1
|
Sex differences in health and disease: A review of biological sex differences relevant to cancer with a spotlight on glioma. Cancer Lett 2020; 498:178-187. [PMID: 33130315 DOI: 10.1016/j.canlet.2020.07.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022]
Abstract
The influence of biological sex differences on human health and disease, while being increasingly recognized, has long been underappreciated and underexplored. While humans of all sexes are more alike than different, there is evidence for sex differences in the most basic aspects of human biology and these differences have consequences for the etiology and pathophysiology of many diseases. In a disease like cancer, these consequences manifest in the sex biases in incidence and outcome of many cancer types. The ability to deliver precise, targeted therapies to complex cancer cases is limited by our current understanding of the underlying sex differences. Gaining a better understanding of the implications and interplay of sex differences in diseases like cancer will thus be informative for clinical practice and biological research. Here we review the evidence for a broad array of biological sex differences in humans and discuss how these differences may relate to observed sex differences in various diseases, including many cancers and specifically glioblastoma. We focus on areas of human biology that play vital roles in healthy and disease states, including metabolism, development, hormones, and the immune system, and emphasize that the intersection of sex differences in these areas should not go overlooked. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.
Collapse
|
2
|
Gur S, Alzweri L, Yilmaz‐Oral D, Kaya‐Sezginer E, Abdel‐Mageed AB, Dick B, Sikka SC, Volkan Oztekin C, Hellstrom WJG. Testosterone positively regulates functional responses and nitric oxide expression in the isolated human corpus cavernosum. Andrology 2020; 8:1824-1833. [DOI: 10.1111/andr.12866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 04/30/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Serap Gur
- Department of Urology Tulane University Health Sciences Center New Orleans LA USA
- Department of Pharmacology Faculty of Pharmacy Ankara University Ankara Turkey
| | - Laith Alzweri
- Department of Urology Tulane University Health Sciences Center New Orleans LA USA
- Division of Urology, Department of Surgery University of Texas Medical Branch Galveston TX USA
| | - Didem Yilmaz‐Oral
- Department of Pharmacology Faculty of Pharmacy Cukurova University Adana Turkey
| | - Ecem Kaya‐Sezginer
- Department of Biochemistry Faculty of Pharmacy Ankara University Ankara Turkey
| | - Asim B Abdel‐Mageed
- Department of Urology Tulane University Health Sciences Center New Orleans LA USA
| | - Brian Dick
- Department of Urology Tulane University Health Sciences Center New Orleans LA USA
| | - Suresh C. Sikka
- Department of Urology Tulane University Health Sciences Center New Orleans LA USA
| | - Cetin Volkan Oztekin
- Department of Urology Faculty of Medicine University of KyreniaTurkish Republic of North Cyprus Girne, Mersin 10 Turkey
| | | |
Collapse
|
3
|
Ponnusamy S, He Y, Hwang DJ, Thiyagarajan T, Houtman R, Bocharova V, Sumpter BG, Fernandez E, Johnson D, Du Z, Pfeffer LM, Getzenberg RH, McEwan IJ, Miller DD, Narayanan R. Orally Bioavailable Androgen Receptor Degrader, Potential Next-Generation Therapeutic for Enzalutamide-Resistant Prostate Cancer. Clin Cancer Res 2019; 25:6764-6780. [PMID: 31481513 DOI: 10.1158/1078-0432.ccr-19-1458] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Androgen receptor (AR)-targeting prostate cancer drugs, which are predominantly competitive ligand-binding domain (LBD)-binding antagonists, are inactivated by common resistance mechanisms. It is important to develop next-generation mechanistically distinct drugs to treat castration- and drug-resistant prostate cancers. EXPERIMENTAL DESIGN Second-generation AR pan antagonist UT-34 was selected from a library of compounds and tested in competitive AR binding and transactivation assays. UT-34 was tested using biophysical methods for binding to the AR activation function-1 (AF-1) domain. Western blot, gene expression, and proliferation assays were performed in various AR-positive enzalutamide-sensitive and -resistant prostate cancer cell lines. Pharmacokinetic and xenograft studies were performed in immunocompromised rats and mice. RESULTS UT-34 inhibits the wild-type and LBD-mutant ARs comparably and inhibits the in vitro proliferation and in vivo growth of enzalutamide-sensitive and -resistant prostate cancer xenografts. In preclinical models, UT-34 induced the regression of enzalutamide-resistant tumors at doses when the AR is degraded; but, at lower doses, when the AR is just antagonized, it inhibits, without shrinking, the tumors. This indicates that degradation might be a prerequisite for tumor regression. Mechanistically, UT-34 promotes a conformation that is distinct from the LBD-binding competitive antagonist enzalutamide and degrades the AR through the ubiquitin proteasome mechanism. UT-34 has a broad safety margin and exhibits no cross-reactivity with G-protein-coupled receptor kinase and nuclear receptor family members. CONCLUSIONS Collectively, UT-34 exhibits the properties necessary for a next-generation prostate cancer drug.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Yali He
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Rene Houtman
- PamGene International, Den Bosch, the Netherlands
| | | | | | - Elias Fernandez
- Biochemistry and Cell & Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Daniel Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ziyun Du
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Lawrence M Pfeffer
- Department of Pathology, University of Tennessee Health Science Center, Memphis, Tennessee
| | | | - Iain J McEwan
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ramesh Narayanan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee.
- West Cancer Center, Memphis, Tennessee
| |
Collapse
|
4
|
Sahu B, Pihlajamaa P, Dubois V, Kerkhofs S, Claessens F, Jänne OA. Androgen receptor uses relaxed response element stringency for selective chromatin binding and transcriptional regulation in vivo. Nucleic Acids Res 2014; 42:4230-40. [PMID: 24459135 PMCID: PMC3985627 DOI: 10.1093/nar/gkt1401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The DNA-binding domains (DBDs) of class I steroid receptors—androgen, glucocorticoid, progesterone and mineralocorticoid receptors—recognize a similar cis-element, an inverted repeat of 5′-AGAACA-3′ with a 3-nt spacer. However, these receptors regulate transcription programs that are largely receptor-specific. To address the role of the DBD in and of itself in ensuring specificity of androgen receptor (AR) binding to chromatin in vivo, we used SPARKI knock-in mice whose AR DBD has the second zinc finger replaced by that of the glucocorticoid receptor. Comparison of AR-binding events in epididymides and prostates of wild-type (wt) and SPARKI mice revealed that AR achieves selective chromatin binding through a less stringent sequence requirement for the 3′-hexamer. In particular, a T at position 12 in the second hexamer is dispensable for wt AR but mandatory for SPARKI AR binding, and only a G at position 11 is highly conserved among wt AR-preferred response elements. Genome-wide AR-binding events agree with the respective transcriptome profiles, in that attenuated AR binding in SPARKI mouse epididymis correlates with blunted androgen response in vivo. Collectively, AR-selective actions in vivo rely on relaxed rather than increased stringency of cis-elements on chromatin. These elements are, in turn, poorly recognized by other class I steroid receptors.
