1
|
Hsueh HY, Gumpper-Fedus K, Poelstra JW, Pitter KL, Cruz-Monserrate Z. Pan-Cancer Analysis Identifies a Ras-Related GTPase as a Potential Modulator of Cancer. Int J Mol Sci 2025; 26:4419. [PMID: 40362656 PMCID: PMC12073092 DOI: 10.3390/ijms26094419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/18/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Ras signaling regulates many cellular processes in cancer development. While well-known Ras-related oncogenes, such as KRAS, have been extensively explored, the role of other Ras-related genes in cancer remains poorly studied. Dexamethasone-induced Ras-related protein 1 (RASD1), a member of the Ras superfamily, is widely expressed across various tissues and is involved in inhibiting cell growth and inducing apoptosis, suggesting a potential role as a tumor suppressor. Here, we investigated RASD1 expression across multiple tissues and cancers, utilizing data from The Cancer Genome Atlas (TCGA), Human Protein Atlas, and Genotype-Tissue Expression (GTEx) databases. Our analysis revealed a significant downregulation of RASD1 mRNA expression in several cancer types compared to normal tissues, correlating with low levels of promoter methylation. Interestingly, high RASD1 expression correlated with a favorable prognosis in multiple cancers. Immune cell infiltration analysis indicated that elevated RASD1 expression is associated with an increased infiltration of CD4+ T cells and myeloid-derived dendritic cells in cancer. Furthermore, the expression of genes exhibiting similar expression patterns as RASD1 suggest that RASD1 may play a role in interleukin-4-mediated apoptosis and could regulate the transcription of the phosphatase and tensin homolog (PTEN) gene. Overall, these findings suggest that RASD1 may modulate immune signaling and tumor suppressive pathways.
Collapse
Affiliation(s)
- Hsiang-Yin Hsueh
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- The Ohio State University Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA
| | - Kristyn Gumpper-Fedus
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| | - Jelmer W. Poelstra
- Molecular and Cellular Imaging Center (MCIC), College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Kenneth L. Pitter
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Zobeida Cruz-Monserrate
- Department of Internal Medicine, Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (H.-Y.H.); (K.G.-F.)
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
2
|
Zeng G, Liu X, Zheng Z, Zhao J, Zhuo W, Bai Z, Lin E, Cai S, Cai C, Li P, Zou B, Li J. Knockdown of RASD1 improves MASLD progression by inhibiting the PI3K/AKT/mTOR pathway. Lipids Health Dis 2024; 23:424. [PMID: 39731125 DOI: 10.1186/s12944-024-02419-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD. Therefore, we designed a study to elucidate how RASD1 could impact on MASLD as well as the mechanisms involved. METHODS The expression level of RASD1 was validated in MASLD. Lipid metabolism and its underlying mechanism were investigated in hepatocytes and mice with either overexpression or knockdown of RASD1. RESULTS Hepatic RASD1 expression was upregulated in MASLD. Lipid deposition was significantly reduced in RASD1-knockdown hepatocytes and mice, accompanied by a marked downregulation of key genes in the signaling pathway of de novo lipogenesis. Conversely, RASD1 overexpression in hepatocytes had the opposite effect. Mechanistically, RASD1 regulated lipid metabolism in MASLD through the PI3K/AKT/mTOR signaling pathway. CONCLUSIONS We discovered a novel role of RASD1 in MASLD by regulating lipogenesis via the PI3K/AKT/mTOR pathway, thereby identifying a potential treatment target for MASLD.
Collapse
Affiliation(s)
- Guifang Zeng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Xialei Liu
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zhouying Zheng
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Jiali Zhao
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Zirui Bai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - En Lin
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Shanglin Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Chaonong Cai
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China
| | - Peiping Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Baojia Zou
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| | - Jian Li
- Department of Hepatobiliary Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, People's Republic of China.
| |
Collapse
|
3
|
Zhou L, Pereiro MT, Li Y, Derigs M, Kuenne C, Hielscher T, Huang W, Kränzlin B, Tian G, Kobayashi K, Lu GHN, Roedl K, Schmidt C, Günther S, Looso M, Huber J, Xu Y, Wiech T, Sperhake JP, Wichmann D, Gröne HJ, Worzfeld T. Glucocorticoids induce a maladaptive epithelial stress response to aggravate acute kidney injury. Sci Transl Med 2024; 16:eadk5005. [PMID: 39356748 DOI: 10.1126/scitranslmed.adk5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/26/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Acute kidney injury (AKI) is a frequent and challenging clinical condition associated with high morbidity and mortality and represents a common complication in critically ill patients with COVID-19. In AKI, renal tubular epithelial cells (TECs) are a primary site of damage, and recovery from AKI depends on TEC plasticity. However, the molecular mechanisms underlying adaptation and maladaptation of TECs in AKI remain largely unclear. Here, our study of an autopsy cohort of patients with COVID-19 provided evidence that injury of TECs by myoglobin, released as a consequence of rhabdomyolysis, is a major pathophysiological mechanism for AKI in severe COVID-19. Analyses of human kidney biopsies, mouse models of myoglobinuric and gentamicin-induced AKI, and mouse kidney tubuloids showed that TEC injury resulted in activation of the glucocorticoid receptor by endogenous glucocorticoids, which aggravated tubular damage. The detrimental effect of endogenous glucocorticoids on injured TECs was exacerbated by the administration of a widely clinically used synthetic glucocorticoid, dexamethasone, as indicated by experiments in mouse models of myoglobinuric- and folic acid-induced AKI, human and mouse kidney tubuloids, and human kidney slice cultures. Mechanistically, studies in mouse models of AKI, mouse tubuloids, and human kidney slice cultures demonstrated that glucocorticoid receptor signaling in injured TECs orchestrated a maladaptive transcriptional program to hinder DNA repair, amplify injury-induced DNA double-strand break formation, and dampen mTOR activity and mitochondrial bioenergetics. This study identifies glucocorticoid receptor activation as a mechanism of epithelial maladaptation, which is functionally important for AKI.
Collapse
Affiliation(s)
- Luping Zhou
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Marc Torres Pereiro
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Yanqun Li
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Marcus Derigs
- Department of Urology, University Hospital, University of Marburg, Baldingerstraße, Marburg 35043, Germany
| | - Carsten Kuenne
- Bioinformatics, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Wei Huang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Bettina Kränzlin
- Core Facility Preclinical Models, Medical Faculty Mannheim, University of Heidelberg, Ludolf-Krehl-Straße 13-17, Mannheim 68167, Germany
| | - Gang Tian
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
| | - Kazuhiro Kobayashi
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Gia-Hue Natalie Lu
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| | - Kevin Roedl
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Claudia Schmidt
- Light Microscopy Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stefan Günther
- Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Mario Looso
- Bioinformatics, Max Planck Institute for Heart and Lung Research, Ludwigstraße 43, Bad Nauheim 61231, Germany
| | - Johannes Huber
- Department of Urology, University Hospital, University of Marburg, Baldingerstraße, Marburg 35043, Germany
| | - Yong Xu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Taiping Street 25, Luzhou 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Taiping Street 25, Luzhou 646000, China
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Martinistraße 52, Hamburg 20246, Germany
| | - Jan-Peter Sperhake
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Butenfeld 34, Hamburg 22529, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, Hamburg 20246, Germany
| | - Hermann-Josef Gröne
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
- Medical Faculty, University of Heidelberg, Heidelberg 69120, Germany
| | - Thomas Worzfeld
- Institute of Pharmacology, University of Marburg, Karl-von-Frisch-Straße 2, Marburg 35043, Germany
| |
Collapse
|
4
|
Nürnberg B, Beer-Hammer S, Reisinger E, Leiss V. Non-canonical G protein signaling. Pharmacol Ther 2024; 255:108589. [PMID: 38295906 DOI: 10.1016/j.pharmthera.2024.108589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024]
Abstract
The original paradigm of classical - also referred to as canonical - cellular signal transduction of heterotrimeric G proteins (G protein) is defined by a hierarchical, orthograde interaction of three players: the agonist-activated G protein-coupled receptor (GPCR), which activates the transducing G protein, that in turn regulates its intracellular effectors. This receptor-transducer-effector concept was extended by the identification of regulators and adapters such as the regulators of G protein signaling (RGS), receptor kinases like βARK, or GPCR-interacting arrestin adapters that are integrated into this canonical signaling process at different levels to enable fine-tuning. Finally, the identification of atypical signaling mechanisms of classical regulators, together with the discovery of novel modulators, added a new and fascinating dimension to the cellular G protein signal transduction. This heterogeneous group of accessory G protein modulators was coined "activators of G protein signaling" (AGS) proteins and plays distinct roles in canonical and non-canonical G protein signaling pathways. AGS proteins contribute to the control of essential cellular functions such as cell development and division, intracellular transport processes, secretion, autophagy or cell movements. As such, they are involved in numerous biological processes that are crucial for diseases, like diabetes mellitus, cancer, and stroke, which represent major health burdens. Although the identification of a large number of non-canonical G protein signaling pathways has broadened the spectrum of this cellular communication system, their underlying mechanisms, functions, and biological effects are poorly understood. In this review, we highlight and discuss atypical G protein-dependent signaling mechanisms with a focus on inhibitory G proteins (Gi) involved in canonical and non-canonical signal transduction, review recent developments and open questions, address the potential of new approaches for targeted pharmacological interventions.
