1
|
Rajala R, Griffin CT. Endothelial protease-activated receptor 4: impotent or important? Front Cardiovasc Med 2025; 12:1541879. [PMID: 39935714 PMCID: PMC11810968 DOI: 10.3389/fcvm.2025.1541879] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 02/13/2025] Open
Abstract
The protease thrombin, which increases its levels with various pathologies, can signal through the G protein-coupled receptors protease-activated receptors 1 and 4 (PAR1/PAR4). PAR1 is a high-affinity receptor for thrombin, whereas PAR4 is a low-affinity receptor. Finding functions for PAR4 in endothelial cells (ECs) has been an elusive goal over the last two decades. Several studies have demonstrated a lack of functionality for PAR4 in ECs, with many claiming that PAR4 function is confined mostly to platelets. A recent study from our lab identified low expressing but functional PAR4 in hepatic ECs in vivo. We also found that PAR4 likely has a higher signaling potency than PAR1. Given this potency, ECs seem to limit PAR4 signaling except for extreme cases. As a result, we claim PAR4 is not an impotent receptor because it is low expressing, but rather PAR4 is low expressing because it is a very potent receptor. Since we have finally shown PAR4 to be present and functional on ECs in vivo, it is important to outline why such controversy arose over the last two decades and, more importantly, why the receptor was undervalued on ECs. This timely review aims to inspire investigators in the field of vascular biology to study the regulatory aspect of endothelial PAR4 and its relationship with the more highly expressed PAR1.
Collapse
Affiliation(s)
- Rahul Rajala
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Courtney T. Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
2
|
Andrianova I, Kowalczyk M, Denorme F. Protease activated receptor-4: ready to be part of the antithrombosis spectrum. Curr Opin Hematol 2024; 31:238-244. [PMID: 38814792 DOI: 10.1097/moh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease is a major cause of death worldwide. Platelets play a key role in this pathological process. The serine protease thrombin is a critical regulator of platelet reactivity through protease activated receptors-1 (PAR1) and PAR4. Since targeting PAR4 comes with a low chance for bleeding, strategies blocking PAR4 function have great antithrombotic potential. Here, we reviewed the literature on platelet PAR4 with a particular focus on its role in thromboinflammation. RECENT FINDINGS Functional PAR4 variants are associated with reduced venous thrombosis risk (rs2227376) and increased risk for ischemic stroke (rs773902). Recent advances have allowed for the creation of humanized mouse lines in which human PAR4 is express instead of murine PAR4. This has led to a better understanding of the discrepancies between human and murine PAR4. It also made it possible to introduce single nucleotide polymorphisms (SNPs) in mice allowing to directly test the in vivo functional effects of a specific SNP and to develop in vivo models to study mechanistic and pharmacologic alterations induced by a SNP. SUMMARY PAR4 plays an important role in cardiovascular diseases including stroke, myocardial infarction and atherosclerosis. Targeting PAR4 hold great potential as a safe antithrombotic strategy.
Collapse
Affiliation(s)
- Izabella Andrianova
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Mia Kowalczyk
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA
| | - Frederik Denorme
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Shrestha Palikhe N, Haji Q, Mack E, Sinnatamby T, Sandford AJ, Cameron L, Vliagoftis H. Association of single nucleotide polymorphisms in the F2RL1 gene with clinical and inflammatory characteristics of patients with asthma. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:8. [PMID: 38308375 PMCID: PMC10837890 DOI: 10.1186/s13223-024-00873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Proteinase-activated receptor 2 (PAR-2) is a G-protein coupled receptor associated with many inflammatory diseases, including asthma. We have shown an association between PAR-2 expression in peripheral blood monocytes and asthma severity as well as blood PAR-2 mRNA level and lung function. Since F2RL1 (the gene encoding PAR-2) polymorphisms affect PAR-2 expression, we hypothesize they may affect asthma severity. METHODS We recruited 76 subjects with asthma of varying severity and collected clinical (FEV1 [% predicted], FEV1/FVC, IgE) and immunological (PAR-2 mRNA, blood eosinophils) disease parameters. We also genotyped these individuals for 3 F2RL1 SNPs (-45C/T, -149C/G, c.621C/T). RESULTS We found that the F2RL1 SNP "C" allele of -45C/T (rs1529505) was associated with PAR-2 mRNA and blood eosinophils. F2RL1 SNP c.621C/T (rs631465) was associated with PAR-2 mRNA. The F2RL1 SNP -149C/G (rs2242991) had no association with any of the parameters studied. This study identified one F2RL1 SNP rs1529505 is associated with parameters of asthma, but not asthma severity. CONCLUSION Larger studies are needed to further elucidate the role of PAR-2 in the pathophysiology of asthma and the influence of genetic variation.
Collapse
Affiliation(s)
- Nami Shrestha Palikhe
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada.
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada.
| | - Qahir Haji
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada
| | - Emily Mack
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada
- Faculty of Education, University of Alberta, Edmonton, Canada
| | - Tristan Sinnatamby
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada
| | - Andrew J Sandford
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Cameron
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Harissios Vliagoftis
- Division of Pulmonary Medicine, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, 550 A HMRC, Edmonton, AB, T6G 2S2, Canada.
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Liu C, Jiang S, Xie H, Jia H, Li R, Zhang K, Wang N, Lin P, Yu X. Long non-coding RNA AC245100.4 contributes to prostate cancer migration via regulating PAR2 and activating p38-MAPK pathway. Med Oncol 2022; 39:94. [DOI: 10.1007/s12032-022-01689-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022]
|
5
|
Kostyak JC, Mauri B, Patel A, Dangelmaier C, Reddy H, Kunapuli SP. Phosphorylation of protein kinase Cδ Tyr311 positively regulates thromboxane generation in platelets. J Biol Chem 2021; 296:100720. [PMID: 33932405 PMCID: PMC8164046 DOI: 10.1016/j.jbc.2021.100720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/19/2022] Open
Abstract
Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.
Collapse
Affiliation(s)
- John C Kostyak
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Benjamin Mauri
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Akruti Patel
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Carol Dangelmaier
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Haritha Reddy
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Satya P Kunapuli
- Sol Sherry Thrombosis Research Center, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Physiology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA; Department of Pharmacology, Temple University School Lewis M Katz School of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
6
|
Chandrabalan A, Ramachandran R. Molecular mechanisms regulating Proteinase‐Activated Receptors (PARs). FEBS J 2021; 288:2697-2726. [DOI: 10.1111/febs.15829] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Arundhasa Chandrabalan
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry University of Western Ontario London Canada
| |
Collapse
|
7
|
Han X, Hofmann L, de la Fuente M, Alexander N, Palczewski K, Nieman MT. PAR4 activation involves extracellular loop 3 and transmembrane residue Thr153. Blood 2020; 136:2217-2228. [PMID: 32575122 PMCID: PMC7645988 DOI: 10.1182/blood.2019004634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/24/2020] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptor 4 (PAR4) mediates sustained thrombin signaling in platelets and is required for a stable thrombus. PAR4 is activated by proteolysis of the N terminus to expose a tethered ligand. The structural basis for PAR4 activation and the location of its ligand binding site (LBS) are unknown. Using hydrogen/deuterium exchange (H/D exchange), computational modeling, and signaling studies, we determined the molecular mechanism for tethered ligand-mediated PAR4 activation. H/D exchange identified that the LBS is composed of transmembrane 3 (TM3) domain and TM7. Unbiased computational modeling further predicted an interaction between Gly48 from the tethered ligand and Thr153 from the LBS. Mutating Thr153 significantly decreased PAR4 signaling. H/D exchange and modeling also showed that extracellular loop 3 (ECL3) serves as a gatekeeper for the interaction between the tethered ligand and LBS. A naturally occurring sequence variant (P310L, rs2227376) and 2 experimental mutations (S311A and P312L) determined that the rigidity conferred by prolines in ECL3 are essential for PAR4 activation. Finally, we examined the role of the polymorphism at position 310 in venous thromboembolism (VTE) using the International Network Against Venous Thrombosis (INVENT) consortium multi-ancestry genome-wide association study (GWAS) meta-analysis. Individuals with the PAR4 Leu310 allele had a 15% reduction in relative risk for VTE (odds ratio, 0.85; 95% confidence interval, 0.77-0.94) compared with the Pro310 allele. These data are consistent with our H/D exchange, molecular modeling, and signaling studies. In conclusion, we have uncovered the structural basis for PAR4 activation and identified a previously unrecognized role for PAR4 in VTE.