Collapse
Affiliation(s)
- Biswajyoti Sahu
- Department of Physiology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland and Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, Katholieke Universiteit Leuven, Campus Gasthuisberg, BE-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
5
|
Clinckemalie L, Spans L, Dubois V, Laurent M, Helsen C, Joniau S, Claessens F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol Endocrinol 2013; 27:2028-40. [PMID: 24109594 DOI: 10.1210/me.2013-1098] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
More than 50% of prostate cancers have undergone a genomic reorganization that juxtaposes the androgen-regulated promoter of TMPRSS2 and the protein coding parts of several ETS oncogenes. These gene fusions lead to prostate-specific and androgen-induced ETS expression and are associated with aggressive lesions, poor prognosis, and early-onset prostate cancer. In this study, we showed that an enhancer at 13 kb upstream of the TMPRSS2 transcription start site is crucial for the androgen regulation of the TMPRSS2 gene when tested in bacterial artificial chromosomal vectors. Within this enhancer, we identified the exact androgen receptor binding sequence. This newly identified androgen response element is situated next to two binding sites for the pioneer factor GATA2, which were identified by DNase I footprinting. Both the androgen response element and the GATA-2 binding sites are involved in the enhancer activity. Importantly, a single nucleotide polymorphism (rs8134378) within this androgen response element reduces binding and transactivation by the androgen receptor. The presence of this SNP might have implications on the expression and/or formation levels of TMPRSS2 fusions, because both have been shown to be influenced by androgens.
Collapse
Affiliation(s)
- Liesbeth Clinckemalie
- Molecular Endocrinology Laboratory, Department of Cellular and Molecular Medicine KU Leuven, Campus Gasthuisberg O&N1, PO Box 901, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Dorak MT, Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. Front Genet 2012; 3:268. [PMID: 23226157 PMCID: PMC3508426 DOI: 10.3389/fgene.2012.00268] [Citation(s) in RCA: 309] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/06/2012] [Indexed: 12/25/2022] Open
Abstract
The gender difference in cancer susceptibility is one of the most consistent findings in cancer epidemiology. Hematologic malignancies are generally more common in males and this can be generalized to most other cancers. Similar gender differences in non-malignant diseases including autoimmunity, are attributed to hormonal or behavioral differences. Even in early childhood, however, where these differences would not apply, there are differences in cancer incidence between males and females. In childhood, few cancers are more common in females, but overall, males have higher susceptibility. In Hodgkin lymphoma, the gender ratio reverses toward adolescence. The pattern that autoimmune disorders are more common in females, but cancer and infections in males suggests that the known differences in immunity may be responsible for this dichotomy. Besides immune surveillance, genome surveillance mechanisms also differ in efficiency between males and females. Other obvious differences include hormonal ones and the number of X chromosomes. Some of the differences may even originate from exposures during prenatal development. This review will summarize well-documented examples of gender effect in cancer susceptibility, discuss methodological issues in exploration of gender differences, and present documented or speculated mechanisms. The gender differential in susceptibility can give important clues for the etiology of cancers and should be examined in all genetic and non-genetic association studies.
Collapse
Affiliation(s)
- M Tevfik Dorak
- Robert Stempel College of Public Health and Social Work, Florida International University Miami, FL, USA
| | | |
Collapse
|
8
|
Kerkhofs S, Dubois V, De Gendt K, Helsen C, Clinckemalie L, Spans L, Schuit F, Boonen S, Vanderschueren D, Saunders PTK, Verhoeven G, Claessens F. A role for selective androgen response elements in the development of the epididymis and the androgen control of the 5
α
reductase II gene. FASEB J 2012; 26:4360-72. [DOI: 10.1096/fj.11-202283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanie Kerkhofs
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Karel De Gendt
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Christine Helsen
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Liesbeth Clinckemalie
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Lien Spans
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular MedicineKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Steven Boonen
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Dirk Vanderschueren
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences UnitThe Queen's Medical Research InstituteEdinburghUK
| | - Guido Verhoeven
- Division of Clinical and Experimental EndocrinologyKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryKatholieke Universiteit LeuvenCampus GasthuisbergLeuvenBelgium
| |
Collapse
|
9
|
Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA. Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible? Bioessays 2009; 31:629-41. [DOI: 10.1002/bies.200800138] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Schauwaers K, De Gendt K, Saunders PTK, Atanassova N, Haelens A, Callewaert L, Moehren U, Swinnen JV, Verhoeven G, Verrijdt G, Claessens F. Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc Natl Acad Sci U S A 2007; 104:4961-6. [PMID: 17360365 PMCID: PMC1829247 DOI: 10.1073/pnas.0610814104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Androgens influence transcription of their target genes through the activation of the androgen receptor (AR) that subsequently interacts with specific DNA motifs in these genes. These DNA motifs, called androgen response elements (AREs), can be classified in two classes: the classical AREs, which are also recognized by the other steroid hormone receptors; and the AR-selective AREs, which display selectivity for the AR. For in vitro interaction with the selective AREs, the androgen receptor DNA-binding domain is dependent on specific residues in its second zinc-finger. To evaluate the physiological relevance of these selective elements, we generated a germ-line knockin mouse model, termed SPARKI (SPecificity-affecting AR KnockIn), in which the second zinc-finger of the AR was replaced with that of the glucocorticoid receptor, resulting in a chimeric protein that retains its ability to bind classical AREs but is unable to bind selective AREs. The reproductive organs of SPARKI males are smaller compared with wild-type animals, and they are also subfertile. Intriguingly, however, they do not display any anabolic phenotype. The expression of two testis-specific, androgen-responsive genes is differentially affected by the SPARKI mutation, which is correlated with the involvement of different types of response elements in their androgen responsiveness. In this report, we present the first in vivo evidence of the existence of two functionally different types of AREs and demonstrate that AR-regulated gene expression can be targeted based on this distinction.