Collapse
Affiliation(s)
- Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| | - Ellen Reisinger
- Gene Therapy for Hearing Impairment Group, Department of Otolaryngology - Head & Neck Surgery, University of Tübingen Medical Center, Elfriede-Aulhorn-Straße 5, D-72076 Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute of Experimental and Clinical Pharmacology and Pharmacogenomics, and ICePhA Mouse Clinic, University of Tübingen, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
5
|
Fronza MG, Ferreira BF, Pavan-Silva I, Guimarães FS, Lisboa SF. "NO" Time in Fear Response: Possible Implication of Nitric-Oxide-Related Mechanisms in PTSD. Molecules 2023; 29:89. [PMID: 38202672 PMCID: PMC10779493 DOI: 10.3390/molecules29010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric condition characterized by persistent fear responses and altered neurotransmitter functioning due to traumatic experiences. Stress predominantly affects glutamate, a neurotransmitter crucial for synaptic plasticity and memory formation. Activation of the N-Methyl-D-Aspartate glutamate receptors (NMDAR) can trigger the formation of a complex comprising postsynaptic density protein-95 (PSD95), the neuronal nitric oxide synthase (nNOS), and its adaptor protein (NOS1AP). This complex is pivotal in activating nNOS and nitric oxide (NO) production, which, in turn, activates downstream pathways that modulate neuronal signaling, including synaptic plasticity/transmission, inflammation, and cell death. The involvement of nNOS and NOS1AP in the susceptibility of PTSD and its comorbidities has been widely shown. Therefore, understanding the interplay between stress, fear, and NO is essential for comprehending the maintenance and progression of PTSD, since NO is involved in fear acquisition and extinction processes. Moreover, NO induces post-translational modifications (PTMs), including S-nitrosylation and nitration, which alter protein function and structure for intracellular signaling. Although evidence suggests that NO influences synaptic plasticity and memory processing, the specific role of PTMs in the pathophysiology of PTSD remains unclear. This review highlights pathways modulated by NO that could be relevant to stress and PTSD.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Bruna F. Ferreira
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Isabela Pavan-Silva
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Francisco S. Guimarães
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
| | - Sabrina F. Lisboa
- Pharmacology Departament, Ribeirão Preto Medical School, University of São Paulo, São Paulo 14049-900, Brazil; (M.G.F.); (B.F.F.); (I.P.-S.)
- Biomolecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo 14040-903, Brazil
| |
Collapse
|
6
|
You H, Dong M. Prediction of diagnostic gene biomarkers for hypertrophic cardiomyopathy by integrated machine learning. J Int Med Res 2023; 51:3000605231213781. [PMID: 38006610 PMCID: PMC10683566 DOI: 10.1177/03000605231213781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVES Hypertrophic cardiomyopathy (HCM), a leading cause of heart failure and sudden death, requires early diagnosis and treatment. This study investigated the underlying pathogenesis and explored potential diagnostic gene biomarkers for HCM. METHODS Transcriptional profiles of myocardial tissues from patients with HCM (dataset GSE36961) were downloaded from the Gene Expression Omnibus database and subjected to bioinformatics analyses, including differentially expressed gene (DEG) identification, enrichment analyses, and protein-protein interaction (PPI) network analysis. Least absolute shrinkage and selection operator (LASSO) regression and support vector machine recursive feature elimination were performed to identify candidate diagnostic gene biomarkers. mRNA expression levels of candidate biomarkers were tested in an external dataset (GSE141910); area under the receiver operating characteristic curve (AUC) values were obtained to validate diagnostic efficacy. RESULTS Overall, 156 DEGs (109 downregulated, 47 upregulated) were identified. Enrichment and PPI network analyses indicated that the DEGs were involved in biological functions and molecular pathways including inflammatory response, platelet activity, complement and coagulation cascades, extracellular matrix organization, phagosome, apoptosis, and VEGFA-VEGFR2 signaling. RASD1, CDC42EP4, MYH6, and FCN3 were identified as diagnostic biomarkers for HCM. CONCLUSIONS RASD1, CDC42EP4, MYH6, and FCN3 might be diagnostic gene biomarkers for HCM and can provide insights concerning HCM pathogenesis.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Madaro A, Nilsson J, Whatmore P, Roh H, Grove S, Stien LH, Olsen RE. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:97-116. [PMID: 36574113 PMCID: PMC9935726 DOI: 10.1007/s10695-022-01163-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.
Collapse
Affiliation(s)
| | | | - Paul Whatmore
- Department of eResearch, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - HyeongJin Roh
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Søren Grove
- Institute of Marine Research, NO-5984, Matredal, Norway
- Fish Health Group, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Lars H Stien
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, NO-5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
8
|
Liu SB, Meng XM, Li YM, Wang JM, Guo HH, Wang C, Zhu BM. Histone methyltransferase KMT2D contributes to the protection of myocardial ischemic injury. Front Cell Dev Biol 2022; 10:946484. [PMID: 35938163 PMCID: PMC9354747 DOI: 10.3389/fcell.2022.946484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.
Collapse
Affiliation(s)
- Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Meng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| |
Collapse
|
9
|
Functional diversity in the RAS subfamily of small GTPases. Biochem Soc Trans 2022; 50:921-933. [PMID: 35356965 DOI: 10.1042/bst20211166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
RAS small GTPases regulate important signalling pathways and are notorious drivers of cancer development and progression. While most research to date has focused on understanding and addressing the oncogenic potential of three RAS oncogenes: HRAS, KRAS, and NRAS; the full RAS subfamily is composed of 35 related GTPases with diverse cellular functions. Most remain deeply understudied despite strong evolutionary conservation. Here, we highlight a group of 17 poorly characterized RAS GTPases that are frequently down-regulated in cancer and evidence suggests may function not as oncogenes, but as tumour suppressors. These GTPases remain largely enigmatic in terms of their cellular function, regulation, and interaction with effector proteins. They cluster within two families we designate as 'distal-RAS' (D-RAS; comprised of DIRAS, RASD, and RASL10) and 'CaaX-Less RAS' (CL-RAS; comprised of RGK, NKIRAS, RERG, and RASL11/12 GTPases). Evidence of a tumour suppressive role for many of these GTPases supports the premise that RAS subfamily proteins may collectively regulate cellular proliferation.
Collapse
|
10
|
Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Regulation of GTPase function by autophosphorylation. Mol Cell 2022; 82:950-968.e14. [PMID: 35202574 PMCID: PMC8986090 DOI: 10.1016/j.molcel.2022.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Moon-Hee Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jimit Lakhani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Zola M, Mejlachowicz D, Gregorio R, Naud MC, Jaisser F, Zhao M, Behar-Cohen F. Chronic Systemic Dexamethasone Regulates the Mineralocorticoid/Glucocorticoid Pathways Balance in Rat Ocular Tissues. Int J Mol Sci 2022; 23:ijms23031278. [PMID: 35163201 PMCID: PMC8836134 DOI: 10.3390/ijms23031278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Central serous chorioretinopathy (CSCR) is a retinal disease affecting the retinal pigment epithelium (RPE) and the choroid. This is a recognized side-effect of glucocorticoids (GCs), administered through nasal, articular, oral and dermal routes. However, CSCR does not occur after intraocular GCs administration, suggesting that a hypothalamic-pituitary-adrenal axis (HPA) brake could play a role in the mechanistic link between CSCR and GS. The aim of this study was to explore this hypothesis. To induce HPA brake, Lewis rats received a systemic injection of dexamethasone daily for five days. Control rats received saline injections. Baseline levels of corticosterone were measured by Elisa at baseline and at 5 days in the serum and the ocular media and dexamethasone levels were measured at 5 days in the serum and ocular media. The expression of genes encoding glucocorticoid receptor (GR), mineralocorticoid receptors (MR), and the 11 beta hydroxysteroid dehydrogenase (HSD) enzymes 1 and 2 were quantified in the neural retina and in RPE/ choroid. The expression of MR target genes was quantified in the retina (Scnn1A (encoding ENac-α, Kir4.1 and Aqp4) and in the RPE/choroid (Shroom 2, Ngal, Mmp9 and Omg, Ptx3, Plaur and Fosl-1). Only 10% of the corticosterone serum concentration was measured in the ocular media. Corticosterone levels in the serum and in the ocular media dropped after 5 days of dexamethasone systemic treatment, reflecting HPA axis brake. Whilst both GR and MR were downregulated in the retina without MR/GR imbalance, in the RPE/choroid, both MR/GR and 11β-hsd2/11β-hsd1 ratio increased, indicating MR pathway activation. MR-target genes were upregulated in the RPE/ choroid but not in the retina. The psychological stress induced by the repeated injection of saline also induced HPA axis brake with a trend towards MR pathway activation in RPE/ choroid. HPA axis brake causes an imbalance of corticoid receptors expression in the RPE/choroid towards overactivation of MR pathway, which could favor the occurrence of CSCR.