Collapse
Affiliation(s)
- Xu Han
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | - Lukas Hofmann
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Nathan Alexander
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| | | | - Marvin T Nieman
- Case Western Reserve University, School of Medicine, Cleveland, OH; and
| |
Collapse
|
8
|
|
9
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
10
|
Sawhney S, Bansal S, Kalyan M, Verma I, Singh Virk R, Gupta AK. Analysis of differential expression of protease-activated receptors in patients with allergic fungal rhinosinusitis. ALLERGY & RHINOLOGY 2018; 9:2152656718764199. [PMID: 29977653 PMCID: PMC6028156 DOI: 10.1177/2152656718764199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Ever since its characterization in the 1970s, allergic fungal rhinosinusitis (AFRS) has been the subject of much controversy, especially regarding its pathogenesis. In this study, we analyzed the differential expression of genes that encode protease-activated receptors (PAR) in patients with AFRS and patients with chronic rhinosinusitis, and tried to understand the pathogenic basis of this disease. Objective To analyze the differential expression of PAR genes in patients with AFRS and in patients with chronic rhinosinusitis. Methods Mucosa from ethmoid sinuses of 51 patients (tests and controls) was biopsied and evaluated for messenger RNA expression of PAR genes by using reverse transcriptase–polymerase chain reaction. Each of the four PAR genes, i.e., par1, par2, par3 and par4 was amplified, the final gene products were run on 1.8% agarose gel and analyzed by densitometry to calculate differential expression. The significance level was determined as p ≤ 0.05. Results It was observed that the expressions of all four par genes were higher in the test samples compared with the controls, but statistical significance was achieved only for par1 (p=0.004) and par2 (p=0.05). Comparative expression of the four PAR genes was also performed within the test and control groups, and a statistically significant difference was seen between par1 and par2 (p=0.007), par1 and par3 (p=0.029), par1 and par4 (p=0.0001), par2 and par4 (p=0.002), and par3 and par4 (p=0.009) in the test group. In the control group as well, par1, par2, and par3 exhibited a higher expression compared with par4 but the difference was significant between par3 and par4 genes only. Conclusion Patients with AFRS expressed increased levels of PAR genes in their nasal mucosa, and, of the four PAR genes, a higher expression of par1, par2, and par3 was observed in both the groups compared with par4. This information contributes toward our understanding of pathogenesis and possibly treatment of AFRS.
Collapse
Affiliation(s)
- Shikhar Sawhney
- Department of Otolaryngology, Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Bansal
- Department of Otolaryngology, Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhur Kalyan
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramandeep Singh Virk
- Department of Otolaryngology, Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashok Kumar Gupta
- Department of Otolaryngology, Head and Neck Surgery, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
11
|
French SL, Paramitha AC, Moon MJ, Dickins RA, Hamilton JR. Humanizing the Protease-Activated Receptor (PAR) Expression Profile in Mouse Platelets by Knocking PAR1 into the Par3 Locus Reveals PAR1 Expression Is Not Tolerated in Mouse Platelets. PLoS One 2016; 11:e0165565. [PMID: 27788223 PMCID: PMC5082849 DOI: 10.1371/journal.pone.0165565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
Anti-platelet drugs are the mainstay of pharmacotherapy for heart attack and stroke prevention, yet improvements are continually sought. Thrombin is the most potent activator of platelets and targeting platelet thrombin receptors (protease-activated receptors; PARs) is an emerging anti-thrombotic approach. Humans express two PARs on their platelets–PAR1 and PAR4. The first PAR1 antagonist was recently approved for clinical use and PAR4 antagonists are in early clinical development. However, pre-clinical studies examining platelet PAR function are challenging because the platelets of non-primates do not accurately reflect the PAR expression profile of human platelets. Mice, for example, express Par3 and Par4. To address this limitation, we aimed to develop a genetically modified mouse that would express the same repertoire of platelet PARs as humans. Here, human PAR1 preceded by a lox-stop-lox was knocked into the mouse Par3 locus, and then expressed in a platelet-specific manner (hPAR1-KI mice). Despite correct targeting and the predicted loss of Par3 expression and function in platelets from hPAR1-KI mice, no PAR1 expression or function was detected. Specifically, PAR1 was not detected on the platelet surface nor internally by flow cytometry nor in whole cell lysates by Western blot, while a PAR1-activating peptide failed to induce platelet activation assessed by either aggregation or surface P-selectin expression. Platelets from hPAR1-KI mice did display significantly diminished responsiveness to thrombin stimulation in both assays, consistent with a Par3-/- phenotype. In contrast to the observations in hPAR1-KI mouse platelets, the PAR1 construct used here was successfully expressed in HEK293T cells. Together, these data suggest ectopic PAR1 expression is not tolerated in mouse platelets and indicate a different approach is required to develop a small animal model for the purpose of any future preclinical testing of PAR antagonists as anti-platelet drugs.
Collapse
Affiliation(s)
- Shauna L. French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | | | - Mitchell J. Moon
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Ross A. Dickins
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R. Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
12
|
Phillippe M, Wolff D, Saunders T, Thomas L, Chapa J. Intrauterine Expression of Prothrombin in the Sprague-Dawley Rat. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760200900504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Mark Phillippe
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Department of Obstetrics and Gynecology, University of Vermont College of Medicine, Fletcher Allen Health Care, Burgess 202, 111 Colchester Avenue, Burlington, VT 05401
| | | | | | | | - Jeffrey Chapa
- Section of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| |
Collapse
|
13
|
Cloning and Tissue expression of the Tissue Prothrombinase Fgl-2 in the Sprague-Dawley Rat. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760200252-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Rohatgi T, Sedehizade F, Reymann KG, Reiser G. Protease-Activated Receptors in Neuronal Development, Neurodegeneration, and Neuroprotection: Thrombin as Signaling Molecule in the Brain. Neuroscientist 2016; 10:501-12. [PMID: 15534036 DOI: 10.1177/1073858404269955] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protease-activated receptors (PARs) belong to the superfamily of seven transmembrane domain G protein-coupled receptors. Four PAR subtypes are known, PAR-1 to -4. PARs are highly homologous between the species and are expressed in a wide variety of tissues and cell types. Of particular interest is the role which these receptors play in the brain, with regard to neuroprotection or degeneration under pathological conditions. The main agonist of PARs is thrombin, a multifunctional serine protease, known to be present not only in blood plasma but also in the brain. PARs possess an irreversible activation mechanism. Binding of agonist and subsequent cleavage of the extracellular N-terminus of the receptor results in exposure of a so-called tethered ligand domain, which then binds to extracellular loop 2 of the receptor leading to receptor activation. PARs exhibit an extensive expression pattern in both the central and the peripheral nervous system. PARs participate in several mechanisms important for normal cellular functioning and during critical situations involving cellular survival and death. In the last few years, research on Alzheimer’s disease and stroke has linked PARs to the pathophysiology of these neurodegenerative disorders. Actions of thrombin are concentration-dependent, and therefore, depending on cellular function and environment, serve as a double-edged sword. Thrombin can be neuroprotective during stress conditions, whereas under normal conditions high concentrations of thrombin are toxic to cells.
Collapse
Affiliation(s)
- Tanuja Rohatgi
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Magdeburg, Germany
| | | | | | | |
Collapse
|
15
|
French SL, Hamilton JR. Protease-activated receptor 4: from structure to function and back again. Br J Pharmacol 2016; 173:2952-65. [PMID: 26844674 DOI: 10.1111/bph.13455] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/21/2022] Open
Abstract
Protease-activated receptors are a family of four GPCRs (PAR1-PAR4) with a number of unique attributes. Nearly two and a half decades after the discovery of the first PAR, an antagonist targeting this receptor has been approved for human use. The first-in-class PAR1 antagonist, vorapaxar, was approved for use in the USA in 2014 for the prevention of thrombotic cardiovascular events in patients with a history of myocardial infarction or with peripheral arterial disease. These recent developments indicate the clinical potential of manipulating PAR function. While much work has been aimed at uncovering the function of PAR1 and, to a lesser extent, PAR2, comparatively little is known regarding the pharmacology and physiology of PAR3 and PAR4. Recent studies have begun to develop the pharmacological and genetic tools required to study PAR4 function in detail, and there is now emerging evidence for the function of PAR4 in disease settings. In this review, we detail the discovery, structure, pharmacology, physiological significance and therapeutic potential of PAR4. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- Shauna L French
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia.
| |
Collapse
|
16
|
Jin M, Yang HW, Tao AL, Wei JF. Evolution of the protease-activated receptor family in vertebrates. Int J Mol Med 2016; 37:593-602. [PMID: 26820116 PMCID: PMC4771116 DOI: 10.3892/ijmm.2016.2464] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023] Open
Abstract
Belonging to the G protein-coupled receptor (GPcr) family, the protease-activated receptors (Pars) consist of 4 members, PAR1-4. PARs mediate the activation of cells via thrombin, serine and other proteases. Such protease-triggered signaling events are thought to be critical for hemostasis, thrombosis and other normal pathological processes. In the present study, we examined the evolution of PARs by analyzing phylogenetic trees, chromosome location, selective pressure and functional divergence based on the 169 functional gene alignment sequences from 57 vertebrate gene sequences. We found that the 4 Pars originated from 4 invertebrate ancestors by phylogenetic trees analysis. The selective pressure results revealed that only PAR1 appeared by positive selection during its evolution, while the other PAR members did not. In addition, we noticed that although these PARs evolved separately, the results of functional divergence indicated that their evolutional rates were similar and their functions did not significantly diverge. The findings of our study provide valuable insight into the evolutionary history of the vertebrate PAR family.
