1
|
Brockmueller A, Buhrmann C, Moravejolahkami AR, Shakibaei M. Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? J Adv Res 2024; 66:181-195. [PMID: 38190940 PMCID: PMC11674784 DOI: 10.1016/j.jare.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
2
|
Quistgaard EM. BAP31: Physiological functions and roles in disease. Biochimie 2021; 186:105-129. [PMID: 33930507 DOI: 10.1016/j.biochi.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
Abstract
B-cell receptor-associated protein 31 (BAP31 or BCAP31) is a ubiquitously expressed transmembrane protein found mainly in the endoplasmic reticulum (ER), including in mitochondria-associated membranes (MAMs). It acts as a broad-specificity membrane protein chaperone and quality control factor, which can promote different fates for its clients, including ER retention, ER export, ER-associated degradation (ERAD), or evasion of degradation, and it also acts as a MAM tetherer and regulatory protein. It is involved in several cellular processes - it supports ER and mitochondrial homeostasis, promotes proliferation and migration, plays several roles in metabolism and the immune system, and regulates autophagy and apoptosis. Full-length BAP31 can be anti-apoptotic, but can also mediate activation of caspase-8, and itself be cleaved by caspase-8 into p20-BAP31, which promotes apoptosis by mobilizing ER calcium stores at MAMs. BAP31 loss-of-function mutations is the cause of 'deafness, dystonia, and central hypomyelination' (DDCH) syndrome, characterized by severe neurological symptoms and early death. BAP31 is furthermore implicated in a growing number of cancers and other diseases, and several viruses have been found to target it to promote their survival or life cycle progression. The purpose of this review is to provide an overview and examination of the basic properties, functions, mechanisms, and roles in disease of BAP31.
Collapse
Affiliation(s)
- Esben M Quistgaard
- Department of Molecular Biology and Genetics - DANDRITE, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther 2017; 24:199-207. [PMID: 28075429 DOI: 10.1038/gt.2017.2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/18/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022]
Abstract
Peritoneal dissemination is the most common condition of metastasis in gastric cancer. The survival duration of a patient with advanced stage gastric cancer, may be improved by gene therapy. In this study, we used an oncolytic adenovirus vector (Ad/TRAIL-E1) that expresses both the TRAIL and E1A genes under the control of a tumor-specific promoter. We evaluated the anti-tumor effect of Ad/TRAIL-E1 on gastric cancer cells in vitro, as well as in vivo in a xenograft peritoneal carcinomatosis mouse model. Our data showed that Ad/TRAIL-E1 induced TRAIL-mediated apoptosis in gastric cancer cell lines, but not in the normal cell lines. In addition, Ad/TRAIL-E1 significantly inhibited peritoneal metastasis and prolonged the survival of mice without treatment-related toxicity. Therefore, tumor-specific TRAIL expression from an oncolytic adenovirus vector may provide a novel therapeutic approach for the treatment of advance stage gastric cancer with peritoneal dissemination.
Collapse
|
4
|
Oncolytic adenovirus expressing interleukin-18 induces significant antitumor effects against melanoma in mice through inhibition of angiogenesis. Cancer Gene Ther 2010; 17:28-36. [PMID: 19498459 DOI: 10.1038/cgt.2009.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been shown that interleukin 18 (IL-18) exerts antitumor activity. In this study, we investigated whether oncolytic adenovirus-mediated gene transfer of IL-18 could induce strong antitumor activity. A tumor-selective replicating adenovirus expressing IL-18 (ZD55-IL-18) was constructed by insertion of an IL-18 expression cassette into the ZD55 vector, which is based on deletion of the adenoviral E1B 55-kDa gene. It has been shown that ZD55-IL-18 exerted a strong cytopathic effect and significant apoptosis in tumor cells. ZD55-IL-18 significantly decreased vascular endothelial growth factor and CD34 expression in the melanoma cells. Treatment of established tumors with ZD55-IL-18 showed much stronger antitumor activity than that induced by ZD55-EGFP (enhanced green fluorescent protein) or Ad-IL-18. These data indicated that oncolytic adenovirus expressing IL-18 could exert potential antitumor activity through inhibition of angiogenesis and offer a novel approach to melanoma therapy.