Collapse
Affiliation(s)
- Marta Zola
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
| | - Dan Mejlachowicz
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Raquel Gregorio
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Marie-Christine Naud
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Min Zhao
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
| | - Francine Behar-Cohen
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Inserm, From Physiopathology of Retinal Diseases to Clinical Advances, 75006 Paris, France; (M.Z.); (D.M.); (R.G.); (M.-C.N.); (F.J.); (M.Z.)
- Assistance Publique-Hôpitaux de Paris, Department of Ophthalmology, Ophtalmopôle, Hôpital Cochin, 75014 Paris, France
- Correspondence:
| |
Collapse
|
12
|
Foradori CD, Mackay L, Huang CCJ, Kemppainen RJ. Expression of Rasd1 in mouse endocrine pituitary cells and its response to dexamethasone. Stress 2021; 24:659-666. [PMID: 33840368 PMCID: PMC8405551 DOI: 10.1080/10253890.2021.1907340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Rasd1, also known as Dexras1 or AGS1, is rapidly induced by dexamethasone (Dex). While prior data indicates that Rasd1 is highly expressed in the pituitary and that the gene may function in regulation of corticotroph activity, its exact cellular localization in this tissue has not been delineated. Nor has it been determined which endocrine pituitary cell type(s) are responsive to Dex-induced expression of Rasd1. We hypothesized that Rasd1 is primarily localized in corticotrophs and furthermore, that its expression in these cells would be upregulated in response to exogenous Dex administration. Rasd1 expression in each pituitary cell type both under basal conditions and 1-hour post Dex treatment were examined in adult male mice. While a proportion of all endocrine pituitary cell types expressed Rasd1, a majority of corticotrophs and thyrotrophs expressed Rasd1 under basal condition. In vehicle treated animals, approximately 50-60% of corticotrophs and thyrotrophs cells expressed Rasd1 while the gene was detected in only 15-30% of lactotrophs, somatotrophs, and gonadotrophs. In Dex treated animals, Rasd1 expression was significantly increased in corticotrophs, somatotrophs, lactotrophs, and gonadotrophs but not thyrotrophs. In Dex treated animals, Rasd1 was detected in 80-95% of gonadotrophs and corticotrophs. In contrast, Dex treatment increased Rasd1 expression to a lesser extent (55-60%) in somatotrophs and lactotrophs. Corticotrophs of the pars intermedia, which lack glucocorticoid receptors, failed to display increased Rasd1 expression in Dex treated animals. Rasd1 is highly expressed in corticotrophs under basal conditions and is further increased after Dex treatment, further supporting its role in glucocorticoid negative feedback. In addition, the presence and Dex-induced expression of Rasd1 in endocrine pituitary cell types, other than corticotrophs, may implicate Rasd1 in novel pituitary functions.
Collapse
Affiliation(s)
- Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chen-Che J Huang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Robert J Kemppainen
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
13
|
Zhang D, Hugo W, Redublo P, Miao H, Bergsneider M, Wang MB, Kim W, Yong WH, Heaney AP. A human ACTH-secreting corticotroph tumoroid model: Novel Human ACTH-Secreting Tumor Cell in vitro Model. EBioMedicine 2021; 66:103294. [PMID: 33773184 PMCID: PMC8024915 DOI: 10.1016/j.ebiom.2021.103294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/06/2021] [Accepted: 03/08/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cushing disease (CD), although rare, is a life-threatening disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary adenoma, which leads to excess adrenal-derived cortisol. Efficacious and safe medical therapies that control both hormonal hypersecretion and pituitary corticotroph tumor growth remain an unmet need in the management of CD. Translational research in pituitary tumors has been significantly hampered by limited quantities of surgically resected tissue for ex vivo studies, and unavailability of human pituitary tumor cell models. METHODS To characterize human corticotroph tumors at the cellular level, we employed single cell RNA-sequencing (scRNA-seq) to study 4 surgically resected tumors. We also used microarrays to compare individualized paired consecutive culture passages to understand transcriptional shifts as in vitro cultures lost ACTH secretion. Based on these findings, we then modified our in vitro culture methods to develop sustained ACTH-secreting human corticotroph tumoroid cultures. FINDINGS scRNA-seq identified 4 major cell populations, namely corticotroph tumor (73.6%), stromal (11.2%), progenitor (8.3%), and immune cells (6.8%). Microarray analysis revealed striking changes in extracellular matrix, cell adhesion and motility-related genes concordant with loss of ACTH secretion during conventional 2D culture. Based on these findings, we subsequently defined a series of crucial culture nutrients and scaffold modifications that provided a more favorable trophic and structural environment that could maintain ACTH secretion in in vitro human corticotroph tumor cultures for up to 4 months. INTERPRETATION Our human corticotroph tumoroid model is a significant advance in the field of pituitary tumors and will further enable translational research studies to identify critically needed therapies for CD. FUNDING This work was partly funded by NCI P50-CA211015 and the Warley Trust Foundation.
Collapse
Affiliation(s)
- Dongyun Zhang
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Willy Hugo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Peter Redublo
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Hui Miao
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marvin Bergsneider
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Marilene B Wang
- Departments of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Won Kim
- Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - William H Yong
- Departments of Pathology and Lab Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Anthony P Heaney
- Departments of Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States; Departments of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
14
|
Seok JW, Kim D, Yoon BK, Lee Y, Kim HJ, Hwang N, Fang S, Kim HJ, Kim JW. Dexras1 plays a pivotal role in maintaining the equilibrium between adipogenesis and osteogenesis. Metabolism 2020; 108:154250. [PMID: 32335074 DOI: 10.1016/j.metabol.2020.154250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Chronic steroid treatment causes an increase in visceral adiposity and osteoporosis. It is believed that steroids may alter a balance between differentiation of mesenchymal stem cells (MSCs) into either adipocytes or osteoblasts; however, the detailed molecular mechanisms are unclear. We previously identified Dexras1 as a critical factor that potentiates adipogenesis in response to glucocorticoids. Thus, in this study, we investigated the role of Dexras1 in maintaining the balance between chronic steroid treatment-associated adipogenesis and osteoporosis. MATERIAL AND METHODS We treated wild type (WT) and Dexras1 knockout (KO) mice with dexamethasone for five weeks followed by 60% HFD for additional two weeks with dexamethasone. The changes of glucocorticoid-induced body weight gain and osteoporosis were analyzed. Bone marrow derived stromal cells (BMSCs) and mouse embryonic fibroblasts (MEFs) extracted from WT and Dexras1 KO mice, as well as MC3T3-E1 pre-osteoblasts and osteoclasts differentiated from RAW264.7 were analyzed to further define the role of Dexras1 in osteoblasts and osteoclasts. RESULTS Dual-energy X-ray absorptiometry and micro-computed tomography analyses in murine femurs revealed that Dexras1 deficiency was associated with increased osteogenesis, concurrent with reduced adipogenesis. Furthermore, Dexras1 deficiency promoted osteogenesis of BMSCs and MEFs in vitro, suggesting that Dexras1 deficiency prevents steroid-induced osteoporosis. We also observed that Dexras1 downregulated SMAD signaling pathways, which reduced the osteogenic differentiation capacity of pre-osteoblast MC3T3-E1 cells into mature osteoblasts. CONCLUSION We propose that Dexras1 is critical for maintaining the equilibrium between adipogenesis and osteogenesis upon steroid treatment.
Collapse
Affiliation(s)
- Jo Woon Seok
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Daeun Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Yoseob Lee
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyeon Ju Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Nahee Hwang
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungsoon Fang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Orthopedic Surgery, Konkuk University School of Medicine, Seoul 05030, Republic of Korea.