Collapse
Affiliation(s)
- Min Jin
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Hai-Wei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ai-Lin Tao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Ji-Fu Wei
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
17
|
Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infect Immun 2015; 83:2762-70. [PMID: 25916983 DOI: 10.1128/iai.00425-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022] Open
Abstract
Microbial protease-mediated disruption of the intestinal epithelium is a potential mechanism whereby a dysbiotic enteric microbiota can lead to disease. This mechanism was investigated using the colitogenic, protease-secreting enteric microbe Enterococcus faecalis. Caco-2 and T-84 epithelial cell monolayers and the mouse colonic epithelium were exposed to concentrated conditioned media (CCM) from E. faecalis V583 and E. faecalis lacking the gelatinase gene (gelE). The flux of fluorescein isothiocyanate (FITC)-labeled dextran across monolayers or the mouse epithelium following exposure to CCM from parental or mutant E. faecalis strains indicated paracellular permeability. A protease-activated receptor 2 (PAR2) antagonist and PAR2-deficient (PAR2(-/-)) mice were used to investigate the role of this receptor in E. faecalis-induced permeability. Gelatinase (GelE) purified from E. faecalis V583 was used to confirm the ability of this protease to induce epithelial cell permeability and activate PAR2. The protease-mediated permeability of colonic epithelia from wild-type (WT) and PAR2(-/-) mice by fecal supernatants from ulcerative colitis patients was assessed. Secreted E. faecalis proteins induced permeability in epithelial cell monolayers, which was reduced in the absence of gelE or by blocking PAR2 activity. Secreted E. faecalis proteins induced permeability in the colonic epithelia of WT mice that was absent in tissues from PAR2(-/-) mice. Purified GelE confirmed the ability of this protease to induce epithelial cell permeability via PAR2 activation. Fecal supernatants from ulcerative colitis patients induced permeability in the colonic epithelia of WT mice that was reduced in tissues from PAR2(-/-) mice. Our investigations demonstrate that GelE from E. faecalis can regulate enteric epithelial permeability via PAR2.
Collapse
|
18
|
Beksac M, Waage A, Bringhen S, Kristinsson SY, Sucak GT, Gimsing P, Lupparelli G, Fıratlı-Tuğlular T, Juliusson G, Turesson I, Palumbo A. Does low-molecular-weight heparin influence the antimyeloma effects of thalidomide? A retrospective analysis of data from the GIMEMA, Nordic and Turkish myeloma study groups. Acta Haematol 2015; 133:372-380. [PMID: 25824293 DOI: 10.1159/000370023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Low-molecular-weight heparin (LMWH) has been shown to prolong survival among patients with solid tumors, but its role among myeloma patients is unknown. PATIENTS Data from the GIMEMA (Gruppo Italiano Malattie Ematologiche dell'Adulto), Nordic and Turkish myeloma study groups comparing melphalan and prednisolone with (MPT, n: 404) or without thalidomide (MP, n: 393) are analyzed for effects of LMWH. Forty percent (159/394) of the patients on MPT and 7.4% (29/390) in the MP arm received LMWH. RESULTS Thalidomide improved response and progression-free survival (PFS). Regardless of thalidomide treatment, response rate was higher among those receiving LMWH vs. none vs. other anticoagulants (58.1 vs. 44.9 vs. 50.4%, p = 0.01). PFS was significantly longer (median 32 vs. 21 and 17 vs. 17 months, p = 0.004) only among international scoring system (ISS) I patients receiving MPT ± LMWH vs. MP ± LMWH. The group of MPT patients who also received LMWH had a better OS compared to those who did not [45 months, 95% confidence interval (CI) 27.7-62.3, vs. 32 months, 95% CI 26.1-37.9; p = 0.034]. When multivariate analysis was repeated in subgroups, thalidomide was no longer a significant factor (response, PFS) among those receiving LMWH. CONCLUSION Addition of LMWH to MPT, in particular in patients with low ISS, suggests additive effects, but the results are limited by the retrospective design of our study.
Collapse
|
19
|
Jackson MT, Moradi B, Zaki S, Smith MM, McCracken S, Smith SM, Jackson CJ, Little CB. Depletion of protease-activated receptor 2 but not protease-activated receptor 1 may confer protection against osteoarthritis in mice through extracartilaginous mechanisms. Arthritis Rheumatol 2015; 66:3337-48. [PMID: 25200274 DOI: 10.1002/art.38876] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 09/04/2014] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To explore the involvement of protease-activated receptor 1 (PAR-1) and PAR-2 in the pathologic processes of osteoarthritis (OA) and to identify the cells/tissues primarily affected by ablation of PAR-1 or PAR-2 in mice. METHODS OA was induced in the joints of wild-type (WT), PAR-1(+/+) , PAR-1(-/-) , and PAR-2(-/-) mice by destabilization of the medial meniscus (DMM), and scores of histologic features (cartilage aggrecan loss and erosion, subchondral bone sclerosis, osteophytes, and synovitis) were compared at 1, 4, and 8 weeks post-DMM. The effects of PAR ablation on cartilage degradation and chondrocyte metalloproteinase expression/activity were studied in cultures of mouse femoral head tissue with or without interleukin-1α (IL-1α). At 1 week post-DMM, synovial expression of cytokines and metalloproteinase genes was measured by reverse transcription-polymerase chain reaction, and populations of inflammatory cells were quantified by flow cytometry. RESULTS Deletion of PAR-2, but not that of PAR-1, in mice significantly delayed the progression of cartilage damage and inhibited subchondral bone sclerosis following DMM. There was no inhibitory effect of PAR-1 or PAR-2 ablation on IL-1α-induced cartilage degradation or chondrocyte metalloproteinase expression/activation. A low but significant level of synovitis persisted in mice subjected to DMM compared to that in control mice subjected to sham surgery, but no differences between the genotypes were seen 4 or 8 weeks post-DMM. One week after DMM, increased synovial expression of proinflammatory cytokines and metalloproteinase genes, along with increased levels of CD4+ T cells, inflammatory monocytes, and activated macrophages, were seen in all genotypes. However, there was a significant reduction in the percentage of activated macrophages in PAR-2(-/-) mice compared to PAR-1(-/-) and WT mice. CONCLUSION Deletion of PAR-2, but not that of PAR-1, results in a significant decrease in DMM-induced cartilage damage. The chondroprotection in PAR-2(-/-) mice appears to occur indirectly through modulation of extracartilaginous events such as subchondral bone remodeling and synovial macrophage activation, rather than through alteration of chondrocyte catabolic responses.
Collapse
Affiliation(s)
- Miriam T Jackson
- Kolling Institute of Medical Research and the University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Bao Y, Hou W, Yang L, Liu R, Gao Y, Kong X, Shi Z, Li W, Zheng H, Jiang S, Hua B. Increased expression of protease-activated receptor 2 and 4 within dorsal root ganglia in a rat model of bone cancer pain. J Mol Neurosci 2014; 55:706-14. [PMID: 25344153 DOI: 10.1007/s12031-014-0409-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 08/20/2014] [Indexed: 02/06/2023]
Abstract
In an effort to understand the underlying mechanisms of cancer-induced bone pain, we investigated the presence of two protease-activated receptors, protease-activated receptor 2 (PAR2), and protease-activated receptor 4 (PAR4), in dorsal root ganglia (DRGs) neurons in an animal model of bone cancer pain. Female Wistar rats were randomized into three groups: tumor-bearing animals killed after 14 days (D14) and tumor-bearing animals killed after 21 days (D21) group and a sham operation group. After establishment of the Walker 256 carcinoma bone cancer pain model, behavioral tests were carried out to determine both the spontaneous nocifensive behavior and the paw withdrawal threshold (PWT) of mechanical and thermal hyperalgesia in these rats. Subsequently, real-time RT-PCR, Western bolt, and immunofluorescence were used to determine the messenger RNA (mRNA) and protein expression of PAR2 and PAR4 in the ipsilateral lumbar 4-5 DRG neurons. Rats in the D21 treatment group displayed a significant increase in spontaneous nocifensive behavior scores compared with the sham group as well as a considerably decreased withdrawal threshold in mechanical allodynia and thermal stimulation. Compared to sham group, the relative mRNA and protein expression of PAR2 and PAR4 was significantly upregulated in the D14 group and D21 groups, concurrent with tumor growth and proliferation. In addition, we identified the co-expression of PAR2 and PAR4 in the DRG neurons. The upregulation of mRNA and protein levels as well as the co-localization of PAR2 and PAR4 in DRG neurons suggests their novel involvement in the development and maintenance of bone cancer pain.
Collapse
Affiliation(s)
- Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evaluation on potential contributions of protease activated receptors related mediators in allergic inflammation. Mediators Inflamm 2014; 2014:829068. [PMID: 24876677 PMCID: PMC4021743 DOI: 10.1155/2014/829068] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/20/2014] [Indexed: 01/16/2023] Open
Abstract
Protease activated receptors (PARs) have been recognized as a distinctive four-member family of seven transmembrane G protein-coupled receptors (GPCRs) that can be cleaved by certain serine proteases. In recent years, there has been considerable interest in the role of PARs in allergic inflammation, the fundamental pathologic changes of allergy, but the potential roles of PARs in allergy remain obscure. Since many of these proteases are produced and actively involved in the pathologic process of inflammation including exudation of plasma components, inflammatory cell infiltration, and tissue damage and repair, PARs appear to make important contribution to allergy. The aim of the present review is to summarize the expression of PARs in inflammatory and structural cells, the influence of agonists or antagonists of PARs on cell behavior, and the involvement of PARs in allergic disorders, which will help us to better understand the roles of serine proteases and PARs in allergy.
