1
|
Allard N, Collette A, Paquette J, Rodrigue S, Côté JP. Systematic investigation of recipient cell genetic requirements reveals important surface receptors for conjugative transfer of IncI2 plasmids. Commun Biol 2023; 6:1172. [PMID: 37973843 PMCID: PMC10654706 DOI: 10.1038/s42003-023-05534-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023] Open
Abstract
Bacterial conjugation is a major horizontal gene transfer mechanism. While the functions encoded by many conjugative plasmids have been intensively studied, the contribution of recipient chromosome-encoded genes remains largely unknown. Here, we analyzed the genetic requirement of recipient cells for conjugation of IncI2 plasmid TP114, which was recently shown to transfer at high rates in the gut microbiota. We performed transfer assays with ~4,000 single-gene deletion mutants of Escherichia coli. When conjugation occurs on a solid medium, we observed that recipient genes impairing transfer rates were not associated with a specific cellular function. Conversely, transfer assays performed in broth were largely dependent on the lipopolysaccharide biosynthesis pathway. We further identified specific structures in lipopolysaccharides used as recipient cell surface receptors by PilV adhesins associated with the type IVb accessory pilus of TP114. Our strategy is applicable to study other mobile genetic elements and understand important host cell factors for their dissemination.
Collapse
Affiliation(s)
- Nancy Allard
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Arianne Collette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Josianne Paquette
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Sébastien Rodrigue
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| | - Jean-Philippe Côté
- Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
2
|
Kowalczyk P, Wilk M, Parul P, Szymczak M, Kramkowski K, Raj S, Skiba G, Sulejczak D, Kleczkowska P, Ostaszewski R. The Synthesis and Evaluation of Aminocoumarin Peptidomimetics as Cytotoxic Agents on Model Bacterial E. coli Strains. MATERIALS 2021; 14:ma14195725. [PMID: 34640121 PMCID: PMC8510199 DOI: 10.3390/ma14195725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022]
Abstract
This work presents the successful synthesis of a library of novel peptidomimetics via Ugi multicomponent reaction. Most of these peptidomimetics contain differently substituted aminocoumarin; 7-amino-4-methylcoumarin and 7-amino-4-(trifluoromethyl) coumarin. Inspired by the biological properties of coumarin derivatives and peptidomimetics, we proposed the synthesis of coumarin incorporated peptidomimetics. We studied the potential of synthesized compounds as antimicrobial drugs on model E. coli bacterial strains (k12 and R2–R4). To highlight the importance of coumarin in antimicrobial resistance, we also synthesized the structurally similar peptidomimetics, using benzylamine. Preliminary cellular studies suggest that the compounds with coumarin derivatives have more potential as antimicrobial agents compared to the compounds without coumarin. We also analyzed the effect of aldehyde, free acid group and ester group on the course of their antimicrobial properties.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (G.S.)
- Correspondence: (P.K.); (R.O.)
| | - Monika Wilk
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.W.); (P.P.)
| | - Parul Parul
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.W.); (P.P.)
| | - Mateusz Szymczak
- Department of Molecular Virology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Karol Kramkowski
- Department of Physical Chemistry, Medical University of Bialystok, Kilińskiego 1 Str., 15-089 Białystok, Poland;
| | - Stanisława Raj
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (G.S.)
| | - Grzegorz Skiba
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland; (S.R.); (G.S.)
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland;
| | - Patrycja Kleczkowska
- Centre for Preclinical Research (CBP), Department of Pharmacodynamics, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
- Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry PAS, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.W.); (P.P.)
- Correspondence: (P.K.); (R.O.)
| |
Collapse
|
3
|
Kowalczyk P, Madej A, Szymczak M, Ostaszewski R. α-Amidoamids as New Replacements of Antibiotics-Research on the Chosen K12, R2-R4 E. coli Strains. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5169. [PMID: 33207799 PMCID: PMC7697494 DOI: 10.3390/ma13225169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 01/04/2023]
Abstract
A preliminary study of α-amidoamids as new potential antimicrobial drugs was performed. Special emphasis was placed on selection of structure of α-amidoamids with the highest biological activity against different types of Gram-stained bacteria by lipopolysaccharide (LPS). Herein, Escherichia coli model strains K12 (without LPS in its structure) and R1-R4 (with different length LPS in its structure) were used. The presented work showed that the antibacterial activity of α-amidoamids depends on their structure and affects the LPS of bacteria. Moreover, the influence of various newly synthesized α-amidoamids on bacteria possessing smooth and rought LPS and oxidative damage of plasmid DNA caused by all newly obtained compounds was indicated. The presented studies clearly explain that α-amidoamids can be used as substitutes for antibiotics. The chemical and biological activity of the analysed α-amidoamids was associated with short alkyl chain and different isocyanides molecules in their structure such as: tetr-butyl isocyanide or 2,5-dimethoxybenzyl isocyanide. The observed results are especially important in the case of the increasing resistance of bacteria to various drugs and antibiotics.
Collapse
Affiliation(s)
- Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Arleta Madej
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| | - Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland;
| |
Collapse
|
4
|
Parschat K, Schreiber S, Wartenberg D, Engels B, Jennewein S. High-Titer De Novo Biosynthesis of the Predominant Human Milk Oligosaccharide 2'-Fucosyllactose from Sucrose in Escherichia coli. ACS Synth Biol 2020; 9:2784-2796. [PMID: 32966739 DOI: 10.1021/acssynbio.0c00304] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human milk oligosaccharides (HMOs) are unique components of human breast milk. Their large-scale production by fermentation allows infant formulas to be fortified with HMOs, but current fermentation processes require lactose as a starting material, increasing the costs, bioburden, and environmental impact of manufacturing. Here we report the development of an Escherichia coli strain that produces 2'-fucosyllactose (2'-FL), the most abundant HMO, de novo using sucrose as the sole carbon source. Strain engineering required the expression of a novel glucose-accepting galactosyltransferase, overexpression of the de novo UDP-d-galactose and GDP-l-fucose pathways, the engineering of an intracellular pool of free glucose, and overexpression of a suitable α(1,2)-fucosyltransferase. The export of 2'-FL was facilitated using a sugar efflux transporter. The final production strain achieved 2'-FL yields exceeding 60 g/L after fermentation for 84 h. This efficient strategy facilitates the lactose-independent production of HMOs by fermentation, which will improve product quality and reduce the costs of manufacturing.
Collapse
Affiliation(s)
- Katja Parschat
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Sandra Schreiber
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Dirk Wartenberg
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Benedikt Engels
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| | - Stefan Jennewein
- Jennewein Biotechnologie GmbH, Maarweg 32, 53619 Rheinbreitbach, Germany
| |
Collapse
|
5
|
Lipopolysaccharide-Linked Enterobacterial Common Antigen (ECA LPS) Occurs in Rough Strains of Escherichia coli R1, R2, and R4. Int J Mol Sci 2020; 21:ijms21176038. [PMID: 32839412 PMCID: PMC7504096 DOI: 10.3390/ijms21176038] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Enterobacterial common antigen (ECA) is a conserved surface antigen characteristic for Enterobacteriaceae. It is consisting of trisaccharide repeating unit, →3)-α-d-Fucp4NAc-(1→4)-β-d-ManpNAcA-(1→4)-α-d-GlcpNAc-(1→, where prevailing forms include ECA linked to phosphatidylglycerol (ECAPG) and cyclic ECA (ECACYC). Lipopolysaccharide (LPS)-associated form (ECALPS) has been proved to date only for rough Shigella sonnei phase II. Depending on the structure organization, ECA constitutes surface antigen (ECAPG and ECALPS) or maintains the outer membrane permeability barrier (ECACYC). The existence of LPS was hypothesized in the 1960–80s on the basis of serological observations. Only a few Escherichia coli strains (i.e., R1, R2, R3, R4, and K-12) have led to the generation of anti-ECA antibodies upon immunization, excluding ECAPG as an immunogen and conjecturing ECALPS as the only immunogenic form. Here, we presented a structural survey of ECALPS in E. coli R1, R2, R3, and R4 to correlate previous serological observations with the presence of ECALPS. The low yields of ECALPS were identified in the R1, R2, and R4 strains, where ECA occupied outer core residues of LPS that used to be substituted by O-specific polysaccharide in the case of smooth LPS. Previously published observations and hypotheses regarding the immunogenicity and biosynthesis of ECALPS were discussed and correlated with presented herein structural data.