Collapse
|
5
|
Dong S, Teng Z, Lu FH, Zhao YJ, Li H, Ren H, Chen H, Pan ZW, Lv YJ, Yang BF, Tian Y, Xu CQ, Zhang WH. Post-conditioning protects cardiomyocytes from apoptosis via PKC(epsilon)-interacting with calcium-sensing receptors to inhibit endo(sarco)plasmic reticulum-mitochondria crosstalk. Mol Cell Biochem 2010; 341:195-206. [PMID: 20383739 DOI: 10.1007/s11010-010-0450-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 03/25/2010] [Indexed: 11/28/2022]
Abstract
The intracellular Ca(2+) concentration ([Ca(2+)](i)) is increased during cardiac ischemia/reperfusion injury (IRI), leading to endo(sarco)plasmic reticulum (ER) stress. Persistent ER stress, such as with the accumulation of [Ca(2+)](i), results in apoptosis. Ischemic post-conditioning (PC) can protect cardiomyocytes from IRI by reducing the [Ca(2+)](i) via protein kinase C (PKC). The calcium-sensing receptor (CaR), a G protein-coupled receptor, causes the production of inositol phosphate (IP(3)) to increase the release of intracellular Ca(2+) from the ER. This process can be negatively regulated by PKC through the phosphorylation of Thr-888 of the CaR. This study tested the hypothesis that PC prevents cardiomyocyte apoptosis by reducing the [Ca(2+)](i) through an interaction of PKC with CaR to alleviate [Ca(2+)](ER) depletion and [Ca(2+)](m) elevation by the ER-mitochondrial associated membrane (MAM). Cardiomyocytes were post-conditioned after 3 h of ischemia by three cycles of 5 min of reperfusion and 5 min of re-ischemia before 6 h of reperfusion. During PC, PKC(epsilon) translocated to the cell membrane and interacted with CaR. While PC led to a significant decrease in [Ca(2+)](i), the [Ca(2+)](ER) was not reduced and [Ca(2+)](m) was not increased in the PC and GdCl(3)-PC groups. Furthermore, there was no evident psi(m) collapse during PC compared with ischemia/reperfusion (I/R) or PKC inhibitor groups, as evaluated by laser confocal scanning microscopy. The apoptotic rates detected by TUNEL and Hoechst33342 were lower in PC and GdCl(3)-PC groups than those in I/R and PKC inhibitor groups. Apoptotic proteins, including m-calpain, BAP31, and caspase-12, were significantly increased in the I/R and PKC inhibitor groups. These results suggested that PKC(epsilon) interacting with CaR protected post-conditioned cardiomyocytes from programmed cell death by inhibiting disruption of the mitochondria by the ER as well as preventing calcium-induced signaling of the apoptotic pathway.
Collapse
Affiliation(s)
- Shiyun Dong
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dominant-negative FADD rescues the in vivo fitness of a cytomegalovirus lacking an antiapoptotic viral gene. J Virol 2007; 82:2056-64. [PMID: 18094168 DOI: 10.1128/jvi.01803-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genes that inhibit apoptosis have been described for many DNA viruses. Herpesviruses often contain even more than one gene to control cell death. Apoptosis inhibition by viral genes is postulated to contribute to viral fitness, although a formal proof is pending. To address this question, we studied the mouse cytomegalovirus (MCMV) protein M36, which binds to caspase-8 and blocks death receptor-induced apoptosis. The growth of MCMV recombinants lacking M36 (DeltaM36) was attenuated in vitro and in vivo. In vitro, caspase inhibition by zVAD-fmk blocked apoptosis in DeltaM36-infected macrophages and rescued the growth of the mutant. In vivo, DeltaM36 infection foci in liver tissue contained significantly more apoptotic hepatocytes and Kupffer cells than did revertant virus foci, and apoptosis occurred during the early phase of virus replication prior to virion assembly. To further delineate the mode of M36 function, we replaced the M36 gene with a dominant-negative FADD (FADD(DN)) in an MCMV recombinant. FADD(DN) was expressed in cells infected with the recombinant and blocked the death-receptor pathway, replacing the antiapoptotic function of M36. Most importantly, FADD(DN) rescued DeltaM36 virus replication, both in vitro and in vivo. These findings have identified the biological role of M36 and define apoptosis inhibition as a key determinant of viral fitness.
Collapse
|
7
|
Dong F, Wang L, Davis JJ, Hu W, Zhang L, Guo W, Teraishi F, Ji L, Fang B. Eliminating established tumor in nu/nu nude mice by a tumor necrosis factor-alpha-related apoptosis-inducing ligand-armed oncolytic adenovirus. Clin Cancer Res 2007; 12:5224-30. [PMID: 16951242 PMCID: PMC1617000 DOI: 10.1158/1078-0432.ccr-06-0244] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) and oncolytic viruses have recently been investigated extensively for cancer therapy. However, preclinical and clinical studies have revealed that their clinical application is hampered by either weak anticancer activity or systemic toxicity. We examined whether the weaknesses of the two strategies can be overcome by integrating the TRAIL gene into an oncolytic vector. EXPERIMENTAL DESIGN We constructed a TRAIL-expressing oncolytic adenovector designated as Ad/TRAIL-E1. The expression of both the TRAIL and viral E1A genes is under the control of a synthetic promoter consisting of sequences from the human telomerase reverse transcriptase promoter and a minimal cytomegalovirus early promoter. The transgene expression, apoptosis induction, viral replication, antitumor activity, and toxicity of Ad/TRAIL-E1 were determined in vitro and in vivo in comparison with control vectors. RESULTS Ad/TRAIL-E1 elicited enhanced viral replication and/or stronger oncolytic effect in vitro in various human cancer cell lines than a TRAIL-expressing, replication-defective adenovector or an oncolytic adenovector-expressing green fluorescent protein. Intralesional administration of Ad/TRAIL-E1 eliminated all s.c. xenograft tumors established from a human non-small cell lung cancer cell line, H1299, on nu/nu nude mice, resulting in long-term, tumor-free survival. Furthermore, we found no treatment-related toxicity. CONCLUSIONS Viral replication and antitumor activity of oncolytic adenovirus can be enhanced by the TRAIL gene and Ad/TRAIL-E1 could become a potent therapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Fengqin Dong