Collapse
|
22
|
Yau MK, Liu L, Fairlie DP. Toward drugs for protease-activated receptor 2 (PAR2). J Med Chem 2013; 56:7477-97. [PMID: 23895492 DOI: 10.1021/jm400638v] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAR2 has a distinctive functional phenotype among an unusual group of GPCRs called protease activated receptors, which self-activate after cleavage of their N-termini by mainly serine proteases. PAR2 is the most highly expressed PAR on certain immune cells, and it is activated by multiple proteases (but not thrombin) in inflammation. PAR2 is expressed on many types of primary human cells and cancer cells. PAR2 knockout mice and PAR2 agonists and antagonists have implicated PAR2 as a promising target in inflammatory conditions; respiratory, gastrointestinal, metabolic, cardiovascular, and neurological dysfunction; and cancers. This article summarizes salient features of PAR2 structure, activation, and function; opportunities for disease intervention via PAR2; pharmacological properties of published or patented PAR2 modulators (small molecule agonists and antagonists, pepducins, antibodies); and some personal perspectives on limitations of assessing their properties and on promising new directions for PAR2 modulation.
Collapse
Affiliation(s)
- Mei-Kwan Yau
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | | | | |
Collapse
|
23
|
Kugler EM, Mazzuoli G, Demir IE, Ceyhan GO, Zeller F, Schemann M. Activity of protease-activated receptors in primary cultured human myenteric neurons. Front Neurosci 2012; 6:133. [PMID: 22988431 PMCID: PMC3439632 DOI: 10.3389/fnins.2012.00133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/26/2012] [Indexed: 12/19/2022] Open
Abstract
Activity of the four known protease-activated receptors (PARs) has been well studied in rodent enteric nervous system and results in animal models established an important role for neuronal PAR2. We recently demonstrated that, unlike in rodents, PAR1 is the dominant neuronal protease receptor in the human submucous plexus. With this study we investigated whether this also applies to the human myenteric plexus. We used voltage sensitive dye recordings to detect action potential discharge in primary cultures of human myenteric neurons in response to PAR activating peptides (APs). Application of the PAR1-AP (TFLLR) or PAR4-AP (GYPGQV) evoked spike discharge in 79 or 23% of myenteric neurons, respectively. The PAR1-AP response was mimicked by the endogenous PAR1 activator thrombin and blocked by the PAR1 antagonists SCH79797. Human myenteric neurons did not respond to PAR2-AP. This was not due to culture conditions because all three PAR-APs evoked action potentials in cultured guinea pig myenteric neurons. Consecutive application of PAR-APs revealed coexpression (relative to the population responding to PAR-APs) of PAR1/PAR2 in 51%, PAR1/PAR4 in 43%, and of PAR2/PAR4 in 29% of guinea pig myenteric neurons. Our study provided further evidence for the prominent role of neuronal PAR1 in the human enteric nervous system.
Collapse
Affiliation(s)
- Eva M Kugler
- Human Biology, Technische Universität München Freising, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Tsai CH, Lee SS, Huang FM, Chang YC. Regulation of protease-activated receptor-1 expression in human buccal fibroblasts stimulated with arecoline. Head Neck 2012; 35:1314-8. [PMID: 22965839 DOI: 10.1002/hed.23130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The purpose of this study was to compare the major thrombin receptor protease-activated receptor-1 (PAR-1) expression in normal human buccal mucosa and oral submucous fibrosis (OSF) specimens and further explore the potential mechanisms that may lead to induce PAR-1 expression. METHODS Thirty OSF and 10 normal buccal mucosa specimens were examined by immunohistochemistry. Buccal mucosal fibroblasts (BMFs) were challenged with arecoline by using Western blot analysis. N-acetyl-L-cysteine (NAC), LY294002, herbimycin A, NS-398, and PD98059 were added to find the possible regulatory mechanisms. RESULTS PAR-1 expression was significantly higher in OSF specimens (p < .05). Arecoline was found to elevate PAR-1 expression in a dose-dependent and time-dependent manner (p < .05). The addition of NAC, LY294002, herbimycin A, NS398, and PD98059 markedly inhibited the arecoline-induced PAR-1 expression (p < .05). CONCLUSION PAR-1 expression is significantly upregulated in areca quid chewing-associated OSF. Arecoline-induced PAR-1 expression was downregulated by NAC, LY294002, herbimycin A, NS398, and PD98059.
Collapse
Affiliation(s)
- Chung-Hung Tsai
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | |
Collapse
|
25
|
Lee H, Hamilton JR. Physiology, pharmacology, and therapeutic potential of protease-activated receptors in vascular disease. Pharmacol Ther 2012; 134:246-59. [DOI: 10.1016/j.pharmthera.2012.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 01/09/2023]
|
26
|
A synonymous variation in protease-activated receptor-2 is associated with atopy in Korean children. J Allergy Clin Immunol 2011; 128:1326-1334.e3. [PMID: 21839502 DOI: 10.1016/j.jaci.2011.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 06/25/2011] [Accepted: 06/28/2011] [Indexed: 11/20/2022]
Abstract
BACKGROUND Atopic diseases are the most common chronic diseases of childhood, and the genetics of atopy are complex and heterogeneous. Protease-activated receptor-2 (PAR-2) is involved in various inflammatory diseases, but the association of PAR-2 with allergic diseases remains unclear. OBJECTIVE To examine the contribution of genetic variation of PAR-2 to atopic phenotypes in the Korean childhood cohort. METHODS We identified PAR-2 variations in a Korean population and conducted association analyses by using 316 unrelated atopic and 210 nonatopic subjects. We analyzed serum IgE and total eosinophil count levels and examined PAR-2 mRNA and protein expression levels. RESULTS In the case-control association analysis, atopy was significantly associated with a single c.621C>T (p.I207I, rs631465) polymorphism of PAR-2 (P = .001, odds ratio = 1.95). Subjects with the c.621T risk allele had significantly higher serum IgE (P = .004) and total eosinophil count (P = .03) levels. Moreover, the positive association of c.621T was reproduced in the replication study (P = .01, joint P value of the replication < .001). An in silico analysis of RNA secondary structure prediction revealed that the C to T conversion at c.621 greatly increased predicted PAR-2 mRNA stability. This was also confirmed by an in vitro assay for mRNA stability. Furthermore, following an in vivo approach on gene expression in PBMCs showed that the expression levels of PAR-2 mRNA and protein in subjects with the c.621CT or TT genotype were significantly higher than in those with the c.621CC genotype. CONCLUSIONS These results indicate that the synonymous c.621C>T polymorphism in PAR-2 might be associated with the risk of atopy, potentially by altering PAR-2 gene expression.
Collapse
|
27
|
Notas G, Nifli AP, Kampa M, Pelekanou V, Alexaki VI, Theodoropoulos P, Vercauteren J, Castanas E. Quercetin accumulates in nuclear structures and triggers specific gene expression in epithelial cells. J Nutr Biochem 2011; 23:656-66. [PMID: 21782406 DOI: 10.1016/j.jnutbio.2011.03.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Revised: 02/25/2011] [Accepted: 03/11/2011] [Indexed: 12/19/2022]
Abstract
Quercetin is a flavonol modifying a number of cell processes in different cell lines. Here, we present evidence that nonconjugated quercetin enters cells possibly via organic anion transporter polypeptides and quickly accumulates in the nucleus where it concentrates at distinct foci. Furthermore, it induces major transcriptional events with a high number of transcripts being modified over time and about 2200 transcripts being continuously influenced by the agent. The latter transcripts are related to cell cycle and adhesion, xenobiotic metabolism, immune-related factors and transcription. In addition, quercetin up-regulates the expression of estrogen receptors α and β. The overall outcome on cell fate is reflected by an inhibition of cell proliferation, cell cycle arrest in the G1 phase and reduction of the cells' migratory potential due to actin cytoskeleton disorganization. Finally, we report that the flavonol modifies the transcription and/or activity of numerous transcription factors. In conclusion, our data support the idea that quercetin may actively accumulate in discrete cell structures and exert more than just antioxidant actions on epithelial cells by regulating mechanisms related to gene transcription.
Collapse
Affiliation(s)
- George Notas
- Laboratory of Experimental Endocrinology, University of Crete, School of Medicine, Heraklion, Greece
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Adams MN, Ramachandran R, Yau MK, Suen JY, Fairlie DP, Hollenberg MD, Hooper JD. Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 2011; 130:248-82. [PMID: 21277892 DOI: 10.1016/j.pharmthera.2011.01.003] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/03/2011] [Indexed: 12/18/2022]
Abstract
Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.