Collapse
Affiliation(s)
- Kris Schauwaers
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
| | - Karel De Gendt
- Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Philippa T. K. Saunders
- Medical Research Council Human Reproductive Sciences Unit, 47 Little France Crescent, Edinburgh EH16 4TJ, Scotland; and
| | - Nina Atanassova
- Institute of Experimental Morphology and Anthropology with Museum, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Annemie Haelens
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
| | - Leen Callewaert
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
| | - Udo Moehren
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
| | - Johannes V. Swinnen
- Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Guido Verhoeven
- Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
| | - Guy Verrijdt
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
| | - Frank Claessens
- *Molecular Endocrinology Laboratory, Department of Molecular Cell Biology, and
- Laboratory for Experimental Medicine and Endocrinology, Department of Developmental Biology, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
11
|
Cochrane DR, Wang Z, Muramaki M, Gleave ME, Nelson CC. Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 2006; 282:2278-87. [PMID: 17148459 DOI: 10.1074/jbc.m608162200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clusterin mRNA levels were shown to increase dramatically in rat ventral prostate following castration, and clusterin was therefore originally thought to be repressed by androgens. It was later discovered that the increased clusterin levels are most likely due to castration-induced apoptosis of the prostatic epithelium rather than direct action of the androgen receptor (AR). In the studies presented here, LNCaP cells in culture and rat prostate organ culture were treated with androgens. Clusterin mRNA and protein are shown to increase with androgen treatment in a time- and dose-dependent manner. This induction of clusterin requires AR and can be inhibited by casodex, an AR antagonist. We have found that the first intron of the clusterin gene contains putative androgen response elements. The intronic region is shown to be bound by AR in chromatin immunoprecipitation assays and is transactivated by AR in reporter assays. Two isoforms of clusterin result from alternate transcriptional start sites. Both isoforms are cytoprotective; however, Isoform 1 has the capacity to produce a splice variant that is apoptotic. Real time PCR was used to determine the response of the two isoforms to androgens. Intriguingly, these results illustrated that Isoform 2 was up-regulated, whereas Isoform 1 was down-regulated by androgens. Isoform 2 was also increased as the LNCaP xenograft tumor progressed to androgen-independence, whereas Isoform 1 was unaltered. This androgen regulation of clusterin may underline the cytoprotective role of androgens in normal prostate physiology as well as play an antiapoptotic role in prostate cancer progression.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
12
|
Geserick C, Meyer HA, Haendler B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol Cell Endocrinol 2005; 236:1-7. [PMID: 15876478 DOI: 10.1016/j.mce.2005.03.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 03/23/2005] [Indexed: 11/25/2022]
Abstract
Steroid receptors are ligand-activated transcription factors which control the expression of their target genes by binding to specific DNA elements. Consensus response elements have been delineated for the glucocorticoid, androgen, progesterone and mineralocorticoid receptors on one hand (steroid response element, SRE) and for the estrogen receptor on the other hand (estrogen response element, ERE). Small variations in these sequences not only affect the binding but may also have a dramatic impact on the transcriptional activity of steroid receptors. It has now become obvious that DNA response elements do not merely tether regulatory proteins to control regions of target genes but may additionally impart conformational changes onto the DNA-binding domain as well as to neighbouring domains of steroid receptors. This in turn will create unique platforms for selective recruitment of cofactors and possibly for induction of modifications in local chromatin architecture. An additional level of complexity is added by the frequent presence of multiple response elements in gene promoter regions. The allosteric effects of DNA response elements on steroid receptors may be essential for differential gene expression and this offers interesting perspectives for the identification of selective modulators.
Collapse
|
13
|
Robins DM. Multiple mechanisms of male-specific gene expression: lessons from the mouse sex-limited protein (Slp) gene. ACTA ACUST UNITED AC 2005; 78:1-36. [PMID: 15210327 DOI: 10.1016/s0079-6603(04)78001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- Diane M Robins
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109-0618, USA
| |
Collapse
|
14
|
Taneja SS, Ha S, Swenson NK, Torra IP, Rome S, Walden PD, Huang HY, Shapiro E, Garabedian MJ, Logan SK. ART-27, an Androgen Receptor Coactivator Regulated in Prostate Development and Cancer. J Biol Chem 2004; 279:13944-52. [PMID: 14711828 DOI: 10.1074/jbc.m306576200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor trapped clone-27 (ART-27) is a newly described transcriptional coactivator that binds to the N terminus of the androgen receptor (AR). Given the vital importance of AR signaling in prostate growth and differentiation, we investigated the role of ART-27 in these processes. Immunohistochemical studies indicate that ART-27 protein is expressed in differentiated epithelial cells of adult human prostate and breast tissue. In prostate, ART-27 is abundant in AR-positive prostate luminal epithelial cells, in contrast to the stroma, where cells express AR but not ART-27. The use of a rat model of androgen depletion/reconstitution indicates that ART-27 expression is associated with the elaboration of differentiated prostate epithelial cells. Interestingly, regulated expression of ART-27 in the androgen-sensitive LNCaP prostate cancer cell line inhibits androgen-mediated cellular proliferation and enhances androgen-mediated transcription of the prostate-specific antigen (PSA) gene. Consistent with a growth suppressive function, we show that ART-27 expression levels are negligible in human prostate cancer. Importantly, examination of ART-27 protein expression in early fetal prostate development demonstrates that ART-27 is detected only when the developing prostate gland has proceeded from a solid mass of undifferentiated cells to a stage in which differentiated luminal epithelial cells are evident. Thus, ART-27 is an AR cofactor shown to be subject to both cell type and developmental regulation in humans. Overall, the results suggest that decreased levels of ART-27 protein in prostate cancer tissue may occur as a result of de-differentiation, and indicate that ART-27 is likely to regulate a subset of AR-responsive genes important to prostate growth suppression and differentiation.
Collapse
Affiliation(s)
- Samir S Taneja
- Departments of Urology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Przibilla S, Hitchcock WW, Szécsi M, Grebe M, Beatty J, Henrich VC, Spindler-Barth M. Functional studies on the ligand-binding domain of Ultraspiracle from Drosophila melanogaster. Biol Chem 2004; 385:21-30. [PMID: 14977043 DOI: 10.1515/bc.2004.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe functional insect ecdysteroid receptor is comprised of the ecdysone receptor (EcR) and Ultraspiracle (USP). The ligand-binding domain (LBD) of USP was fused to the GAL4 DNA-binding domain (GAL4-DBD) and characterized by analyzing the effect of site-directed mutations in the LBD. Normal and mutant proteins were tested for ligand and DNA binding, dimerization, and their ability to induce gene expression. The presence of helix 12 proved to be essential for DNA binding and was necessary to confer efficient ecdysteroid binding to the heterodimer with the EcR (LBD), but did not influence dimerization. The antagonistic position of helix 12 is indispensible for interaction between the fusion protein and DNA, whereas hormone binding to the EcR (LBD) was only partially reduced if fixation of helix 12 was disturbed. The mutation of amino acids, which presumably bind to a fatty acid evoked a profound negative influence on transactivation ability, although enhanced transactivation potency and ligand binding to the ecdysteroid receptor was impaired to varying degrees by mutation of these residues. Mutations of one fatty acidbinding residue within the ligand-binding pocket, I323, however, evoked enhanced transactivation. The results confirmed that the LBD of Ultraspiracle modifies ecdysteroid receptor function through intermolecular interactions and demonstrated that the ligand-binding pocket of USP modifies the DNA-binding and transactivation abilities of the fusion protein.
Collapse
Affiliation(s)
- Sabina Przibilla
- Department of General Zoology and Endocrinology, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Grebe M, Przibilla S, Henrich VC, Spindler-Barth M. Characterization of the ligand-binding domain of the ecdysteroid receptor from Drosophila melanogaster. Biol Chem 2003; 384:105-16. [PMID: 12674504 DOI: 10.1515/bc.2003.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mutants created by site-directed mutagenesis were used to elucidate the function of amino acids involved in ligand binding to ecdysteroid receptor (EcR) and heterodimer formation with ultraspiracle (USP). The results demonstrate the importance of the C-terminal part of the D-domain and helix 12 of EcR for hormone binding. Some amino acids are involved either in ligand binding to EcR (E476, M504, D572, I617, N626) or ligand-dependent heterodimerization as determined by gel mobility shift assays (A612, L615, T619), while others are involved in both functions (K497, E648). Some amino acids are suboptimal for ligand binding (L615, T619), but mediate ligand-dependent dimerization. We conclude that the enhanced regulatory potential by ligand-dependent modulation of dimerization in the wild type is achieved at the expense of optimal ligand binding. Mutation of amino acids (K497, E648) involved in the salt bridge between helix 4 and 12 impair ligand binding to EcR more severely than hormone binding to the heterodimer, indicating that to some extent heterodimerization compensates for the deleterious effect of certain mutations. Different effects of the same point mutations on ligand binding to EcR and EcR/USP (R511, A612, L615, I617, T619, N626) indicate that the ligand-binding pocket is modified by heterodimerization.
