1
|
Hattori K, Matsuda N, Hattori Y. [Vascular hyperpermeable molecules potentially contributing to the development of pulmonary edema in sepsis-associated ARDS]. Nihon Yakurigaku Zasshi 2022; 157:226-231. [PMID: 35781449 DOI: 10.1254/fpj.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The acute respiratory distress syndrome (ARDS) is an important cause of respiratory failure in critically ill patients and may become a life-threatening condition where inflammation of the lungs may begin in one lung but eventually affects both, leading to damage to the alveoli and surrounding small blood vessels. ARDS is particularly characterized by noncardiogenic pulmonary edema caused by an increase in pulmonary capillary permeability. Several clinical disorders can precipitate in ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. The most common cause of ARDS is sepsis, which is a serious and widespread infection of the bloodstream and is now defined as life-threatening organ dysfunction due to a dysregulated reponse of the host to infection. In sepsis, a number of vascular hyperpermeable factors, such as histamine, nitric oxide, thromboxane A2, and vascular endothelial growth factor, can be overproducted and contribute to the development of pulmonary edema. Given that sepsis can be regarded as a gene-related disorder, the nucleic-acid based gene therapeutic strategy to regulate some transcription factors involved in expression of vascular hyperpermeable genes may be considered to be a promising novel approach for treatment of ARDS in sepsis.
Collapse
Affiliation(s)
- Kohshi Hattori
- Department of Anesthesiology, Center Hospital of the National Center for Global Health and Medicine
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine
| | - Yuichi Hattori
- Advanced Research Promotion Center, Health Sciences University of Hokkaido
| |
Collapse
|
2
|
Vanarsa K, Henderson J, Soomro S, Qin L, Zhang T, Jordan N, Putterman C, Blanco I, Saxena R, Mohan C. Upregulation of Proinflammatory Bradykinin Peptides in Systemic Lupus Erythematosus and Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2020; 205:369-376. [PMID: 32540998 DOI: 10.4049/jimmunol.1801167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 05/18/2020] [Indexed: 01/01/2023]
Abstract
Our recent study has implicated bradykinin (BK) signaling as being of pathogenic importance in lupus. This study aims to investigate the biomarker potential of BK peptides, BK and BK-des-arg-9, in lupus and other rheumatic autoimmune diseases. Sera from systemic lupus erythematosus (SLE) patients and healthy subjects were screened for BK and BK-des-arg-9 by liquid chromatography-mass spectrometry metabolomics. Serum from 6-mo-old C57BL/6 mice and three murine lupus strains were also screened for the two peptides by metabolomics. Given the promising initial screening results, validation of these two peptides was next conducted using multiple reaction monitoring in larger patient cohorts. In initial metabolomics screening, BK-des-arg-9 was 22-fold higher in SLE serum and 106-fold higher in mouse lupus serum compared with healthy controls. In validation assays using multiple reaction monitoring and quadrupole time-of-flight mass spectrometry, BK and BK-des-arg-9 showed significant elevations in SLE serum compared with controls (p < 0.0001; area under the curve = 0.79-0.88), with a similar but less pronounced increase being noted in rheumatoid arthritis serum. Interestingly, increased renal SLE disease activity index in lupus patients was associated with reduced circulating BK-des-arg-9, and the reasons for this remain to be explored. To sum, increased conversion of BK to the proinflammatory metabolite BK-des-arg-9 appears to be a common theme in systemic rheumatic diseases. Besides serving as an early marker for systemic autoimmunity, independent studies also show that this metabolic axis may also be a pathogenic driver and therapeutic target in lupus.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Jared Henderson
- Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Sanam Soomro
- Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Ling Qin
- Tongji University School of Medicine, Shanghai Tenth People's Hospital, Shanghai 200072, People's Republic of China
| | - Ting Zhang
- Biomedical Engineering, University of Houston, Houston, TX 77204
| | - Nicole Jordan
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chaim Putterman
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461.,Azrieli Faculty of Medicine, Bar-Ilan University, Zefat, Israel 52000.,Research Institute, Galilee Medical Center, Nahariya, Israel 22100; and
| | - Irene Blanco
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Ramesh Saxena
- Nephrology Clinical and Translational Research, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chandra Mohan
- Biomedical Engineering, University of Houston, Houston, TX 77204;
| |
Collapse
|
3
|
Abstract
Increasing evidence suggests that renal inflammation contributes to the pathogenesis and progression of diabetic kidney disease (DKD) and that anti-inflammatory therapies might have renoprotective effects in DKD. Immune cells and resident renal cells that activate innate immunity have critical roles in triggering and sustaining inflammation in this setting. Evidence from clinical and experimental studies suggests that several innate immune pathways have potential roles in the pathogenesis and progression of DKD. Toll-like receptors detect endogenous danger-associated molecular patterns generated during diabetes and induce a sterile tubulointerstitial inflammatory response via the NF-κB signalling pathway. The NLRP3 inflammasome links sensing of metabolic stress in the diabetic kidney to activation of pro-inflammatory cascades via the induction of IL-1β and IL-18. The kallikrein-kinin system promotes inflammatory processes via the generation of bradykinins and the activation of bradykinin receptors, and activation of protease-activated receptors on kidney cells by coagulation enzymes contributes to renal inflammation and fibrosis in DKD. In addition, hyperglycaemia leads to protein glycation and activation of the complement cascade via recognition of glycated proteins by mannan-binding lectin and/or dysfunction of glycated complement regulatory proteins. Data from preclinical studies suggest that targeting these innate immune pathways could lead to novel therapies for DKD.
Collapse
|
4
|
Abstract
INTRODUCTION Kinins are peptide mediators exerting their pro-inflammatory actions by the selective stimulation of two distinct G-protein coupled receptors, termed BKB1R and BKB2R. While BKB2R is constitutively expressed in a multitude of tissues, BKB1R is hardly expressed at baseline but highly inducible by inflammatory mediators. In particular, BKB1R was shown to be involved in the pathogenesis of numerous inflammatory diseases. Areas covered: This review intends to evaluate the therapeutic potential of substances interacting with the BKB1R. To this purpose we summarize the published literature on animal studies with antagonists and knockout mice for this receptor. Expert Opinion: In most cases the pharmacological inhibition of BKB1R or its genetic deletion was beneficial for the outcome of the disease in animal models. Therefore, several companies have developed BKB1R antagonists and tested them in phase I and II clinical trials. However, none of the developed BKB1R antagonists was further developed for clinical use. We discuss possible reasons for this failure of translation of preclinical findings on BKB1R antagonists into the clinic.
Collapse
Affiliation(s)
- Fatimunnisa Qadri
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany
| | - Michael Bader
- a Max-Delbrück Center for Molecular Medicine (MDC) , Berlin , Germany.,b Berlin Institute of Health (BIH) , Berlin , Germany.,c Charité University Medicine Berlin , Germany.,d German Center for Cardiovascular Research (DZHK) site Berlin , Berlin , Germany.,e Institute for Biology , University of Lübeck , Lübeck , Germany
| |
Collapse
|
5
|
Tharaux PL, Dhaun N. Endothelium-Neutrophil Communication via B1-Kinin Receptor-Bearing Microvesicles in Vasculitis. J Am Soc Nephrol 2017; 28:2255-2258. [PMID: 28710089 DOI: 10.1681/asn.2017030300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- Pierre-Louis Tharaux
- National Institute of Health and Medical Research, Paris Cardiovascular Centre, Paris, France
| | - Neeraj Dhaun
- National Institute of Health and Medical Research, Paris Cardiovascular Centre, Paris, France
| |
Collapse
|
6
|
Unveiling the participation of avian kinin ornithokinin and its receptors in the chicken inflammatory response. Vet Immunol Immunopathol 2017; 188:34-47. [PMID: 28615126 DOI: 10.1016/j.vetimm.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/28/2017] [Accepted: 04/11/2017] [Indexed: 01/06/2023]
Abstract
Vasoactive peptides are key early mediators of inflammation released through activation of different enzymatic systems. The mammalian kinin-kallikrein (K-KLK) system produces bradykinin (BK) through proteolytic cleavage of a kininogen precursor by enzymes named kallikreins. BK acts through specific ubiquitous G-protein coupled receptors (B1R and B2R) to participate in physiological processes and inflammatory responses, such as activation of mononuclear phagocytes. In chickens, the BK-like nonapeptide ornithokinin (OK) has been shown to promote intracellular calcium increase in embryonic fibroblasts and to be vasodilatory in vivo. Also, one of its receptors (B2R) was already cloned. However, the participation of chicken K-KLK system components in the inflammatory response remains unknown and was therefore investigated. We first showed that B1R, B2R and kininogen 1 (KNG1) are expressed in unstimulated chicken tissues and macrophages. We next showed that chicken B1R and B2R are expressed at transcript and protein levels in chicken macrophages and are upregulated by E. coli LPS or avian pathogenic E. coli (APEC) infection. Interestingly, exogenous OK induced internalization and degradation of OK receptors protein, notably B2R. Also, OK induced intracellular calcium increase and potentiated zymosan-induced ROS production and Dextran-FITC endocytosis by chicken macrophages. Exogenous OK itself did not promote APEC killing and had no pro-inflammatory effect. However, when combined with LPS or APEC, OK upregulated cytokine/chemokine gene expression and NO production by chicken macrophages. This effect was not blocked by canonical non-peptide B1R or B2R receptor antagonists but was GPCR- and PI3K/Akt-dependent. In vivo, pulmonary colibacillosis led to upregulation of OK receptors expression in chicken lungs and liver. Also, colibacillosis led to significant upregulation of OK precursor KNG1 expression in liver and in cultured hepatocytes (LMH). We therefore provide hitherto unknown information on how OK and its receptors are involved in inflammation and infection in chickens.