Collapse
Affiliation(s)
- Mark N Adams
- Mater Medical Research Institute, Aubigny Place, Raymond Terrace, South Brisbane Qld 4101, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
Vellani V, Kinsey AM, Prandini M, Hechtfischer SC, Reeh P, Magherini PC, Giacomoni C, McNaughton PA. Protease activated receptors 1 and 4 sensitize TRPV1 in nociceptive neurones. Mol Pain 2010; 6:61. [PMID: 20875131 PMCID: PMC2956715 DOI: 10.1186/1744-8069-6-61] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 09/27/2010] [Indexed: 01/25/2023] Open
Abstract
Protease-activated receptors (PAR1-4) are activated by proteases released by cell damage or blood clotting, and are known to be involved in promoting pain and hyperalgesia. Previous studies have shown that PAR2 receptors enhance activation of TRPV1 but the role of other PARs is less clear. In this paper we investigate the expression and function of the PAR1, 3 and 4 thrombin-activated receptors in sensory neurones. Immunocytochemistry and in situ hybridization show that PAR1 and PAR4 are expressed in 10 - 15% of neurons, distributed across all size classes. Thrombin or a specific PAR1 or PAR4 activating peptide (PAR1/4-AP) caused functional effects characteristic of activation of the PLCβ/PKC pathway: intracellular calcium release, sensitisation of TRPV1, and translocation of the epsilon isoform of PKC (PKCε) to the neuronal cell membrane. Sensitisation of TRPV1 was significantly reduced by PKC inhibitors. Neurons responding to thrombin or PAR1-AP were either small nociceptive neurones of the peptidergic subclass, or larger neurones which expressed markers for myelinated fibres. Sequential application of PAR1-AP and PAR4-AP showed that PAR4 is expressed in a subset of the PAR1-expressing neurons. Calcium responses to PAR2-AP were by contrast seen in a distinct population of small IB4+ nociceptive neurones. PAR3 appears to be non-functional in sensory neurones. In a skin-nerve preparation the release of the neuropeptide CGRP by heat was potentiated by PAR1-AP. Culture with nerve growth factor (NGF) increased the proportion of thrombin-responsive neurons in the IB4- population, while glial-derived neurotropic factor (GDNF) and neurturin upregulated the proportion of thrombin-responsive neurons in the IB4+ population. We conclude that PAR1 and PAR4 are functionally expressed in large myelinated fibre neurons, and are also expressed in small nociceptors of the peptidergic subclass, where they are able to potentiate TRPV1 activity.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcitonin Gene-Related Peptide/metabolism
- Calcium Signaling/drug effects
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Hot Temperature
- Immunohistochemistry
- In Situ Hybridization
- In Vitro Techniques
- Ion Channel Gating/drug effects
- Nerve Growth Factors/pharmacology
- Nociceptors/cytology
- Nociceptors/drug effects
- Nociceptors/enzymology
- Nociceptors/metabolism
- Protein Kinase C-epsilon/metabolism
- Protein Transport/drug effects
- Rats
- Rats, Sprague-Dawley
- Receptor, PAR-1/agonists
- Receptor, PAR-1/genetics
- Receptor, PAR-1/metabolism
- Receptors, Thrombin/agonists
- Receptors, Thrombin/genetics
- Receptors, Thrombin/metabolism
- TRPV Cation Channels/metabolism
- Thrombin/pharmacology
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Vittorio Vellani
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
- Dipartimento di Scienze Biomediche, via Campi 287, Università degli Studi di Modena e Reggio Emilia, I-41100 Modena Italy
| | - Anna M Kinsey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Massimiliano Prandini
- Dipartimento di Scienze Biomediche, via Campi 287, Università degli Studi di Modena e Reggio Emilia, I-41100 Modena Italy
| | - Sabine C Hechtfischer
- Department of Physiology and Experimental Pathophysiology, University of Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Peter Reeh
- Department of Physiology and Experimental Pathophysiology, University of Erlangen-Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | - Pier C Magherini
- Dipartimento di Scienze Biomediche, via Campi 287, Università degli Studi di Modena e Reggio Emilia, I-41100 Modena Italy
| | - Chiara Giacomoni
- Università degli Studi della Repubblica di San Marino, Dipartimento di Economia e Tecnologia, Strada della Bandirola, 44, 47898 Montegiardino - Repubblica di San Marino - RSM
| | - Peter A McNaughton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
30
|
Létienne R, Leparq-Panissié A, Calmettes Y, Nadal-Wollbold F, Perez M, Le Grand B. Antithrombotic activity of F 16618, a new PAR1 antagonist evaluated in extracorporeal arterio-venous shunt in the rat. Biochem Pharmacol 2010; 79:1616-21. [DOI: 10.1016/j.bcp.2010.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
|
31
|
Page K, Ledford JR, Zhou P, Dienger K, Wills-Karp M. Mucosal sensitization to German cockroach involves protease-activated receptor-2. Respir Res 2010; 11:62. [PMID: 20497568 PMCID: PMC2889872 DOI: 10.1186/1465-9921-11-62] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 05/24/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Allergic asthma is on the rise in developed countries. A common characteristic of allergens is that they contain intrinsic protease activity, and many have been shown to activate protease-activated receptor (PAR)-2 in vitro. The role for PAR-2 in mediating allergic airway inflammation has not been assessed using a real world allergen. METHODS Mice (wild type or PAR-2-deficient) were sensitized to German cockroach (GC) feces (frass) or protease-depleted GC frass by either mucosal exposure or intraperitoneal injection and measurements of airway inflammation (IL-5, IL-13, IL-17A, and IFNgamma levels in the lung, serum IgE levels, cellular infiltration, mucin production) and airway hyperresponsiveness were performed. RESULTS Following systemic sensitization, GC frass increased airway hyperresponsiveness, Th2 cytokine release, serum IgE levels, cellular infiltration and mucin production in wild type mice. Interestingly, PAR-2-deficient mice had similar responses as wild type mice. Since these data were in direct contrast to our finding that mucosal sensitization with GC frass proteases regulated airway hyperresponsiveness and mucin production in BALB/c mice (Page et. al. 2007 Resp Res 8:91), we backcrossed the PAR-2-deficient mice into the BALB/c strain. Sensitization to GC frass could now occur via the more physiologically relevant method of intratracheal inhalation. PAR-2-deficient mice had significantly reduced airway hyperresponsiveness, Th2 and Th17 cytokine release, serum IgE levels, and cellular infiltration compared to wild type mice when sensitization to GC frass occurred through the mucosa. To confirm the importance of mucosal exposure, mice were systemically sensitized to GC frass or protease-depleted GC frass via intraperitoneal injection. We found that removal of proteases from GC frass had no effect on airway inflammation when administered systemically. CONCLUSIONS We showed for the first time that allergen-derived proteases in GC frass elicit allergic airway inflammation via PAR-2, but only when allergen was administered through the mucosa. Importantly, our data suggest the importance of resident airway cells in the initiation of allergic airway disease, and could make allergen-derived proteases attractive therapeutic targets.
Collapse
Affiliation(s)
- Kristen Page
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | | | | | | | | |
Collapse
|
32
|
Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol 2009; 158:1017-33. [PMID: 19845685 PMCID: PMC2785524 DOI: 10.1111/j.1476-5381.2009.00449.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/11/2009] [Accepted: 07/08/2009] [Indexed: 12/17/2022] Open
Abstract
Protease-activated receptors (PARs) are a novel family of G protein-coupled receptors. Signalling through PARs typically involves the cleavage of an extracellular region of the receptor by endogenous or exogenous proteases, which reveals a tethered ligand sequence capable of auto-activating the receptor. A considerable body of evidence has emerged over the past 20 years supporting a prominent role for PARs in a variety of human physiological and pathophysiological processes, and thus substantial attention has been directed towards developing drug-like molecules that activate or block PARs via non-proteolytic pathways. PARs are widely expressed within the respiratory tract, and their activation appears to exert significant modulatory influences on the level of bronchomotor tone, as well as on the inflammatory processes associated with a range of respiratory tract disorders. Nevertheless, there is debate as to whether the principal response to PAR activation is an augmentation or attenuation of airways inflammation. In this context, an important action of PAR activators may be to promote the generation and release of prostanoids, such as prostglandin E(2), which have well-established anti-inflammatory effects in the lung. In this review, we primarily focus on the relationship between PARs, prostaglandins and inflammatory processes in the lung, and highlight their potential role in selected respiratory tract disorders, including pulmonary fibrosis, asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Terence Peters
- School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | | |
Collapse
|
33
|
Qiao L, Zhang H, Wu S, He S. Downregulation of protease activated receptor expression and cytokine production in P815 cells by RNA interference. BMC Cell Biol 2009; 10:62. [PMID: 19732468 PMCID: PMC2751739 DOI: 10.1186/1471-2121-10-62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/07/2009] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Protease-activated receptors (PAR) are seven transmembrane G-coupled receptors comprising four genes (PAR-1 approximately PAR-4). Mast cell has been identified to be able to express PARs and release an array of cytokines upon activation. Recently, it was reported that interleukin (IL)-12 could regulate the expression of PARs in mast cells, and tryptase could induce IL-4 and IL-6 release from mast cells. In order to further investigate the issues, RNA interference (RNAi) technique was employed and small interfering RNAs (siRNA) of PARs were transfected in P815 cells. RESULTS The results showed that siRNAs for PAR-1, PAR-2 and PAR-4 significantly downregulated expression of PAR-1, PAR-2 and PAR-4 mRNAs and proteins in P815 cells at 24, 48 and 72 h following transfection. siRNA PAR-1.2 and siRNA PAR-4.2 significantly reduced IL-12 induced upregulation of PAR-1 and PAR-4 expression, respectively when P815 cells were transfected with them for 48 h. siRNA PAR-2.3 blocked IL-12 induced downregulation of PAR-2 expression on both mRNA and protein levels. It was also observed that siRNA PAR-2.3 and siRNA PAR-1.2 reduced trypsin induced IL-4 release by approximately 92.6% and 65.3%, and SLIGKV-NH2 induced IL-4 release by 82.1% and 60.1%, respectively. Similarly, siRNA PAR-2.3 eliminated tryptase-induced IL-4 release by 75.3%, and siRNA PAR-1.2 diminished SFLLR-NH2 induced IL-4 release by 79.3%. However, siRNA PAR-1.2, siRNA PAR-2.3 and siRNA PAR-4.3 at 10 nM did not show any effect on tryptase-induced IL-6 release from P815 cells. CONCLUSION In conclusion, siRNAs of PARs can modulate PAR expression and PAR related cytokine production in mast cells, confirming that PARs are likely to play a role in allergic reactions.