Collapse
|
6
|
Coumarin Derivatives as New Toxic Compounds to Selected K12, R1-R4 E. coli Strains. MATERIALS 2020; 13:ma13112499. [PMID: 32486298 PMCID: PMC7321437 DOI: 10.3390/ma13112499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Coumarins are natural compounds that were detected in 80 species of plants. They have numerous applications including the medical, food, tobacco, perfumery, and spirit industries. They show anti-swelling and diastolic effects. However, excess consumption of coumarins may adversely affect our health, because they are easily absorbed from the intestines into the lymph and blood, causing cirrhosis of the liver. Peptidomimetics are molecules whose structure and function are similar to those of peptides. They are an important group of compounds with biological, microbiological, anti-inflammatory, and anti-cancer properties. Therefore, studies on new peptidomimetics, which load the effect of native peptides, whose half-life in the body is much longer due to structural modifications, are extremely important. A preliminary study of coumarin analogues and its derivatives as new potential antimicrobial drugs containing carboxylic acid or ester was performed to determine their basic structure related to their biological features against various types of Gram-stained bacteria by lipopolysaccharide (LPS). We hypothesized that the toxicity (antibacterial activity) of coumarin derivatives is dependent on the of LPS in bacteria and nature and position of the substituent which may be carboxylic acid, hydroxyl groups, or esters. In order to verify this hypothesis, we used K12 (smooth) and R1–R4 (rough) Escherichia coli strains which are characterized by differences in the type of LPS, especially in the O-antigen region, the outermost LPS layer. In our work, we synthesized 17 peptidomimetics containing a coumarin scaffold and checked their influence on K12 and R1–R4 E. coli strains possessing smooth and rough LPS. We also measured the damage of plasmid DNA caused by target compounds. The results of our studies clearly support the conclusion that coumarin peptidomimetics are antagonistic compounds to many of the currently used antibiotics. The high biological activity of the selected coumarin peptidomimetic was associated with identification of the so-called magic methyl groups, which substantially change the biochemical properties of target compounds. Investigating the effects of these compounds is particularly important in the era of increasingly common resistance in bacteria.
Collapse
|
7
|
Powers MJ, Herrera CM, Tucker AT, Davies BW, Trent MS. Isolation of Lipid Cell Envelope Components from Acinetobacter baumannii. Methods Mol Biol 2019; 1946:233-252. [PMID: 30798560 DOI: 10.1007/978-1-4939-9118-1_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
With the increasing occurrence of antibiotic resistance among Acinetobacter sp., the race is on for researchers to not only isolate resistant isolates but also utilize basic and applied microbiological techniques to study mechanisms of resistance. For many antibiotics, the limit of efficacy against Gram-negative bacteria is dependent on its ability to permeate the outer membrane and access its target. As such, it is critical that researchers be able to isolate and analyze the lipid components of the cell envelope from any number of Acinetobacter sp. that are either resistant or sensitive to antibiotics of interest. The following chapter provides in-depth protocols to confirm the presence or absence of lipooligosaccharide (LOS) in Acinetobacter sp., isolate lipid A, and glycerophospholipids and analyze them using qualitative (mass spectrometry) and semiquantitative (thin-layer chromatography) methods.
Collapse
Affiliation(s)
- Matthew J Powers
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley T Tucker
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.,Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.,Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.,John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - M Stephen Trent
- Department of Microbiology, University of Georgia, Athens, GA, USA. .,Department of Infectious Diseases, University of Georgia, Athens, GA, USA.
| |
Collapse
|
8
|
Patry RT, Stahl M, Perez-Munoz ME, Nothaft H, Wenzel CQ, Sacher JC, Coros C, Walter J, Vallance BA, Szymanski CM. Bacterial AB 5 toxins inhibit the growth of gut bacteria by targeting ganglioside-like glycoconjugates. Nat Commun 2019; 10:1390. [PMID: 30918252 PMCID: PMC6437147 DOI: 10.1038/s41467-019-09362-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 03/05/2019] [Indexed: 12/21/2022] Open
Abstract
The AB5 toxins cholera toxin (CT) from Vibrio cholerae and heat-labile enterotoxin (LT) from enterotoxigenic Escherichia coli are notorious for their roles in diarrheal disease, but their effect on other intestinal bacteria remains unexplored. Another foodborne pathogen, Campylobacter jejuni, can mimic the GM1 ganglioside receptor of CT and LT. Here we demonstrate that the toxin B-subunits (CTB and LTB) inhibit C. jejuni growth by binding to GM1-mimicking lipooligosaccharides and increasing permeability of the cell membrane. Furthermore, incubation of CTB or LTB with a C. jejuni isolate capable of altering its lipooligosaccharide structure selects for variants lacking the GM1 mimic. Examining the chicken GI tract with immunofluorescence microscopy demonstrates that GM1 reactive structures are abundant on epithelial cells and commensal bacteria, further emphasizing the relevance of this mimicry. Exposure of chickens to CTB or LTB causes shifts in the gut microbial composition, providing evidence for new toxin functions in bacterial gut competition. Bacterial AB5 toxins, such as cholera toxin, bind to oligosaccharides on the host cell surface and play key roles in the pathogenesis of diarrheal disease. Here, Patry et al. show that these toxins bind also to bacterial oligosaccharides and inhibit the growth of Campylobacter jejuni and gut commensal bacteria.
Collapse
Affiliation(s)
- Robert T Patry
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA.,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Martin Stahl
- Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Maria Elisa Perez-Munoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Harald Nothaft
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Cory Q Wenzel
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jessica C Sacher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Colin Coros
- Delta Genomics, Edmonton, AB, T5J 4P6, Canada
| | - Jens Walter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Bruce A Vallance
- Division of Gastroenterology, BC Children's Hospital Research Institute, The University of British Columbia, Vancouver, BC, V6H 3V4, Canada
| | - Christine M Szymanski
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
9
|
Ruan X, Monjarás Feria J, Hamad M, Valvano MA. Escherichia coli and Pseudomonas aeruginosa lipopolysaccharide O-antigen ligases share similar membrane topology and biochemical properties. Mol Microbiol 2018; 110:95-113. [PMID: 30047569 DOI: 10.1111/mmi.14085] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
WaaL is an inner membrane glycosyltransferase that catalyzes the transfer of O-antigen polysaccharide from its lipid-linked intermediate to a terminal sugar of the lipid A-core oligosaccharide, a conserved step in lipopolysaccharide biosynthesis. Ligation occurs at the periplasmic side of the bacterial cell membrane, suggesting the catalytic region of WaaL faces the periplasm. Establishing the membrane topology of the WaaL protein family will enable understanding its mechanism and exploit it as a potential antimicrobial target. Applying oxidative labeling of native methionine/cysteine residues, we previously validated a topological model for Escherichia coli WaaL, which differs substantially from the reported topology of the Pseudomonas aeruginosa WaaL, derived from the analysis of truncated protein reporter fusions. Here, we examined the topology of intact E. coli and P. aeruginosa WaaL proteins by labeling engineered cysteine residues with the membrane-impermeable sulfhydryl reagent polyethylene glycol maleimide (PEG-Mal). The accessibility of PEG-Mal to targeted engineered cysteine residues in both E. coli and P. aeruginosa WaaL proteins demonstrates that both ligases share similar membrane topology. Further, we also demonstrate that P. aeruginosa WaaL shares similar functional properties with E. coli WaaL and that E. coli WaaL may adopt a functional dimer conformation.