Collapse
|
7
|
Mikrut K, Kupsz J, Kozlik J, Krauss H, Pruszynska-Oszmałek E, Gibas-Dorna M. Angiotensin-converting enzyme inhibitors reduce oxidative stress intensity in hyperglicemic conditions in rats independently from bradykinin receptor inhibitors. Croat Med J 2017; 57:371-80. [PMID: 27586552 PMCID: PMC5048232 DOI: 10.3325/cmj.2016.57.371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim To investigate whether bradykinin-independent antioxidative effects of angiotensin-converting enzyme inhibitors (ACEIs) exist in acute hyperglycemia. Methods Male Wistar rats were divided into the normoglycemic group (n = 40) and the hyperglycemic group (n = 40). Hyperglycemia was induced by a single intraperitoneal injection of streptozotocin (STZ, 65 mg/kg body weight) dissolved in 0.1 mol/L citrate buffer (pH 4.5) 72 hours before sacrifice. The normoglycemic group received the same volume of citrate buffer. Each group was divided into five subgroups (n = 8): control group, captopril group, captopril + bradykinin B1 and B2 receptor antagonists group, enalapril group, and enalapril + bradykinin B1 and B2 receptor antagonists group. Captopril, enalapril, B1 and B2 receptor antagonists, or 0.15 mol/L NaCl were given at 2 and 1 hour before sacrifice. Oxidative status was determined by measuring the concentration of malondialdehyde and H2O2, and the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). Results In STZ-induced hyperglycemic rats ACEIs significantly reduced H2O2 and MDA concentration, while they significantly enhanced SOD and GPx activity. The hyperglycemic group treated simultaneously with ACEIs and bradykinin B1 and B2 receptor antagonists showed a significant decrease in H2O2 concentration compared to the control hyperglycemic group. Conclusion These results suggest the existence of additional antioxidative effect of ACEIs in hyperglycemic conditions, which is not related to the bradykinin mediation and the structure of the drug molecule.
Collapse
Affiliation(s)
- Kinga Mikrut
- Kinga Mikrut, Department of Physiology, Poznan University of Medical Sciences, Swiecickiego St., 6, 60-781 Poznan, Poland,
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Remarkable progress in understanding the pathophysiology and underlying mechanisms of hereditary angioedema has led to the development of effective treatment for this disorder. Progress in three separate areas has catalyzed our understanding of hereditary angioedema. The first is the recognition that HAE type I and type II result from a deficiency in the plasma level of functional C1 inhibitor. This observation has led to a detailed understanding of the SERPING1 mutations responsible for this deficiency as well as the molecular regulation of C1 inhibitor expression and function. The second is that the fundamental cause of swelling is enhanced contact system activation leading to increased generation of bradykinin. Substantial progress has been made in defining the parameters regulating bradykinin generation and catabolism as well as the receptors that transduce the biologic effects of kinins. The third is the understanding that tissue swelling in hereditary angioedema primarily involves the function of endothelial cell adherens junctions. This knowledge is driving increased attention to the role of endothelial biology in determining disease activity in hereditary angioedema. While there has been considerable progress made, large gaps still remain in our knowledge. Important areas that remain poorly understood include the factors that lead to very low plasma functional C1 inhibitor levels, the triggers of contact system activation in hereditary angioedema, and the role of the bradykinin B1 receptor. The phenotypic variability of hereditary angioedema has been extensively documented but never understood. The mechanisms discussed in this chapter likely contribute to this variability. Future progress in understanding these mechanisms should provide new means to improve the diagnosis and treatment of hereditary angioedema.
Collapse
|
9
|
Dutra RC. Kinin receptors: Key regulators of autoimmunity. Autoimmun Rev 2017; 16:192-207. [DOI: 10.1016/j.autrev.2016.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/25/2016] [Indexed: 01/06/2023]
|
10
|
Kilstein Y, Nowak W, Errasti AE, Feás AAB, Armesto AR, Pelorosso FG, Rothlin RP. Involvement of Extracellular Signal-Regulated Kinase 5 in Kinin B1 Receptor Upregulation in Isolated Human Umbilical Veins. J Pharmacol Exp Ther 2016; 357:114-24. [PMID: 26769916 DOI: 10.1124/jpet.115.230169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/08/2016] [Indexed: 11/22/2022] Open
Abstract
The upregulated kinin B1 receptors exert a pivotal role in modulating inflammatory processes. In isolated human umbilical veins (HUVs), kinin B1 receptor is upregulated as a function of in vitro incubation time and proinflammatory stimuli. The aim of this study was to evaluate, using functional and biochemical methods, the involvement of extracellular signal-regulated kinase 5 (ERK5), p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase 1/2 (ERK1/2) on the kinin B1 receptor upregulation process in HUV. Real-time polymerase chain reaction analysis revealed for the first time that kinin B1 receptor mRNA expression closely parallels the functional sensitization to kinin B1 receptor selective agonist des-Arg(10)-kallidin (DAKD) in HUV. Moreover, the selective inhibition of ERK5, p38 MAPK, and JNK, but not ERK1/2, produced a dose-dependent rightward shift of the concentration-response curves to DAKD after 5-hour incubation and a reduction in kinin B1 receptor mRNA expression. Biochemical analyses showed that ERK5, p38 MAPK, and JNK phosphorylation is maximal during the first 2 hours postisolation, followed by a significant reduction in the last 3 hours. None of the treatments modified the responses to serotonin, an unrelated agonist, suggesting a specific effect on kinin B1 receptor upregulation. The present work provides for the first time pharmacologic evidence indicating that ERK5 plays a significant role on kinin B1 receptor upregulation. Furthermore, we confirm the relevance of p38 MAPK and JNK as well as the lack of effect of ERK1/2 in this process. This study may contribute to a better understanding of MAPK involvement in inflammatory and immunologic diseases.
Collapse
Affiliation(s)
- Yael Kilstein
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wanda Nowak
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Emilse Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Antía Andrea Barcia Feás
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Arnaldo Raúl Armesto
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Facundo Germán Pelorosso
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rodolfo Pedro Rothlin
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
Kita T, Clermont AC, Murugesan N, Zhou Q, Fujisawa K, Ishibashi T, Aiello LP, Feener EP. Plasma Kallikrein-Kinin System as a VEGF-Independent Mediator of Diabetic Macular Edema. Diabetes 2015; 64:3588-99. [PMID: 25979073 PMCID: PMC4587649 DOI: 10.2337/db15-0317] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/03/2015] [Indexed: 11/13/2022]
Abstract
This study characterizes the kallikrein-kinin system in vitreous from individuals with diabetic macular edema (DME) and examines mechanisms contributing to retinal thickening and retinal vascular permeability (RVP). Plasma prekallikrein (PPK) and plasma kallikrein (PKal) were increased twofold and 11.0-fold (both P < 0.0001), respectively, in vitreous from subjects with DME compared with those with a macular hole (MH). While the vascular endothelial growth factor (VEGF) level was also increased in DME vitreous, PKal and VEGF concentrations do not correlate (r = 0.266, P = 0.112). Using mass spectrometry-based proteomics, we identified 167 vitreous proteins, including 30 that were increased in DME (fourfold or more, P < 0.001 vs. MH). The majority of proteins associated with DME displayed a higher correlation with PPK than with VEGF concentrations. DME vitreous containing relatively high levels of PKal and low VEGF induced RVP when injected into the vitreous of diabetic rats, a response blocked by bradykinin receptor antagonism but not by bevacizumab. Bradykinin-induced retinal thickening in mice was not affected by blockade of VEGF receptor 2. Diabetes-induced RVP was decreased by up to 78% (P < 0.001) in Klkb1 (PPK)-deficient mice compared with wild-type controls. B2- and B1 receptor-induced RVP in diabetic mice was blocked by endothelial nitric oxide synthase (NOS) and inducible NOS deficiency, respectively. These findings implicate the PKal pathway as a VEGF-independent mediator of DME.