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang,310003, People’s Republic of China
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - John J. Davis
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wenxian Hu
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lidong Zhang
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Wei Guo
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Fuminori Teraishi
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Lin Ji
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- *Correspondence: Bingliang Fang; E-mail: ; Telephone: 713-563-9147; Fax: 713-794-4901
| |
Collapse
|
8
|
Bartholomeusz C, Itamochi H, Yuan LXH, Esteva FJ, Wood CG, Terakawa N, Hung MC, Ueno NT. Bcl-2 antisense oligonucleotide overcomes resistance to E1A gene therapy in a low HER2-expressing ovarian cancer xenograft model. Cancer Res 2005; 65:8406-13. [PMID: 16166319 DOI: 10.1158/0008-5472.can-05-1754] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We are currently conducting clinical trials of E1A gene therapy for patients with ovarian cancer. The adenovirus type 5 E1A gene suppresses growth of ovarian cancer cells that overexpress HER-2/neu (HER2) and growth of some--but not all--that express low HER2. In HER2-overexpressing cells, suppression by E1A is predominantly by down-regulation of HER2, but the mechanism in low HER2-expressing cells is not fully understood. The adenoviral E1B protein has sequential and functional homology to Bcl-2 and prolongs the viability of adenovirus host cells by inhibiting E1A-induced apoptosis. Bcl-2 is overexpressed in ovarian cancer and participates in chemoresistance; we hypothesized that Bcl-2 inhibits E1A-induced apoptosis leading to resistance to E1A gene therapy. E1A suppressed colony formation of ovarian cancer cells that express low levels of Bcl-2 and HER2 (OVCAR-3 and OVCA 433), but enhanced colony formation in low HER2-, high Bcl-2-expressing ovarian cancer cells (2774 and HEY). Treating 2774 or HEY cells with antisense oligonucleotide Bcl-2 (Bcl-2-ASO) did not reduce cell viability. E1A combined with Bcl-2-ASO led to significant decreases in cell viability resulting from increased apoptosis relative to cells treated with E1A alone (P < 0.05). The increase in apoptosis was partly due to cytochrome c release and subsequently caspase-9 activation by Bcl-2-ASO. Finally, in an ovarian cancer xenograft model, treatment with Bcl-2-ASO did not prolong survival, but E1A plus Bcl-2-ASO did (P < 0.001). In conclusion, ovarian tumors overexpressing Bcl-2 may not respond well to E1A gene therapy, but treatment with a combination of E1A and Bcl-2-ASO may overcome this resistance.
Collapse
Affiliation(s)
- Chandra Bartholomeusz
- Breast Cancer Translational Research Laboratory, The University of Texas M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Park KT, Mitchell KA, Huang G, Elferink CJ. The aryl hydrocarbon receptor predisposes hepatocytes to Fas-mediated apoptosis. Mol Pharmacol 2005; 67:612-22. [PMID: 15550680 DOI: 10.1124/mol.104.005223] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Liver homeostasis is achieved by the removal of diseased and damaged hepatocytes and their coordinated replacement to maintain a constant liver cell mass. Cirrhosis, viral hepatitis, and toxic drug effects can all trigger apoptosis in the liver as a means of removing the unwanted cells, and the Fas "death receptor" pathway comprises a major physiological mechanism by which this occurs. The susceptibility to Fas-mediated apoptosis is, in part, a function of the hepatocyte's proteome. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known to influence apoptosis, conceivably by regulating the expression of genes involved in apoptotic signaling. In this article, we present evidence demonstrating that AhR expression and function promote apoptosis in liver cells in response to Fas stimulation. Reintroduction of the AhR into the AhR-negative BP8 hepatoma cells as well as into primary hepatocytes from AhR knockout mice increases the magnitude of cell death in response to Fas ligand. Enhanced apoptosis correlates with increased caspase activity and mitochondrial cytochrome c release but not with the expression of several Bcl-2 family proteins. In vivo studies showed that in contrast to wild-type mice, AhR knockout mice are protected from the lethal effects of the anti-Fas Jo2 antibody. Moreover, down-regulation of the aryl hydrocarbon receptor nuclear translocator protein in vivo by adenovirus-mediated RNA interference to suppress AhR activity provided wild-type mice partial protection from Jo2-induced lethality.