Collapse
Affiliation(s)
- Liya Qiao
- Allergy and Inflammation Research Institute, Shantou University Medical College, 22 Xin-ling Road, Shantou, Guangdong 515041, PR China
| | - Huiyun Zhang
- Allergy and Inflammation Research Institute, Shantou University Medical College, 22 Xin-ling Road, Shantou, Guangdong 515041, PR China
| | - Shandong Wu
- Zhejiang University Medical College, Science and Research Building, Block C, Hangzhou 310013, PR China
| | - Shaoheng He
- Allergy and Inflammation Research Institute, Shantou University Medical College, 22 Xin-ling Road, Shantou, Guangdong 515041, PR China
- Clinical Research Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, PR China
| |
Collapse
|
34
|
Li X, Xie LQ. Advances in the relationship between protease-activated receptors and digestive system tumors. Shijie Huaren Xiaohua Zazhi 2009; 17:2179-2183. [DOI: 10.11569/wcjd.v17.i21.2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Protease-activated receptors (PARs), belonging to a family of G-protein-coupled seven-transmembrane-domain receptors, are widely distributed in digestive organs. PARs are highly expressed in digestive system tumors, and their expression is positively correlated with the malignancy, invasiveness and metastasis of digestive system neoplasm. PAR agonists are able to promote the proliferation, invasion and metastasis of tumor cells in vitro. The role of PARs in tumor cells depends on a variety of signal transduction pathways. However, the mechanism underlying their role in the proliferation, invasion and metastasis of tumor cells remains unclear. In this article, we will review their role in the development and progression of digestive system tumors and the molecular mechanism underlying such role.
Collapse
|
35
|
Sakai T, Nambu T, Katoh M, Uehara S, Fukuroda T, Nishikibe M. Up-regulation of protease-activated receptor-1 in diabetic glomerulosclerosis. Biochem Biophys Res Commun 2009; 384:173-9. [PMID: 19401193 DOI: 10.1016/j.bbrc.2009.04.105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 04/19/2009] [Indexed: 11/18/2022]
Abstract
Patients with diabetes are under a hypercoagulable state leading to generation of thrombin. It is not known whether thrombin plays a role in the progression of diabetic nephropathy. We analyzed gene expression of two thrombin receptors, protease-activated receptor-1 (PAR-1) and PAR-4 in the kidney of diabetic db/db mice. Mice developed hyperglycemia from 7 to 10 weeks of age and showed renal abnormalities such as mesangial expansion and urinary albumin excretion at 10 weeks of age. PAR-1 mRNA was up-regulated in isolated glomeruli in db/db mice compared with age-matched db/m littermates, but PAR-4 mRNA was not. In situ hybridization studies showed that PAR-1 mRNA was detected mainly at the glomerulus, and that intensive signals were observed in mesangial cells and podocytes. The up-regulation of PAR-1 in glomeruli in diabetic mice may play a role in the progression of glomerulosclerosis and abnormal urinary albumin excretion in diabetic nephropathy.
Collapse
Affiliation(s)
- Takumi Sakai
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., Okubo 3, Tsukuba 300-2611, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Martinelli A, Knapp S, Anstee Q, Worku M, Tommasi A, Zucoloto S, Goldin R, Thursz M. Effect of a thrombin receptor (protease-activated receptor 1, PAR-1) gene polymorphism in chronic hepatitis C liver fibrosis. J Gastroenterol Hepatol 2008; 23:1403-9. [PMID: 18005014 DOI: 10.1111/j.1440-1746.2007.05220.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Tissue injury leads to activation of coagulation and generation of thrombin. Inhibition of thrombin receptor protease-activated receptor 1 (PAR-1) has been shown to reduce liver fibrosis in animals. This study aimed to evaluate the effect of PAR-1 gene polymorphism on rate of liver fibrosis (RF) in chronic hepatitis C. METHODS Polymorphisms studied: C > T transition 1426 bp upstream of translation start site (-1426C/T), 13 bp repeat of preceding -506 5'-CGGCCGCGGGAAG-3' sequence (-506I/D), and A > T transversion in intervening sequence (IVS) 14 bp upstream of exon-2 start site (IVS-14A/T). A total of 287 European and 90 Brazilian patients were studied. RESULTS 1426C/T polymorphism: There was a trend to higher RF in patients with the TT genotype (P = 0.06) and an association between genotype CC and slow fibrosis (P = 0.03) in Europeans. In males, RF was significantly higher in those with the TT genotype compared to CT (P = 0.003) and CC (P = 0.007). There was a significant association between TT and fast fibrosis (P = 0.04). This was confirmed in an independent cohort of Brazilians where RF was higher in TT than in CC (P = 0.03). Analysis of -506I/D showed no difference in RF and distribution of slow/fast fibrosis among different genotypes in both populations. Analysis of IVS-14A/T showed no difference between genotypes. CONCLUSION In conclusion, these findings suggest that PAR-1 receptor polymorphisms influence the progression of liver fibrosis.
Collapse
Affiliation(s)
- Ana Martinelli
- Department of Medicine, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The epithelial layer occupies a strategic important location between an organisms' interior and exterior environment. Although as such it forms a physical barrier between both environments, it became clear that the role of the epithelium extends far beyond this rather passive role. Through specialized receptors and other more general mechanisms, the epithelial layer is not only able to sense changes in its environment but also to actively respond to these changes. These responses allow the epithelium to contribute to wound and tissue repair, to the defense against micro-organisms, and to the control and regulation of the locale immune response. In this review, we focus on signals acting on epithelium from the exterior environment, how these signals are processed and identify research challenges.
Collapse
Affiliation(s)
- A B Vroling
- Amsterdam Medical Center, Department of Otorhinolaryngology, Amsterdam, the Netherlands
| | | | | |
Collapse
|
38
|
Moffatt JD. Proteinase-activated receptors in the lower urinary tract. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:1-9. [PMID: 17294233 DOI: 10.1007/s00210-007-0139-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 01/25/2007] [Indexed: 01/29/2023]
Abstract
Proteinase-activated receptors (PARs) are G-protein-coupled receptors that convert specific extracellular proteolytic activity into intracellular signals, and have been suggested to play diverse roles in the body. In this review, evidence for the roles of PARs in bladder contractility and inflammation are presented. The role of PARs in prostate cancer is also reviewed. The existing literature in this area can be difficult to interpret due to the many nonspecific actions of the pharmacological tools employed. Although there are reports that PAR activators can cause contraction of bladder smooth muscle, further pharmacological and molecular studies are required to define roles for these receptors in bladder contractility. While structural studies suggest that roles for PARs in bladder inflammation are likely, few functional investigations have been performed. The significance of the expression of PARs on sensory nerves innervating the bladder and changes in receptor expression in inflammatory disease models are fascinating areas for future research. Finally, it seems probable that PARs, particularly PAR1, may play important roles in the growth and metastasis of prostate cancers.
Collapse
Affiliation(s)
- James D Moffatt
- Veterinary Basic Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
39
|
Bahou WF. Thrombin Receptors. Platelets 2007. [DOI: 10.1016/b978-012369367-9/50771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
40
|
Asfaha S, Cenac N, Houle S, Altier C, Papez MD, Nguyen C, Steinhoff M, Chapman K, Zamponi GW, Vergnolle N. Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. Br J Pharmacol 2006; 150:176-85. [PMID: 17179954 PMCID: PMC2042908 DOI: 10.1038/sj.bjp.0706975] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor-4 (PAR(4)), the most recently discovered member of the PARs family, is activated by thrombin, trypsin and cathepsin G, but can also be selectively activated by small synthetic peptides (PAR(4)-activating peptide, PAR(4)-AP). PAR(4) is considered a potent mediator of platelet activation and inflammation. As both PAR(1) and PAR(2) have been implicated in the modulation of nociceptive mechanisms, we investigated the expression of PAR(4) in sensory neurons and the effects of its selective activation on nociception. EXPERIMENTAL APPROACH AND KEY RESULTS We demonstrated the expression of PAR(4) in sensory neurons isolated from rat dorsal root ganglia by reverse transcription-polymerase chain reaction and immunofluorescence. We found that PAR(4) colocalized with calcitonin gene-related peptide and substance P. We also showed that a selective PAR(4)-AP was able to inhibit calcium mobilization evoked by KCl and capsaicin in rat sensory neurons. Moreover, the intraplantar injection of a PAR(4)-AP significantly increased nociceptive threshold in response to thermal and mechanical noxious stimuli, while a PAR(4) inactive control peptide had no effect. The anti-nociceptive effects of the PAR(4)-AP were dose-dependent and occurred at doses below the threshold needed to cause inflammation. Finally, co-injection of the PAR(4)-AP with carrageenan significantly reduced the carrageenan-induced inflammatory hyperalgesia and allodynia, but had no effect on inflammatory parameters such as oedema and granulocyte infiltration. CONCLUSIONS AND IMPLICATIONS Taken together, these results identified PAR(4) as a novel potential endogenous analgesic factor, which can modulate nociceptive responses in normal and inflammatory conditions.