Collapse
Affiliation(s)
- Takeshi Kita
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | | | | | - Qunfang Zhou
- Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Kimihiko Fujisawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka City, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka City, Japan
| | - Lloyd Paul Aiello
- Joslin Diabetes Center, Harvard Medical School, Boston, MA Beetham Eye Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA
| | - Edward P Feener
- Joslin Diabetes Center, Harvard Medical School, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Amouroux G, Pan J, Jenni S, Zhang C, Zhang Z, Hundal-Jabal N, Colpo N, Liu Z, Bénard F, Lin KS. Imaging Bradykinin B1 Receptor with 68Ga-Labeled [des-Arg10]Kallidin Derivatives: Effect of the Linker on Biodistribution and Tumor Uptake. Mol Pharm 2015; 12:2879-88. [DOI: 10.1021/acs.molpharmaceut.5b00070] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guillaume Amouroux
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Silvia Jenni
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Chengcheng Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhibo Liu
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| |
Collapse
|
13
|
Liu Z, Amouroux G, Zhang Z, Pan J, Hundal-Jabal N, Colpo N, Lau J, Perrin DM, Bénard F, Lin KS. 18F-Trifluoroborate Derivatives of [Des-Arg10]Kallidin for Imaging Bradykinin B1 Receptor Expression with Positron Emission Tomography. Mol Pharm 2015; 12:974-82. [DOI: 10.1021/acs.molpharmaceut.5b00003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhibo Liu
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Guillaume Amouroux
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Jinhe Pan
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Nadine Colpo
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Joseph Lau
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - David M. Perrin
- Chemistry
Department, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - François Bénard
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| | - Kuo-Shyan Lin
- Department
of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
- Department
of Radiology, University of British Columbia, Vancouver, BC V5Z 4E3, Canada
| |
Collapse
|
14
|
Abstract
Pulmonary fibrosis is a pathological condition in which lungs become scarred due to the excess extracellular matrix (ECM) deposition and structural alterations in the interstitium of lung parenchyma. Many patients with interstitial lung diseases (ILDs) caused by long-term exposure to toxic substances, chronic infections, or autoimmune responses develop fibrosis. Etiologies for many ILDs are unknown, such as idiopathic pulmonary fibrosis (IPF), a devastating, relentless form of pulmonary fibrosis with a median survival of 2-3 years. Despite several decades of research, factors that initiate and sustain the fibrotic response in lungs remain unclear and there is no effective treatment to block progression of fibrosis. Here we summarize recent findings on the antifibrotic activity of miR-29, a small noncoding regulatory RNA, in the pathogenesis of fibrosis by regulating ECM production and deposition, and epithelial-mesenchymal transition (EMT). We also describe interactions of miR-29 with multiple profibrotic and inflammatory pathways. Finally, we review the antifibrotic activity of miR-29 in animal models of fibrosis and highlight miR-29 as a promising therapeutic reagent or target for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Leah Cushing
- The Columbia Center for Human Development, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University, College of Physicians & Surgeons, 630 West 168th Street, BB 8-810, New York, NY 10032, USA
| | | | | |
Collapse
|
15
|
Novel kinin B₁ receptor splice variant and 5'UTR regulatory elements are responsible for cell specific B₁ receptor expression. PLoS One 2014; 9:e87175. [PMID: 24475248 PMCID: PMC3903636 DOI: 10.1371/journal.pone.0087175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/20/2013] [Indexed: 12/04/2022] Open
Abstract
The kinin B1 receptor (B1R) is rapidly upregulated after tissue trauma or inflammation and is involved in cancer and inflammatory diseases such as asthma. However, the role of the: promoter; a postulated alternative promoter; and spliced variants in airway epithelial and other lung cells are poorly understood. We identified, in various lung cell lines and leucocytes, a novel, naturally occurring splice variant (SV) of human B1R gene with a shorter 5′untranslated region. This novel SV is ≈35% less stable than the wild-type (WT) transcript in lung adenocarcinoma cells (H2126), but does not influence translation efficiency. Cell-specific differences in splice variant expression were observed post des[Arg10]-kallidin stimulation with delayed upregulation of SV compared to WT suggesting potentially different regulatory responses to inflammation. Although an alternative promoter was not identified in our cell-lines, several cell-specific regulatory elements within the postulated alternative promoter region (negative response element (NRE) −1020 to −766 bp in H2126; positive response element (PRE) −766 to −410 bp in 16HBE; −410 to +1 region acts as a PRE in H2126 and NRE in 16HBE cells) were found. These findings reveal complex regulation of B1R receptor expression in pulmonary cells which may allow future therapeutic manipulation in chronic pulmonary inflammation and cancer.
Collapse
|
16
|
Bhat M, Pouliot M, Couture R, Vaucher E. The kallikrein-kinin system in diabetic retinopathy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:111-43. [PMID: 25130041 DOI: 10.1007/978-3-319-06683-7_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication associated with type 1 and type 2 diabetes mellitus, which can lead to visual impairment and blindness. Current treatment strategies for DR are mostly limited to laser therapies, steroids, and anti-VEGF agents, which are often associated with unwanted side effects leading to further complications. Recent evidence suggests that kinins play a primary role in the development of DR through enhanced vascular permeability, leukocytes infiltration, and other inflammatory mechanisms. These deleterious effects are mediated by kinin B1 and B2 receptors, which are expressed in diabetic human and rodent retina. Importantly, kinin B1 receptor is virtually absent in sane tissue, yet it is induced and upregulated in diabetic retina. These peptides belong to the kallikrein-kinin system (KKS), which contains two separate and independent pathways of regulated serine proteases, namely plasma kallikrein (PK) and tissue kallikrein (TK) that are involved in the biosynthesis of bradykinin (BK) and kallidin (Lys-BK), respectively. Hence, ocular inhibition of kallikreins or antagonism of kinin receptors offers new therapeutic avenues in the treatment and management of DR. Herein, we present an overview of the principal features and known inflammatory mechanisms associated with DR along with the current therapeutic approaches and put special emphasis on the KKS as a new and promising therapeutic target due to its link with key pathways directly associated with the development of DR.
Collapse
|
17
|
Emerging role of microglial kinin B1 receptor in diabetic pain neuropathy. Exp Neurol 2012; 234:373-81. [DOI: 10.1016/j.expneurol.2011.11.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 11/01/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
|
18
|
Pouliot M, Talbot S, Sénécal J, Dotigny F, Vaucher E, Couture R. Ocular application of the kinin B1 receptor antagonist LF22-0542 inhibits retinal inflammation and oxidative stress in streptozotocin-diabetic rats. PLoS One 2012; 7:e33864. [PMID: 22470485 PMCID: PMC3314679 DOI: 10.1371/journal.pone.0033864] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/18/2012] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Kinin B(1) receptor (B(1)R) is upregulated in retina of Streptozotocin (STZ)-diabetic rats and contributes to vasodilation of retinal microvessels and breakdown of the blood-retinal barrier. Systemic treatment with B(1)R antagonists reversed the increased retinal plasma extravasation in STZ rats. The present study aims at determining whether ocular application of a water soluble B(1)R antagonist could reverse diabetes-induced retinal inflammation and oxidative stress. METHODS Wistar rats were made diabetic with STZ (65 mg/kg, i.p.) and 7 days later, they received one eye drop application of LF22-0542 (1% in saline) twice a day for a 7 day-period. The impact was determined on retinal vascular permeability (Evans blue exudation), leukostasis (leukocyte infiltration using Fluorescein-isothiocyanate (FITC)-coupled Concanavalin A lectin), retinal mRNA levels (by qRT-PCR) of inflammatory (B(1)R, iNOS, COX-2, ICAM-1, VEGF-A, VEGF receptor type 2, IL-1β and HIF-1α) and anti-inflammatory (B(2)R, eNOS) markers and retinal level of superoxide anion (dihydroethidium staining). RESULTS Retinal plasma extravasation, leukostasis and mRNA levels of B(1)R, iNOS, COX-2, VEGF receptor type 2, IL-1β and HIF-1α were significantly increased in diabetic retinae compared to control rats. All these abnormalities were reversed to control values in diabetic rats treated with LF22-0542. B(1)R antagonist also significantly inhibited the increased production of superoxide anion in diabetic retinae. CONCLUSION B(1)R displays a pathological role in the early stage of diabetes by increasing oxidative stress and pro-inflammatory mediators involved in retinal vascular alterations. Hence, topical application of kinin B(1)R antagonist appears a highly promising novel approach for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Mylène Pouliot
- École d'optométrie, Université de Montréal, Montréal, Canada
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Sébastien Talbot
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | - Jacques Sénécal
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal, Montréal, Canada
| | - Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
19
|
Abstract
Diabetic nephropathy is the major cause of end-stage renal disease worldwide. Although the renin-angiotensin system has been implicated in the pathogenesis of diabetic nephropathy, angiotensin I-converting enzyme inhibitors have a beneficial effect on diabetic nephropathy independently of their effects on blood pressure and plasma angiotensin II levels. This suggests that the kallikrein-kinin system (KKS) is also involved in the disease. To study the role of the KKS in diabetic nephropathy, mice lacking either the bradykinin B1 receptor (B1R) or the bradykinin B2 receptor (B2R) have been commonly used. However, because absence of either receptor causes enhanced expression of the other, it is difficult to determine the precise functions of each receptor. This difficulty has recently been overcome by comparing mice lacking both receptors with mice lacking each receptor. Deletion of both B1R and B2R reduces nitric oxide (NO) production and aggravates renal diabetic phenotypes, relevant to either lack of B1R or B2R, demonstrating that both B1R and B2R exert protective effects on diabetic nephropathy presumably via NO. Here, we review previous epidemiological and experimental studies, and discuss novel insights regarding the therapeutic implications of the importance of the KKS in averting diabetic nephropathy.
Collapse
|
20
|
Tanabe A, Shiraishi M, Negishi M, Saito N, Tanabe M, Sasaki Y. MARCKS dephosphorylation is involved in bradykinin-induced neurite outgrowth in neuroblastoma SH-SY5Y cells. J Cell Physiol 2012; 227:618-29. [PMID: 21448919 DOI: 10.1002/jcp.22763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-β and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.
Collapse
Affiliation(s)
- Atsuhiro Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
21
|
Shin HS, Ha UH. Up-regulation of human bradykinin B1 receptor by secreted components ofPseudomonas aeruginosavia a NF-κB pathway in epithelial cells. ACTA ACUST UNITED AC 2011; 63:418-26. [DOI: 10.1111/j.1574-695x.2011.00868.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
22
|
Abstract
Tissue kallikrein cleaves kininogens to release kinins. Kinins mediate inflammation by activating constitutive bradykinin receptor-2 (BR2), which are rapidly desensitized, and induced by inflammatory cytokines bradykinin receptor-1 (BR1), resistant to desensitization. Intestinal tissue kallikrein (ITK) may hydrolyze growth factors and peptides, whereas kinins are responsible for capillary permeability, pain, synthesis of cytokines, and adhesion molecule-neutrophil cascade. Our and others results have demonstrated ITK in intestinal goblet cells and its release into interstitial space during inflammation. Kallistatin, an inhibitor of ITK, has been shown in epithelial and goblet cells, and was decreased in inflamed intestine as well as in plasma compared with noninflammatory controls. BR1 was upregulated in patients with inflammatory bowel disease (IBD), and it has expressed in an apical part of enterocytes in inflamed intestine, but in the basal part in normal intestine. ITK and BR1 were visualized in macrophages forming granuloma in Crohn's disease. In animal studies BR2 blockade decreased intestinal contraction, but had limited effect on inflammatory lesions. BR1 was found to be upregulated in animal inflamed intestine, in part dependent on tumor necrosis factor alpha (TNF-α). A selective BR1 receptor antagonist decreased morphological and biochemical features of experimental intestinal inflammation. Both BR1 and BR2 mediate epithelial ion transport that leads to secretory diarrhea. The upregulation of BR1 in inflamed intestine provides a structural basis for the kinins function, suggesting that a selective BR1 antagonist may have potential in therapeutic trial of IBD patients.