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Chronic Intractable Disease Systems Medicine Research Center, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Talreja J, Bauerfeld C, Sendler E, Pique-Regi R, Luca F, Samavati L. Derangement of Metabolic and Lysosomal Gene Profiles in Response to Dexamethasone Treatment in Sarcoidosis. Front Immunol 2020; 11:779. [PMID: 32477331 PMCID: PMC7235403 DOI: 10.3389/fimmu.2020.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids (GCs) play a central role in modulation of inflammation in various diseases, including respiratory diseases such as sarcoidosis. Surprisingly, the specific anti-inflammatory effects of GCs on different myeloid cells especially in macrophages remain poorly understood. Sarcoidosis is a systemic granulomatous disease of unknown etiology that occurs worldwide and is characterized by granuloma formation in different organs. Alveolar macrophages play a role in sarcoidosis granuloma formation and progressive lung disease. The goal of the present study is to identify the effect of GCs on transcriptomic profiles and the cellular pathways in sarcoidosis alveolar macrophages and their corresponding blood myeloid cells. We determined and compared the whole transcriptional signatures of alveolar macrophages from sarcoidosis patients and blood CD14+ monocytes of the same subjects in response to in vitro treatment with dexamethasone (DEX) via RNA-sequencing. In response to DEX, we identified 2,834 genes that were differentially expressed in AM. Predominant pathways affected were as following: metabolic pathway (FDR = 4.1 × 10−10), lysosome (FDR = 6.3 × 10−9), phagosome (FDR = 3.9 × 10−5). The DEX effect on AMs is associated with metabolic derangements involving glycolysis, oxidative phosphorylation and lipid metabolisms. In contrast, the top impacted pathways in response to DEX treatment in blood CD14+ monocytes were as following; cytokine-cytokine receptor interaction (FDR = 6 × 10−6) and transcriptional misregulation in cancer (FDR = 1 × 10−4). Pathways similarly affected in both cell types were genes involved in lysosomes, cytoskeleton and transcriptional misregulation in cancer. These data suggest that the different effects of DEX on AMs and peripheral blood monocytes are partly dictated by lineage specific transcriptional programs and their physiological functions.
Collapse
Affiliation(s)
- Jaya Talreja
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Christian Bauerfeld
- Division of Critical Care, Department of Pediatrics, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Edward Sendler
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States.,Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Lobelia Samavati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, School of Medicine and Detroit Medical Center, Wayne State University, Detroit, MI, United States.,Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI, United States
| |
Collapse
|
16
|
Ye S, Chen ZT, Zheng R, Diao S, Teng J, Yuan X, Zhang H, Chen Z, Zhang X, Li J, Zhang Z. New Insights From Imputed Whole-Genome Sequence-Based Genome-Wide Association Analysis and Transcriptome Analysis: The Genetic Mechanisms Underlying Residual Feed Intake in Chickens. Front Genet 2020; 11:243. [PMID: 32318090 PMCID: PMC7147382 DOI: 10.3389/fgene.2020.00243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/28/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry feed constitutes the largest cost in poultry production, estimated to be up to 70% of the total cost. Moreover, there is pressure on the poultry industry to increase production to meet the protein demand of humans and simultaneously reduce emissions to protect the environment. Therefore, improving feed efficiency plays an important role to improve profits and the environmental footprint in broiler production. In this study, using imputed whole-genome sequencing data, genome-wide association analysis (GWAS) was performed to identify single-nucleotide polymorphisms (SNPs) and genes associated with residual feed intake (RFI) and its component traits. Furthermore, a transcriptomic analysis between the high-RFI and the low-RFI groups was performed to validate the candidate genes from GWAS. The results showed that the heritability estimates of average daily gain (ADG), average daily feed intake (ADFI), and RFI were 0.29 (0.004), 0.37 (0.005), and 0.38 (0.004), respectively. Using imputed sequence-based GWAS, we identified seven significant SNPs and five candidate genes [MTSS I-BAR domain containing 1, folliculin, COP9 signalosome subunit 3, 5′,3′-nucleotidase (mitochondrial), and gametocyte-specific factor 1] associated with RFI, 20 significant SNPs and one candidate gene (inositol polyphosphate multikinase) associated with ADG, and one significant SNP and one candidate gene (coatomer protein complex subunit alpha) associated with ADFI. After performing a transcriptomic analysis between the high-RFI and the low-RFI groups, both 38 up-regulated and 26 down-regulated genes were identified in the high-RFI group. Furthermore, integrating regional conditional GWAS and transcriptome analysis, ras-related dexamethasone induced 1 was the only overlapped gene associated with RFI, which also suggested that the region (GGA14: 4767015–4882318) is a new quantitative trait locus associated with RFI. In conclusion, using imputed sequence-based GWAS is an efficient method to identify significant SNPs and candidate genes in chicken. Our results provide valuable insights into the genetic mechanisms of RFI and its component traits, which would further improve the genetic gain of feed efficiency rapidly and cost-effectively in the context of marker-assisted breeding selection.
Collapse
Affiliation(s)
- Shaopan Ye
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zi-Tao Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Rongrong Zheng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shuqi Diao
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinyan Teng
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaolong Yuan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hao Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zanmou Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaqi Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhe Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Høyer KL, Høgild ML, List EO, Lee KY, Kissinger E, Sharma R, Erik Magnusson N, Puri V, Kopchick JJ, Jørgensen JOL, Jessen N. The acute effects of growth hormone in adipose tissue is associated with suppression of antilipolytic signals. Physiol Rep 2020; 8:e14373. [PMID: 32073221 PMCID: PMC7029434 DOI: 10.14814/phy2.14373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
AIM Since GH stimulates lipolysis in vivo after a 2-hr lag phase, we studied whether this involves GH signaling and gene expression in adipose tissue (AT). METHODS Human subjects (n = 9) each underwent intravenous exposure to GH versus saline with measurement of serum FFA, and GH signaling, gene array, and protein in AT biopsies after 30-120 min. Human data were corroborated in adipose-specific GH receptor knockout (FaGHRKO) mice versus wild-type mice. Expression of candidate genes identified in the array were investigated in 3T3-L1 adipocytes. RESULTS GH increased serum FFA and AT phosphorylation of STAT5b in human subjects. This was replicated in wild-type mice, but not in FaGHRKO mice. The array identified 53 GH-regulated genes, and Ingenuity Pathway analysis showed downregulation of PDE3b, an insulin-dependent antilipolytic signal, upregulation of PTEN that inhibits insulin-dependent antilipolysis, and downregulation of G0S2 and RASD1, both encoding antilipolytic proteins. This was confirmed in 3T3-L1 adipocytes, except for PDE3B, including reciprocal effects of GH and insulin on mRNA expression of PTEN, RASD1, and G0S2. CONCLUSION (a) GH directly stimulates AT lipolysis in a GHR-dependent manner, (b) this involves suppression of antilipolytic signals at the level of gene expression, (c) the underlying GH signaling pathways remain to be defined.
Collapse
Affiliation(s)
- Katrine L. Høyer
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Morten L. Høgild
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Edward O. List
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Kevin Y. Lee
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Emily Kissinger
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Rita Sharma
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Nils Erik Magnusson
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Vishwajeet Puri
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - John J. Kopchick
- The Edison Biotechnology InstituteAthensOHUSA
- Heritage College of Osteopathic MedicineOhio UniversityAthensOHUSA
| | - Jens O. L. Jørgensen
- Medical Research LaboratoryDepartment of Clinical Medicine, HealthAarhus UniversityAarhusDenmark
- Department of EndocrinologyAarhus University HospitalAarhusDenmark
| | - Niels Jessen
- Department of Clinical PharmacologyUniversity of AarhusAarhusDenmark
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Steno Diabetes Center AarhusAarhus University HospitalAarhusDenmark
| |
Collapse
|
18
|
Wang S, Wang C, Wang W, Hao Q, Liu Y. High RASD1 transcript levels at diagnosis predicted poor survival in adult B-cell acute lymphoblastic leukemia patients. Leuk Res 2019; 80:26-32. [DOI: 10.1016/j.leukres.2019.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/06/2019] [Accepted: 03/19/2019] [Indexed: 10/27/2022]
|
19
|
Spiers JG, Chen HJC, Bourgognon JM, Steinert JR. Dysregulation of stress systems and nitric oxide signaling underlies neuronal dysfunction in Alzheimer's disease. Free Radic Biol Med 2019; 134:468-483. [PMID: 30716433 DOI: 10.1016/j.freeradbiomed.2019.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/21/2019] [Indexed: 12/12/2022]
Abstract
Stress is a multimodal response involving the coordination of numerous body systems in order to maximize the chance of survival. However, long term activation of the stress response results in neuronal oxidative stress via reactive oxygen and nitrogen species generation, contributing to the development of depression. Stress-induced depression shares a high comorbidity with other neurological conditions including Alzheimer's disease (AD) and dementia, often appearing as one of the earliest observable symptoms in these diseases. Furthermore, stress and/or depression appear to exacerbate cognitive impairment in the context of AD associated with dysfunctional catecholaminergic signaling. Given there are a number of homologous pathways involved in the pathophysiology of depression and AD, this article will highlight the mechanisms by which stress-induced perturbations in oxidative stress, and particularly NO signaling, contribute to neurodegeneration.