Collapse
Affiliation(s)
- S Asfaha
- Mucosal Inflammation Research Group, Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Suzuki KI, Hiramatsu H, Fukushima-Shintani M, Heike T, Nakahata T. Efficient assay for evaluating human thrombopoiesis using NOD/SCID mice transplanted with cord blood CD34+ cells. Eur J Haematol 2006; 78:123-30. [PMID: 17087740 DOI: 10.1111/j.1600-0609.2006.00783.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A suitable model for the preclinical study of human platelet production in vivo has not been available. NOD/SCID mice were characterized as representing an efficient engraftment model for human hematopoietic stem cells, which resulted in the production of human platelets. Here, we evaluated in vivo human thrombopoiesis and ex vivo human platelet functions in NOD/SCID mice transplanted with human cord blood (CB) CD34(+) cells. Human platelets and human CD45(+) cells appeared in peripheral blood of NOD/SCID mice from 4 wk after transplantation. Human platelets produced in these mice showed CD62P expression and the activation of GPIIb/IIIa on human platelets on stimulation with an agonist. PEG-rHuMGDF (0, 0.5 and 5 microg/kg/d s.c.) was injected for 14 d into mice that had been confirmed to produce human platelets stably. The number of human platelets increased about twofold at 0.5 microg/kg/d and about fivefold at 5 microg/kg/d after 14 d. Withdrawal of PEG-rHuMGDF administration caused the human platelet count to return to the pretreatment level. Further, re-administration of PEG-rHuMGDF induced a similar human thrombopoietic response as it did on initial administration. These results suggest that NOD/SCID mice engrafted with human CB CD34(+) cells will be useful for the study of human platelet production in vivo.
Collapse
|
42
|
Koh PO, Kang BI, Kim GS, Oh YS, Won CK. The effect of thrombin on astrocyte stellation with regional specificity. J Vet Med Sci 2006; 67:1047-50. [PMID: 16276062 DOI: 10.1292/jvms.67.1047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we have examined the possible existence of astrocyte regional heterogeneity in thrombin effect on astrocyte stellation. Neonatal astrocytes were cultured for 2 weeks from six different regions of the neonatal rat brain, including the cerebral cortex, hippocampus, brainstem, midbrain, hypothalamus and cerebellum. Culture medium was changed to DMEM containing 8-CPT-cyclic AMP (cAMP) or isoproterenol plus various concentrations of thrombin for 2 hr. Thrombin effectively blocked both cAMP- and isoproterenol-induced cell stellation in a dose-dependent manner in all regional astrocytes except cerebellar astrocytes. RT-PCR analysis showed that thrombin receptor mRNA was expressed in all regional astrocytes, suggesting that cerebellar astrocytes may maintain a unique signaling pathway downstream of the thrombin receptor.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | | | | | | | | |
Collapse
|
43
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
44
|
Tanaka M, Arai H, Liu N, Nogaki F, Nomura K, Kasuno K, Oida E, Kita T, Ono T. Role of coagulation factor Xa and protease-activated receptor 2 in human mesangial cell proliferation. Kidney Int 2005; 67:2123-33. [PMID: 15882255 DOI: 10.1111/j.1523-1755.2005.00317.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Fibrin deposition and mesangial cell proliferation are frequently observed in the active type of mesangioproliferative glomerulonephritis. Coagulation factors, such as factor V and factor Xa are colocalized with fibrin in the mesangial areas in active type of IgA nephropathy with mesangial cell proliferation. In this study, therefore, we studied the role of factor Xa and its receptor, protease-activated receptor 2 (PAR2) in mesangial cell proliferation and fibrin deposition, and examined ant-proliferative effects of a specific factor Xa inhibitor, DX-9065a, in cultured human mesangial cells. METHODS To examine the effect of DX-9065a on the factor Xa-induced proliferation of cultured human mesangial cells, we measured thymidine incorporation and cell numbers. We also examined the effect of DX-9065a on extracellular regulated kinase (ERK) activation and fibrin production induced by factor Xa in human mesangial cells. RESULTS Factor Xa increased [(3)H]-thymidine incorporation and cell numbers in a dose-dependent manner in mesangial cells, which was inhibited by DX-9065a. DX-9065a also suppressed factor Xa-triggered fibrin deposition on mesangial cell surface. Factor Xa induced the activation of ERK in mesangial cells and this activation was also completely inhibited by DX-9065a, but not inhibited by PAR1 antagonist. Factor Xa-induced cell proliferation and ERK activation were inhibited by PD98059. CONCLUSION There results suggest that factor Xa can induce mesangial cell proliferation through the activation of ERK via PAR2 in mesangial cells and that PAR2 may play a crucial role in the cell proliferation induced by factor Xa. Our results implicate that DX-9065a may be a promising agent to regulate proliferation of mesangial cellss and inhibit the coagulation process in mesangium.
Collapse
Affiliation(s)
- Misa Tanaka
- Division of Nephrology, Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Luo W, Wang Y, Reiser G. Two types of protease-activated receptors (PAR-1 and PAR-2) mediate calcium signaling in rat retinal ganglion cells RGC-5. Brain Res 2005; 1047:159-67. [PMID: 15907810 DOI: 10.1016/j.brainres.2005.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2005] [Revised: 04/07/2005] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Protease-activated receptors (PARs), G-protein-coupled receptors, are widely expressed in various tissues, where they participate in physiological and pathological processes, such as hemostasis, proliferation, tissue repair, and inflammation. Recently, we found that PARs were upregulated in the rat retina following optic nerve crush injury. However, the role of PAR in retinal ganglion cells following optic nerve crush still remains unknown. Here, we studied PAR-mediated calcium signaling in retinal ganglion cells, RGC-5. Using reverse transcription-polymerase chain reaction, we demonstrate that RGC-5 cells mainly express PAR-1 and to a lower extent PAR-2, which was further confirmed by indirect immunofluorescence. Short-term stimulation of RGC-5 cells with thrombin (0.001-1 U/ml) and trypsin (1-100 nM) concentration-dependently induced a transient increase in intracellular calcium concentration ([Ca(2+)](i)). An increase in [Ca(2+)](i) was also induced by both TRag (PAR-1 activating peptide) and PAR-2 activating peptide (PAR-2 AP). The EC(50) values were 0.3 nM for thrombin, 12.0 nM for trypsin, 1.3 microM for TRag, and 1.6 microM for PAR-2 AP, respectively. Desensitization was studied using two successive pulses of agonists. The thrombin-induced calcium response was significantly reduced by PAR-1 desensitization caused by pre-challenging RGC-5 cells with thrombin or TRag, but not by PAR-2 desensitization. On the other hand, pretreatment with trypsin, TRag or PAR-2 AP desensitized the cells since the calcium response to a second exposure to trypsin was significantly reduced. Calcium source studies revealed that PAR-induced [Ca(2+)](i) rise mainly comes from intracellular stores in RGC-5 cells. Thus, we demonstrate that PAR-1 and PAR-2 are functionally expressed in retinal ganglion cells, mediating calcium mobilization mainly from intracellular stores.
Collapse
Affiliation(s)
- Weibo Luo
- Institut für Neurobiochemie, Medizinische Fakultät, Otto-von-Guericke-Universität, Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
46
|
Fujiwara M, Jin E, Ghazizadeh M, Kawanami O. Activation of PAR4 Induces a Distinct Actin Fiber Formation via p38 MAPK in Human Lung Endothelial Cells. J Histochem Cytochem 2005; 53:1121-9. [PMID: 15923365 DOI: 10.1369/jhc.4a6592.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protease-activated receptors (PARs) are multifunctional G protein–coupled receptors. Among the four existing PARs, PAR4 is preferentially expressed in the human lung tissue. However, the function of PAR4 has not been defined in the lung endothelial cells. Because PAR1-mediated cellular effects are deeply related to the morphological changes, we focused on the actin fiber and p38 mitogen-activated protein kinase (MAPK) signaling involved in actin polymerization to elucidate the role of PAR4. RT-PCR and Western blot analyses identified PAR4 expression in human pulmonary artery endothelial cells and in human microvascular endothelial cells from lung. We then examined the changes in actin fibers in endothelial cells treated with PAR4-activating peptide. PAR1-activating peptide was used for comparison. Activation of PAR4 and PAR1 by their corresponding peptides induced actin fiber formation; however, the actin filaments were broadly bundled in PAR4 as compared with the ringlike actin filaments in PAR1 activation. Correspondingly, the magnitude of p38 MAPK phosphorylation was different between cells treated with PAR4 and PAR1, with PAR4-activating peptide showing a significantly higher sensitivity to p38 MAPK inhibitor, SB203580. Taken together, these results demonstrate that activation of PAR4 results in the formation of actin fiber distinct from that by PAR1 activation, suggesting PAR4 may play specific roles in the lung endothelial cells.