Collapse
Affiliation(s)
- Antoni Stadnicki
- Department of Basis Biomedical Sciences, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
23
|
Lin JCJ, Talbot S, Lahjouji K, Roy JP, Sénécal J, Couture R, Morin A. Mechanism of cigarette smoke-induced kinin B(1) receptor expression in rat airways. Peptides 2010; 31:1940-5. [PMID: 20637817 DOI: 10.1016/j.peptides.2010.07.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/08/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Pulmonary inflammation is an important pathological feature of tobacco smoke related lung diseases such as chronic obstructive pulmonary disease (COPD). Kinin type 1 and type 2 receptors (B(1)R, B(2)R) are known to be associated with inflammatory responses of the lungs and other organs. In this study, we investigated whether cigarette smoke-induced airway inflammation could up-regulate B(1)R and B(2)R in correlation with IL-1β and TNF-α. Rat lung slices treated with 5 μg/ml total particulate matter (TPM) of cigarette smoke for 24 h showed an enhanced expression of B(1)R and IL-1β by 5-fold and 30-fold, respectively, in comparison to vehicle treatment (dimethyl sulfoxide). However, higher concentrations of TPM failed to induce B(1)R. No significant increase of B(2)R or TNF-α gene induction was observed. IL-1 receptor antagonist (IL-1Ra, 2 ng/ml) significantly blocked B(1)R gene induction by TPM, while 500 μM pentoxifylline, TNF-α inhibitor, reduced it partially. Western blot analysis showed a 2-fold enhanced expression of B(1)R in rat lung slices treated with 5 μg/ml TPM for 24 h and such protein expression was totally blocked by a co-treatment with IL-1Ra but not with pentoxifylline. In addition to the lower airways, rat trachea subchronically exposed to cigarette whole smoke exhibited 11-fold B(1)R gene induction in comparison with those exposed only to air. Our results demonstrate the involvement of B(1)R in cigarette smoke-induced airway inflammation through a mechanism which is mediated by the pro-inflammatory cytokine IL-1β.
Collapse
Affiliation(s)
- James Chi-Jen Lin
- Imperial Tobacco Canada Ltd, 3711 Saint Antoine West, Montréal, QC, Canada H4C 3P6
| | | | | | | | | | | | | |
Collapse
|
24
|
Up-regulation of bradykinin receptors in rat bronchia via IκB kinase-mediated inflammatory signaling pathway. Eur J Pharmacol 2010; 634:149-61. [DOI: 10.1016/j.ejphar.2010.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2009] [Revised: 01/26/2010] [Accepted: 02/13/2010] [Indexed: 11/19/2022]
|
25
|
Picolo G, Hisada M, Moura AB, Machado MF, Sciani JM, Conceição IM, Melo RL, Oliveira V, Lima-Landman MTR, Cury Y, Konno K, Hayashi MA. Bradykinin-related peptides in the venom of the solitary wasp Cyphononyx fulvognathus. Biochem Pharmacol 2010; 79:478-86. [DOI: 10.1016/j.bcp.2009.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 11/26/2022]
|
26
|
Kallikrein-kinin system: a surgical perspective in post-aprotinin era. J Surg Res 2010; 167:70-7. [PMID: 20605589 DOI: 10.1016/j.jss.2009.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/26/2009] [Accepted: 12/18/2009] [Indexed: 11/23/2022]
Abstract
Kallikrein-kinin system (KKS) plays an important role in inflammation, ischemia-reperfusion (IR) injury, and development of neoplasia. There is evidence to suggest that KKS plays an important role in organ protection during preconditioning. Aprotinin is a nonspecific serine protease inhibitor, which has been extensively used in cardiac surgery for the control of post operative bleeding. The anti-inflammatory effects of aproprotin are due to its inhibitory effect on the kallikrein-kinin system (KKS). We herein review KKS and its role as applied to the practice of surgery.
Collapse
|
27
|
Bossi F, Fischetti F, Regoli D, Durigutto P, Frossi B, Gobeil F, Ghebrehiwet B, Peerschke EI, Cicardi M, Tedesco F. Novel pathogenic mechanism and therapeutic approaches to angioedema associated with C1 inhibitor deficiency. J Allergy Clin Immunol 2010; 124:1303-10.e4. [PMID: 19796797 DOI: 10.1016/j.jaci.2009.08.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/04/2009] [Accepted: 08/05/2009] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activation of bradykinin-mediated B2 receptor has been shown to play an important role in the onset of angioedema associated with C1 inhibitor deficiency. This finding has led to the development of novel therapeutic drugs such as the B2 receptor antagonist icatibant. However, it is unclear whether other receptors expressed on endothelial cells contribute to the release of kinins and vascular leakage in these patients. The recognition of their role may have obvious therapeutic implications. OBJECTIVE Our aim was to investigate the involvement of B1 and gC1q receptors in in vitro and in vivo models of vascular leakage induced by plasma samples obtained from patients with C1 inhibitor deficiency. METHODS The vascular leakage was evaluated in vitro on endothelial cells by a transwell model system and in vivo on rat mesentery microvessels by intravital microscopy. RESULTS We observed that the attack phase plasma from C1 inhibitor-deficient patients caused a delayed fluorescein-labeled albumin leakage as opposed to the rapid effect of bradykinin, whereas remission plasma elicited a modest effect compared with control plasma. The plasma permeabilizing effect was prevented by blocking the gC1q receptor-high-molecular-weight kininogen interaction, was partially inhibited by B2 receptor or B1 receptor antagonists, and was totally prevented by the mixture of the 2 antagonists. Involvement of B1 receptor was supported by the finding that albumin leakage caused by attack phase plasma was enhanced by IL-1beta and was markedly reduced by brefeldin A. CONCLUSION Our data suggest that both B1 receptor and gC1q receptor are involved in the vascular leakage induced by hereditary and acquired angioedema plasma.
Collapse
Affiliation(s)
- Fleur Bossi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Kinins are vasoactive peptides that stimulate two G-protein coupled bradykinin receptors (B1R and B2R). B2R-knockout mice are salt sensitive and develop renal dysgenesis and hypertension if salt stressed during embryogenesis. B1R-knockout mice, on the other hand, are protected from inflammation and fibrosis. This study examined the spatiotemporal expression of B1R during renal organogenesis. The segmental nephron identity of B1R immunoreactivity was determined by costaining with markers of the collecting duct (Dolichos biflorus), proximal tubule (Dolichos tetraglonus), and nephron progenitors (Pax2). At E14.5, the B1R was confined to few cells in the metanephric mesenchyme. Abundance of B1R increased progressively during development. On E17.5, B1R was enriched in differentiating proximal tubular cells and by postnatal day 1, B1R was clearly expressed on the luminal aspect of the proximal tubule. Quantitative real-time PCR revealed that the levels of B1R mRNA more than double during renal maturation. We conclude that 1) B1R expression correlates closely with nephron maturation; 2) lack of B1R in nephron progenitors suggests that B1R is unlikely to play a role in early nephrogenesis; and 3) enrichment of B1R in maturing proximal tubule suggests a potential role for this receptor in terminal differentiation of the proximal nephron.
Collapse
Affiliation(s)
- Ozlem Pinar Bulut
- Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
29
|
Brechter AB, Persson E, Lundgren I, Lerner UH. Kinin B1 and B2 receptor expression in osteoblasts and fibroblasts is enhanced by interleukin-1 and tumour necrosis factor-alpha. Effects dependent on activation of NF-kappaB and MAP kinases. Bone 2008; 43:72-83. [PMID: 18467203 DOI: 10.1016/j.bone.2008.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/29/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
Abstract
Pro-inflammatory mediators formed by the kallikrein-kinin system can stimulate bone resorption and synergistically potentiate bone resorption induced by IL-1 and TNF-alpha. We have shown that the effect is associated with synergistically enhanced RANKL expression and enhanced prostaglandin biosynthesis, due to increased cyclooxygenase-2 expression. In the present study, the effects of osteotropic cytokines and different kinins on the expression of receptor subtypes for bradykinin (BK), des-Arg10-Lys-BK (DALBK), IL-1beta and TNF-alpha have been investigated. IL-1beta and TNF-alpha enhanced kinin B1 and B2 receptor binding in the human osteoblastic cell line MG-63 and the mRNA expression of B1 and B2 receptors in MG-63 cells, human gingival fibroblasts and intact mouse calvarial bones. Kinins did not affect mRNA expression of IL-1 or TNF receptors. EMSA showed that IL-1beta and TNF-alpha activated NF-kappaB and AP-1 in MG-63 cells. IL-1beta stimulated NF-kappaB via a non-canonical pathway (p52/p65) and TNF-alpha via the canonical pathway (p50/p65). Activation of AP-1 involved c-Jun in both IL-1beta and TNF-alpha stimulated cells, but c-Fos only in TNF-alpha stimulated cells. Phospho-ELISA and Western blots showed that IL-1beta activated JNK and p38, but not ERK 1/2 MAP kinase. Pharmacological inhibitors showed that NF-kappaB, p38 and JNK were important for IL-1beta induced stimulation of B1 receptors, and NF-kappaB and p38 for B2 receptors. p38 and JNK were important for TNF-alpha induced stimulation of B1 receptors, whereas NF-kappaB, p38 and JNK were involved in TNF-alpha induced expression of B2 receptors. These data show that IL-1beta and TNF-alpha upregulate B1 and B2 receptor expression by mechanisms involving activation of both NF-kappaB and MAP kinase pathways, but that signal transduction pathways are different for IL-1beta and TNF-alpha. The enhanced kinin receptor expression induced by the pro-inflammatory cytokines IL-1beta and TNF-alpha might be one important mechanism involved in the synergistic enhancement of prostaglandin formation caused by co-treatment with kinins and one of the two cytokines. These mechanisms might help to explain the enhanced bone resorption associated with inflammatory disorders, including periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Emma Persson
- Oral Cell Biology, Umeå University, Umeå , Sweden
| | | | - Ulf H Lerner
- Oral Cell Biology, Umeå University, Umeå , Sweden.