Collapse
Affiliation(s)
- Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - Hsiao-Jou Cortina Chen
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Joern R Steinert
- Department of Neuroscience, Psychology and Behavior, University of Leicester, Leicester, LE1 9HN, United Kingdom.
| |
Collapse
|
20
|
Sanguansermsri P, Jenkinson HF, Thanasak J, Chairatvit K, Roytrakul S, Kittisenachai S, Puengsurin D, Surarit R. Comparative proteomic study of dog and human saliva. PLoS One 2018; 13:e0208317. [PMID: 30513116 PMCID: PMC6279226 DOI: 10.1371/journal.pone.0208317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 11/15/2018] [Indexed: 11/18/2022] Open
Abstract
Saliva contains many proteins that have an important role in biological process of the oral cavity and is closely associated with many diseases. Although the dog is a common companion animal, the composition of salivary proteome and its relationship with that of human are unclear. In this study, shotgun proteomics was used to compare the salivary proteomes of 7 Thai village dogs and 7 human subjects. Salivary proteomes revealed 2,532 differentially expressed proteins in dogs and humans, representing various functions including cellular component organization or biogenesis, cellular process, localization, biological regulation, response to stimulus, developmental process, multicellular organismal process, metabolic process, immune system process, apoptosis and biological adhesion. The oral proteomes of dogs and humans were appreciably different. Proteins related to apoptosis processes and biological adhesion were predominated in dog saliva. Drug-target network predictions by STITCH Version 5.0 showed that dog salivary proteins were found to have potential roles in tumorigenesis, anti-inflammation and antimicrobial processes. In addition, proteins related to regeneration and healing processes such as fibroblast growth factor and epidermal growth factor were also up-regulated in dogs. These findings provide new information on dog saliva composition and will be beneficial for the study of dog saliva in diseased and health conditions in the future.
Collapse
Affiliation(s)
- Phutsa Sanguansermsri
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Clinical Medicine and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | | | - Jitkamol Thanasak
- Department of Clinical Medicine and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Kongthawat Chairatvit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Suthathip Kittisenachai
- Proteomics Research Laboratory, National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | | | - Rudee Surarit
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
21
|
Abstract
In humans, hormonal regulation is crucial for the preparation of uterine environment leading to either successful implantation or menstrual cycle. Estrogen is a pivotal female steroid hormone that regulates the uterine dynamics along with progesterone in the estrous and menstrual cycles in humans. Estrogen signals act via nuclear estrogen receptor or membrane-bound receptor. The membrane-bound estrogen receptor plays a crucial role in the rapid response of estrogen in the uterine epithelium. Recently, RASD1 has received attention as a novel signal transducer of estrogen in various systems including female reproductive organs. In this review, we discuss the regulation of estrogen and RASD1 signaling in the uterus and also provide insights into RAS as a novel signaling molecule in repeated implantation failure.
Collapse
Affiliation(s)
- Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea
| |
Collapse
|
22
|
Abstract
The knowledge on the molecular and genetic causes of Cushing's syndrome (CS) has greatly increased in the recent years. Somatic mutations leading to overactive 3',5'-cyclic adenosine monophosphate/protein kinase A and wingless-type MMTV integration site family/beta-catenin pathways are the main molecular mechanisms underlying adrenocortical tumorigenesis. Corticotropinomas are characterized by resistance to glucocorticoid negative feedback, impaired cell cycle control and overexpression of pathways sustaining ACTH secretion. Recognizing the genetic defects behind corticotroph and adrenocortical tumorigenesis proves crucial for tailoring the clinical management of CS patients and for designing strategies for genetic counseling and clinical screening to be applied in routine medical practice.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics (SEGEN), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), 10 Center Drive, CRC, Room 1E-3216, Bethesda, MD 20892-1862, USA.
| |
Collapse
|
23
|
RAS-related protein 1: an estrogen-responsive gene involved in development and molting-mediated regeneration of the female reproductive tract in chickens. Animal 2018; 12:1594-1601. [DOI: 10.1017/s1751731117003226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
24
|
Wang L, Mitsui T, Ishida M, Izawa M, Arita J. Rasd1 is an estrogen-responsive immediate early gene and modulates expression of late genes in rat anterior pituitary cells. Endocr J 2017; 64:1063-1071. [PMID: 28835591 DOI: 10.1507/endocrj.ej17-0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dexamethasone-induced Ras-related protein 1 (Rasd1) is a member of the Ras superfamily of monomeric G proteins that have a regulatory function in signal transduction. Here we investigated the role of Rasd1 in regulating estrogen-induced gene expression in primary cultures of rat anterior pituitary cells. Rasd1 mRNA expression in anterior pituitary cells decreased after treatment with forskolin or serum and increased after treatment with 17β-estradiol (E2). Increases in Rasd1 mRNA expression occurred as early as 0.5 h after E2 treatment, peaked at 1 h and were sustained for as long as 96 h. This rapid and profound increase in Rasd1 mRNA expression induced by E2 was also seen in GH4C1 cells, an estrogen receptor-positive somatolactotroph cell line. Among pituitary estrogen-responsive late genes studied, basal mRNA expression of Pim3 and Igf1 genes was decreased by RNA interference-mediated knockdown of Rasd1 expression, whereas basal expression of the Giot1 gene was increased. Moreover, Rasd1 knockdown enhanced stimulation of Pim3 mRNA expression and attenuated inhibition of Fosl1 mRNA expression 24 h after E2 treatment. These changes in mRNA expression were accompanied by enhanced activity of promoters containing CRE, AP-1 and SRE binding sequences. These results suggest that Rasd1 is an estrogen-responsive immediate early gene and modulates E2 induction of at least several late genes in anterior pituitary cells.
Collapse
Affiliation(s)
- Linghong Wang
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Tetsuo Mitsui
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Maho Ishida
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Michi Izawa
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| | - Jun Arita
- Department of Physiology, Graduate School of Medicine, University of Yamanashi, Chuo 409-3898, Japan
| |
Collapse
|
25
|
Ma T, Yin X, Han R, Ding J, Zhang H, Han X, Li D. Effects of In Utero Exposure to Di-n-Butyl Phthalate on Testicular Development in Rat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14101284. [PMID: 29064414 PMCID: PMC5664784 DOI: 10.3390/ijerph14101284] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022]
Abstract
Humans are inevitably exposed to ubiquitous phthalate esters (PAEs). In utero exposure to di-n-butyl phthalate (DBP) induces abnormal development of the testis and reproductive tract in male offspring, which correspond closely with the human condition of testicular dysgenesis syndrome (TDS)-like syndrome. However, the underlying mechanisms have not been elucidated in detail. In this study, pregnant rats were orally exposed to either corn oil (controls) or DBP at three different doses by gavage during Gestational Days 12.5-21.5. Pathological examinations were performed for toxicity evaluation. Proliferation and apoptosis related proteins (ras related dexamethasone induced 1 (Rasd1), mitogen-activated protein kinase kinases1/2 (MEK1/2), Bcl-2, and Bax) were measured for mechanisms exploration. The results showed that different doses of DBP caused male developmental and reproductive toxicity in rats, including the decrease of anogenital distance (AGD), the histological damage of testis, and apoptosis of seminiferous tubule cells. Our data suggested that DBP played chronic and continuous toxic roles on male reproductive system by disrupting expression of Rasd1 and MEK1/2 as well as Bcl-2/Bax ratio. Further research is warranted.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaoqin Yin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Ruitong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Huan Zhang
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 83 Linköping, Sweden.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Gao S, Jin L, Liu G, Wang P, Sun Z, Cao Y, Shi H, Liu X, Shi Q, Zhou X, Yu R. Overexpression of RASD1 inhibits glioma cell migration/invasion and inactivates the AKT/mTOR signaling pathway. Sci Rep 2017; 7:3202. [PMID: 28600528 PMCID: PMC5466601 DOI: 10.1038/s41598-017-03612-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/03/2017] [Indexed: 11/09/2022] Open
Abstract
The RAS signaling pathway is hyperactive in malignant glioma due to overexpression and/or increased activity. A previous study identified that RASD1, a member of the RAS superfamily of small G-proteins, is a significantly dysregulated gene in oligodendroglial tumors that responded to chemotherapy. However, the role and mechanism of RASD1 in the progression of human glioma remain largely unknown. In the present study, by analyzing a public genomics database, we found that high levels of RASD1 predicted good survival of astrocytoma patients. We thus established lentivirus-mediated RASD1-overexpressing glioma cells and found that overexpressing RASD1 had no significant effects on glioma cell proliferation. However, the overexpression of RASD1 inhibited glioma cell migration and invasion. In the intracranial glioma xenograft model, the overexpression of RASD1 significantly reduced the number of tumor cells invading into the surrounding tissues without affecting the tumor size. An intracellular signaling array revealed that the phosphorylation of both AKT and the S6 ribosomal protein significantly decreased with RASD1 overexpression in glioma cells. Interestingly, RASD1 protein levels were significantly higher in grade II and grade III astrocytoma tissues than in nontumorous brain tissues. These findings suggest that the upregulation of RASD1 in glioma tissues may play an inhibitory role in tumor expansion, possibly through inactivating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China
| | - Lei Jin
- The Graduate School, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Guangping Liu
- The Graduate School, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Peng Wang
- The Graduate School, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Zonghan Sun
- The Graduate School, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Yujia Cao
- The Graduate School, Xuzhou Medical University, 209 Tong-Shan Road, Xuzhou, 221004, Jiangsu, China
| | - Hengliang Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China
| | - Xuejiao Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China
| | - Qiong Shi
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China.