Collapse
Affiliation(s)
- Masakazu Fujiwara
- Department of Molecular Pathology, Nippon Medical School, Graduate School of Medicine, Institute of Gerontology, Kanagawa, Japan
| | | | | | | |
Collapse
|
47
|
Karim ZA, Mukhopadhyay S, Ramars ASS, Dash D. Sustained stimulation of platelet thrombin receptor is associated with tyrosine dephosphorylation of a novel p67 peptide in a manner regulated by extracellular calcium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:147-57. [PMID: 15313016 DOI: 10.1016/j.bbamcr.2004.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Revised: 05/18/2004] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Signaling pathways elicited by protease-activated receptor-1 (PAR-1) agonists, thrombin receptor-activating peptide (TRAP) and thrombin, are markedly different. Here we show that TRAP-induced disaggregation of platelets is a function of extracellular calcium. Chelation of calcium with EGTA after the onset of aggregation precluded subsequent destabilization of the aggregates in TRAP-stimulated platelets, whereas disaggregation was not observed in the platelets stimulated with thrombin. TRAP-induced disaggregation was independent of the activity of the calcium-dependent thiol protease, calpain. Inhibition of phosphoinositide 3-kinase activity provoked further destabilization of the platelet aggregates in the presence of calcium; however, EGTA attenuated this effect. Activation of protein kinase C (PKC) by phorbol ester prevented disaggregation of the TRAP-stimulated platelets independent of the extracellular calcium. Two proteins of relative mobilities 67 and 75 kD were found to be significantly dephosphorylated on tyrosine in calcium-pretreated platelets as compared to the EGTA-treated platelets following continued stimulation with either TRAP or thrombin for 15 min. Inhibition of phosphoinositide 3-kinase by two pharmacologically independent inhibitors also caused dephosphorylation of p67, which was completely abrogated by chelation of extracellular calcium. Platelet activation by phorbol ester was not associated with disaggregation, although dephosphorylation of p67 was induced under this condition. SHP-1, an abundant tyrosine phosphatase in platelets, co-migrated with the p67 protein and co-localized to the actin-based cytoskeleton of aggregated platelets; however, its identity with p67 was ruled out from immunoprecipitation studies.
Collapse
Affiliation(s)
- Zubair A Karim
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, India
| | | | | | | |
Collapse
|
48
|
Majumdar M, Tarui T, Shi B, Akakura N, Ruf W, Takada Y. Plasmin-induced Migration Requires Signaling through Protease-activated Receptor 1 and Integrin α9β1. J Biol Chem 2004; 279:37528-34. [PMID: 15247268 DOI: 10.1074/jbc.m401372200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Plasmin is a major extracellular protease that elicits intracellular signals to mediate platelet aggregation, chemotaxis of peripheral blood monocytes, and release of arachidonate and leukotriene from several cell types in a G protein-dependent manner. Angiostatin, a fragment of plasmin(ogen), is a ligand and an antagonist for integrin alpha(9)beta(1). Here we report that plasmin specifically interacts with alpha(9)beta(1) and that plasmin induces of cells expressing migration recombinant alpha(9)beta(1) (alpha(9)-Chinese hamster ovary (CHO) cells). Migration was dependent on an interaction of the kringle domains of plasmin with alpha(9)beta(1) as well as the catalytic activity of plasmin. Angiostatin, representing the kringle domains of plasmin, alone did not induce the migration of alpha(9)-CHO cells, but simultaneous activation of the G protein-coupled protease-activated receptor (PAR)-1 with an agonist peptide induced the migration on angiostatin, whereas PAR-2 or PAR-4 agonist peptides were without effect. Furthermore, a small chemical inhibitor of PAR-1 (RWJ 58259) and a palmitoylated PAR-1-blocking peptide inhibited plasmin-induced migration of alpha(9)-CHO cells. These results suggest that plasmin induces migration by kringle-mediated binding to alpha(9)beta(1) and simultaneous proteolytic activation of PAR-1.
Collapse
Affiliation(s)
- Mousumi Majumdar
- Department of Dermatology, University of California Davis Medical Center, Sacramento, California 95817, USA
| | | | | | | | | | | |
Collapse
|
49
|
Wang Y, Richter-Landsberg C, Reiser G. Expression of protease-activated receptors (PARs) in OLN-93 oligodendroglial cells and mechanism of PAR-1-induced calcium signaling. Neuroscience 2004; 126:69-82. [PMID: 15145074 DOI: 10.1016/j.neuroscience.2004.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2004] [Indexed: 11/30/2022]
Abstract
Protease-activated receptors (PARs) are a group of four members of the superfamily of G protein-coupled receptors that transduce cell signaling by proteolytic activity of extracellular serine proteases, such as thrombin. Possible expression and functions of PARs in oligodendrocytes, the myelin forming cells of the CNS, are still unclear. Here, the oligodendrocyte cell line OLN-93 was used to investigate the signaling of PARs. By reverse transcription-polymerase chain reaction (RT-PCR), immunostaining and Ca(2+) imaging studies, we demonstrate that OLN-93 cells functionally express PAR-1. PAR-3 seems to be expressed without apparent activity, and PAR-2 and PAR-4 cannot be detected. Short-term stimulation of the OLN-93 cells with PAR-1 agonists, such as thrombin, trypsin and PAR-1 activating peptide, dose-dependently induced a transient rise of [Ca(2+)](i). Concentration-effect curves display a sigmoidal concentration dependence. Elevation of [Ca(2+)](i) induced by PAR-1 mainly resulted from Ca(2+) release from intracellular stores. Studies on the effects of pertussis toxin (PTX), phospholipase C antagonist and 2-APB, showed that in OLN-93 cells (i). the calcium signaling cascade from PAR-1 was mediated through PTX-insensitive G proteins, (ii). activation of phospholipase C and liberation of InsP(3) were events upstream of the Ca(2+) release from the stores. In addition, the present study analyzed PAR-1 desensitization caused by exposure to thrombin, trypsin, and PAR-1 activating peptide, elucidated the influence of the protease cathepsin G on PAR-1 activation, and also characterized PAR-1 desensitization. This is the first study, which shows that OLN-93 oligodendrocytes functionally express PAR-1, and identifies the receptor coupling to mobilization of intracellular calcium. Moreover, the expression of PAR-1 was demonstrated by RT-PCR in primary oligodendrocytes from rat brain.
Collapse
Affiliation(s)
- Y Wang
- Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Institut für Neurobiochemie, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
50
|
Quinton TM, Kim S, Derian CK, Jin J, Kunapuli SP. Plasmin-mediated Activation of Platelets Occurs by Cleavage of Protease-activated Receptor 4. J Biol Chem 2004; 279:18434-9. [PMID: 14973136 DOI: 10.1074/jbc.m401431200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The activation of plasmin from its circulating precursor plasminogen is the mechanism of several clot-busting drugs used to clinically treat patients who have suffered a stroke; however, plasmin thus generated has been shown to activate platelets directly. There has been speculation as to whether plasmin interacts with the protease-activated receptors (PARs) because of its similarity in amino acid specificity with the classic platelet activator thrombin. We have investigated whether plasmin activates platelets via PAR activation through multiple complementary approaches. At concentrations sufficient to induce human platelet aggregation, plasmin released very little calcium compared with that induced by thrombin, the PAR-1 agonist peptide SFLLRN, or the PAR-4 agonist peptide AYPGKF. Stimulation of platelets with plasmin initially failed to desensitize additional stimulation with SFLLRN or AYPGKF, but a prolonged incubation with plasmin desensitized platelets to further stimulation by thrombin. The desensitization of PAR-1 had no effect on plasmin-induced platelet aggregation and yielded an aggregation profile that was similar to plasmin in response to a low dose of thrombin. However, PAR-4 desensitization completely eliminated aggregation in response to plasmin. Inclusion of the PAR-1-specific antagonist BMS-200261 inhibited platelet aggregation induced by a low dose of thrombin but not by plasmin. Additionally, mouse platelets naturally devoid of PAR-1 showed a full aggregation response to plasmin in comparison to thrombin. Furthermore, human and mouse platelets treated with a PAR-4 antagonist, as well as platelets isolated from PAR-4 homozygous null mice, failed to aggregate in response to plasmin. Finally, a protease-resistant recombinant PAR-4 was refractory to activation by plasmin. We conclude that plasmin induces platelet aggregation primarily through slow cleavage of PAR-4.
Collapse
Affiliation(s)
- Todd M Quinton
- Sol Sherry Thrombosis Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | |
Collapse
|