse
Affiliation(s)
- G L Gallia
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Philadelphia, PA 19102, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Tretiakova A, Otte J, Croul SE, Kim JH, Johnson EM, Amini S, Khalili K. Association of JC virus large T antigen with myelin basic protein transcription factor (MEF-1/Puralpha) in hypomyelinated brains of mice transgenically expressing T antigen. J Virol 1999; 73:6076-84. [PMID: 10364361 PMCID: PMC112670 DOI: 10.1128/jvi.73.7.6076-6084.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease caused by cytolytic destruction of oligodendrocytes, the myelin-producing cells of the central nervous system, by the human neurotropic JC virus (JCV). The early protein of JCV, T antigen, which is produced at the early stage of infection, is important for orchestrating the events leading to viral lytic infection and cytolytic destruction of oligodendrocytes. Results from transgenic mouse studies, however, have revealed that, in the absence of lytic infection, this protein can induce brain hypomyelination and suppression of myelin gene expression. Since expression of the gene encoding myelin basic protein, the major component of myelin, can be regulated by a DNA-binding transcription factor, MEF-1/Puralpha, (Puralpha), we have examined the level of this protein in transgenic mouse brains. Results from immunoprecipitation and Western blots showed that while there was no drastic decrease in the level of MEF-1/Puralpha in transgenic mouse brains, JCV T antigen was found in a complex with MEF-1/Puralpha. Immunohistological studies revealed abnormal oligodendrocytes in white matter, where MEF-1/Puralpha and T antigen were detected. Furthermore, immunogold electron microscopic studies revealed that Puralpha and T antigen are colocalized in the nucleus of the oligodendrocytes and in hippocampal neurons. Interestingly, results from cell culture studies revealed that incubation of oligodendrocytes with JCV led to a drastic decrease in the level of MEF-1/Puralpha protein. These observations provide insight into the molecular pathogenesis of PML and support a model for a dual effect of JCV on inducing hypomyelination by (i) affecting myelin gene expression via interaction of JCV T antigen and the myelin gene transcription factor, MEF-1/Puralpha, and (ii) causing a decline in the level of the host regulatory proteins, including MEF-1/Puralpha, which are involved in myelin gene expression.
Collapse
Affiliation(s)
- A Tretiakova
- Center for NeuroVirology and NeuroOncology, MCP Hahnemann University, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | |
Collapse
|