Collapse
Affiliation(s)
- Xiang Ruan
- Department of Microbiology and Immunology, University of Western Ontario, London, N6A 5C1, Canada
| | - Julia Monjarás Feria
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| | - Mohamad Hamad
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Miguel A Valvano
- Department of Microbiology and Immunology, University of Western Ontario, London, N6A 5C1, Canada.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, United Kingdom
| |
Collapse
|
10
|
Kowalczyk P, Borkowski A, Czerwonka G, Cłapa T, Cieśla J, Misiewicz A, Borowiec M, Szala M. The microbial toxicity of quaternary ammonium ionic liquids is dependent on the type of lipopolysaccharide. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Tomasek K, Bergmiller T, Guet CC. Lack of cations in flow cytometry buffers affect fluorescence signals by reducing membrane stability and viability of Escherichia coli strains. J Biotechnol 2018; 268:40-52. [DOI: 10.1016/j.jbiotec.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 10/18/2022]
|
12
|
Borkowski A, Kowalczyk P, Czerwonka G, Cieśla J, Cłapa T, Misiewicz A, Szala M, Drabik M. Interaction of quaternary ammonium ionic liquids with bacterial membranes – Studies with Escherichia coli R1–R4-type lipopolysaccharides. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Whitfield C, Kaniuk N, Frirdich E. Molecular insights into the assembly and diversity of the outer core oligosaccharide in lipopolysaccharides from Escherichia coli and Salmonella. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090040501] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the Enterobacteriaceae, the core oligosaccharide provides the junction between the highly conserved lipid A and the remarkably diverse polysaccharide O antigen. The basic structure of the inner (lipid A-proximal) core is well conserved, perhaps reflecting constraints imposed by its involvement in the structural integrity of the outer membrane. However, non-stoichiometric modifications do create some structural variants. The outer core may show more variation. Efforts to develop immunoprophylactic strategies based on the core oligosaccharide require a detailed understanding of core immunochemistry, the accessibility of specific epitopes in the LPS, and the distribution of specific structures within natural populations. The availability of sequences for the waa (core biosynthesis) loci and functional data for the gene products provide a molecular basis for the known structural diversity in Escherichia coli and Salmonella core oligosaccharide. Surveys of waa-locus organization have established the distribution of these core types in natural populations and have identified genetic variants that provide candidates for additional novel structures.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| | - Natalia Kaniuk
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Emilisa Frirdich
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
14
|
Whitfield C, Heinrichs DE, Yethon JA, Amor KL, Monteiro MA, Perry MB. Assembly of the R1-type core oligosaccharide of Escherichia coli lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050030901] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There are 5 known core oligosaccharide (core OS) structures in the lipopolysaccharides of Escherichia coli. The different structures reflect diversity in the chromosomal waa locus, primarily in the central waaQ operon encoding enzymes involved in the assembly of the core OS. The R1 core type is most prevalent among clinical isolates and provides our prototype for functional studies of core OS assembly. To establish the core OS assembly pathway, non-polar insertions were used to mutate each of 9 genes in the major operon of the R1 waa locus. Core OS structures were then determined for each mutant to assign functions to the relevant gene products. From currently available sequence data, five genes (designated waaA, waaC, waaQ, waaP, and waaY) are highly conserved in all of the core types; their products are responsible for assembly and phosphorylation of the inner-core region. Also conserved is waaG, whose product is an α-glucosyltransferase that adds the first residue (HexI) of the outer core. A family of related HexII and HexIII αglycosyltransferases extend the outer core OS backbones in all of the core OS types. The waaO and waaT gene products fulfil these roles in the R1 core OS type. A related glycosyltransferase (WaaW) adds the α-galactosyl substituent on HexIII. The last step in assembly of the core OS carbohydrate backbone involves substitution of HexII by a β-linked glucosyl residue. This residue distinguishes the R1 core OS and it provides the attachment site for ligation of O antigen.
Collapse
Affiliation(s)
- Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| | - David E. Heinrichs
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Jeremy A. Yethon
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Karen L. Amor
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Mario A. Monteiro
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| | - Malcolm B. Perry
- Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Washizaki A, Yonesaki T, Otsuka Y. Characterization of the interactions between Escherichia coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen 2016; 5:1003-1015. [PMID: 27273222 PMCID: PMC5221442 DOI: 10.1002/mbo3.384] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages have strict host specificity and the step of adsorption is one of key factors for determining host specificity. Here, we systematically examined the interaction between the Escherichia coli receptors lipopolysaccharide (LPS) and outer membrane protein C (OmpC), and the long tail fibers of bacteriophage T4. Using a variety of LPS mutants, we demonstrated that T4 has no specificity for the sugar sequence of the outer core (one of three LPS regions) in the presence of OmpC but, in the absence of OmpC, can adsorb to a specific LPS which has only one or two glucose residues without a branch. These results strengthen the idea that T4 adsorbs to E. coli via two distinct modes, OmpC‐dependent and OmpC‐independent, suggested by previous reports (Prehm et al. 1976; Yu and Mizushima 1982). Isolation and characterization of the T4 mutants Nik (No infection to K‐12 strain), Nib (No infection to B strain), and Arl (altered recognition of LPS) identified amino acids of the long tail fiber that play important roles in the interaction with OmpC or LPS, suggesting that the top surface of the distal tip head domain of T4 long tail fibers interacts with LPS and its lateral surface interacts with OmpC.
Collapse
Affiliation(s)
- Ayaka Washizaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Tetsuro Yonesaki
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Yuichi Otsuka
- Department of Microbiology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| |
Collapse
|
16
|
Unique lipid anchor attaches Vi antigen capsule to the surface of Salmonella enterica serovar Typhi. Proc Natl Acad Sci U S A 2016; 113:6719-24. [PMID: 27226298 DOI: 10.1073/pnas.1524665113] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polysaccharide capsules are surface structures that are critical for the virulence of many Gram-negative pathogenic bacteria. Salmonella enterica serovar Typhi is the etiological agent of typhoid fever. It produces a capsular polysaccharide known as "Vi antigen," which is composed of nonstoichiometrically O-acetylated α-1,4-linked N-acetylgalactosaminuronic acid residues. This glycan is a component of currently available vaccines. The genetic locus for Vi antigen production is also present in soil bacteria belonging to the genus Achromobacter Vi antigen assembly follows a widespread general strategy with a characteristic glycan export step involving an ATP-binding cassette transporter. However, Vi antigen producers lack the enzymes that build the conserved terminal glycolipid characterizing other capsules using this method. Achromobacter species possess a Vi antigen-specific depolymerase enzyme missing in S enterica Typhi, and we exploited this enzyme to isolate acylated Vi antigen termini. Mass spectrometry analysis revealed a reducing terminal N-acetylhexosamine residue modified with two β-hydroxyl acyl chains. This terminal structure resembles one half of lipid A, the hydrophobic portion of bacterial lipopolysaccharides. The VexE protein encoded in the Vi antigen biosynthesis locus shares similarity with LpxL, an acyltransferase from lipid A biosynthesis. In the absence of VexE, Vi antigen is produced, but its physical properties are altered, its export is impaired, and a Vi capsule structure is not assembled on the cell surface. The structure of the lipidated terminus dictates a unique assembly mechanism and has potential implications in pathogenesis and vaccine production.
Collapse
|
17
|
Martin T, Diaz I, Kilbourne J, Almarza O, Segovia C, Curtiss R, Santander J. Influence of lipopolysaccharide outer-core in the intrinsic resistance to antimicrobial peptides and virulence in Edwardsiella ictaluri. Microb Pathog 2016; 93:204-12. [PMID: 26945561 DOI: 10.1016/j.micpath.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/10/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
The genus Edwardsiella consists of bacteria with an intrinsic resistance to cyclic cationic antimicrobial peptides (CAMPs). Edwardsiella ictaluri, a pathogen of the catfish (Ictalurus punctatus) and the causative agent of a systemic infection, is highly resistant to CAMPs. Previously, we determined that the oligo-polysaccharide (O-PS) of the lipopolysaccharide (LPS) does not play a role in the E. ictaluri CAMP resistance and an intact core-lipid A structure is necessary for CAMPs resistance. Here, we evaluated the influence of the outer-core in the CAMPs resistance and fish virulence. E. ictaluri wabG, a gene that encodes for the UDP-glucuronic acid transferase that links the lipid A-inner-core to the outer-core-oligopolysaccharides, was deleted. Deletion of ΔwabG caused a pleiotropic effect, influencing LPS synthesis, CAMPs resistance, growth, and biofilm formation. E. ictaluri ΔwabG was attenuated in zebrafish indicating the important role of LPS during fish pathogenesis. Also, we evaluated the inflammatory effects of wabG LPS in catfish ligated loop model, showing a decreased inflammatory effect at the gut level respects to the E. ictaluri wild type. We conclude that E. ictaluri CAMPs resistance is related to the molecules present in the LPS outer-core and that fish gut inflammation triggered by E. ictaluri is LPS dependent, reinforcing the hypothesis that fish gut recognizes LPS in an O-PS dependent fashion.