Collapse
Affiliation(s)
- Kyung-Tae Park
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA
| | | | | | | |
Collapse
|
10
|
Eichten A, Rud DS, Grace M, Piboonniyom SO, Zacny V, Münger K. Molecular pathways executing the "trophic sentinel" response in HPV-16 E7-expressing normal human diploid fibroblasts upon growth factor deprivation. Virology 2004; 319:81-93. [PMID: 14967490 DOI: 10.1016/j.virol.2003.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 11/07/2003] [Accepted: 11/07/2003] [Indexed: 10/26/2022]
Abstract
In response to oncogenic insults, normal human cells execute a defense response that culminates in cellular suicide, apoptosis. Normal human diploid fibroblasts expressing the human papillomavirus type 16 (HPV-16) E7 oncoprotein are predisposed to apoptosis when they are deprived of growth factors. Even though a dominant negative p53 mutant abrogates the cell death response, it is not accompanied by p53 phosphorylation, the DNA binding capacity of p53 remains unaltered, and no activation of common p53-dependent transcriptional targets is observed. Expression of two insulin-like growth factor-1 binding proteins, IGFBP-2 and -5, is increased presumably in response to enhanced NF-kappaB activity in HPV-16 E7-expressing serum-starved cells. Phosphorylation of AKT, an important modulator of IGF-1 survival signaling, is lower in serum-starved E7-expressing cells, and exogenously added IGF-1 can partially inhibit the cell death response. This suggests that IGFBP-2 and -5 may limit IGF-1 availability thus decreasing survival signaling. Caspase 3 but not caspase 8 is activated in serum-starved HPV-16 E7-expressing cells. Caspase inhibition affects nuclear DNA fragmentation, but cell death is not inhibited. Although mitochondria play important roles in caspase-dependent as well as -independent forms of cell death, there is no evidence for cytochrome c release and thus for mitochondrial permeabilization in growth factor deprived HPV-16 E7-expressing cells.
Collapse
Affiliation(s)
- Alexandra Eichten
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
11
|
Rajpal A, Cho YA, Yelent B, Koza-Taylor PH, Li D, Chen E, Whang M, Kang C, Turi TG, Winoto A. Transcriptional activation of known and novel apoptotic pathways by Nur77 orphan steroid receptor. EMBO J 2004; 22:6526-36. [PMID: 14657025 PMCID: PMC291815 DOI: 10.1093/emboj/cdg620] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nur77 is a nuclear orphan steroid receptor that has been implicated in negative selection. Expression of Nur77 in thymocytes and cell lines leads to apoptosis through a mechanism that remains unclear. In some cell lines, Nur77 was reported to act through a transcription-independent mechanism involving translocation to mitochondria, leading to cytochrome c release. However, we show here that Nur77-mediated apoptosis in thymocytes does not involve cytoplasmic cytochrome c release and cannot be rescued by Bcl-2. Microarray analysis shows that Nur77 induces many genes, including two novel genes (NDG1, NDG2) and known apoptotic genes FasL and TRAIL. Characterization of NDG1 and NDG2 indicates that NDG1 initiates a novel apoptotic pathway in a Bcl-2-independent manner. Thus Nur77-mediated apoptosis in T cells involves Bcl-2 independent transcriptional activation of several known and novel apoptotic pathways.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis/physiology
- Base Sequence
- Cells, Cultured
- Cloning, Molecular
- DNA Primers
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Escherichia coli/cytology
- Escherichia coli/genetics
- Escherichia coli/physiology
- Female
- Genotype
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Nuclear Receptor Subfamily 4, Group A, Member 1
- Oligonucleotide Array Sequence Analysis
- Pregnancy
- Rats
- Receptors, Antigen, T-Cell/physiology
- Receptors, Cytoplasmic and Nuclear
- Receptors, Steroid/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Arvind Rajpal
- Department of Molecular and Cell Biology, Division of Immunology and Cancer Research Laboratory, 469 LSA, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 2003; 160:1115-27. [PMID: 12668660 PMCID: PMC2172754 DOI: 10.1083/jcb.200212059] [Citation(s) in RCA: 421] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.
Collapse
|
13
|
Jimbo A, Fujita E, Kouroku Y, Ohnishi J, Inohara N, Kuida K, Sakamaki K, Yonehara S, Momoi T. ER stress induces caspase-8 activation, stimulating cytochrome c release and caspase-9 activation. Exp Cell Res 2003; 283:156-66. [PMID: 12581736 DOI: 10.1016/s0014-4827(02)00033-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.
Collapse
Affiliation(s)
- A Jimbo
- Division of Development, National Institute of Neuroscience, NCNP, 4-1-1 Ogawahigashi-machi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A. Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 2002; 269:273-318. [PMID: 12224514 DOI: 10.1007/978-3-642-59421-2_16] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenoviruses (Ads) cause acute and persistent infections. Alike the much more complex herpesviruses, Ads encode numerous immunomodulatory functions. About a third of the viral genome is devoted to counteract both the innate and the adaptive antiviral immune response. Immediately upon infection, E1A blocks interferon-induced gene expression and the VA-RNA inhibits interferon-induced PKR activity. At the same time, E1A reprograms the cell for DNA synthesis and induces the intrinsic cellular apoptosis program that is interrupted by E1B/19K and E1B/55K proteins, the latter inhibits p53-mediated apoptosis. Most other viral stealth functions are encoded by a separate transcription units, E3. Several E3 products prevent death receptor-mediated apoptosis. E3/14.7K seems to interfere with the cytolytic and pro-inflammatory activities of TNF while E3/10.4K and 14.5K proteins remove Fas and TRAIL receptors from the cell surface by inducing their degradation in lysosomes. These and other functions that may afect granule-mediated cell death might drastically limit lysis by NK cells and cytotoxic T cells (CTL). Moreover, Ads interfere with recognition of infected cell by CTL. The paradigmatic E3/19K protein subverts antigen presentation by MHC class I molecules by inhibiting their transport to the cell surface. In concert, these viral countermeasures ensure prolonged survival in the infected host and, as a consequence, facilitate transmission. Elucidating the molecular mechanisms of Ad-mediated immune evasion has stimulated corresponding research on other viruses. This knowledge will also be instrumental for designing better vectors for gene therapy and vaccination, and may lead to a more rational treatment of life-threatening Ad infections, e.g. in transplantation patients.