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China. .,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, 99 West Huai-Hai Road, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
27
|
Kim HR, Cho KS, Kim E, Lee OH, Yoon H, Lee S, Moon S, Park M, Hong K, Na Y, Shin JE, Kwon H, Song H, Choi DH, Choi Y. Rapid expression of RASD1 is regulated by estrogen receptor-dependent intracellular signaling pathway in the mouse uterus. Mol Cell Endocrinol 2017; 446:32-39. [PMID: 28188843 DOI: 10.1016/j.mce.2017.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 11/30/2022]
Abstract
Dexamethasone-induced RAS-related protein 1 (RASD1) is a signaling protein that is involved in various cellular processes. In a previous study, we found that RASD1 expression was down-regulated in the uterine endometrium of repeated implantation failure patients. The study aim was to determine whether RASD1 is expressed in the endometrium of mouse uterus and how it is regulated by steroid hormones during the estrous cycle. In this study, we investigated RASD1 expression and regulation in an ovariectomized female mouse model. Rasd1 mRNA was highly expressed in mouse reproductive tissues, including the uterus. Rasd1 expression was detected exclusively in the endometrial epithelium at the proestrus stage of the estrous cycle. Rasd1 expression in uteri increased with administration of estradiol, but not progesterone. Its expression was rapidly induced within 2 h after E2 treatment. Pretreatment with ICI 182,780, an estrogen receptor antagonist, reduced RASD1 protein expression. In addition, we identified that rapid expression of Rasd1 was mediated by the estrogen intracellular signaling including both p38-mitogen-activated protein kinase and the extracellular signal-regulated kinase. These findings suggest that RASD1 acts as a novel signaling molecule and plays an important role in regulating dynamic uterine remodeling during the estrous cycle in the uterus.
Collapse
Affiliation(s)
- Hye-Ryun Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kil-Sang Cho
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Eunhye Kim
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ok-Hee Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Hyemin Yoon
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sangho Lee
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Sohyeon Moon
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Miseon Park
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Kwonho Hong
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan-si, Chungcheongnam-do, 31116, Republic of Korea
| | - Younghwa Na
- Department of Pharmacology, College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Ji-Eun Shin
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Hwang Kwon
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Haengseok Song
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Dong Hee Choi
- Fertility Center of CHA Bundang Medical Center, 59 Yatap-ro, Bundang-gu, Seongnam-si, 13496, Republic of Korea
| | - Youngsok Choi
- Department of Biomedical Science, College of Life Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
28
|
Uzilov AV, Cheesman KC, Fink MY, Newman LC, Pandya C, Lalazar Y, Hefti M, Fowkes M, Deikus G, Lau CY, Moe AS, Kinoshita Y, Kasai Y, Zweig M, Gupta A, Starcevic D, Mahajan M, Schadt EE, Post KD, Donovan MJ, Sebra R, Chen R, Geer EB. Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma. Cold Spring Harb Mol Case Stud 2017; 3:a001602. [PMID: 28487882 PMCID: PMC5411693 DOI: 10.1101/mcs.a001602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/15/2017] [Indexed: 12/30/2022] Open
Abstract
Cushing's disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.
Collapse
Affiliation(s)
- Andrew V Uzilov
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Khadeen C Cheesman
- Division of Endocrinology, Diabetes, and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marc Y Fink
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Leah C Newman
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chetanya Pandya
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yelena Lalazar
- Division of Endocrinology, Diabetes, and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Marco Hefti
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Mary Fowkes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Gintaras Deikus
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Chun Yee Lau
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Aye S Moe
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yayoi Kinoshita
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Yumi Kasai
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Micol Zweig
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Arpeta Gupta
- Division of Endocrinology, Diabetes, and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniela Starcevic
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Milind Mahajan
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Kalmon D Post
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Michael J Donovan
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Rong Chen
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eliza B Geer
- Division of Endocrinology, Diabetes, and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Multidisciplinary Pituitary and Skull Base Tumor Center, Memorial Sloan Kettering, New York, New York 10065, USA
| |
Collapse
|
29
|
Dysregulated Glycoprotein B-Mediated Cell-Cell Fusion Disrupts Varicella-Zoster Virus and Host Gene Transcription during Infection. J Virol 2016; 91:JVI.01613-16. [PMID: 27795423 DOI: 10.1128/jvi.01613-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/14/2016] [Indexed: 12/19/2022] Open
Abstract
The highly conserved herpesvirus glycoprotein complex gB/gH-gL mediates membrane fusion during virion entry and cell-cell fusion. Varicella-zoster virus (VZV) characteristically forms multinucleated cells, or syncytia, during the infection of human tissues, but little is known about this process. The cytoplasmic domain of VZV gB (gBcyt) has been implicated in cell-cell fusion regulation because a gB[Y881F] substitution causes hyperfusion. gBcyt regulation is necessary for VZV pathogenesis, as the hyperfusogenic mutant gB[Y881F] is severely attenuated in human skin xenografts. In this study, gBcyt-regulated fusion was investigated by comparing melanoma cells infected with wild-type-like VZV or hyperfusogenic mutants. The gB[Y881F] mutant exhibited dramatically accelerated syncytium formation in melanoma cells caused by fusion of infected cells with many uninfected cells, increased cytoskeleton reorganization, and rapid displacement of nuclei to dense central structures compared to pOka using live-cell confocal microscopy. VZV and human transcriptomes were concurrently investigated using whole transcriptome sequencing (RNA-seq) to identify viral and cellular responses induced when gBcyt regulation was disrupted by the gB[Y881F] substitution. The expression of four vital VZV genes, ORF61 and the genes for glycoproteins gC, gE, and gI, was significantly reduced at 36 h postinfection for the hyperfusogenic mutants. Importantly, hierarchical clustering demonstrated an association of differential gene expression with dysregulated gBcyt-mediated fusion. A subset of Ras GTPase genes linked to membrane remodeling were upregulated in cells infected with the hyperfusogenic mutants. These data implicate gBcyt in the regulation of gB fusion function that, if unmodulated, triggers cellular processes leading to hyperfusion that attenuates VZV infection. IMPORTANCE The highly infectious, human-restricted pathogen varicella-zoster virus (VZV) causes chickenpox and shingles. Postherpetic neuralgia (PHN) is a common complication of shingles that manifests as prolonged excruciating pain, which has proven difficult to treat. The formation of fused multinucleated cells in ganglia might be associated with this condition. An effective vaccine against VZV is available but not recommended for immunocompromised individuals, highlighting the need for new therapies. This study investigated the viral and cellular responses to hyperfusion, a condition where the usual constraints of cell membranes are overcome and cells form multinucleated cells. This process hinders VZV and is regulated by a viral glycoprotein, gB. A combination of live-cell imaging and next-generation genomics revealed an alteration in viral and cellular responses during hyperfusion that was caused by the loss of gB regulation. These studies reveal mechanisms central to VZV pathogenesis, potentially leading to improved therapies.