Collapse
Affiliation(s)
- Taylor Martin
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Ignacia Diaz
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Jacquelyn Kilbourne
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Oscar Almarza
- Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Cristopher Segovia
- Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile; PhD Program in Integrative Genomics, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Javier Santander
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life and Sciences, Arizona State University, Tempe, AZ 85287, USA; Microbial Pathogenesis and Vaccinology Research Group, Faculty of Sciences, Universidad Mayor, Huechuraba 8580745, Chile.
| |
Collapse
|
18
|
Protection against Shiga-Toxigenic Escherichia coli by Non-Genetically Modified Organism Receptor Mimic Bacterial Ghosts. Infect Immun 2015; 83:3526-33. [PMID: 26099582 DOI: 10.1128/iai.00669-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) causes severe gastrointestinal infections in humans that may lead to life-threatening systemic sequelae, such as the hemolytic uremic syndrome (HUS). Rapid diagnosis of STEC infection early in the course of disease opens a window of opportunity for therapeutic intervention, for example, by administration of agents that neutralize Shiga toxin (Stx) in the gut lumen. We previously developed a recombinant bacterium that expresses a mimic of the Stx receptor globotriaosyl ceramide (Gb3) on its surface through modification of the lipopolysaccharide (A. W. Paton, R. Morona, and J. C. Paton, Nat Med 6:265-270, 2000, http://dx.doi.org/10.1038/73111). This construct was highly efficacious in vivo, protecting mice from otherwise fatal STEC disease, but the fact that it is a genetically modified organism (GMO) has been a barrier to clinical development. In the present study, we have overcome this issue by development of Gb3 receptor mimic bacterial ghosts (BGs) that are not classified as GMOs. Gb3-BGs neutralized Stx1 and Stx2 in vitro with high efficiency, whereas alternative Gb3-expressing non-GMO subbacterial particles (minicells and outer membrane blebs) were ineffective. Gb3-BGs were highly efficacious in a murine model of STEC disease. All mice (10/10) treated with Gb3-BGs survived challenge with a highly virulent O113:H21 STEC strain and showed no pathological signs of renal injury. In contrast, 6/10 mice treated with control BGs succumbed to STEC challenge, and survivors exhibited significant weight loss, neutrophilia, and histopathological evidence of renal damage. Thus, Gb3-BGs offer a non-GMO approach to treatment of STEC infection in humans, particularly in an outbreak setting.
Collapse
|
19
|
Analysis of the σE regulon in Crohn's disease-associated Escherichia coli revealed involvement of the waaWVL operon in biofilm formation. J Bacteriol 2015; 197:1451-65. [PMID: 25666140 DOI: 10.1128/jb.02499-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC), which is able to adhere to and to invade intestinal epithelial cells (IEC), to replicate within macrophages, and to form biofilms on the surface of the intestinal mucosa. Previous analyses indicated the involvement of the σ(E) pathway in AIEC-IEC interaction, as well as in biofilm formation, with σ(E) pathway inhibition leading to an impaired ability of AIEC to colonize the intestinal mucosa and to form biofilms. The aim of this study was to characterize the σ(E) regulon of AIEC strain LF82 in order to identify members involved in AIEC phenotypes. Using comparative in silico analysis of the σ(E) regulon, we identified the waaWVL operon as a new member of the σ(E) regulon in reference AIEC strain LF82. We determined that the waaWVL operon is involved in AIEC lipopolysaccharide structure and composition, and the waaWVL operon was found to be essential for AIEC strains to produce biofilm and to colonize the intestinal mucosa. IMPORTANCE An increased prevalence of adherent-invasive Escherichia coli (AIEC) bacteria was previously observed in the intestinal mucosa of Crohn's disease (CD) patients, and clinical observations revealed bacterial biofilms associated with the mucosa of CD patients. Here, analysis of the σ(E) regulon in AIEC and commensal E. coli identified 12 genes controlled by σ(E) only in AIEC. Among them, WaaWVL factors were found to play an essential role in biofilm formation and mucosal colonization by AIEC. In addition to identifying molecular tools that revealed a pathogenic population of E. coli colonizing the mucosa of CD patients, these results indicate that targeting the waaWVL operon could be a potent therapeutic strategy to interfere with the ability of AIEC to form biofilms and to colonize the gut mucosa.
Collapse
|
20
|
Luke-Marshall NR, Edwards KJ, Sauberan S, St Michael F, Vinogradov EV, Cox AD, Campagnari AA. Characterization of a trifunctional glucosyltransferase essential for Moraxella catarrhalis lipooligosaccharide assembly. Glycobiology 2013; 23:1013-21. [PMID: 23720461 DOI: 10.1093/glycob/cwt042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The human respiratory tract pathogen Moraxella catarrhalis expresses lipooligosaccharides (LOS), glycolipid surface moieties that are associated with enhanced colonization and virulence. Recent studies have delineated the major steps required for the biosynthesis and assembly of the M. catarrhalis LOS molecule. We previously demonstrated that the glucosyltransferase enzyme Lgt3 is responsible for the addition of at least one glucose (Glc) molecule, at the β-(1-4) position, to the inner core of the LOS molecule. Our data further suggested a potential multifunctional role for Lgt3 in LOS biosynthesis. The studies reported here demonstrate that the Lgt3 enzyme possesses two glycosyltransferase domains (A1 and A2) similar to that of other bifunctional glycosyltransferase enzymes involved in surface polysaccharide biosynthesis in Escherichia coli, Pasteurella multocida and Streptococcus pyogenes. Each Lgt3 domain contains a conserved DXD motif, shown to be involved in the catalytic activity of other glycosyltransferases. To determine the function of each domain, A1 (N-terminal), A2 (C-terminal) and double A1A2 site-directed DAD to AAA mutants were constructed and the resulting LOS phenotypes of these modified strains were analyzed. Our studies indicate that the Lgt3 N-terminal A1 catalytic domain is responsible for the addition of the first β-(1-3) Glc to the first Glc on the inner core. The C-terminal catalytic domain A2 then adds the β-(1-4) Glc and the β-(1-6) Glc, confirming the bifunctional nature of this domain. The results from these experiments demonstrate that Lgt3 is a novel, multifunctional transferase responsible for the addition of three Glcs with differing linkages onto the inner core of M. catarrhalis LOS.
Collapse
Affiliation(s)
- Nicole R Luke-Marshall
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Merritt JH, Ollis AA, Fisher AC, DeLisa MP. Glycans-by-design: Engineering bacteria for the biosynthesis of complex glycans and glycoconjugates. Biotechnol Bioeng 2013; 110:1550-64. [DOI: 10.1002/bit.24885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/05/2013] [Accepted: 02/22/2013] [Indexed: 02/04/2023]
|
22
|
Abstract
WaaL is a membrane enzyme that catalyzes the glycosidic bonding of a sugar at the proximal end of the undecaprenyl-diphosphate (Und-PP)-O-antigen with a terminal sugar of the lipid A-core oligosaccharide (OS). This is a critical step in lipopolysaccharide synthesis. We describe here an assay to perform the ligation reaction in vitro utilizing native substrates.
Collapse
|
23
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
24
|
Greenfield LK, Whitfield C. Synthesis of lipopolysaccharide O-antigens by ABC transporter-dependent pathways. Carbohydr Res 2012; 356:12-24. [PMID: 22475157 DOI: 10.1016/j.carres.2012.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/10/2023]
Abstract
The O-polysaccharide (O-PS; O-antigen) of bacterial lipopolysaccharides is made up of repeating units of one or more sugar residues and displays remarkable structural diversity. Despite the structural variations, there are only three strategies for O-PS assembly. The ATP-binding cassette (ABC)-transporter-dependent mechanism of O-PS biosynthesis is widespread. The Escherichia coli O9a and Klebsiella pneumoniae O2a antigens provide prototypes, which are distinguished by the fine details that link glycan polymerization and chain termination at the cytoplasmic face of the inner membrane to its export via the ABC transporter. Here, we describe the current understanding of these processes. Since glycoconjugate assembly complexes that utilize an ABC transporter-dependent pathway are widespread among the bacterial kingdom, the models described here are expected to extend beyond O-PS biosynthesis systems.
Collapse
Affiliation(s)
- Laura K Greenfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
25
|
Valvano MA. Common themes in glycoconjugate assembly using the biogenesis of O-antigen lipopolysaccharide as a model system. BIOCHEMISTRY (MOSCOW) 2011; 76:729-35. [DOI: 10.1134/s0006297911070029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Klein G, Lindner B, Brade H, Raina S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-α-D-manno-oct-2-ulosonic acid and rhamnose. J Biol Chem 2011; 286:42787-807. [PMID: 22021036 DOI: 10.1074/jbc.m111.291799] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.