Collapse
Affiliation(s)
- H G Burgert
- Max von Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum der Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Li S, Zhao Y, He X, Kim TH, Kuharsky DK, Rabinowich H, Chen J, Du C, Yin XM. Relief of extrinsic pathway inhibition by the Bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J Biol Chem 2002; 277:26912-20. [PMID: 12011074 DOI: 10.1074/jbc.m200726200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial pathway is critical for the efficient execution of death receptor-initiated apoptosis in certain cell types. Questions remain as to why the mitochondria are required in that scenario. We investigated the molecular events that determined the need for the mitochondria by using an in vivo model of anti-Fas-induced hepatocyte apoptosis. In wild-type mice, Fas stimulation resulted in normal activation of caspase-3, with the generation of the active p19-p12 complex. In bid-deficient mice, caspase-3 activation was arrested after the initial cleavage at Asp(175). This allowed the generation of the p12 small subunit, but the p20 large subunit could not be further processed to the p19 subunit. The p20-p12 complex generated by Fas stimulation in bid-deficient hepatocytes was inactive, arresting the death program. Failure of p20/p12 caspase-3 to mature and to exhibit activity was because of the inhibition by the inhibitor-of-apoptosis proteins (IAPs), such as XIAP, and also to a low caspase-8 activity. This block could be overcome in wild-type mice by two mechanisms. Smac was released from mitochondria early following Fas activation and was competitively bound to the IAPs to reverse their effects. XIAP could also be cleaved, and this occurred later and was likely mediated by enhanced caspase activities. Both mechanisms were dependent on Bid and thus were not operative in bid-deficient hepatocytes. In conclusion, mitochondrial activation by Bid is required for reversing the IAP inhibition through Smac release. It is also required for the alternative activation of caspases through cytochrome c release, as demonstrated previously. Together, these events ensure a successful progression of the death program initiated by the death receptor activation in the hepatocyte.
Collapse
Affiliation(s)
- Shuchen Li
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cook JL, Walker TA, Worthen GS, Radke JR. Role of the E1A Rb-binding domain in repression of the NF-kappa B-dependent defense against tumor necrosis factor-alpha. Proc Natl Acad Sci U S A 2002; 99:9966-71. [PMID: 12119420 PMCID: PMC126608 DOI: 10.1073/pnas.162082999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The adenoviral E1A oncogene sensitizes mammalian cells to tumor necrosis factor-alpha (TNF-alpha), in part by repressing the nuclear factor-kappa B (NF-kappa B)-dependent defense against this cytokine. Other E1A activities involve binding to either p300/cyclic AMP response element-binding protein (CBP) or retinoblastoma (Rb)-family proteins, but the roles of E1A interactions with these transcriptional regulators in sensitizing cells to TNF-alpha are unclear. E1A expression did not block upstream events in TNF-alpha-induced activation of NF-kappa B in NIH 3T3 cells, including degradation of I kappa B-alpha, nuclear translocation of NF-kappa B subunits, and their dimeric binding to kappa B sequences in the nucleus. However, E1A markedly repressed NF-kappa B-dependent transcription and sensitized cells to TNF-alpha induced apoptosis. These E1A effects were selective for kappa B-dependent transcription and for the function of the NF-kappa B p65/RelA subunit. A four amino acid E1A deletion that eliminates binding to Rb-family proteins blocked both repression of TNF-alpha-induced transcription and sensitization to apoptosis. In contrast, mutations that eliminate E1A binding to p300/CBP (coactivators of p65/RelA) did not affect either E1A activity. These data suggest that E1A-Rb-binding blocks the NF-kappa B-dependent activation response to TNF-alpha by altering the function of p65/RelA at a stage after formation of the transcription factor-enhancer complex. These observations also open questions about the general role of Rb-family proteins in modulation of NF-kappa B-dependent transcription.