| |
Collapse
|
30
|
Compensatory function of bradykinin B1 receptor in the inhibitory effect of captopril on cardiomyocyte hypertrophy and cardiac fibroblast proliferation in neonatal rats. Chin Med J (Engl) 2008. [DOI: 10.1097/00029330-200807010-00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Hara DB, Leite DFP, Fernandes ES, Passos GF, Guimarães AO, Pesquero JB, Campos MM, Calixto JB. The relevance of kinin B1 receptor upregulation in a mouse model of colitis. Br J Pharmacol 2008; 154:1276-86. [PMID: 18536758 PMCID: PMC2483382 DOI: 10.1038/bjp.2008.212] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 04/16/2008] [Accepted: 05/06/2008] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE Kinins are implicated in many pathophysiological conditions, and recent evidence has suggested their involvement in colitis. This study assessed the role of the kinin B1 receptors in a mouse model of colitis. EXPERIMENTAL APPROACH Colitis was induced in mice by 2,4,6-trinitrobenzene sulphonic acid (TNBS), and tissue damage and myeloperoxidase activity were assessed. B1 receptor induction was analysed by organ bath studies, binding assay and reverse transcription PCR. KEY RESULTS TNBS-induced colitis was associated with tissue damage, neutrophil infiltration and time-dependent increase of colon B1 receptor-mediated contraction, with the maximal response observed at 72 h. The upregulation of the B1 receptor at this time point was also confirmed by means of binding studies. B1 receptor mRNA levels were elevated as early as 6 h after colitis induction and remained high for up to 48 h. TNBS-evoked tissue damage and neutrophil influx were reduced by the selective B1 receptor antagonist SSR240612, and in B1 receptor knockout mice. In vivo treatment with inhibitors of protein synthesis, nuclear factor-kappaB activation, inducible nitric oxide synthase (iNOS) or tumour necrosis factor alpha (TNFalpha) significantly reduced B1 receptor agonist-induced contraction. Similar results were observed in iNOS and TNF receptor 1-knockout mice. CONCLUSIONS AND IMPLICATIONS These results provide convincing evidence on the role of B1 receptors in the pathogenesis of colitis. Therefore, the blockade of kinin B1 receptors might represent a new therapeutic option for treating inflammatory bowel diseases.
Collapse
Affiliation(s)
- D B Hara
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - D F P Leite
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - E S Fernandes
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - G F Passos
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| | - A O Guimarães
- Department of Biophysics, Universidade Federal de São Paulo SP, Brazil
| | - J B Pesquero
- Department of Biophysics, Universidade Federal de São Paulo SP, Brazil
| | - M M Campos
- Department of Surgery, Faculty of Dentistry, Pontifícia Universidade Católica do Rio Grande do Sul Porto Alegre, RS, Brazil
| | - J B Calixto
- Department of Pharmacology, Center of Biological Sciences, Universidade Federal de Santa Catarina Florianópolis, SC, Brazil
| |
Collapse
|
32
|
Abstract
Diabetic retinopathy and diabetic nephropathy are common microvascular complications of diabetes. The kallikrein-kinin system (KKS) has been implicated in the development of both conditions, and, in particular, bradykinin and its receptors have been shown to exert angiogenic and proinflammatory actions. Several of the key processes that underlie the development of diabetic retinopathy, such as increased vascular permeability, edema, neovascularization, and inflammatory changes, have been associated with the KKS, and recent work has shown that components of the KKS, including plasma kallikrein, factor XIIa, and high-molecular-weight kininogen, are present in the vitreous of people with diabetic retinopathy. The role of the KKS in the development of diabetic nephropathy is controversial, with both adverse and protective effects of bradykinin and its receptors reported. The review examines the role of the KKS in pathways central to the development of diabetic retinopathy and compares this with reported actions of this system in diabetic nephropathy. The possibility of therapeutic intervention targeting bradykinin and its receptors as treatment for diabetic microvascular conditions is considered.
Collapse
|
33
|
Zhang W, Cao YX, He JY, Xu CB. Down-Regulation of α1-Adrenoceptor Expression by Lipid-Soluble Smoke Particles through Transcriptional Factor Nuclear Factor-κB Pathway. Basic Clin Pharmacol Toxicol 2007; 101:401-6. [DOI: 10.1111/j.1742-7843.2007.00163.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Medeiros R, Passos GF, Vitor CE, Koepp J, Mazzuco TL, Pianowski LF, Campos MM, Calixto JB. Effect of two active compounds obtained from the essential oil of Cordia verbenacea on the acute inflammatory responses elicited by LPS in the rat paw. Br J Pharmacol 2007; 151:618-27. [PMID: 17471174 PMCID: PMC2013990 DOI: 10.1038/sj.bjp.0707270] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND AND PURPOSE alpha-Humulene and trans-caryophyllene are sesquiterpene compounds identified in the essential oil of Cordia verbenacea which display topical and systemic anti-inflammatory effects in different experimental models. However, the molecular mechanisms through which they exert their anti-inflammatory activity still remain unclear. Here, we evaluate the effects of alpha-humulene and trans-caryophyllene on the acute inflammatory responses elicited by LPS. EXPERIMENTAL APPROACH The biological activities of alpha-humulene and trans-caryophyllene were investigated in a model of acute inflammation in rat paw, induced by LPS and characterized by paw oedema, neutrophil recruitment, cytokine production, activation of MAP kinases and NF-kappaB and up-regulated expression of kinin B(1) receptors. KEY RESULTS Treatment with either alpha-humulene or trans-caryophyllene effectively reduced neutrophil migration and activation of NF-kappaB induced by LPS in the rat paw. However, only alpha-humulene significantly reduced the increase in TNF-alpha and IL-1beta levels, paw oedema and the up-regulation of B(1) receptors following treatment with LPS. Both compounds failed to interfere with the activation of the MAP kinases, ERK, p38 and JNK. CONCLUSIONS AND IMPLICATIONS Both alpha-humulene and trans-caryophyllene inhibit the LPS-induced NF-kappaB activation and neutrophil migration, although only alpha-humulene had the ability to prevent the production of pro-inflammatory cytokines TNF-alpha and IL-1beta and the in vivo up-regulation of kinin B(1) receptors. These data provide additional molecular and functional insights into the beneficial effects of the sesquiterpenes alpha-humulene and trans-caryophyllene isolated from the essential oil of Cordia verbenacea as agents for the management of inflammatory diseases.
Collapse
Affiliation(s)
- R Medeiros
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
| | - G F Passos
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
| | - C E Vitor
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
| | - J Koepp
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
| | - T L Mazzuco
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
| | - L F Pianowski
- Rua Setúbal, Residencial Euroville Bragança Paulista, São Paulo, Brazil
| | - M M Campos
- Escola de Odontologia, Pontifícia Universidade Católica do Rio Grande do Sul Rio Grande do Sul, Brazil
| | - J B Calixto
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina Santa Catarina, Brazil
- Author for correspondence:
| |
Collapse
|
35
|
Wang PHM, Cenedeze MA, Pesquero JB, Pacheco-Silva A, Câmara NOS. Influence of bradykinin B1 and B2 receptors in the immune response triggered by renal ischemia-reperfusion injury. Int Immunopharmacol 2006; 6:1960-5. [PMID: 17161349 DOI: 10.1016/j.intimp.2006.07.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 10/24/2022]
Abstract
Bradykinin B1 receptors are exclusively expressed in inflamed tissues. For this reason, they have been related with the outcomes of several pathologies. Ischemia-reperfusion injury is caused by the activation of inflammatory and cytoprotective genes, such as macrophage chemoattractant protein-1 and heme oxygenase-1, respectively. This study was aimed to analyze the involvement of bradykinin B1 and B2 receptors (B1R and B2R) in tissue response after renal ischemia-reperfusion injury. For that, B1R (B1-/-), B2R (B2-/-) knockout animals and its control (wild-type mice, B1B2+/+) were subjected to renal bilateral ischemia, followed by 24, 48 and 120 h of reperfusion. At these time points, blood serum samples were collected for creatinine and urea dosages. Kidneys were harvested for histology and molecular analyses by real-time PCR. At 24 and 48 h of reperfusion, B1-/- group resulted in the lowest serum creatinine and urea levels, indicating less renal damage, which was proved by renal histology. Renal protection associated with B1-/- mice was also related with higher expression of HO-1 and lower expression of MCP-1. In conclusion, the absence of B1R had a protective role against inflammatory responses developed after renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Pamella Huey Mei Wang
- Laboratório de Imunologia Clínica e Experimental. Division of Nephrology. Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
36
|
Rodriguez AI, Pereira-Flores K, Hernández-Salinas R, Boric MP, Velarde V. High glucose increases B1-kinin receptor expression and signaling in endothelial cells. Biochem Biophys Res Commun 2006; 345:652-9. [PMID: 16696940 DOI: 10.1016/j.bbrc.2006.04.127] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/28/2022]
Abstract
The loss of endothelial function is the initiating factor in the development of diabetic vascular disease. Kinins control endothelial function by the activation of two receptors: the B2 which is constitutively expressed, and the B1 which is highly induced in pathological conditions. In the present study, we observed that the levels of B1-receptor mRNA and protein are induced in endothelial cells incubated in high glucose. An increase in B1-receptor was also observed in the endothelial layer of aortas, from 4-week diabetic rats. When cells were grown in high glucose, the B1 agonist des-Arg9-BK increased nitrite levels, whereas in normal glucose nitrite levels were unchanged. Nitrite increase was blocked by L-NAME and 1400W indicating the participation of the inducible Nitric Oxide Synthase (iNOS). iNOS protein levels were also increased in high glucose. These results demonstrate the participation of the B1 receptor in the signaling pathways mediated by kinins in high glucose.