Collapse
Affiliation(s)
- Gracjana Klein
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | | | | | | |
Collapse
|
27
|
Muszynski A, Laus M, Kijne JW, Carlson RW. Structures of the lipopolysaccharides from Rhizobium leguminosarum RBL5523 and its UDP-glucose dehydrogenase mutant (exo5). Glycobiology 2010; 21:55-68. [PMID: 20817634 DOI: 10.1093/glycob/cwq131] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rhizobial lipopolysaccharide (LPS) is required to establish an effective symbiosis with its host plant. An exo5 mutant of Rhizobium leguminosarum RBL5523, strain RBL5808, is defective in UDP-glucose (Glc) dehydrogenase that converts UDP-Glc to UDP-glucuronic acid (GlcA). This mutant is unable to synthesize either UDP-GlcA or UDP-galacturonic acid (GalA) and is unable to synthesize extracellular and capsular polysaccharides, lacks GalA in its LPS and is defective in symbiosis (Laus MC, Logman TJ, van Brussel AAN, Carlson RW, Azadi P, Gao MY, Kijne JW. 2004. Involvement of exo5 in production of surface polysaccharides in Rhizobium leguminosarum and its role in nodulation of Vicia sativa subsp. nigra. J Bacteriol. 186:6617-6625). Here, we determined and compared the structures of the RBL5523 parent and RBL5808 mutant LPSs. The parent LPS core oligosaccharide (OS), as with other R. leguminosarum and Rhizobium etli strains, is a Gal(1)Man(1)GalA(3)Kdo(3) octasaccharide in, which each of the GalA residues is terminally linked. The core OS from the mutant lacks all three GalA residues. Also, the parent lipid A consists of a fatty acylated GlcNGlcNonate or GlcNGlcN disaccharide that has a GalA residue at the 4'-position, typical of other R. leguminosarum and R. etli lipids A. The mutant lipid A lacks the 4'-GalA residue, and the proximal glycosyl residue was only present as GlcNonate. In spite of these alterations to the lipid A and core OSs, the mutant was still able to synthesize an LPS containing a normal O-chain polysaccharide (OPS), but at reduced levels. The structure of the OPS of the mutant LPS was identical to that of the parent and consists of an O-acetylated →4)-α-d-Glcp-(1→3)-α-d-QuipNAc-(1→ repeating unit.
Collapse
Affiliation(s)
- Artur Muszynski
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
28
|
Moraxella catarrhalis Lgt2, a galactosyltransferase with broad acceptor substrate specificity. Carbohydr Res 2010; 345:2151-6. [PMID: 20832776 DOI: 10.1016/j.carres.2010.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/23/2010] [Accepted: 07/30/2010] [Indexed: 11/23/2022]
Abstract
The genetic basis of lipo-oligosaccharide (LOS) biosynthesis for the bacterium Moraxella catarrhalis has been elucidated and functions suggested for each of the glycosyltransferases. In this study we have expressed and characterised one of these enzymes, the putative galactosyltransferase Lgt2(B/C). The lgt2(B/C) gene was amplified from M. catarrhalis, expressed in Escherichia coli, and Lgt2(B/C) was purified. Analysis of its glycosyltransferase catalytic activity ascertained the pH and temperature optima. The donor specificity and acceptor specificity were examined and they showed that Lgt2(B/C) is a galactosyltransferase with relatively broad acceptor specificity with optimal activity in the presence of exogenous Mg(2+).
Collapse
|
29
|
A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun 2010; 78:3801-12. [PMID: 20624909 DOI: 10.1128/iai.00071-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis.
Collapse
|
30
|
Agarwal S, Ferreira VP, Cortes C, Pangburn MK, Rice PA, Ram S. An evaluation of the role of properdin in alternative pathway activation on Neisseria meningitidis and Neisseria gonorrhoeae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:507-16. [PMID: 20530262 PMCID: PMC2933790 DOI: 10.4049/jimmunol.0903598] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Properdin, a positive regulator of the alternative pathway (AP) of complement is important in innate immune defenses against invasive neisserial infections. Recently, commercially available unfractionated properdin was shown to bind to certain biological surfaces, including Neisseria gonorrhoeae, which facilitated C3 deposition. Unfractionated properdin contains aggregates or high-order oligomers, in addition to its physiological "native" (dimeric, trimeric, and tetrameric) forms. We examined the role of properdin in AP activation on diverse strains of Neisseria meningitidis and N. gonorrhoeae specifically using native versus unfractionated properdin. C3 deposition on Neisseria decreased markedly when properdin function was blocked using an anti-properdin mAb or when properdin was depleted from serum. Maximal AP-mediated C3 deposition on Neisseriae even at high (80%) serum concentrations required properdin. Consistent with prior observations, preincubation of bacteria with unfractionated properdin, followed by the addition of properdin-depleted serum resulted in higher C3 deposition than when bacteria were incubated with properdin-depleted serum alone. Unexpectedly, none of 10 Neisserial strains tested bound native properdin. Consistent with its inability to bind to Neisseriae, preincubating bacteria with native properdin followed by the addition of properdin-depleted serum did not cause detectable increases in C3 deposition. However, reconstituting properdin-depleted serum with native properdin a priori enhanced C3 deposition on all strains of Neisseria tested. In conclusion, the physiological forms of properdin do not bind directly to either N. meningitidis or N. gonorrhoeae but play a crucial role in augmenting AP-dependent C3 deposition on the bacteria through the "conventional" mechanism of stabilizing AP C3 convertases.
Collapse
MESH Headings
- Bacterial Adhesion/immunology
- Complement C3/metabolism
- Complement C3 Convertase, Alternative Pathway/metabolism
- Complement Pathway, Alternative/genetics
- Complement Pathway, Alternative/immunology
- Enzyme Stability/immunology
- Humans
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/immunology
- Neisseria gonorrhoeae/metabolism
- Neisseria meningitidis, Serogroup A/genetics
- Neisseria meningitidis, Serogroup A/immunology
- Neisseria meningitidis, Serogroup A/metabolism
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/metabolism
- Neisseria meningitidis, Serogroup C/genetics
- Neisseria meningitidis, Serogroup C/immunology
- Neisseria meningitidis, Serogroup C/metabolism
- Neisseria meningitidis, Serogroup W-135/genetics
- Neisseria meningitidis, Serogroup W-135/immunology
- Neisseria meningitidis, Serogroup W-135/metabolism
- Neisseria meningitidis, Serogroup Y/genetics
- Neisseria meningitidis, Serogroup Y/immunology
- Neisseria meningitidis, Serogroup Y/metabolism
- Properdin/isolation & purification
- Properdin/metabolism
- Properdin/physiology
- Protein Binding/immunology
Collapse
Affiliation(s)
- Sarika Agarwal
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Viviana P. Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Claudio Cortes
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, OH 43614
| | - Michael K. Pangburn
- Department of Biochemistry, Center for Biomedical Research, University of Texas Health Science Center, Tyler, TX 75708
| | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
31
|
Banoub JH, El Aneed A, Cohen AM, Joly N. Structural investigation of bacterial lipopolysaccharides by mass spectrometry and tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2010; 29:606-650. [PMID: 20589944 DOI: 10.1002/mas.20258] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mass spectrometric studies are now playing a leading role in the elucidation of lipopolysaccharide (LPS) structures through the characterization of antigenic polysaccharides, core oligosaccharides and lipid A components including LPS genetic modifications. The conventional MS and MS/MS analyses together with CID fragmentation provide additional structural information complementary to the previous analytical experiments, and thus contribute to an integrated strategy for the simultaneous characterization and correct sequencing of the carbohydrate moiety.
Collapse
Affiliation(s)
- Joseph H Banoub
- Fisheries and Oceans Canada, Science Branch, Special Projects, P.O. Box 5667, St. John's, Newfoundland, Canada A1C 5X1.
| | | | | | | |
Collapse
|
32
|
Paton AW, Morona R, Paton JC. Bioengineered bugs expressing oligosaccharide receptor mimics: toxin-binding probiotics for treatment and prevention of enteric infections. Bioeng Bugs 2009; 1:172-7. [PMID: 21326923 DOI: 10.4161/bbug.1.3.10665] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 12/24/2022] Open
Abstract
Many microbial pathogens recognize oligosaccharides displayed on the surface of host cells as receptors for toxins and adhesins. These ligand-receptor interactions are critical for disease pathogenesis, making them promising targets for novel anti-infectives. One strategy with particular utility against enteric infections involves expression of molecular mimics of host oligosaccharides on the surface of harmless bacteria capable of surviving in the gut. This can be achieved in Gram-negative bacteria by manipulating the outer core region of the lipopolysaccharide (LPS) through expression of cloned heterologous glycosyltransferases. The resultant chimeric LPS molecules are incorporated into the outer membrane by the normal assembly route and presented as a closely packed 2-D array of receptor mimics. Several such "designer probiotics" have been constructed, and these bind bacterial toxins in the gut lumen with very high avidity, blocking their uptake by host cells and thereby preventing disease.