Collapse
Affiliation(s)
- Marco Grebe
- Abteilung für Allgemeine Zoologie und Endokrinologie, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | | | | | | |
Collapse
|
17
|
Jain A, Lam A, Vivanco I, Carey MF, Reiter RE. Identification of an androgen-dependent enhancer within the prostate stem cell antigen gene. Mol Endocrinol 2002; 16:2323-37. [PMID: 12351697 DOI: 10.1210/me.2002-0004] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prostate stem cell antigen (PSCA) is emerging as an important diagnostic marker and therapeutic target in prostate cancer. Previous studies indicated that PSCA was directly regulated by androgens, but the mechanism has not been elucidated. Here we describe the identification of a compact cell-specific and androgen-responsive enhancer between 2.7 and 3 kb upstream of the transcription start site. The enhancer functions autonomously when positioned immediately adjacent to a minimal promoter. Deoxyribonuclease I footprinting analysis with recombinant androgen receptor (AR) reveals that the enhancer contains two AR binding sites at one end. Mutational analysis of the AR binding sites revealed the importance of the higher affinity one. The dissociation constant of the high affinity binding site (androgen response element I) was determined to be approximately 87 nM. The remainder of the enhancer contains elements that function synergistically with the AR. We discuss the structural organization of the PSCA enhancer and compare it with that found in other AR-regulated genes.
Collapse
Affiliation(s)
- Anjali Jain
- Department of Urology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
18
|
Verrijdt G, Schauwaers K, Haelens A, Rombauts W, Claessens F. Functional interplay between two response elements with distinct binding characteristics dictates androgen specificity of the mouse sex-limited protein enhancer. J Biol Chem 2002; 277:35191-201. [PMID: 12107189 DOI: 10.1074/jbc.m205928200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the aspects involved in steroid-specific transcriptional regulation are still unsolved to date. We describe here the detailed characterization of the mouse sex-limited protein enhancer as a paradigm for androgen-specific control of gene expression. By deletion analysis, we delineate the minimal enhancer region displaying androgen sensitivity and specificity. We also show that each of the three hormone response elements (HRE), which constitute this minimal enhancer region, is essential but not sufficient for its functionality. When investigated as isolated elements, HRE1 is inactive and HRE3 is a potent androgen response element as well as GRE. Only the non-canonical HRE2 (5-TGGTCAgccAGTTCT-3') is capable of conferring an androgen-specific transcriptional response to a heterologous promoter. This finding is correlated with the fact that HRE2 is recognized in binding assays in vitro by the DNA-binding domain (DBD) of the androgen but not the glucocorticoid receptor, while HRE3 is recognized by both DBDs. Differential binding of the androgen receptor to HRE2 in the context of the enhancer was analyzed in more detail in footprinting assays in vitro. In transient transfection experiments using chimeric receptors, the inability of the glucocorticoid receptor to transactivate via the slp-ARU as well as the isolated slp-HRE2 was rescued by the replacement of its DNA-binding domain with that of the androgen receptor. Our data suggest that the functional interplay between the weak, but highly androgen-specific HRE2 and the adjacent strong, but non-selective HRE3 is the major determinant in the generation of androgen specificity of transcriptional response via the sex-limited protein enhancer.
Collapse
Affiliation(s)
- Guy Verrijdt
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Leuven B-3000, Belgium
| | | | | | | | | |
Collapse
|
19
|
Abstract
Androgen receptor (AR) is a member of the steroid hormone receptor family of molecules. AR primarily is responsible for mediating the physiologic effects of androgens by binding to specific DNA sequences that influence transcription of androgen-responsive genes. The three-dimensional structure of the AR ligand-binding domain has shown it is similar to other steroid hormone receptors and that ligand binding alters the protein conformation to allow binding of coactivator molecules that amplify the hormone signal and mediate transcriptional initiation. However, AR also undergoes intramolecular interactions that regulate its interactions with coactivators and influence its activity. A large number of naturally occurring mutations of the human AR gene have provided important information about AR molecular structure and intermolecular interactions. AR is also a critical mediator of prostate cancer promotion, conferring growth signals to prostate cancer cells throughout the natural history of the disease. Late-stage prostate cancer, unresponsive to hormonal deprivation, sustains AR signaling through a diverse array of molecular strategies. Variations in the AR gene may also confer genetic predisposition to prostate cancer development and severity. Further understanding of AR action and new strategies to interfere with AR signaling hold promise for improving prostate cancer therapy.
Collapse
Affiliation(s)
- Edward P Gelmann
- Department of Oncology, Lombardi Cancer Center, Georgetown University School of Medicine, 3800 Reservoir Rd NW, Washington, DC 20007-2197, USA.
| |
Collapse
|
20
|
Grebe M, Spindler-Barth M. Expression of ecdysteroid receptor and ultraspiracle from Chironomus tentans (Insecta, Diptera) in E. coli and purification in a functional state. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:167-174. [PMID: 11755059 DOI: 10.1016/s0965-1748(01)00098-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Full length clones of ecdysteroid receptor (EcR) and Ultraspiracle (USP) from Chironomus tentans were expressed as GST fusion proteins in E. coli and purified by affinity chromatography. The absence of detergents during the purification procedure is essential for retaining receptor function, especially ligand binding. Presence of USP is mandatory for ligand binding to EcR, but no other cofactors or posttranslational modifications seem to be important, since Scatchard plots revealed the same characteristics (two high affinity binding sites for Ponasterone A with K(D1)=0.24+/-0.1nM and K(D2)=3.9+/-1.3.nM) as found in 0.4 M NaCl extracts of Chironomus cells. Gel mobility shift assays showed binding of the heterodimer to PAL and DR5 even after removal of the GST-tag, whereas EcR binding to PAL1 is GST-dependent. USP binds preferentially to DR5. Addition of unprogrammed reticulocyte lysate improves ligand binding only slightly. Removal of GST has no effect on (3)H-ponasterone A binding, but alters DNA binding characteristics. Calculation of specific binding (5.3+3.0 nmol/mg GST EcR) revealed that 47+/-26% of purified receptor protein was able to bind ligand. The addition of purified EcR to cell extracts of hormone resistant subclones of the epithelial cell line from C. tentans, which have lost their ability to bind ligand, restores specific binding of (3)H-ponasterone A.