Collapse
Affiliation(s)
- Andrés I Rodriguez
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
37
|
Angers M, Drouin R, Bachvarova M, Paradis I, Bissell B, Hiromura M, Usheva A, Bachvarov D. In vivo DNase I-mediated footprinting analysis along the human bradykinin B1 receptor (BDKRB1) gene promoter: evidence for cell-specific regulation. Biochem J 2005; 389:37-46. [PMID: 15705059 PMCID: PMC1184537 DOI: 10.1042/bj20042104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
By applying in vivo dimethyl sulphate and UV light type C-footprinting analysis, we previously showed that specific DNA sequences in the -1349/+42 core promoter region of the inducible human BDKRB1 (bradykinin B1 receptor) gene correlated with its transcriptional activity. In the present study we used the highly sensitive DNase I in vivo footprinting approach to delineate more precisely the functional domains of the BDKRB1 gene promoter in human SMCs (smooth muscle cells). Human lymphocytes that do not express a functional BDKRB1 were also studied as a reference using dimethyl sulphate, UV light type C and DNase I treatments. An obvious difference was found in the DNase I-footprinting patterns between cellular systems that express a functional BDKRB1 (SMCs) in comparison with human lymphocytes, where randomly distributed nucleosome-like footprinting patterns were found in the bulk of the core promoter region studied. Gel-shift assays and expression studies pointed to the implication of the YY1 and a TBP/TFIIB (TATA-box-binding protein/transcription factor IIB) transcription factor in the regulation of BDKRB1 gene expression in SMCs and possible YY1 involvement in the mechanisms of nuclear factor kappaB-mediated regulation of the receptor expression. No significant changes in the promoter foot-printing pattern were found after treatment with interleukin-1beta or serum (known BDKRB1 gene inducers), indicating that definite regulatory motifs could exist outside the BDKRB1 gene core promoter region studied.
Collapse
Affiliation(s)
- Martin Angers
- *Unité de Recherche en Génétique Humaine et Moléculaire, Research Centre, Hôpital St-François d'Assise, Centre Hospitalier Universitaire de Québec, 10 de l'Espinay Street, QC, Canada G1L 3L5
- †Division of Pathology, Department of Medical Biology, Faculty of Medicine, Laval University, QC, Canada
| | - Régen Drouin
- *Unité de Recherche en Génétique Humaine et Moléculaire, Research Centre, Hôpital St-François d'Assise, Centre Hospitalier Universitaire de Québec, 10 de l'Espinay Street, QC, Canada G1L 3L5
- †Division of Pathology, Department of Medical Biology, Faculty of Medicine, Laval University, QC, Canada
| | - Magdalena Bachvarova
- ‡Cancer Research Centre, Hôpital l'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, 9 rue McMahon, QC, Canada G1R 2J6
| | - Isabelle Paradis
- *Unité de Recherche en Génétique Humaine et Moléculaire, Research Centre, Hôpital St-François d'Assise, Centre Hospitalier Universitaire de Québec, 10 de l'Espinay Street, QC, Canada G1L 3L5
- †Division of Pathology, Department of Medical Biology, Faculty of Medicine, Laval University, QC, Canada
| | - Brad Bissell
- §Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, 99 Brookline Ave., RN313, Boston, MA 02215, U.S.A
| | - Makoto Hiromura
- §Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, 99 Brookline Ave., RN313, Boston, MA 02215, U.S.A
| | - Anny Usheva
- §Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, 99 Brookline Ave., RN313, Boston, MA 02215, U.S.A
| | - Dimcho Bachvarov
- ‡Cancer Research Centre, Hôpital l'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, 9 rue McMahon, QC, Canada G1R 2J6
- ∥Department of Medicine, Faculty of Medicine, Laval University, QC, Canada
- To whom correspondence should be addressed, at Cancer Research Centre, Hôpital l'Hôtel-Dieu de Québec (email )
| |
Collapse
|
38
|
Ignjacev-Lazich I, Kintsurashvili E, Johns C, Vitseva O, Duka A, Shenouda S, Gavras I, Gavras H. Angiotensin-converting enzyme regulates bradykinin receptor gene expression. Am J Physiol Heart Circ Physiol 2005; 289:H1814-20. [PMID: 16219810 DOI: 10.1152/ajpheart.00581.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The angiotensin-converting enzyme (ACE) is a membrane-bound peptidyl dipeptidase known to act on a variety of peptide substrates in the extracellular space. Its most notable functions are the formation of angiotensin II and the degradation of bradykinin. In the current experiments, we found that exogenous ACE added to vascular smooth muscle cell culture strongly induces and upregulates the genes of bradykinin receptors B1 and B2. This transcriptional regulatory property of ACE was shown to be unrelated to its known enzymatic properties. Indeed, ACE at 3.75 microg/ml added in the culture medium of vascular smooth muscle cells was found to cause marked upregulation of the mRNA expression of the genes for the B1 and B2 receptors of bradykinin by 22- and 11-fold, respectively. This phenomenon was not altered by the addition of specific angiotensin II antagonists for the AT1 or AT2 receptors. Moreover, the ACE inhibitor captopril, which inhibited ACE enzymatic activity, did not block its effect at the bradykinin receptor gene transcription level. Expression of both receptor genes was completely abolished by actinomycin D. Furthermore, transcriptional upregulation was inhibited by curcumin, suggesting involvement of different transcriptional factors in this phenomenon. Electrophoretic mobility shift assay revealed increase in NF-kappaB and activator protein-1 protein binding for consensus sequences, between ACE-treated cells versus untreated cells. The data indicate a novel biological function of the ACE unrelated to its well-known enzymatic function as a peptidyl dipeptidase.
Collapse
MESH Headings
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blotting, Western
- Cell Nucleus/chemistry
- Cells, Cultured
- Cyclic AMP/metabolism
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation/physiology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- NF-kappa B/metabolism
- Peptidyl-Dipeptidase A/physiology
- RNA/biosynthesis
- RNA/isolation & purification
- Rats
- Rats, Wistar
- Receptor, Bradykinin B1/biosynthesis
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B2/biosynthesis
- Receptor, Bradykinin B2/genetics
- Receptors, Bradykinin/biosynthesis
- Receptors, Bradykinin/genetics
- Transcription Factor AP-1/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Ivana Ignjacev-Lazich
- Hypertension & Atherosclerosis Section, Boston Univ. School of Medicine, 715 Albany St., Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
El Midaoui A, Ongali B, Petcu M, Rodi D, de Champlain J, Neugebauer W, Couture R. Increases of spinal kinin receptor binding sites in two rat models of insulin resistance. Peptides 2005; 26:1323-30. [PMID: 16042974 DOI: 10.1016/j.peptides.2005.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
An autoradiographic study was conducted to determine whether kinin receptors are altered in the rat spinal cord in two experimental models of chronic hyperglycemia and insulin resistance. Sprague-Dawley rats were given 10% d-glucose in their drinking water alone or with insulin (9 mU/kg/min with osmotic pumps) for 4 weeks. Both groups and control rats were treated either with a normal chow diet or with an alpha-lipoic acid-supplemented diet as antioxidant therapy. After 4 weeks of treatment, glycemia, insulinemia, blood pressure, insulin resistance index, the production of superoxide anion in the aorta and the density of B2 receptor binding sites in the dorsal horn were significantly increased in the two models. These effects were prevented or attenuated by alpha-lipoic acid. In contrast, B2 receptor binding sites of most spinal cord laminae were increased in the glucose group only and were not affected by alpha-lipoic acid. Results show that chronic hyperglycemia associated with insulin resistance increases B1 and B2 receptor binding sites in the rat spinal cord through distinct mechanisms, including the oxidative stress for the B1 receptor.
Collapse
Affiliation(s)
- Adil El Midaoui
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, Que., Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
40
|
Campos MM, Ongali B, De Souza Buck H, Schanstra JP, Girolami JP, Chabot JG, Couture R. Expression and distribution of kinin B1 receptor in the rat brain and alterations induced by diabetes in the model of streptozotocin. Synapse 2005; 57:29-37. [PMID: 15858836 DOI: 10.1002/syn.20150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A role for kinin B1 receptors was suggested in the spinal cord and peripheral organs of streptozotocin (STZ)-diabetic rats. The present study aims at determining whether B1 receptors are also induced and over-expressed in the brain of STZ-rats at 2, 7, and 21 days post-treatment. This was addressed by in situ hybridization using the [35S]-UTPalphaS-labeled riboprobe and by in vitro autoradiography with the radioligand [125I]-HPP-des-Arg10-Hoe 140. In control rats, B1 receptor mRNA was found widely distributed in many brain regions. Low mRNA levels were found in thalamus and hypothalamus (7-12 nCi/g) while high mRNA signals were detected in cortical regions and hippocampus (18-29 nCi/g). In diabetic rats, B1 receptor mRNA was markedly increased in hippocampus, temporal/parietal cortices and amygdala at 2 and 7 days (+88 to +150%). Low densities of B1 receptor binding sites were detected in all analyzed regions in control rats (0.18-0.37 fmol/mg tissue). In diabetic rats, B1 receptor binding sites were significantly increased in hippocampus, amygdala, temporal/parietal, and perhinal/piriform cortices (+ 55 to + 165 %) at 7 days only. Results highlight an early but transient and reversible up-regulation of B1 receptors in specific brain regions of STZ-diabetic rats. This may offer the advantage of reducing putative central side effects with B1 receptor antagonists if used for the treatment of diabetic complications in the periphery.