Collapse
Affiliation(s)
- Adrienne W Paton
- Research Centre for Infectious Diseases, School of Molecular and Biomedical Science, University of Adelaide, SA, Australia.
| | | | | |
Collapse
|
33
|
Clarke BR, Greenfield LK, Bouwman C, Whitfield C. Coordination of polymerization, chain termination, and export in assembly of the Escherichia coli lipopolysaccharide O9a antigen in an ATP-binding cassette transporter-dependent pathway. J Biol Chem 2009; 284:30662-72. [PMID: 19734145 DOI: 10.1074/jbc.m109.052878] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli O9a O-polysaccharide (O-PS) is a prototype for O-PS synthesis and export by the ATP-binding cassette transporter-dependent pathway. Comparable systems are widespread in Gram-negative bacteria. The polymannose O9a O-PS is assembled on a polyisoprenoid lipid intermediate by mannosyltransferases located at the cytoplasmic membrane, and the final polysaccharide chain length is determined by the chain terminating dual kinase/methyltransferase, WbdD. The WbdD protein is tethered to the membrane via a C-terminal region containing amphipathic helices located between residues 601 and 669. Here, we establish that the C-terminal domain of WbdD plays an additional pivotal role in assembly of the O-PS by forming a complex with the chain-extending mannosyltransferase, WbdA. Membrane preparations from a DeltawbdD mutant had severely diminished mannosyltransferase activity in vitro, and no significant amounts of the WbdA protein are targeted to the membrane fraction. Expression of a polypeptide comprising the WbdD C-terminal region was sufficient to restore both proper localization of WbdA and mannosyltransferase activity. In contrast to WbdA, the other required mannosyltransferases (WbdBC) are targeted to the membrane independent of WbdD. A bacterial two-hybrid system confirmed the interaction of WbdD and WbdA and identified two regions in the C terminus of WbdD that contributed to the interaction. Therefore, in the O9a assembly export system, the WbdD protein orchestrates the critical localization and coordination of activities involved in O-PS chain extension and termination at the cytoplasmic membrane.
Collapse
Affiliation(s)
- Bradley R Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
34
|
Dam methylation controls O-antigen chain length in Salmonella enterica serovar enteritidis by regulating the expression of Wzz protein. J Bacteriol 2009; 191:6694-700. [PMID: 19717610 DOI: 10.1128/jb.00839-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We reported previously that a Salmonella enterica serovar Enteritidis dam mutant expressing a truncated Dam protein does not agglutinate in the presence of specific antibodies against O9 polysaccharide. Here we investigate the participation of Dam in lipopolysaccharide (LPS) synthesis in Salmonella. The LPS O-antigen profiles of a dam null mutant (SEDeltadam) and the Salmonella serovar Enteritidis parental strain were examined by using electrophoresis and silver staining. Compared to the parental strain, SEDeltadam produced LPS with shorter O-antigen polysaccharide chains. Since Wzz is responsible for the chain length distribution of the O antigen, we investigated whether Dam methylation is involved in regulating wzz expression. Densitometry analysis showed that the amount of Wzz produced by SEDeltadam is threefold lower than the amount of Wzz produced by the parental strain. Concomitantly, the activity of the wzz promoter in SEDeltadam was reduced nearly 50% in logarithmic phase and 25% in stationary phase. These results were further confirmed by reverse transcription-PCR showing that wzz gene expression was threefold lower in the dam mutant than in the parental strain. Our results demonstrate that wzz gene expression is downregulated in a dam mutant, indicating that Dam methylation activates expression of this gene. This work indicates that wzz is a new target regulated by Dam methylation and demonstrates that DNA methylation not only affects the production of bacterial surface proteins but also the production of surface polysaccharides.
Collapse
|
35
|
Residues of heat-labile enterotoxin involved in bacterial cell surface binding. J Bacteriol 2009; 191:2917-25. [PMID: 19270095 DOI: 10.1128/jb.01622-08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of traveler's diarrhea worldwide. One major virulence factor released by this pathogen is the heat-labile enterotoxin LT, which upsets the balance of electrolytes in the intestine. After export, LT binds to lipopolysaccharide (LPS) on the bacterial surface. Although the residues responsible for LT's binding to its host receptor are known, the portion of the toxin which mediates LPS binding has not been defined previously. Here, we describe mutations in LT that impair the binding of the toxin to the external surface of E. coli without altering holotoxin assembly. One mutation in particular, T47A, nearly abrogates surface binding without adversely affecting expression or secretion in ETEC. Interestingly, T47A is able to bind mutant E. coli expressing highly truncated forms of LPS, indicating that LT binding to wild-type LPS may be due primarily to association with an outer core sugar. Consequently, we have identified a region of LT distinct from the pocket involved in eukaryotic receptor binding that is responsible for binding to the surface of E. coli.
Collapse
|
36
|
Pérez JM, McGarry MA, Marolda CL, Valvano MA. Functional analysis of the large periplasmic loop of theEscherichia coliK-12 WaaL O-antigen ligase. Mol Microbiol 2008; 70:1424-40. [DOI: 10.1111/j.1365-2958.2008.06490.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Kemper C, Hourcade DE. Properdin: New roles in pattern recognition and target clearance. Mol Immunol 2008; 45:4048-56. [PMID: 18692243 PMCID: PMC2628304 DOI: 10.1016/j.molimm.2008.06.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 06/30/2008] [Indexed: 01/23/2023]
Abstract
Properdin was first described over 50 years ago by Louis Pillemer and his collaborators as a vital component of an antibody-independent complement activation pathway. In the 1970s properdin was shown to be a stabilizing component of the alternative pathway convertases, the central enzymes of the complement cascade. Recently we have reported that properdin can also bind to target cells and microbes, provide a platform for convertase assembly and function, and promote target phagocytosis. Evidence is emerging that suggests that properdin interacts with a network of target ligands, phagocyte receptors, and serum regulators. Here we review the new findings and their possible implications.
Collapse
Affiliation(s)
- Claudia Kemper
- MRC Centre for Transplantation, King's College London, UK
| | | |
Collapse
|
38
|
Pepin KM, Domsic J, McKenna R. Genomic evolution in a virus under specific selection for host recognition. INFECTION GENETICS AND EVOLUTION 2008; 8:825-34. [PMID: 18804189 DOI: 10.1016/j.meegid.2008.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/01/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
Genetic variation in viral structural proteins is often explained by evolutionary escape of strong host defenses through processes such as immune evasion, host switching, and tissue tropism. An understanding of the mechanisms driving evolutionary change in virus surface proteins is key to designing effective intervention strategies to disease emergence. This study investigated the predictability of virus genomic evolution in response to highly specific differences in host receptor structure. The bacteriophage PhiX174 was evolved on three E. coli mutant hosts, each differing only by a single sugar group in the lipopolysaccharides, used for phage attachment. Large phage populations were used in order to maximize the amount of sequence space explored by mutation, and thus the potential for parallel evolution. Repeatability was assessed by genome sequencing of multiple isolates from endpoint populations and by fitness of the endpoint population relative to its ancestor. Evolutionary lines showed similar magnitudes of fitness increase between treatments. Only one mutation, occurring in the internal DNA pilot protein H, was completely repeatable, and it appeared to be a necessary stepping stone toward further adaptive change. Substitutions in the surface accessible major capsid protein F appeared to be involved in capsid stability rather than specific interactions with host receptors, suggesting that non-specific alterations to capsid structure could be an important component of adaptation to novel hosts. 33% of mutations were synonymous and showed evidence of selection on codon usage. Lastly, results supported previous findings that evolving populations of small ssDNA viruses may maintain relatively high levels of genetic variation.
Collapse
Affiliation(s)
- Kim M Pepin
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA.
| | | | | |
Collapse
|
39
|
González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM, Conde-Álvarez R, Muñoz P, López-Goñi I, Iriarte M, Marín CM, Weintraub A, Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I. Brucellosis vaccines: assessment of Brucella melitensis lipopolysaccharide rough mutants defective in core and O-polysaccharide synthesis and export. PLoS One 2008; 3:e2760. [PMID: 18648644 PMCID: PMC2453230 DOI: 10.1371/journal.pone.0002760] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022] Open
Abstract
Background The brucellae are facultative intracellular bacteria that cause brucellosis, one of the major neglected zoonoses. In endemic areas, vaccination is the only effective way to control this disease. Brucella melitensis Rev 1 is a vaccine effective against the brucellosis of sheep and goat caused by B. melitensis, the commonest source of human infection. However, Rev 1 carries a smooth lipopolysaccharide with an O-polysaccharide that elicits antibodies interfering in serodiagnosis, a major problem in eradication campaigns. Because of this, rough Brucella mutants lacking the O-polysaccharide have been proposed as vaccines. Methodology/Principal Findings To examine the possibilities of rough vaccines, we screened B. melitensis for lipopolysaccharide genes and obtained mutants representing all main rough phenotypes with regard to core oligosaccharide and O-polysaccharide synthesis and export. Using the mouse model, mutants were classified into four attenuation patterns according to their multiplication and persistence in spleens at different doses. In macrophages, mutants belonging to three of these attenuation patterns reached the Brucella characteristic intracellular niche and multiplied intracellularly, suggesting that they could be suitable vaccine candidates. Virulence patterns, intracellular behavior and lipopolysaccharide defects roughly correlated with the degree of protection afforded by the mutants upon intraperitoneal vaccination of mice. However, when vaccination was applied by the subcutaneous route, only two mutants matched the protection obtained with Rev 1 albeit at doses one thousand fold higher than this reference vaccine. These mutants, which were blocked in O-polysaccharide export and accumulated internal O-polysaccharides, stimulated weak anti-smooth lipopolysaccharide antibodies. Conclusions/Significance The results demonstrate that no rough mutant is equal to Rev 1 in laboratory models and question the notion that rough vaccines are suitable for the control of brucellosis in endemic areas.