Collapse
Affiliation(s)
- James L Cook
- Department of Medicine and the Cancer Center, University of Illinois College of Medicine, MC-735, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
17
|
Mathai JP, Germain M, Marcellus RC, Shore GC. Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 2002; 21:2534-44. [PMID: 11971188 DOI: 10.1038/sj.onc.1205340] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2001] [Revised: 01/16/2002] [Accepted: 01/18/2002] [Indexed: 01/10/2023]
Abstract
A DNA microarray analysis identified the BH3-only BCL-2 family member, BIK/NBK, as a transcript that is upregulated during induction of apoptosis by oncogenic E1A. E1A depended on wild-type p53 to induce BIK and activate the death program. Further, p53 independently induced BIK RNA and protein, and BIK alone stimulated cell death in p53-null cells, dependent on the activation of caspases. BIK function, however, was abrogated by a disabling point mutation within the BH3 domain. Collectively, these results argue that BIK is a downstream apoptotic effector of p53 in response to a physiological p53-mediated death stimulus provided by E1A. Elevated BCL-2 functioned downstream of p53 and BIK induction to inhibit the E1A death pathway, with the ratio of anti-apoptotic BCL-2 and pro-apoptotic BIK determining cell death or survival in E1A-expressing cells. Cells expressing BCL-2 or treated with the pan caspase inhibitor, zVAD-fmk, allowed accumulation of high levels of cytotoxic BIK compared to control cells. Of note, a significant fraction of either ectopic or endogenous BIK was found associated with the endoplasmic reticulum, suggesting that this organelle, in addition to mitochondria, may be a target of BIK function.
Collapse
Affiliation(s)
- Jaigi P Mathai
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
18
|
Breckenridge DG, Nguyen M, Kuppig S, Reth M, Shore GC. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc Natl Acad Sci U S A 2002; 99:4331-6. [PMID: 11917123 PMCID: PMC123648 DOI: 10.1073/pnas.072088099] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BAP31 is an integral protein of the endoplasmic reticulum membrane and a substrate of caspase-8. Here, we describe the procaspase-8 isoform, procaspase-8L, which is ubiquitously expressed and selectively recruited to the BAP31 complex in response to apoptotic signaling by E1A. Procaspase-8L is characterized by the N-terminal extension (Nex) domain, which extends procaspase-8/a at the N terminus and is required for selective association of procaspase-8L with the BAP31 complex. Gene deletion identified BAP31 and related BAP29 as required for processing of procaspase-8L in response to E1A, by a FADD-independent mechanism that was blocked by BCL-2. Further, Bap29,31 deletion, as well as a Nex-domain dominant-negative mutant, curtailed the activation of downstream caspases (IETDase and DEVDase) and cell death in response to E1A. Preferential recruitment of procaspase-8L by the BAP31 complex at the endoplasmic reticulum suggests an additional pathway for regulating initiator caspase-8 during apoptosis.
Collapse
Affiliation(s)
- David G Breckenridge
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, QC, Canada H3G 1Y6
| | | | | | | | | |
Collapse
|
19
|
Unkila M, McColl KS, Thomenius MJ, Heiskanen K, Distelhorst CW. Unreliability of the cytochrome c-enhanced green fluorescent fusion protein as a marker of cytochrome c release in cells that overexpress Bcl-2. J Biol Chem 2001; 276:39132-7. [PMID: 11489892 DOI: 10.1074/jbc.m104986200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A cytochrome c-enhanced green fluorescent protein chimera (cyt-c.EGFP) was used to monitor the release of cytochrome c from mitochondria in Bcl-2-negative and Bcl-2-positive MDA-MB-468 breast cancer cells. A comparison was made with the intracellular distribution of endogenous cytochrome c based on Western blotting of cell fractions and immunocytochemistry. The release of endogenous cytochrome c from mitochondria into the cytoplasm was detected in Bcl-2-negative cells treated with the kinase inhibitor staurosporine or the calcium-ATPase inhibitor thapsigargin. No release of endogenous cytochrome c was evident in Bcl-2-positive cells, consistent with earlier evidence that Bcl-2 overexpression inhibits cytochrome c release from mitochondria. Cyt-c.EGFP appeared to be localized to the mitochondria in Bcl-2-negative cells and to be released into the cytoplasm following treatment with either staurosporine or thapsigargin. However, in Bcl-2-positive cells the pattern of distribution of cytochrome c-EGFP was inconsistent with that of endogenous cytochrome c, due to accumulation of both cyt-c.EGFP and free EGFP in the cytoplasm of both treated and untreated cells. In summary, cyt-c.EGFP may be useful for monitoring cytochrome c release in living cells that do not express high levels of Bcl-2 but is an unreliable marker of cytochrome c release in cells that overexpress Bcl-2.
Collapse
Affiliation(s)
- M Unkila
- Division of Hematology/Oncology, Department of Medicine and Comprehensive Cancer Center at Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
20
|
Takeda Y, Nakao K, Nakata K, Kawakami A, Ida H, Ichikawa T, Shigeno M, Kajiya Y, Hamasaki K, Kato Y, Eguchi K. Geranylgeraniol, an intermediate product in mevalonate pathway, induces apoptotic cell death in human hepatoma cells: death receptor-independent activation of caspase-8 with down-regulation of Bcl-xL expression. Jpn J Cancer Res 2001; 92:918-25. [PMID: 11572758 PMCID: PMC5926844 DOI: 10.1111/j.1349-7006.2001.tb01181.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Geranylgeraniol (GGOH), an intermediate of mevalonate metabolism, is known to induce apoptosis in various lines of cancer cells. The present study was undertaken to clarify the signaling pathways of apoptosis induced by GGOH in human hepatoma cells. HuH-7 human hepatoma cells were incubated in the absence or presence of GGOH. Activation of caspase-8 /-9 /-3 in HuH-7 cells was found after 8 h treatment with GGOH, at which time DNA fragmentation and loss of mitochondrial transmembrane potential (Deltaphim) occurred. HuH-7 cells do not express Bcl-2; however, down-regulation of Bcl-xL expression preceded activation of the caspase cascade in GGOH-treated HuH-7 cells, while Bax expression was not changed by GGOH treatment. Addition of caspase inhibitors restored the decreased cell viability of HuH-7 cells by GGOH, including Deltaphim, to the baseline level, which indicated that caspase triggers mitochondria-dependent apoptotic pathways in GGOH-treated HuH-7 cells. Similarly, GGOH-mediated apoptosis of HuH-7 cells was clearly prevented by coadministration of ursodeoxycholic acid (UDCA), which led to restoration of the level of Bcl-xL expression. Activation of caspase-8 /-9 /-3, as well as Deltaphim, by GGOH treatment was suppressed by addition of UDCA. Our results indicate that activation of the caspase cascade initiating from caspase-8, which could be accelerated by down-regulation of Bcl-xL expression, plays a key role in an apoptotic process induced by GGOH in human hepatoma cells.