Collapse
Affiliation(s)
- Maria Martha Campos
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | | | | | |
Collapse
|
41
|
Couture R, Girolami JP. Putative roles of kinin receptors in the therapeutic effects of angiotensin 1-converting enzyme inhibitors in diabetes mellitus. Eur J Pharmacol 2005; 500:467-85. [PMID: 15464053 DOI: 10.1016/j.ejphar.2004.07.045] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 02/07/2023]
Abstract
The role of endogenous kinins and their receptors in diabetes mellitus is being confirmed with the recent developments of molecular and genetic animal models. Compelling evidence suggests that the kinin B(2) receptor is organ-protective and partakes to the therapeutic effects of angiotensin 1-converting enzyme inhibitors (ACEI) and angiotensin AT(1) receptor antagonists. Benefits derive primarily from vasodilatory, antihypertensive, antiproliferative, antihypertrophic, antifibrotic, antithrombotic and antioxidant properties of kinin B(2) receptor activation. Mechanisms include the formation of nitric oxide and prostacyclin and the inhibition of NAD(P)H oxidase activity involving classical and novel signalling pathways. Kinin B(2) receptor also ameliorates insulin resistance by increasing glucose uptake and supply, and by inducing glucose transporter-4 translocation either directly or through phosphorylation of insulin receptor. The kinin B(1) receptor, which is induced by the cytokine network, growth factors and hyperglycaemia, mediates hyperalgesia, vascular hyperpermeability and leukocytes infiltration in diabetic animals. However, emerging data highlight reno- and cardio-protective effects mediated by kinin B(1) receptor under chronic ACEI therapy in diabetes mellitus. Thus, the Janus-faced of kinin receptors needs to be taken into account in future drug development. For instance, locally acting kinin B(1)/B(2) receptor agonists if used in a safe therapeutic window may represent a more rationale strategy in the prevention and management of diabetic complications. Because kinin B(2) receptor antagonists may further increase insulin resistance, the persisting dogma that restricts the development of kinin receptor analogues to antagonists (that is still relevant to abrogate pain and inflammation) needs to be revisited.
Collapse
Affiliation(s)
- Réjean Couture
- Département de Physiologie, Faculté de Médecine, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | |
Collapse
|
42
|
Phagoo SB, Reddi K, Silvallana BJ, Leeb-Lundberg LMF, Warburton D. Infection-induced kinin B1 receptors in human pulmonary fibroblasts: role of intact pathogens and p38 mitogen-activated protein kinase-dependent signaling. J Pharmacol Exp Ther 2005; 313:1231-8. [PMID: 15743925 DOI: 10.1124/jpet.104.083030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kinin B(1) receptors (B(1)R) are involved in many pathophysiological processes, and its expression is up-regulated in inflammatory pulmonary disease. Although bacteria can generate kinin peptides, the molecular signaling mechanisms regulating B(1)R during infection by intact pathogens is unknown. The serious opportunistic clinical isolate Burkholderia cenocepacia (B. cen.) belongs to the important B. cepacia complex (Bcc) of gram-negative pathogens that rapidly causes fatal pulmonary disease in hospitalized and immunocompromised patients and those with cystic fibrosis. We demonstrate here that B. cen. infection induced a rapid increase in B(1)R mRNA (1 h) proceeded by an increase in B(1)R protein expression (2 h), without affecting B(2) receptor expression in human pulmonary fibroblasts. The B(1)R response was dose-dependent and maximal by 6 to 8 h (3- to 4-fold increase), however, brief B. cen. infection could sustain B(1)R up-regulation. In contrast, nonclinical Bcc phytopathogens were much less B(1)R inducive. The protein synthesis inhibitor cycloheximide and transcriptional inhibitor actinomycin D abrogated the B(1) response to B. cen. indicating de novo B(1)R synthesis. B. cen. activated p38 mitogen-activated protein kinase (MAPK), and blocking p38 MAPK with the specific inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB 203580) dramatically reduced B. cen.-induced B(1)R. Furthermore, B. cen. regulation of B(1)R was diminished by the anti-inflammatory glucocorticoid dexamethasone. In conclusion, this study is the first demonstration that infection with intact pulmonary pathogens like B. cen. positively modulates the selective expression of B(1)R. Thus, providing evidence that B(1)R regulation may be an important and novel mechanism in the inflammatory cascade in response to chronic pulmonary infection and disease.
Collapse
Affiliation(s)
- Stephen B Phagoo
- Developmental Biology Program, Saban Research Institute, Childrens Hospital Los Angeles, Department of Surgery, Keck School of Medicine, University of Southern California, 90027, USA.
| | | | | | | | | |
Collapse
|
43
|
Gabra BH, Sirois P. Hyperalgesia in non-obese diabetic (NOD) mice: A role for the inducible bradykinin B1 receptor. Eur J Pharmacol 2005; 514:61-7. [PMID: 15878325 DOI: 10.1016/j.ejphar.2005.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/15/2005] [Accepted: 03/18/2005] [Indexed: 12/20/2022]
Abstract
Most studies performed to investigate the role of the inducible bradykinin B(1) receptor in the pathology and complications of type 1 diabetes have been carried out using the model of streptozotocin (STZ)-induced diabetes. The model of spontaneous autoimmune diabetes in non-obese diabetic (NOD) mice involves a long-term inflammatory process that closely resembles the human type 1 diabetes. In the present study, we aimed at establishing the correlation between the progress of diabetic hyperalgesia and the incidence of diabetes, as a function of age, in NOD mice. We also evaluated the implication of the bradykinin B(1) receptor, a receptor up-regulated during the inflammatory progress of diabetes, in the development of diabetic hyperalgesia in NOD mice. Female NOD mice were followed up from the 4th to the 32nd week of age for the incidence of diabetes. Only NOD mice with plasma glucose concentration >20 mmol/l were considered diabetic. The nociception was assessed using the hot plate and the tail immersion pain tests and the effect of acute and chronic administration of the selective bradykinin B(1) receptor agonist, desArg(9)bradykinin and its selective antagonists, R-715 (Ac-Lys-[D-beta Nal(7), Ile(8)]desArg(9)bradykinin) and R-954 (Ac-Orn-[Oic(2), alpha-MePhe(5), D-beta Nal(7), Ile(8)]desArg(9)bradykinin), on the development of diabetic hyperalgesia was studied. Diabetic NOD mice developed a significant time-dependent hyperalgesia, as measured in both tests, starting from the 8th week of age with the maximum effect observed over 16 to 20 weeks, whereas the incidence of diabetes in the tested NOD mice was only 40.16% at the age of 16 weeks and reached a maximum of 73.23% at the age 24 weeks. Both acute and chronic administration of desArg(9)bradykinin (400 microg/kg) markedly increased the hyperalgesic activity in diabetic NOD mice in the hot plate and tail immersion nociceptive tests. The selective bradykinin B(1) receptor antagonist R-715 (400 microg/kg) and its more potent and long acting analogue R-954 (200 microg/kg), administered in acute or chronic manner, significantly attenuated diabetic hyperalgesia in NOD mice in both thermal pain tests and restored nociceptive responses to values observed in control non-diabetic siblings. Our results bring the first evidence that the development of hyperalgesia in NOD mice, a model of spontaneous type 1 diabetes, precedes the occurrence of hyperglycemia and is mediated by the bradykinin B(1) receptor. It is suggested that bradykinin B(1) receptor antagonism could become a novel therapeutic approach to the treatment of diabetic neuropathic complications.
Collapse
Affiliation(s)
- Bichoy H Gabra
- Institute of Pharmacology of Sherbrooke, School of Medicine, University of Sherbrooke, Sherbrooke, Province of Quebec, Canada J1H 5N4
| | | |
Collapse
|
44
|
Lawson SR, Gabra BH, Nantel F, Battistini B, Sirois P. Effects of a selective bradykinin B1 receptor antagonist on increased plasma extravasation in streptozotocin-induced diabetic rats: Distinct vasculopathic profile of major key organs. Eur J Pharmacol 2005; 514:69-78. [PMID: 15878326 DOI: 10.1016/j.ejphar.2005.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/28/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Diffuse vasculopathy is a common feature of the morbidity and increased mortality associated with insulino-dependent type 1 diabetes. Increased vascular permeability leading to plasma extravasation occurs in surrounding tissues following endothelial dysfunction. Such micro- and macro-vascular complications develop over time and lead to oedema, hypertension, cardiomyopathy, renal failure (nephropathy) and other complications (neuropathy, retinopathy). In the present investigation, we studied the effect of a selective bradykinin B(1) receptor antagonist, R-954, on the enhanced vascular permeability in streptozotocin (STZ)-induced diabetic Wistar rats compared with age-matched controls. Plasma extravasation was determined using Evans blue dye in selected target tissues (left and right heart atria, ventricles, lung, abdominal and thoracic aortas, liver, spleen, renal cortex and medulla), at 1 and 4 weeks following STZ administration. The vascular permeability was significantly increased in the aortas, cortex, medulla, and spleen in 1-week STZ rats and remained elevated at 4 weeks of diabetes. Both atria showed an increased vascular permeability only after 4-week STZ-administration. R-954 (2 mg/kg, bolus, s.c.), given 2 h prior to Evans blue dye, to 1- and 4-week diabetic rats significantly inhibited (by 48-100%) plasma leakage in most tested tissues affected by diabetes with no effect in healthy rats. These results showed that the inducible bradykinin B(1) receptor subtype participates in the modulation of the vascular permeability in diabetic rats and suggest that selective bradykinin B(1) receptor antagonism could have a beneficial role in reducing diabetic vascular complications.