Collapse
|
30
|
Barrosa KH, Mecchi MC, Rando DG, Ferreira AJS, Sartorelli P, Valle MM, Bordin S, Caperuto LC, Lago JHG, Lellis-Santos C. Polygodial, a sesquiterpene isolated from Drimys brasiliensis (Winteraceae), triggers glucocorticoid-like effects on pancreatic β-cells. Chem Biol Interact 2016; 258:245-56. [DOI: 10.1016/j.cbi.2016.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022]
|
31
|
Kim HJ, Cha JY, Seok JW, Choi Y, Yoon BK, Choi H, Yu JH, Song SJ, Kim A, Lee H, Kim D, Han JY, Kim JW. Dexras1 links glucocorticoids to insulin-like growth factor-1 signaling in adipogenesis. Sci Rep 2016; 6:28648. [PMID: 27345868 PMCID: PMC4921850 DOI: 10.1038/srep28648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/06/2016] [Indexed: 01/09/2023] Open
Abstract
Glucocorticoids are associated with obesity, but the underlying mechanism by which they function remains poorly understood. Previously, we showed that small G protein Dexras1 is expressed by glucocorticoids and leads to adipocyte differentiation. In this study, we explored the mechanism by which Dexras1 mediates adipogenesis and show a link to the insulin-like growth factor-1 (IGF-1) signaling pathway. Without Dexras1, the activation of MAPK and subsequent phosphorylation of CCAAT/enhancer binding protein β (C/EBPβ) is abolished, thereby inhibiting mitotic clonal expansion and further adipocyte differentiation. Dexras1 translocates to the plasma membrane upon insulin or IGF-1 treatment, for which the unique C-terminal domain (amino acids 223–276) is essential. Dexras1-dependent MAPK activation is selectively involved in the IGF-1 signaling, because another Ras protein, H-ras localized to the plasma membrane independently of insulin treatment. Moreover, neither epidermal growth factor nor other cell types shows Dexras1-dependent MAPK activation, indicating the importance of Dexras1 in IGF-1 signaling in adipogenesis. Dexras1 interacts with Shc and Raf, indicating that Dexras1-induced activation of MAPK is largely dependent on the Shc-Grb2-Raf complex. These results suggest that Dexras1 is a critical mediator of the IGF-1 signal to activate MAPK, linking glucocorticoid signaling to IGF-1 signaling in adipogenesis.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jiyoung Y Cha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jo Woon Seok
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Yoonjeong Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Bo Kyung Yoon
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Hyeonjin Choi
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jung Hwan Yu
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Su Jin Song
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Ara Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Hyemin Lee
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul 120-749, Korea
| | - Daeun Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Ji Yoon Han
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea
| | - Jae-Woo Kim
- Department of Biochemistry and Molecular Biology, Integrated Genomic Research Center for Metabolic Regulation, Institute of Genetic Science, Yonsei University College of Medicine, Seoul 120-752, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul 120-752, Korea.,Department of Integrated OMICS for Biomedical Sciences, Graduate School, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
32
|
Dexras1 a unique ras-GTPase interacts with NMDA receptor activity and provides a novel dissociation between anxiety, working memory and sensory gating. Neuroscience 2016; 322:408-15. [PMID: 26946266 DOI: 10.1016/j.neuroscience.2016.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/21/2022]
Abstract
Dexras1 is a novel GTPase that acts at a confluence of signaling mechanisms associated with psychiatric and neurological disease including NMDA receptors, NOS1AP and nNOS. Recent work has shown that Dexras1 mediates iron trafficking and NMDA-dependent neurodegeneration but a role for Dexras1 in normal brain function or psychiatric disease has not been studied. To test for such a role, mice with germline knockout (KO) of Dexras1 were assayed for behavioral abnormalities as well as changes in NMDA receptor subunit protein expression. Because Dexras1 is up-regulated during stress or by dexamethasone treatment, we included measures associated with emotion including anxiety and depression. Baseline anxiety-like measures (open field and zero maze) were not altered, nor were depression-like behavior (tail suspension). Measures of memory function yielded mixed results, with no changes in episodic memory (novel object recognition) but a significant decrement on working memory (T-maze). Alternatively, there was an increase in pre-pulse inhibition (PPI), without concomitant changes in either startle amplitude or locomotor activity. PPI data are consistent with the direction of change seen following exposure to dopamine D2 antagonists. An examination of NMDA subunit expression levels revealed an increased expression of the NR2A subunit, contrary to previous studies demonstrating down-regulation of the receptor following antipsychotic exposure (Schmitt et al., 2003) and up-regulation after exposure to isolation rearing (Turnock-Jones et al., 2009). These findings suggest a potential role for Dexras1 in modulating a selective subset of psychiatric symptoms, possibly via its interaction with NMDARs and/or other disease-related binding-partners. Furthermore, data suggest that modulating Dexras1 activity has contrasting effects on emotional, sensory and cognitive domains.
Collapse
|
33
|
Yong JH, Seok JW, Yu JH, Choi Y, Song SJ, Kim A, Kim HJ, Kim JW. Glucocorticoid-mediated anti-inflammatory effect through NFκB is preserved in the absence of Dexras1. Anim Cells Syst (Seoul) 2016. [DOI: 10.1080/19768354.2016.1140676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
34
|
Viti F, Landini M, Mezzelani A, Petecchia L, Milanesi L, Scaglione S. Osteogenic Differentiation of MSC through Calcium Signaling Activation: Transcriptomics and Functional Analysis. PLoS One 2016; 11:e0148173. [PMID: 26828589 PMCID: PMC4734718 DOI: 10.1371/journal.pone.0148173] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 01/13/2016] [Indexed: 12/17/2022] Open
Abstract
The culture of progenitor mesenchymal stem cells (MSC) onto osteoconductive materials to induce a proper osteogenic differentiation and mineralized matrix regeneration represents a promising and widely diffused experimental approach for tissue-engineering (TE) applications in orthopaedics. Among modern biomaterials, calcium phosphates represent the best bone substitutes, due to their chemical features emulating the mineral phase of bone tissue. Although many studies on stem cells differentiation mechanisms have been performed involving calcium-based scaffolds, results often focus on highlighting production of in vitro bone matrix markers and in vivo tissue ingrowth, while information related to the biomolecular mechanisms involved in the early cellular calcium-mediated differentiation is not well elucidated yet. Genetic programs for osteogenesis have been just partially deciphered, and the description of the different molecules and pathways operative in these differentiations is far from complete, as well as the activity of calcium in this process. The present work aims to shed light on the involvement of extracellular calcium in MSC differentiation: a better understanding of the early stage osteogenic differentiation program of MSC seeded on calcium-based biomaterials is required in order to develop optimal strategies to promote osteogenesis through the use of new generation osteoconductive scaffolds. A wide spectrum of analysis has been performed on time-dependent series: gene expression profiles are obtained from samples (MSC seeded on calcium-based scaffolds), together with related microRNAs expression and in vivo functional validation. On this basis, and relying on literature knowledge, hypotheses are made on the biomolecular players activated by the biomaterial calcium-phosphate component. Interestingly, a key role of miR-138 was highlighted, whose inhibition markedly increases osteogenic differentiation in vitro and enhance ectopic bone formation in vivo. Moreover, there is evidence that Ca-P substrate triggers osteogenic differentiation through genes (SMAD and RAS family) that are typically regulated during dexamethasone (DEX) induced differentiation.
Collapse
Affiliation(s)
- Federica Viti
- Institute of Biophysics, National Research Council, Genoa, Italy
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Martina Landini
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | | | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segrate (Mi), Italy
| | - Silvia Scaglione
- Institute of Electronics, Computer and Telecommunication Engineering, National Research Council, Genoa, Italy
- Advanced Biotechnology Center (CBA), Genoa, Italy
- * E-mail:
| |
Collapse
|
35
|
Hahnová K, Pačesová D, Volfová B, Červená K, Kašparová D, Žurmanová J, Bendová Z. Circadian Dexras1 in rats: Development, location and responsiveness to light. Chronobiol Int 2016; 33:141-50. [DOI: 10.3109/07420528.2015.1120741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Greenwood MP, Greenwood M, Mecawi AS, Antunes-Rodrigues J, Paton JFR, Murphy D. Rasd1, a small G protein with a big role in the hypothalamic response to neuronal activation. Mol Brain 2016; 9:1. [PMID: 26739966 PMCID: PMC4704412 DOI: 10.1186/s13041-015-0182-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 12/28/2022] Open
Abstract
Background Rasd1 is a member of the Ras family of monomeric G proteins that was first identified as a dexamethasone inducible gene in the pituitary corticotroph cell line AtT20. Using microarrays we previously identified increased Rasd1 mRNA expression in the rat supraoptic nucleus (SON) and paraventricular nucleus (PVN) of the hypothalamus in response to increased plasma osmolality provoked by fluid deprivation and salt loading. RASD1 has been shown to inhibit adenylyl cyclase activity in vitro resulting in the inhibition of the cAMP-PKA-CREB signaling pathway. Therefore, we tested the hypothesis that RASD1 may inhibit cAMP stimulated gene expression in the brain. Results We show that Rasd1 is expressed in vasopressin neurons of the PVN and SON, within which mRNA levels are induced by hyperosmotic cues. Dexamethasone treatment of AtT20 cells decreased forskolin stimulation of c-Fos, Nr4a1 and phosphorylated CREB expression, effects that were mimicked by overexpression of Rasd1, and inhibited by knockdown of Rasd1. These effects were dependent upon isoprenylation, as both farnesyltransferase inhibitor FTI-277 and CAAX box deletion prevented Rasd1 inhibition of cAMP-induced gene expression. Injection of lentiviral vector into rat SON expressing Rasd1 diminished, whereas CAAX mutant increased, cAMP inducible genes in response to osmotic stress. Conclusions We have identified two mechanisms of Rasd1 induction in the hypothalamus, one by elevated glucocorticoids in response to stress, and one in response to increased plasma osmolality resulting from osmotic stress. We propose that the abundance of RASD1 in vasopressin expressing neurons, based on its inhibitory actions on CREB phosphorylation, is an important mechanism for controlling the transcriptional responses to stressors in both the PVN and SON. These effects likely occur through modulation of cAMP-PKA-CREB signaling pathway in the brain.