Collapse
Affiliation(s)
- Marco Grebe
- Abteilung für Allgemeine Zoologie und Endokrinologie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
21
|
Markus SM, Taneja SS, Logan SK, Li W, Ha S, Hittelman AB, Rogatsky I, Garabedian MJ. Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus. Mol Biol Cell 2002; 13:670-82. [PMID: 11854421 PMCID: PMC65658 DOI: 10.1091/mbc.01-10-0513] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2001] [Revised: 10/19/2001] [Accepted: 11/08/2001] [Indexed: 11/11/2022] Open
Abstract
The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Microbiology, The Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
He B, Bowen NT, Minges JT, Wilson EM. Androgen-induced NH2- and COOH-terminal Interaction Inhibits p160 coactivator recruitment by activation function 2. J Biol Chem 2001; 276:42293-301. [PMID: 11551963 DOI: 10.1074/jbc.m107492200] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor undergoes an androgen-specific NH(2)- and COOH-terminal interaction between NH(2)-terminal motif FXXLF and activation function 2 in the ligand binding domain. We demonstrated previously that activation function 2 forms overlapping binding sites for the androgen receptor FXXLF motif and the LXXLL motifs of p160 coactivators. Here we investigate the influence of the NH(2)- and COOH-terminal interaction on androgen receptor function. Specificity and relative potency of the motif interactions were evaluated by ligand dissociation rate and the stability of chimeras of transcriptional intermediary factor 2 with full-length and truncated androgen or glucocorticoid receptor. The results indicate that the androgen receptor activation function 2 interacts specifically and with greater avidity with the single FXXLF motif than with the LXXLL motif region of p160 coactivators, whereas this region of the glucocorticoid receptor interacts preferentially with the LXXLL motifs. Expression of the LXXLL motifs as a fusion protein with the glucocorticoid receptor resulted in loss of agonist-induced receptor destabilization and increased half-time of ligand dissociation. The NH(2)- and COOH-terminal interaction inhibited binding and activation by transcriptional intermediary factor 2. We conclude that the androgen receptor NH(2)- and COOH-terminal interaction reduces the dissociation rate of bound androgen, stabilizes the receptor, and inhibits p160 coactivator recruitment by activation function 2.
Collapse
Affiliation(s)
- B He
- Department of Biochemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
23
|
Barbulescu K, Geserick C, Schüttke I, Schleuning WD, Haendler B. New androgen response elements in the murine pem promoter mediate selective transactivation. Mol Endocrinol 2001; 15:1803-16. [PMID: 11579212 DOI: 10.1210/mend.15.10.0708] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Pem homeobox transcription factor is expressed under androgen control in the testis and epididymis. It is also transcribed in the ovary, muscle, and placenta. The mouse Pem gene promoter was cloned and sequenced. It was analyzed in transactivation tests using CV-1 and PC-3 cells expressing the AR and found to be strongly stimulated by androgens. EMSAs and mutational analysis of the Pem promoter allowed the identification of two functional androgen response elements named ARE-1 and ARE-2. They both differed from the consensus semipalindromic steroid response element and exhibited characteristics of direct repeats of the TGTTCT half-site. Unlike the steroid response element, both Pem androgen response elements were selectively responsive to androgen stimulation. Specific mutations in the left half-site of Pem ARE-1 and ARE-2, but not of the steroid response element, were still compatible with AR binding in the EMSA. In addition, Pem ARE-1, but not ARE-2 or the steroid response element, showed some flexibility with regard to spacing between half-sites. These results strongly suggest that the AR interacts differently with direct repeats than with inverted repeats, potentially leading to cis element-driven selective properties. Thus, the existence of several classes of DNA response elements might be an essential feature of differential androgen regulation.
Collapse
Affiliation(s)
- K Barbulescu
- Research Laboratories of Schering AG, D-13342 Berlin, Germany
| | | | | | | | | |
Collapse
|
24
|
Gonzalez MI, Robins DM. Oct-1 preferentially interacts with androgen receptor in a DNA-dependent manner that facilitates recruitment of SRC-1. J Biol Chem 2001; 276:6420-8. [PMID: 11096094 DOI: 10.1074/jbc.m008689200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene regulation by steroid hormone receptors depends on the particular character of the DNA response element, the array of neighboring transcription factors, and recruitment of coactivators that interface with the transcriptional machinery. We are studying these complex interactions for the androgen-dependent enhancer of the mouse sex-limited protein (Slp) gene. This enhancer has, in addition to multiple androgen receptor (AR)-binding sites, a central region (FPIV) with a binding site for the ubiquitous transcription factor Oct-1 that appears crucial for hormonal regulation in vivo. To examine the role of Oct-1 in androgen-specific gene activation, we tested the interaction of Oct-1 with AR versus glucocorticoid receptor (GR) in vivo and in vitro. Oct-1 coimmunoprecipitated from cell lysates with both AR and GR, but significant association with AR required both proteins to be DNA-bound. This was confirmed by sensitivity of the protein association to treatment with ethidium bromide or micrococcal nuclease. Addition of DNA to micrococcal nuclease-treated samples restored interaction, even when binding sites were on separate DNA molecules, suggesting association was due to direct protein-protein interaction and not indirect tethering via the DNA. AR/GR chimeras revealed that interaction of the N and C termini of AR was required to communicate the DNA-bound state that enhances interaction with Oct-1. Protease digestion assays of hormone-bound receptors revealed further conformational changes in the ligand binding domain of AR, but not GR, upon DNA binding. Furthermore, these conformational changes led to increased interaction with the coactivator SRC-1, via the NID 4 domain, suggesting DNA binding facilitates recruitment of SRC-1 by the AR-Oct-1 complex. Altogether, these results suggest that the precise arrangement of binding sites in the Slp enhancer ensures proper hormonal response by imposing differential interactions between receptors and Oct-1, which in turn contributes to SRC-1 recruitment to the promoter.
Collapse
Affiliation(s)
- M I Gonzalez
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | |
Collapse
|
25
|
Grad JM, Lyons LS, Robins DM, Burnstein KL. The androgen receptor (AR) amino-terminus imposes androgen-specific regulation of AR gene expression via an exonic enhancer. Endocrinology 2001; 142:1107-16. [PMID: 11181525 DOI: 10.1210/endo.142.3.8049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Androgen and glucocorticoid receptor (AR, GR), two closely related members of the nuclear receptor superfamily, can recognize a similar cis-acting DNA sequence, or hormone response element (HRE). Despite this apparent commonality, these receptors regulate distinct target genes in vivo. The AR gene itself is regulated by AR but not GR in a variety of cell types, including osteoblast-like cells, as shown here. To understand this specificity, we first identified the DNA sequences responsible for androgen-mediated up-regulation of AR messenger RNA. A 6.5-kb region encompassing exon D, intron 4, and exon E of the AR gene contains four exonic HREs and exhibits cell type-specific, AR-mediated transcriptional enhancement when placed upstream of a heterologous promoter and reporter gene. A 350-bp fragment consisting of just exons D and E exhibits the same cell- and androgen-specificity as the 6.5-kb region, as well as the native AR gene. Consistent with a role for the exonic HREs, androgen regulation via this intragenic enhancer requires the HREs as well as a functional receptor DNA binding domain. A panel of AR/GR chimeric receptors was used to test which AR domains (amino-terminal, DNA binding or ligand binding) confer androgen-specific regulation of the 350-bp enhancer. Only chimeric receptors containing the amino-terminus of AR induced reporter gene activity from the AR gene enhancer. Further, a constitutively active AR consisting of only the AR amino-terminus and DNA binding domain (AA phi) retained the capacity to activate the internal responsive region, unlike a constitutively active chimera harboring the GR amino-terminus and AR DNA binding domain (GA phi). Thus, the AR amino terminus is the sole determinant for androgen-specific regulation of the AR gene internal enhancer. These findings support a model in which the amino termini of ARs bound to HREs within the AR gene interact with an exclusive auxiliary factor(s) to elicit androgen-specific regulation of AR messenger RNA. This is the first example of androgen-specific response in which the necessary and sufficient distinguishing capacity resides within the AR amino terminus.