Collapse
Affiliation(s)
- Sibi R Lawson
- Institute of Pharmacology of Sherbrooke (IPS), School of Medicine, University of Sherbrooke, Sherbrooke, Province of Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
45
|
Matsuda N, Hattori Y, Jesmin S, Gando S. Nuclear factor-kappaB decoy oligodeoxynucleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis. Mol Pharmacol 2005; 67:1018-25. [PMID: 15576632 DOI: 10.1124/mol.104.005926] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) plays a key role in expression of many inflammatory genes responsible for the pathophysiology of sepsis-induced acute lung injury. We investigated whether the introduction of synthetic double-stranded oligodeoxynucleotides (ODNs) with consensus NF-kappaB sequence as transcription factor decoy can prevent acute lung injury with suppression of pulmonary expression of multiple genes involved in its pathological process in a cecal ligation and puncture septic mouse model. NF-kappaB decoy ODNs were introduced with the aid of the hemagglutinating virus of Japan-envelope vector method. Northern blot analysis indicated that transfection of NF-kappaB decoy ODN, but not of its scrambled form, resulted in a significant inhibition of sepsis-induced gene overexpression of inducible nitric-oxide synthase (iNOS), cyclooxygenase-2, histamine H(1)-receptor, platelet-activating factor receptor, and bradykinin B(1) and B(2) receptors in lung Histological damage in lungs tissues. (wall thickening, inflammatory infiltrate, and hemorrhage), increased pulmonary vascular permeability, and blood gas exchange impairment were clearly documented in mice after cecal ligation and puncture. These changes were strongly eliminated by the introduction of NF-kappaB decoy but not of scrambled ODN. The effects of the iNOS inhibitor FR260330 on these histological and functional derangements compared unfavorably with those of NF-kappaB decoy ODN transfection. Our results suggest that ODN decoy, acting as in vivo competitor for the transcription factor's ability to bind to cognate recognition sequence, may represent an effective strategy in the treatment of septic acute lung injury.
Collapse
Affiliation(s)
- Naoyuki Matsuda
- Department of Pharmacology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
46
|
Leeb-Lundberg LMF, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL. International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 2005; 57:27-77. [PMID: 15734727 DOI: 10.1124/pr.57.1.2] [Citation(s) in RCA: 742] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Kinins are proinflammatory peptides that mediate numerous vascular and pain responses to tissue injury. Two pharmacologically distinct kinin receptor subtypes have been identified and characterized for these peptides, which are named B1 and B2 and belong to the rhodopsin family of G protein-coupled receptors. The B2 receptor mediates the action of bradykinin (BK) and lysyl-bradykinin (Lys-BK), the first set of bioactive kinins formed in response to injury from kininogen precursors through the actions of plasma and tissue kallikreins, whereas the B(1) receptor mediates the action of des-Arg9-BK and Lys-des-Arg9-BK, the second set of bioactive kinins formed through the actions of carboxypeptidases on BK and Lys-BK, respectively. The B2 receptor is ubiquitous and constitutively expressed, whereas the B1 receptor is expressed at a very low level in healthy tissues but induced following injury by various proinflammatory cytokines such as interleukin-1beta. Both receptors act through G alpha(q) to stimulate phospholipase C beta followed by phosphoinositide hydrolysis and intracellular free Ca2+ mobilization and through G alpha(i) to inhibit adenylate cyclase and stimulate the mitogen-activated protein kinase pathways. The use of mice lacking each receptor gene and various specific peptidic and nonpeptidic antagonists have implicated both B1 and B2 receptors as potential therapeutic targets in several pathophysiological events related to inflammation such as pain, sepsis, allergic asthma, rhinitis, and edema, as well as diabetes and cancer. This review is a comprehensive presentation of our current understanding of these receptors in terms of molecular and cell biology, physiology, pharmacology, and involvement in human disease and drug development.
Collapse
Affiliation(s)
- L M Fredrik Leeb-Lundberg
- Division of Cellular and Molecular Pharmacology, Department of Experimental Medical Science, Lund University, BMC, A12, SE-22184 Lund, Sweden.
| | | | | | | | | |
Collapse
|
47
|
McLean PG, Perretti M, Ahluwalia A. Kinin B1receptors as novel anti-inflammatory targets. ACTA ACUST UNITED AC 2005. [DOI: 10.1517/14728222.4.2.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
48
|
Merino VF, Silva JA, Araújo RC, Avellar MCW, Bascands JL, Schanstra JP, Paiva ACM, Bader M, Pesquero JB. Molecular structure and transcriptional regulation by nuclear factor-κB of the mouse kinin B1 receptor gene. Biol Chem 2005; 386:515-22. [PMID: 16006238 DOI: 10.1515/bc.2005.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Kinins are important mediators in cardiovascular homeostasis, inflammation, and nociception. Two kinin receptors have been described, B 1 and B 2 . The B 1 receptor is normally absent in healthy tissues, but is highly induced under pathological conditions. To understand the molecular mechanism of B 1 receptor up-regulation, we determined the mouse B 1 receptor gene structure, isolated and characterized the promoter region and studied its transcriptional regulation. The mouse B 1 receptor gene contains two exons (with the entire coding region located in the second exon) and a TATA-less promoter with multiple transcription start sites. A 7.7-kbp portion of the 5'-flanking region was examined for promoter activity in vascular smooth muscle cells (VSMCs). A minimal 92-bp fragment, located immediately upstream of the transcription start region, exerted basal and lipopolysaccharide (LPS)-inducible transcription activity in the sense and antisense orientation, and was thereby identified as an enhancer element. Nuclear extracts from VSMCs showed basal and LPS-inducible binding activity of nuclear factor (NF)-kappaB at this sequence. B 1 receptor transcription activation in response to LPS was abolished by cotransfection with IkappaBalphaDeltaN, an NF-kappaB repressor. In summary, our results reveal the structure of the mouse B 1 receptor gene and the involvement of NF-kappaB in the inducible mouse kinin B 1 receptor expression under pathological conditions.
Collapse
Affiliation(s)
- Vanessa F Merino
- Department of Biophysics, Universidade Federal de São Paulo, CEP 04023-062 São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Morissette G, Fortin JP, Otis S, Bouthillier J, Marceau F. A novel nonpeptide antagonist of the kinin B1 receptor: effects at the rabbit receptor. J Pharmacol Exp Ther 2004; 311:1121-30. [PMID: 15277582 DOI: 10.1124/jpet.104.071266] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kinin B1 receptor (B1R) has attracted interest as a potential therapeutic target because this inducible G protein-coupled receptor is involved in sustained inflammation and inflammatory pain production. Compound 11 (2-[(2R)-1-[(3,4-dichlorophenyl) sulfonyl]-3-oxo-1,2,3,4-tetrahydroquinoxalin-2-yl]-N-[2-[4-(4,5-dihydro-1H-imidazol-2-yl)phenyl]ethyl]acetamide) is a high-affinity nonpeptide antagonist for the human B1R, but it is potent at the rabbit B1R as well: its Ki value for the inhibition of [3H]Lys-des-Arg9-BK (bradykinin) binding to a novel myc-labeled rabbit B1R expressed in COS-1 is 22 pM. In contractility tests (organ bath pharmacology), we found that compound 11 is an apparently surmountable antagonist of des-Arg9-BK- or Lys-des-Arg9-BK-induced contraction of the rabbit isolated aorta (pA2 values of 10.6+/-0.14 and 10.4+/-0.12, respectively). It did not influence contractions induced by angiotensin II in the rabbit aorta or by BK or histamine in the jugular vein, but it suppressed the prostaglandin-mediated relaxant effect of des-Arg9-BK on the rabbit isolated mesenteric artery. Compound 11 (1 nM) inhibited both the phosphorylation of the extracellular signal-regulated kinase1/2 mitogen-activated protein kinases induced by Lys-des-Arg9-BK in serum-starved rabbit aortic smooth muscle cells and the agonist-induced translocation of the fusion protein B1R-yellow fluorescent protein expressed in human embryonic kidney (HEK) 293 cells. Compound 11 does not importantly modify the expression of myc-B1R over 24 h in HEK 293 cells (no detectable action as "pharmacological chaperone"). The present results support that compound 11 is a potent and highly selective antagonist suitable for further investigations of the role of the kinin B1R in models of inflammation, pain, and sepsis based on the rabbit.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Blotting, Western
- Bradykinin B1 Receptor Antagonists
- COS Cells
- Cell Line
- Chlorocebus aethiops
- Epitopes/genetics
- Genes, myc/genetics
- Image Cytometry
- In Vitro Techniques
- Microscopy, Confocal
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Protein Folding
- Quinoxalines/pharmacology
- Rabbits
- Receptor, Bradykinin B1/biosynthesis
- Receptors, Cell Surface/biosynthesis
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Sulfones/pharmacology
Collapse
Affiliation(s)
- Guillaume Morissette
- Centre Hospitalier Universitaire de Québec, Centre de recherche, Pavillon l'Hôtel-Dieu de Québec, 11 Côte-du-Palais, Québec, QC, Canada G1R 2J6
| | | | | | | | | |
Collapse
|
50
|
Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM. Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 2004; 143:803-18. [PMID: 15520046 PMCID: PMC1575942 DOI: 10.1038/sj.bjp.0706012] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 08/03/2004] [Accepted: 09/10/2004] [Indexed: 01/25/2023] Open
Abstract
Kinins are a family of peptides implicated in several pathophysiological events. Most of their effects are likely mediated by the activation of two G-protein-coupled receptors: B(1) and B(2). Whereas B(2) receptors are constitutive entities, B(1) receptors behave as key inducible molecules that may be upregulated under some special circumstances. In this context, several recent reports have investigated the importance of B(1) receptor activation in certain disease models. Furthermore, research on B(1) receptors in the last years has been mainly focused in determining the mechanisms and pathways involved in the process of induction. This was essentially favoured by the advances obtained in molecular biology studies, as well as in the design of selective and stable peptide and nonpeptide kinin B(1) receptor antagonists. Likewise, development of kinin B(1) receptor knockout mice greatly helped to extend the evidence about the relevance of B(1) receptors during pathological states. In the present review, we attempted to remark the main advances achieved in the last 5 years about the participation of kinin B(1) receptors in painful and inflammatory disorders. We have also aimed to point out some groups of chronic diseases, such as diabetes, arthritis, cancer or neuropathic pain, in which the strategic development of nonpeptidic oral-available and selective B(1) receptor antagonists could have a potential relevant therapeutic interest.
Collapse
Affiliation(s)
- João B Calixto
- Department of Pharmacology, Centre of Biological Sciences, Universidade Federal de Santa Catarina, Campus Universitário, Trindade, 88049-900 Florianópolis, SC, Brazil.
| | | | | | | | | | | |
Collapse
|