Collapse
Affiliation(s)
- David González
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - María-Jesús Grilló
- Instituto de Agrobiotecnología, CSIC-UPNA-Gobierno de Navarra, Pamplona, Spain
| | - María-Jesús De Miguel
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Tara Ali
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Vilma Arce-Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - Rose-May Delrue
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Raquel Conde-Álvarez
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Pilar Muñoz
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio López-Goñi
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Maite Iriarte
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
| | - Clara-M. Marín
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Andrej Weintraub
- Karolinska Institute, Department Laboratory Medicine, Division of Clinical Bacteriology, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Widmalm
- Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | - Michel Zygmunt
- INRA, UR1282, Infectiologie Animale et Santé Publique, IASP, Nouzilly, France
| | - Jean-Jacques Letesson
- Laboratoire d'Immunologie et Microbiologie - Unité de Recherche en Biologie Moléculaire (URBM), Facultés Universitaires - Notre-Dame de la Paix (FUNDP), Namur, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Faculté de Sciences de Luminy, Marseille, France
- INSERM, U631, Marseille, France
- CNRS, UMR6102, Marseille, France
| | - José-María Blasco
- Centro de Investigación y Tecnología Agroalimentaria (CITA), Sanidad Animal, Gobierno de Aragón, Zaragoza, Spain
| | - Ignacio Moriyón
- Department of Microbiology and Parasitology, University of Navarra, Pamplona, Spain
- * E-mail:
| |
Collapse
|
40
|
Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. THE JOURNAL OF IMMUNOLOGY 2007; 179:2600-8. [PMID: 17675523 DOI: 10.4049/jimmunol.179.4.2600] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Complement promotes the rapid recognition and elimination of pathogens, infected cells, and immune complexes. The biochemical basis for its target specificity is incompletely understood. In this report, we demonstrate that properdin can directly bind to microbial targets and provide a platform for the in situ assembly and function of the alternative pathway C3 convertases. This mechanism differs from the standard model wherein nascent C3b generated in the fluid phase attaches nonspecifically to its targets. Properdin-directed complement activation occurred on yeast cell walls (zymosan) and Neisseria gonorrhoeae. Properdin did not bind wild-type Escherichia coli, but it readily bound E. coli LPS mutants, and the properdin-binding capacity of each strain correlated with its respective serum-dependent AP activation rate. Moreover, properdin:single-chain Ab constructs were used to direct serum-dependent complement activation to novel targets. We conclude properdin participates in two distinct complement activation pathways: one that occurs by the standard model and one that proceeds by the properdin-directed model. The properdin-directed model is consistent with a proposal made by Pillemer and his colleagues >50 years ago.
Collapse
Affiliation(s)
- Dirk Spitzer
- Division of Rheumatology, Department of Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
Leipold MD, Vinogradov E, Whitfield C. Glycosyltransferases involved in biosynthesis of the outer core region of Escherichia coli lipopolysaccharides exhibit broader substrate specificities than is predicted from lipopolysaccharide structures. J Biol Chem 2007; 282:26786-26792. [PMID: 17631498 DOI: 10.1074/jbc.m704131200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The waaJ, waaT, and waaR genes encode alpha-1,2-glycosyltransferases involved in synthesis of the outer core region of the lipopolysaccharide of Escherichia coli. They belong to the glycosyltransferase CAZy family 8, characterized by the GT-A fold, DXD motifs, and by retention of configuration at the anomeric carbon of the donor sugar. Each enzyme adds a hexose residue at the same stage of core oligosaccharide backbone extension. However, they differ in the epimers for their donor nucleotide sugars, and in their acceptor residues. WaaJ is a UDP-glucose: (galactosyl) LPS alpha-1,2-glucosyltransferase, whereas WaaR and WaaT have UDP-glucose:(glucosyl) LPS alpha-1,2-glucosyltransferase and UDP-galactose:(glucosyl) LPS alpha-1,2-galactosyltransferase activities, respectively. The objective of this work was to examine their ability to utilize alternate donors and acceptors. When expressed in the heterologous host, each enzyme was able to extend the alternate LPS acceptor in vivo but they retained their natural donor specificity. In vitro assays were then performed to test the effect of substituting the epimeric donor sugar on incorporation efficiency with the natural LPS acceptor of the enzyme. Although each enzyme could utilize the alternate donor epimer, activity was compromised because of significant decreases in k(cat) and corresponding increases in K(m)(donor). Finally, in vitro assays were performed to probe acceptor preference in the absence of the cellular machinery. The results were enzyme-dependent: while an alternate acceptor had no significant effect on the kinetic behavior of His(6)-WaaT, His(6)-WaaJ showed a significantly decreased k(cat) and increased K(m)(acceptor). These results illustrate the differences in behavior between closely related glycosyltransferase enzymes involved in the synthesis of similar glycoconjugates and have implications for glycoengineering applications.
Collapse
Affiliation(s)
- Michael D Leipold
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
42
|
Focareta A, Paton JC, Morona R, Cook J, Paton AW. A recombinant probiotic for treatment and prevention of cholera. Gastroenterology 2006; 130:1688-95. [PMID: 16697733 DOI: 10.1053/j.gastro.2006.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 01/18/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS We have developed a therapeutic strategy based on molecular mimicry of host receptors for bacterial toxins on the surface of harmless gut bacteria. In the present study, this has been applied to the development of a recombinant probiotic for treatment and prevention of cholera, caused by Vibrio cholerae. METHODS We expressed glycosyltransferase genes from Neisseria gonorrhoeae and Campylobacter jejuni in a harmless Escherichia coli strain, resulting in production of a chimeric lipopolysaccharide terminating in a mimic of the ganglioside GM(1). RESULTS The recombinant bacterium was capable of binding cholera toxin, a sine qua non of virulence, with high avidity; when tested with purified cholera toxin, it was capable of adsorbing >5% of its own weight of toxin in vitro. Administration of the GM(1)-expressing probiotic also protected infant mice against challenge with virulent V cholerae, even when treatment was delayed until after establishment of infection. When treatment commenced 1 hour after challenge, 12 of 12 mice given the probiotic survived, compared with only 1 of 12 for control mice (P < .00001). CONCLUSIONS Toxin-binding probiotics such as that described here have considerable potential for prophylaxis and treatment of cholera in humans.
Collapse
Affiliation(s)
- Antonio Focareta
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
43
|
Paton AW, Morona R, Paton JC. Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 2006; 4:193-200. [PMID: 16462752 DOI: 10.1038/nrmicro1349] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Many microbial pathogens, including those responsible for major enteric infections, exploit oligosaccharides that are displayed on the surface of host cells as receptors for toxins and adhesins. Blocking crucial ligand-receptor interactions is therefore a promising therapeutic strategy. One approach is to express molecular mimics of host receptors on the surface of harmless recombinant bacteria that can survive in the gut. These 'designer probiotics' bind bacterial toxins in the gut lumen with very high avidity, thereby preventing disease. This article discusses recent progress with this strategy.
Collapse
Affiliation(s)
- Adrienne W Paton
- School of Molecular and Biomedical Science, University of Adelaide, South Australia, 5005, Australia
| | | | | |
Collapse
|
44
|
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 2006; 187:8237-46. [PMID: 16321928 PMCID: PMC1317006 DOI: 10.1128/jb.187.24.8237-8246.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns. Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface. While temporary attachment precedes permanent attachment, both forms can coexist in a population. Exposure of attached cells to gravity liberated an unattached population capable of rapidly reassembling a new monolayer, composed of temporarily attached cells, and possessing periodicity. A csrA mutant, which forms biofilm more vigorously than its wild-type parent, exhibited an increased proportion of permanently attached cells and a form of attachment that was not apparent in the parent strain, permanent polar attachment. Nevertheless, it formed periodic attachment patterns. In contrast, biofilm mutants with altered lipopolysaccharide synthesis (waaG) exhibited increased cell-cell interactions, bypassed the polar attachment step, and produced FFT spectra characteristic of aperiodic cell distribution. Mutants lacking the polysaccharide adhesin beta-1,6-N-acetyl-d-glucosamine (DeltapgaC) also exhibited aperiodic cell distribution, but without apparent cell-cell interactions, and were defective in forming permanent attachments. Thus, spatial periodicity of biofilm microstructure is genetically determined and evident during the formation of temporary cell surface attachments.