Collapse
Affiliation(s)
- J M Grad
- Department of Molecular & Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
26
|
Kotaja N, Aittomäki S, Silvennoinen O, Palvimo JJ, Jänne OA. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 2000; 14:1986-2000. [PMID: 11117529 DOI: 10.1210/mend.14.12.0569] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid receptors mediate their actions by using various coregulatory proteins. We have recently characterized ARIP3/PIASx alpha as an androgen receptor (AR)-interacting protein (ARIP) that belongs to the PIAS [protein inhibitor of activated STAT (signal transducer and activator of transcription)] protein family implicated in the inhibition of cytokine signaling. We have analyzed herein the roles that four different PIAS proteins (ARIP3/PIASx alpha, Miz1/PIASx beta, GBP/PIAS1, and PIAS3) play in the regulation of steroid receptor- or STAT-mediated transcriptional activation. All PIAS proteins are able to coactivate steroid receptor-dependent transcription but to a differential degree, depending on the receptor, the promoter, and the cell type. Miz1 and PIAS1 are more potent than ARIP3 in activating AR function on minimal promoters. With the natural probasin promoter, PIAS proteins influence AR function more divergently, in that ARIP3 represses, but Miz1 and PIAS1 activate it. Miz1 and PIAS1 possess inherent transcription activating function, whereas ARIP3 and PIAS3 are devoid of this feature. ARIP3 enhances glucocorticoid receptor-dependent transcription more efficiently than Miz1 or PIAS1, and all PIAS proteins also activate estrogen receptor- and progesterone receptor-dependent transcription but to a dissimilar degree. The same amounts of PIAS proteins that modulate steroid receptor-dependent transcription influence only marginally transactivation mediated by various STAT proteins. It remains to be established whether the PIAS proteins play a more significant physiological role in steroid receptor than in cytokine signaling.
Collapse
Affiliation(s)
- N Kotaja
- Department of Physiology, Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Iñiguez-Lluhí JA, Pearce D. A common motif within the negative regulatory regions of multiple factors inhibits their transcriptional synergy. Mol Cell Biol 2000; 20:6040-50. [PMID: 10913186 PMCID: PMC86080 DOI: 10.1128/mcb.20.16.6040-6050.2000] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
DNA regulatory elements frequently harbor multiple recognition sites for several transcriptional activators. The response mounted from such compound response elements is often more pronounced than the simple sum of effects observed at single binding sites. The determinants of such transcriptional synergy and its control, however, are poorly understood. Through a genetic approach, we have uncovered a novel protein motif that limits the transcriptional synergy of multiple DNA-binding regulators. Disruption of these conserved synergy control motifs (SC motifs) selectively increases activity at compound, but not single, response elements. Although isolated SC motifs do not regulate transcription when tethered to DNA, their transfer to an activator lacking them is sufficient to impose limits on synergy. Mechanistic analysis of the two SC motifs found in the glucocorticoid receptor N-terminal region reveals that they function irrespective of the arrangement of the receptor binding sites or their distance from the transcription start site. Proper function, however, requires the receptor's ligand-binding domain and an engaged dimer interface. Notably, the motifs are not functional in yeast and do not alter the effect of p160 coactivators, suggesting that they require other nonconserved components to operate. Many activators across multiple classes harbor seemingly unrelated negative regulatory regions. The presence of SC motifs within them, however, suggests a common function and identifies SC motifs as critical elements of a general mechanism to modulate higher-order interactions among transcriptional regulators.
Collapse
Affiliation(s)
- J A Iñiguez-Lluhí
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan 48109-0632, USA.
| | | |
Collapse
|
28
|
He B, Kemppainen JA, Wilson EM. FXXLF and WXXLF sequences mediate the NH2-terminal interaction with the ligand binding domain of the androgen receptor. J Biol Chem 2000; 275:22986-94. [PMID: 10816582 DOI: 10.1074/jbc.m002807200] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nuclear receptor superfamily members of eukaryotic transcriptional regulators contain a highly conserved activation function 2 (AF2) in the hormone binding carboxyl-terminal domain and, for some, an additional activation function 1 in the NH(2)-terminal region which is not conserved. Recent biochemical and crystallographic studies revealed the molecular basis of AF2 is hormone-dependent recruitment of LXXLL motif-containing coactivators, including the p160 family, to a hydrophobic cleft in the ligand binding domain. Our previous studies demonstrated that AF2 in the androgen receptor (AR) binds only weakly to LXXLL motif-containing coactivators and instead mediates an androgen-dependent interaction with the AR NH(2)-terminal domain required for its physiological function. Here we demonstrate in a mammalian two-hybrid assay, glutathione S-transferase fusion protein binding studies, and functional assays that two predicted alpha-helical regions that are similar, but functionally distinct from the p160 coactivator interaction sequence, mediate the androgen-dependent, NH(2)- and carboxyl-terminal interaction. FXXLF in the AR NH(2)-terminal domain with the sequence (23)FQNLF(27) mediates interaction with AF2 and is the predominant androgen-dependent interaction site. This FXXLF sequence and a second NH(2)-terminal WXXLF sequence (433)WHTLF(437) interact with different regions of the ligand binding domain to stabilize the hormone-receptor complex and may compete with AF2 recruitment of LXXLL motif-containing coactivators. The results suggest a unique mechanism for AR-mediated transcriptional activation.
Collapse
Affiliation(s)
- B He
- Laboratories for Reproductive Biology, Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
29
|
Grebe M, Rauch P, Spindler-Barth M. Characterization of subclones of the epithelial cell line from Chironomus tentans resistant to the insecticide RH 5992, a non-steroidal moulting hormone agonist. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2000; 30:591-600. [PMID: 10844251 DOI: 10.1016/s0965-1748(00)00032-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Selection of hormone resistant subclones in the continuous presence of the insecticide and ecdysteroid mimick RH 5992 (tefubenozide) resulted preferentially in clones with defects in ecdysteroid receptor function. RH 5992 is already degraded to polar products in wild-type cells; no increase in metabolism of tefubenozide is observed in resistant clones. According to Western blots, ecdysteroid receptor (EcR) and its heterodimerization partner ultraspiracle (USP) are present in all resistant clones. The concentrations are comparable to wild-type cells, but in three clones the extent of phosphorylation of USP is diminished. With regard to hormone binding several types of hormone resistance are distinguished: (1) The same two high-affinity hormone recognition sites are present as in wild-type cells (K(D1)=0.31+/-0.28 nM, K(D2)=6.5+/-2.4 nM) but the number of binding sites is reduced. (2) The binding site with the lower affinity (K(D2)) is missing. (3) The binding site with the higher affinity (K(D1)) is missing. (4) No specific binding is observed. Ponasterone A binding can be rescued by addition of EcR but not by USP. (5) Ligand specificity is altered. RH 5992 can not compete [(3)H]-ponasterone A as efficient as in wild-type cells.