Collapse
Affiliation(s)
- Y Takeda
- The First Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki University, Nagasaki 852-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ruffolo SC, Breckenridge DG, Nguyen M, Goping IS, Gross A, Korsmeyer SJ, Li H, Yuan J, Shore GC. BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 2000; 7:1101-8. [PMID: 11139284 DOI: 10.1038/sj.cdd.4400739] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the absence of an apoptotic signal, BAX adopts a conformation that constrains the protein from integrating into mitochondrial membranes. Here, we show that caspases, including caspase-8, can initiate BAX insertion into mitochondria in vivo and in vitro. The cleavage product of caspase-8, tBID, induced insertion of BAX into mitochondria in vivo, and reconstitution in vitro showed that tBID, either directly or indirectly, relieved inhibition of the BAX transmembrane signal-anchor by the NH2-terminal domain, resulting in integration of BAX into mitochondrial membrane. In contrast to these findings, however, Bid-null mouse embryo fibroblasts supported Bax insertion into mitochondria in response to death signaling by either TNFalpha or E1A, despite the fact that cytochrome c release from the organelle was inhibited. We conclude, therefore, that a parallel Bid-independent pathway exists in these cells for mitochondrial insertion of Bax and that, in the absence of Bid, cytochrome c release can be uncoupled from Bax membrane insertion.
Collapse
Affiliation(s)
- S C Ruffolo
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Marcellus RC, Chan H, Paquette D, Thirlwell S, Boivin D, Branton PE. Induction of p53-independent apoptosis by the adenovirus E4orf4 protein requires binding to the Balpha subunit of protein phosphatase 2A. J Virol 2000; 74:7869-77. [PMID: 10933694 PMCID: PMC112317 DOI: 10.1128/jvi.74.17.7869-7877.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have indicated that the E4orf4 protein of human adenovirus type 2 (Ad2) induces p53-independent apoptosis. We believe that this process may play a role in cell death and viral spread at the final stages of productive infection. E4orf4 may also be of therapeutic value in treating some diseases, including cancer, through its ability to induce apoptosis when expressed individually. The only previously identified biochemical function of E4orf4 is its ability to associate with the Balpha subunit of protein phosphatase 2A (PP2A). We have used a genetic approach to determine the role of such interactions in E4orf4-induced cell death. E4orf4 deletion mutants were of only limited value, as all were highly defective. We found that E4orf4 proteins from most if not all adenovirus serotypes induced cell death, and thus point mutations were introduced that converted the majority of highly conserved residues to alanines. Such mutants were used to correlate Balpha-subunit binding, association with PP2A activity, and cell killing following the transfection of appropriate cDNAs into p53-null H1299 or C33A cells. The results indicated that binding of the Balpha subunit is essential for induction of cell death, as every mutant that failed to bind efficiently was totally defective for cell killing. This class of mutations (class I) largely involved residues between amino acids 51 and 89. Almost all E4orf4 mutant proteins that associated with PP2A killed cancer cells at high levels; however, several mutants that associated with significant levels of PP2A were defective for killing (class II). Thus, binding of E4orf4 to PP2A is essential for induction of p53-independent apoptosis, but E4orf4 may possess one or more additional functions required for cell killing.
Collapse
Affiliation(s)
- R C Marcellus
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada H2W 2M9
| | | | | | | | | | | |
Collapse
|
23
|
Giampietri C, Levrero M, Felici A, D'Alessio A, Capogrossi MC, Gaetano C. E1A stimulates FGF-2 release promoting differentiation of primary endothelial cells. Cell Death Differ 2000; 7:292-301. [PMID: 10745274 DOI: 10.1038/sj.cdd.4400654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Basic Fibroblast Growth Factor (FGF-2) is a growth and survival factor and represents one of the most potent differentiation agents of vascular system. In the present study we describe that adenoviral oncoprotein E1A regulates FGF-2 production and determines the acquisition of a pro-angiogenic phenotype in primary bovine aortic endothelial cells (BAEC). Following their transfection, wild type E1A proteins 12S and 13S (wtE1A) stimulated BAEC to differentiate on reconstituted basement membrane matrix (Matrigel). This outcome was paralleled by invasion and migration enhancement in wtE1A-transfected cells. This stimulating effect was absent with the E1A mutant dl646N. Accordingly, zymography and RT - PCR analyses showed that matrix metalloproteinase-9 protein- and mRNA-levels increased following wtE1A transfection. Interestingly, wtE1A-transfected BAEC showed FGF-2 mRNA- and protein-levels higher than controls. Further, FGF-2 neutralization reduced the amount of MMP-9 released in the supernatant of E1A-transfected cells and strongly inhibited BAEC differentiation, thus suggesting that wtE1A activates BAEC by a mechanism, at least partially, dependent on a FGF-2 autocrine/paracrine loop.