Collapse
Affiliation(s)
- Konstantin Agladze
- Department of Microbiology and Immunology, Emory University School of Medicine, 3105 Rollins Research Center, 1510 Clifton Rd. N.E., Atlanta, GA 30322, USA
| | | | | |
Collapse
|
45
|
Zhu P, Boykins RA, Tsai CM. Genetic and functional analyses of the lgtH gene, a member of the β-1,4-galactosyltransferase gene family in the genus Neisseria. Microbiology (Reading) 2006; 152:123-134. [PMID: 16385122 DOI: 10.1099/mic.0.28327-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lipooligosaccharide (LOS) is a major virulence factor of the pathogenic Neisseria. Three galactosyltransferase genes, lgtB, lgtE and lgtH, responsible for the biosynthesis of LOS oligosaccharide chains, were analysed in five Neisseria species. The function of lgtH in Neisseria meningitidis 6275 was determined by mutagenesis and chemical characterization of the parent and mutant LOS chains. The chemical characterization included SDS-PAGE, immunoblot, hexose and mass spectrometry analyses. Compared with the parent LOS, the mutant LOS lacked galactose, and its oligosaccharide decreased by three or four sugar units in matrix-assisted laser desorption ionization (MALDI)-MS analysis. The results show that lgtH encodes a β-1,4-galactosyltransferase, and that the glucose moiety linked to heptose (Hep) in the α chain is the acceptor site in the biosynthesis of Neisseria LOS. To understand the sequence diversity and relationships of lgtB, lgtE and lgtH, the entire lgt-1 locus was further sequenced in three N. meningitidis strains and three commensal Neisseria strains, and compared with the previously reported lgt genes from Neisseria species. Comparison of the protein sequences of the three enzymes LgtB, LgtE and LgtH showed a conserved N-terminal region, and a highly variable C-terminal region, suggesting functional constraint for substrate and acceptor specificity, respectively. The analyses of allelic variation and evolution of 23 lgtB, 12 lgtE and 14 lgtH sequences revealed a distinct evolutionary history of these genes in Neisseria. For example, the splits graph of lgtE displayed a network evolution, indicating frequent DNA recombination, whereas splits graphs of lgtB and lgtH displayed star-tree-like evolution, indicating the accumulation of point mutations. The data presented here represent examples of the evolution and variation of prokaryotic glycosyltransferase gene families. These imply the existence of multiple enzyme isoforms for biosynthesis of a great diversity of oligosaccharides in nature.
Collapse
Affiliation(s)
- Peixuan Zhu
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Robert A Boykins
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| | - Chao-Ming Tsai
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Abeyrathne PD, Daniels C, Poon KKH, Matewish MJ, Lam JS. Functional characterization of WaaL, a ligase associated with linking O-antigen polysaccharide to the core of Pseudomonas aeruginosa lipopolysaccharide. J Bacteriol 2005; 187:3002-12. [PMID: 15838026 PMCID: PMC1082828 DOI: 10.1128/jb.187.9.3002-3012.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of D-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria.
Collapse
Affiliation(s)
- Priyanka D Abeyrathne
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | |
Collapse
|
47
|
Paton AW, Jennings MP, Morona R, Wang H, Focareta A, Roddam LF, Paton JC. Recombinant probiotics for treatment and prevention of enterotoxigenic Escherichia coli diarrhea. Gastroenterology 2005; 128:1219-28. [PMID: 15887106 DOI: 10.1053/j.gastro.2005.01.050] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS We have developed a therapeutic strategy for gastrointestinal infections that is based on molecular mimicry of host receptors for bacterial toxins on the surface of harmless gut bacteria. The aim of this study was to apply this to the development of a recombinant probiotic for treatment and prevention of diarrheal disease caused by enterotoxigenic Escherichia coli strains that produce heat-labile enterotoxin. METHODS This was achieved by expressing glycosyltransferase genes from Neisseria meningitidis or Campylobacter jejuni in a harmless Escherichia coli strain (CWG308), resulting in the production of a chimeric lipopolysaccharide capable of binding heat-labile enterotoxin with high avidity. RESULTS The strongest heat-labile enterotoxin binding was achieved with a construct (CWG308:pLNT) that expresses a mimic of lacto-N-neotetraose, which neutralized > or = 93.8% of the heat-labile enterotoxin activity in culture lysates of diverse enterotoxigenic Escherichia coli strains of both human and porcine origin. When tested with purified heat-labile enterotoxin, it was capable of adsorbing approximately 5% of its own weight of toxin. Weaker toxin neutralization was achieved with a construct that mimicked the ganglioside GM2. Preabsorption with, or coadministration of, CWG308:pLNT also resulted in significant in vivo protection from heat-labile enterotoxin-induced fluid secretion in rabbit ligated ileal loops. CONCLUSIONS Toxin-binding probiotics such as those described here have considerable potential for prophylaxis and treatment of enterotoxigenic Escherichia coli-induced travelers' diarrhea.
Collapse
Affiliation(s)
- Adrienne W Paton
- School of Molecular and Biomedical Science, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Lipopolysaccharide (LPS) is the major surface molecule of Gram-negative bacteria and consists of three distinct structural domains: O-antigen, core, and lipid A. The lipid A (endotoxin) domain of LPS is a unique, glucosamine-based phospholipid that serves as the hydrophobic anchor of LPS and is the bioactive component of the molecule that is associated with Gram-negative septic shock. The structural genes encoding the enzymes required for the biosynthesis of Escherchia coli lipid A have been identified and characterized. Lipid A is often viewed as a constitutively synthesized structural molecule. However, determination of the exact chemical structures of lipid A from diverse Gram-negative bacteria shows that the molecule can be further modified in response to environmental stimuli. These modifications have been implicated in virulence of pathogenic Gram-negative bacteria and represent one of the molecular mechanisms of microbial surface remodeling used by bacteria to help evade the innate immune response. The intent of this review is to discuss the enzymatic machinery involved in the biosynthesis of lipid A, transport of the molecule, and finally, those enzymes involved in the modification of its structure in response to environmental stimuli.
Collapse
Affiliation(s)
- M Stephen Trent
- Department of Microbiology, East Tennessee State University, J.H. Quillen College of Medicine, Johnson City, 37164, USA.
| |
Collapse
|
49
|
Ishiwa A, Komano T. PilV Adhesins of Plasmid R64 Thin Pili Specifically Bind to the Lipopolysaccharides of Recipient Cells. J Mol Biol 2004; 343:615-25. [PMID: 15465049 DOI: 10.1016/j.jmb.2004.08.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/11/2004] [Accepted: 08/13/2004] [Indexed: 10/26/2022]
Abstract
IncI1 plasmid R64 encodes type IV pili or thin pili, which contain PilV adhesins. The C-terminal segments of PilV adhesins are exchanged into seven types by shufflon multiple DNA inversion. PilV adhesins determine recipient specificity in R64 liquid matings through the recognition of lipopolysaccharides (LPSs) on the surface of recipient cells. Using various waa mutants of Escherichia coli R1 as recipient cells, liquid mating experiments suggest that PilVA adhesin recognizes the GlcNAc(beta1-3)Glc moiety of E.coli R1 type LPS. The direct binding of PilV adhesins to LPSs of the recipient bacterial strains was demonstrated using filter overlay assays. The specificity of PilV-LPS binding is in close agreement with the recipient specificity determined by R64 liquid matings. The C-terminal segments of PilVA, PilVC, PilVC', and PilVD' adhesins were expressed as fusion proteins with glutathione-S-transferase (GST). GST-A, GST-C, GST-C', and GST-D' proteins bound to their respective LPSs with the specificities identical with those determined in the R64 liquid matings, indicating that the C-terminal segments of PilV adhesins bind to specific moieties of LPS molecules.
Collapse
Affiliation(s)
- Akiko Ishiwa
- Department of Biology, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | | |
Collapse
|
50
|
Frirdich E, Vinogradov E, Whitfield C. Biosynthesis of a Novel 3-Deoxy-D-manno-oct-2-ulosonic Acid-containing Outer Core Oligosaccharide in the Lipopolysaccharide of Klebsiella pneumoniae. J Biol Chem 2004; 279:27928-40. [PMID: 15090547 DOI: 10.1074/jbc.m402549200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|