Collapse
Affiliation(s)
- M Grebe
- Lehrstuhl für Entwicklungs- und Molekularbiologie der Tiere, Heinrich-Heine-Universität, D-40225, Düsseldorf, Germany
| | | | | |
Collapse
|
30
|
Verrijdt G, Schoenmakers E, Haelens A, Peeters B, Verhoeven G, Rombauts W, Claessens F. Change of specificity mutations in androgen-selective enhancers. Evidence for a role of differential DNA binding by the androgen receptor. J Biol Chem 2000; 275:12298-305. [PMID: 10766869 DOI: 10.1074/jbc.275.16.12298] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen and glucocorticoid receptors recognize identical DNA motifs, leaving unanswered the question of how steroid specificity of transcriptional regulation is established in cells containing both receptors. Here, we provide evidence that subtle differences in low affinity DNA recognition might be a crucial element in the generation of steroid-specific responses. Here we identify simple hormone response elements in the mouse sex-limited protein enhancer and the human secretory component androgen response unit to be essential for the androgen specificity of both enhancers. We describe specific in vitro binding to these motifs by the DNA-binding domain of the androgen but not the glucocorticoid receptor. Both elements can be considered partial direct repeats of the 5'-TGTTCT-3' core binding motif. In addition, we show that specific point mutations in their left half-sites, essentially changing the nature of the repeats, strongly enhance the glucocorticoid sensitivity of the respective enhancers, whereas they have no effect on their androgen responsiveness. Accordingly, these mutations allow specific binding of the glucocorticoid receptor DNA-binding domain to both elements in vitro. With these experiments, we demonstrate that differential recognition by the androgen receptor of nonconventional steroid response elements is, at least in some cases, an important mechanism in androgen-specific transcriptional regulation.
Collapse
Affiliation(s)
- G Verrijdt
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
31
|
Schoenmakers E, Verrijdt G, Peeters B, Verhoeven G, Rombauts W, Claessens F. Differences in DNA binding characteristics of the androgen and glucocorticoid receptors can determine hormone-specific responses. J Biol Chem 2000; 275:12290-7. [PMID: 10766868 DOI: 10.1074/jbc.275.16.12290] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basis for specificity of gene regulation by steroid hormone receptors remains an important problem in the study of steroid hormone action. One possible mechanism for steroid specificity is the difference in DNA binding characteristics of the receptors, although they share a high homology in their DNA-binding domains. Indeed, the androgen-specific expression of, for example, the probasin (PB) gene can be explained by the presence of an androgen response element (ARE) in its promoter (PB-ARE-2), specifically recognized by the androgen and not by the glucocorticoid receptor. Three residues in the DNA-binding domain of the AR were identified as main determinants for its high affinity for the PB-ARE-2. In addition, the direct repeat nature of this ARE seems to prohibit high affinity binding by the glucocorticoid receptor. This is confirmed by the fact that several imperfect direct repeats of the 5'-TGTTCT-3' core recognition sequence are recognized by the androgen receptor and not by the glucocorticoid receptor. Up to now, only differences between the androgen and glucocorticoid receptor in the transcription activation functions were invoked to explain the specificity of their genomic actions. In the present study, we describe the influence of the DNA-binding domain on the specificity of androgen action. The novelty of our working hypothesis resides in the demonstration of the capacity of the AR-DNA-binding domain to recognize elements with a direct repeat structure.
Collapse
Affiliation(s)
- E Schoenmakers
- Division of Biochemistry, Faculty of Medicine, Campus Gasthuisberg, University of Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
32
|
Bevan CL, Hoare S, Claessens F, Heery DM, Parker MG. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999; 19:8383-92. [PMID: 10567563 PMCID: PMC84931 DOI: 10.1128/mcb.19.12.8383] [Citation(s) in RCA: 303] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/1999] [Accepted: 09/14/1999] [Indexed: 11/20/2022] Open
Abstract
The androgen receptor is unusual among nuclear receptors in that most, if not all, of its activity is mediated via the constitutive activation function in the N terminus. Here we demonstrate that p160 coactivators such as SRC1 (steroid receptor coactivator 1) interact directly with the N terminus in a ligand-independent manner via a conserved glutamine-rich region between residues 1053 and 1123. Although SRC1 is capable of interacting with the ligand-binding domain by means of LXXLL motifs, this interaction is not essential since an SRC1 mutant with no functional LXXLL motifs retains its ability to potentiate androgen receptor activity. In contrast, mutants lacking the glutamine-rich region are inactive, indicating that this region is both necessary and sufficient for recruitment of SRC1 to the androgen receptor. This recruitment is in direct contrast to the recruitment of SRC1 to the estrogen receptor, which requires interaction with the ligand-binding domain.
Collapse
Affiliation(s)
- C L Bevan
- Molecular Endocrinology Laboratory, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | | | |
Collapse
|
33
|
Ning YM, Robins DM. AML3/CBFalpha1 is required for androgen-specific activation of the enhancer of the mouse sex-limited protein (Slp) gene. J Biol Chem 1999; 274:30624-30. [PMID: 10521447 DOI: 10.1074/jbc.274.43.30624] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex 120-base pair enhancer, derived from the mouse sex-limited protein (Slp) gene, is activated solely by the androgen receptor (AR) in specific tissues, although it contains a hormone response element recognized by several steroid receptors. The generation of this transcriptional specificity has been ascribed to the interactions of the receptor with tissue-specific nonreceptor factors bound to accessory sites within the enhancer. Protein-DNA interaction assays revealed two factors binding the 5' part of the enhancer that differ widely in abundance between cells showing AR-specific activation of the Slp element compared with those that also permit activation by glucocorticoid receptor (GR). The factor designated B formed a complex centered on the sequence TGTGGT, a core motif recognized by members of the AML/CBFalpha transcription factor family. This complex was competed by a high affinity binding site specific for AML/CBFalpha and was specifically supershifted by an antibody to AML3/CBFalpha1, placing factor B within the AML3/CBFalpha1 subclass. Interestingly, this factor was shown to bind to a second site in the 3' part of the enhancer, positioned between the two critical AR binding sites. Transfection studies revealed that AML1-ETO, a dominant-negative AML/CBFalpha construct, abrogated AR induction of the enhancer, but not of simple hormone response elements. Furthermore, overexpression of AML3/CBFalpha1 could rescue the AML1-ETO repression. Finally, glutathione S-transferase-AML/CBFalpha fusion proteins demonstrated direct interaction between AML/CBFalpha and steroid receptors. Although this interaction was equivalent between AML1/CBFalpha2 and AR or GR, AML3/CBFalpha1 showed stronger interaction with AR than with GR. These data demonstrate that AML3/CBFalpha1 is functionally required for hormonal induction of the Slp enhancer and that direct, preferential protein-protein interactions may contribute to AR-specific activation. These results demonstrate an intriguing role of AML3/CBFalpha1 in steroid- as well as tissue-specific activation of target genes.