Collapse
Affiliation(s)
- C Giampietri
- Laboratorio di Patologia Vascolare, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, 00167 Rome, Italy.
| | | | | | | | | | | |
Collapse
|
24
|
Shima Y, Nakao K, Nakashima T, Kawakami A, Nakata K, Hamasaki K, Kato Y, Eguchi K, Ishii N. Activation of caspase-8 in transforming growth factor-beta-induced apoptosis of human hepatoma cells. Hepatology 1999; 30:1215-22. [PMID: 10534343 DOI: 10.1002/hep.510300503] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transforming growth factor-beta1 (TGF-beta1) has been shown to induce apoptosis in normal or transformed hepatocytes. To elucidate the biochemical pathways leading to apoptosis induced by TGF-beta1 in human hepatoma cells (HuH-7), we examined the expression of Bcl-2-related proteins and X-chromosome-linked inhibitor of apoptosis (XIAP), and activation of the caspase cascade following TGF-beta1 treatment. Bcl-xL expression began to decline at 12 hours after TGF-beta1 treatment and progressively decreased to very low levels in a time-dependent manner. Bax expression showed a little change throughout the experiment. On the other hand, activation of caspase-8 was clearly observed at 36 hours after TGF-beta1 treatment, followed by activation of caspase-9, and caspase-3 was activated at 48 hours after treatment at which time apoptosis of HuH-7 cells was observed. TGF-beta1 significantly decreased XIAP expression in HuH-7 cells. Addition of an inhibitor of caspase-8 or caspase-3 (IETD-FMK or DEVD-CHO) markedly inhibited TGF-beta1-induced apoptosis of HuH-7 cells. Fas/Fas ligand (FasL) interactions in HuH-7 cells were not involved in the apoptotic process. Furthermore, epidermal growth factor (EGF) also completely inhibited TGF-beta1-induced apoptosis of HuH-7 cells by inhibiting activation of the caspase cascade. Our results suggested that activation of caspase-3 initiated through caspase-8 activation is involved in the apoptotic process induced by TGF-beta1 in HuH-7 cells. Our results also showed that down-regulation of the expression of Bcl-xL and XIAP by TGF-beta1 may facilitate activation of caspase-3 in these cells.
Collapse
Affiliation(s)
- Y Shima
- Department of Clinical Pharmacology, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yeh WC, Hakem R, Woo M, Mak TW. Gene targeting in the analysis of mammalian apoptosis and TNF receptor superfamily signaling. Immunol Rev 1999; 169:283-302. [PMID: 10450525 DOI: 10.1111/j.1600-065x.1999.tb01323.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Apoptosis, or programmed cell death (PCD), is the subject of much current investigative interest. Developing embryos and many adult organ systems require the tight coupling of cellular proliferation and PCD to ensure proper organogenesis and optimal tissue function. Over the past decade, our knowledge of the genetic basis underlying the execution of apoptosis in mammals has progressed enormously, thanks largely to groundbreaking studies performed in the nematode Caenorhabditis elegans. In contrast, the components of the signaling apparatus that links the various death stimuli and the receptors they stimulate to the execution mechanism remain relatively unknown. It is only in the past 4 years that studies of signal transduction via members of the tumor necrosis factor (TNF) receptor superfamily have identified a plethora of novel signaling proteins, including molecules that are directly involved in apoptosis signaling, and others that regulate the induction of cell death. This two-part review focuses on the biology of apoptosis and signaling through members of the TNF receptor superfamily as revealed by the study of gene-targeted "knockout" mice. These genetic mutant animals are invaluable tools not only for confirming or refuting a proposed function of a particular gene in an in vivo setting, but also for uncovering novel functions for a gene that were not anticipated from conventional in vitro experiments. In the field of apoptosis, as for many other areas of biomedical research, knockout mice and cell lines can be used as models for studying human disease, with the ultimate goal of developing therapeutic strategies.
Collapse
Affiliation(s)
- W C Yeh
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
26
|
Los M, Wesselborg S, Schulze-Osthoff K. The role of caspases in development, immunity, and apoptotic signal transduction: lessons from knockout mice. Immunity 1999; 10:629-39. [PMID: 10403638 DOI: 10.1016/s1074-7613(00)80062-x] [Citation(s) in RCA: 320] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- M Los
- Department of Internal Medicine I, Medical Clinics, University of Tübingen, Germany
| | | | | |
Collapse
|