Collapse
Affiliation(s)
- Y M Ning
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109-0618, USA
| | | |
Collapse
|
34
|
Préfontaine GG, Walther R, Giffin W, Lemieux ME, Pope L, Haché RJ. Selective binding of steroid hormone receptors to octamer transcription factors determines transcriptional synergism at the mouse mammary tumor virus promoter. J Biol Chem 1999; 274:26713-9. [PMID: 10480874 DOI: 10.1074/jbc.274.38.26713] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional synergism between glucocorticoid receptor (GR) and octamer transcription factors 1 and 2 (Oct-1 and Oct-2) in the induction of mouse mammary tumor virus (MMTV) transcription has been proposed to be mediated through directed recruitment of the octamer factors to their binding sites in the viral long terminal repeat. This recruitment correlates with direct binding between the GR DNA binding domain and the POU domain of the octamer factors. In present study, in vitro experiments identified several nuclear hormone receptors to have the potential to bind to the POU domains of Oct-1 and Oct-2 through their DNA binding domains, suggesting that POU domain binding may be a property shared by many nuclear hormone receptors. However, physiologically relevant binding to the POU domain appeared to be a property restricted to only a few nuclear receptors as only GR, progesterone receptor (PR), and androgen receptor (AR), were found to interact physically and functionally with Oct-1 and Oct-2 in transfected cells. Thus GR, PR, and AR efficiently promoted the recruitment of Oct-2 to adjacent octamer motifs in the cell, whereas mineralocorticoid receptor (MR), estrogen receptor alpha, and retinoid X receptor failed to facilitate octamer factor DNA binding. For MMTV, although GR and MR both induced transcription efficiently, mutation of the promoter proximal octamer motifs strongly decreased GR-induced transcription without affecting the total level of reporter gene activity in response to MR. These results suggest that the configuration of the hormone response element within the MMTV long terminal repeat may promote a dependence for the glucocorticoid response upon the recruitment of octamer transcription factors to their response elements within the viral promoter.
Collapse
Affiliation(s)
- G G Préfontaine
- Graduate Program in Biochemistry, University of Ottawa, Loeb Institute for Medical Research, Ottawa Civic Hospital, Ottawa K1Y 4E9, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Huang W, Shostak Y, Tarr P, Sawyers C, Carey M. Cooperative assembly of androgen receptor into a nucleoprotein complex that regulates the prostate-specific antigen enhancer. J Biol Chem 1999; 274:25756-68. [PMID: 10464314 DOI: 10.1074/jbc.274.36.25756] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostate cancer is characterized by elevated serum levels of prostate-specific antigen (PSA). PSA gene expression is controlled by an androgen-responsive transcriptional enhancer. Our study suggests that formation of a nucleoprotein complex, encompassing 170 base pairs of enhancer DNA, mediates androgen-responsive PSA enhancer activity. The complex is assembled by cooperative binding of androgen receptor to at least four tandem, nonconsensus androgen response elements (AREs). Systematic mutagenesis of the AREs demonstrated that they act synergistically to stimulate androgen receptor-responsive gene expression. We discuss a mechanism whereby a combination of high androgen receptor levels in the prostate and low affinity AREs contribute to the cell type specificity and activity of the enhancer.
Collapse
Affiliation(s)
- W Huang
- Department of Biological Chemistry, Box 1737, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
36
|
Blok LJ, Chang GT, Steenbeek-Slotboom M, van Weerden WM, Swarts HG, De Pont JJ, van Steenbrugge GJ, Brinkmann AO. Regulation of expression of Na+,K+-ATPase in androgen-dependent and androgen-independent prostate cancer. Br J Cancer 1999; 81:28-36. [PMID: 10487609 PMCID: PMC2374343 DOI: 10.1038/sj.bjc.6690647] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The beta 1-subunit of Na+,K+-ATPase was isolated and identified as an androgen down-regulated gene. Expression was observed at high levels in androgen-independent as compared to androgen-dependent (responsive) human prostate cancer cell lines and xenografts when grown in the presence of androgens. Down-regulation of the beta 1-subunit was initiated at concentrations between 0.01 nM and 0.03 nM of the synthetic androgen R1881 after relatively long incubation times (> 24 h). Using polyclonal antibodies, the concentration of beta 1-subunit protein, but not of the alpha 1-subunit protein, was markedly reduced in androgen-dependent human prostate cancer cells (LNCaP-FGC) cultured in the presence of androgens. In line with these observations it was found that the protein expression of total Na+,K+-ATPase in the membrane (measured by 3H-ouabain binding) was also markedly decreased. The main function of Na+,K+-ATPase is to maintain sodium and potassium homeostasis in animal cells. The resulting electrochemical gradient is facilitative for transport of several compounds over the cell membrane (for example cisplatin, a chemotherapeutic agent experimentally used in the treatment of hormone-refractory prostate cancer). Here we observed that a ouabain-induced decrease of Na+,K+-ATPase activity in LNCaP-FGC cells results in reduced sensitivity of these cells to cisplatin-treatment. Surprisingly, androgen-induced decrease of Na+,K+-ATPase expression, did not result in significant protection against the chemotherapeutic agent.
Collapse
Affiliation(s)
- L J Blok
- Department of Endocrinology & Reproduction, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hecht A, Litterst CM, Huber O, Kemler R. Functional characterization of multiple transactivating elements in beta-catenin, some of which interact with the TATA-binding protein in vitro. J Biol Chem 1999; 274:18017-25. [PMID: 10364252 DOI: 10.1074/jbc.274.25.18017] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Catenin, a member of the family of Armadillo repeat proteins, plays a dual role in cadherin-mediated cell adhesion and in signaling by Wnt growth factors. Upon Wnt stimulation beta-catenin undergoes nuclear translocation and serves as transcriptional coactivator of T cell factor DNA-binding proteins. Previously the transactivation potential of different portions of beta-catenin has been demonstrated, but the precise location of transactivating elements has not been established. Also, the mechanism of transactivation by beta-catenin and the molecular basis for functional differences between beta-catenin and the closely related proteins Armadillo and Plakoglobin are poorly understood. Here we have used a yeast system for the detailed characterization of the transactivation properties of beta-catenin. We show that its transactivation domains possess a modular structure, consist of multiple subelements that cover broad regions at its N and C termini, and extend considerably into the Armadillo repeat region. Compared with beta-catenin the N termini of Plakoglobin and Armadillo have different transactivation capacities that may explain their distinct signaling properties. Furthermore, transactivating elements of beta-catenin interact specifically and directly with the TATA-binding protein in vitro providing further evidence that a major function of beta-catenin during Wnt signaling is to recruit the basal transcription machinery to promoter regions of Wnt target genes.
Collapse
Affiliation(s)
- A Hecht
- Max-Planck-Institute of Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany.
| | | | | | | |
Collapse
|