Collapse
Affiliation(s)
| | - Mingkwan Greenwood
- School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, UK.
| | - Andre S Mecawi
- School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia. .,Department of Physiological Sciences, Biology Institute, Federal Rural University of Rio de Janeiro, Seropedica, Rio de Janeiro, Brazil.
| | | | - Julian F R Paton
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK.
| | - David Murphy
- School of Clinical Sciences, University of Bristol, Bristol, BS1 3NY, UK. .,Department of Physiology, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
37
|
Chen Y, Mathias L, Falero-Perez JM, Kim SF. PKA-mediated phosphorylation of Dexras1 suppresses iron trafficking by inhibiting S-nitrosylation. FEBS Lett 2015; 589:3212-9. [PMID: 26358293 DOI: 10.1016/j.febslet.2015.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 08/26/2015] [Indexed: 01/26/2023]
Abstract
Dexras1 is a small GTPase and plays a central role in neuronal iron trafficking. We have shown that stimulation of glutamate receptors activates neuronal nitric oxide synthase, leading to S-nitrosylation of Dexras1 and a physiological increase in iron uptake. Here we report that Dexras1 is phosphorylated by protein kinase A (PKA) on serine 253, leading to a suppression of iron influx. These effects were directly associated with the levels of S-nitrosylated Dexras1, whereby PKA activation reduced Dexras1 S-nitrosylation in a dose dependent manner. Moreover, we found that adiponectin modulates Dexras1 via PKA. Hence these findings suggest the involvement of the PKA pathway in modulating glutamate-mediated ROS in neurons, and hint to a functional crosstalk between S-nitrosylation and phosphorylation.
Collapse
Affiliation(s)
- Yong Chen
- Department of Psychiatry, and Systems Pharmacology and Translational Therapeutics, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31st St. TRL Rm 2207, Philadelphia, PA 19104, United States
| | - Lauren Mathias
- Department of Psychiatry, and Systems Pharmacology and Translational Therapeutics, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31st St. TRL Rm 2207, Philadelphia, PA 19104, United States
| | - Juliana M Falero-Perez
- Department of Psychiatry, and Systems Pharmacology and Translational Therapeutics, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31st St. TRL Rm 2207, Philadelphia, PA 19104, United States
| | - Sangwon F Kim
- Department of Psychiatry, and Systems Pharmacology and Translational Therapeutics, Center for Neurobiology and Behavior, The Perlman School of Medicine at the University of Pennsylvania, 125 S 31st St. TRL Rm 2207, Philadelphia, PA 19104, United States.
| |
Collapse
|
38
|
Park F. Accessory proteins for heterotrimeric G-proteins in the kidney. Front Physiol 2015; 6:219. [PMID: 26300785 PMCID: PMC4528294 DOI: 10.3389/fphys.2015.00219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/20/2015] [Indexed: 11/17/2022] Open
Abstract
Heterotrimeric G-proteins play a fundamentally important role in regulating signal transduction pathways in the kidney. Accessory proteins are being identified as direct binding partners for heterotrimeric G-protein α or βγ subunits to promote more diverse mechanisms by which G-protein signaling is controlled. In some instances, accessory proteins can modulate the signaling magnitude, localization, and duration following the activation of cell membrane-associated receptors. Alternatively, accessory proteins complexed with their G-protein α or βγ subunits can promote non-canonical models of signaling activity within the cell. In this review, we will highlight the expression profile, localization and functional importance of these newly identified accessory proteins to control the function of select G-protein subunits under normal and various disease conditions observed in the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
39
|
Elgendy R, Giantin M, Montesissa C, Dacasto M. Transcriptomic analysis of skeletal muscle from beef cattle exposed to illicit schedules containing dexamethasone: identification of new candidate biomarkers and their validation using samples from a field monitoring trial. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1448-63. [DOI: 10.1080/19440049.2015.1070307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Wie J, Kim BJ, Myeong J, Ha K, Jeong SJ, Yang D, Kim E, Jeon JH, So I. The Roles of Rasd1 small G proteins and leptin in the activation of TRPC4 transient receptor potential channels. Channels (Austin) 2015; 9:186-195. [PMID: 26083271 PMCID: PMC4594510 DOI: 10.1080/19336950.2015.1058454] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 01/23/2023] Open
Abstract
TRPC4 is important regulators of electrical excitability in gastrointestinal myocytes, pancreatic β-cells and neurons. Much is known regarding the assembly and function of these channels including TRPC1 as a homotetramer or a heteromultimer and the roles that their interacting proteins play in controlling these events. Further, they are one of the best-studied targets of G protein-coupled receptors and growth factors in general and Gαi/o and Gαq protein coupled receptor or epidermal growth factor and leptin in particular. However, our understanding of the roles of small G proteins and leptin on TRPC4 channels is still rudimentary. We discuss potential roles for Rasd1 small G protein and leptin in channel activation in addition to their known role in cellular signaling.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Byung Joo Kim
- Division of Longevity and Biofunctional Medicine; Pusan National University School of Korean Medicine; Yangsan, Republic of Korea
| | - Jongyun Myeong
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Seung Joo Jeong
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Dongki Yang
- Department of Physiology; College of Medicine; Gachon University; Incheon, Republic of Korea
| | - Euiyong Kim
- Department of Physiology; College of Medicine; Inje University; Busan, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| | - Insuk So
- Department of Physiology; Seoul National University College of Medicine; Seoul, Republic of Korea
| |
Collapse
|
41
|
Park F. Activators of G protein signaling in the kidney. J Pharmacol Exp Ther 2015; 353:235-45. [PMID: 25628392 PMCID: PMC4407716 DOI: 10.1124/jpet.115.222695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/15/2022] Open
Abstract
Heterotrimeric G proteins play a crucial role in regulating signal processing to maintain normal cellular homeostasis, and subtle perturbations in its activity can potentially lead to the pathogenesis of renal disorders or diseases. Cell-surface receptors and accessory proteins, which normally modify and organize the coupling of individual G protein subunits, contribute to the regulation of heterotrimeric G protein activity and their convergence and/or divergence of downstream signaling initiated by effector systems. Activators of G protein signaling (AGS) are a family of accessory proteins that intervene at multiple distinct points during the activation-inactivation cycle of G proteins, even in the absence of receptor stimulation. Perturbations in the expression of individual AGS proteins have been reported to modulate signal transduction pathways in a wide array of diseases and disorders within the brain, heart, immune system, and more recently, the kidney. This review will provide an overview of the expression profile, localization, and putative biologic role of the AGS family in the context of normal and diseased states of the kidney.
Collapse
Affiliation(s)
- Frank Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
42
|
Xiong XD, Jung HJ, Gombar S, Park JY, Zhang CL, Zheng H, Ruan J, Li JB, Kaeberlein M, Kennedy BK, Zhou Z, Liu X, Suh Y. MicroRNA transcriptome analysis identifies miR-365 as a novel negative regulator of cell proliferation in Zmpste24-deficient mouse embryonic fibroblasts. Mutat Res 2015; 777:69-78. [PMID: 25983189 DOI: 10.1016/j.mrfmmm.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/08/2015] [Accepted: 04/16/2015] [Indexed: 02/01/2023]
Abstract
Zmpste24 is a metalloproteinase responsible for the posttranslational processing and cleavage of prelamin A into mature laminA. Zmpste24(-/-) mice display a range of progeroid phenotypes overlapping with mice expressing progerin, an altered version of lamin A associated with Hutchinson-Gilford progeria syndrome (HGPS). Increasing evidence has demonstrated that miRNAs contribute to the regulation of normal aging process, but their roles in progeroid disorders remain poorly understood. Here we report the miRNA transcriptomes of mouse embryonic fibroblasts (MEFs) established from wild type (WT) and Zmpste24(-/-) progeroid mice using a massively parallel sequencing technology. With data from 19.5 × 10(6) reads from WT MEFs and 16.5 × 10(6) reads from Zmpste24(-/-) MEFs, we discovered a total of 306 known miRNAs expressed in MEFs with a wide dynamic range of read counts ranging from 10 to over 1 million. A total of 8 miRNAs were found to be significantly down-regulated, with only 2 miRNAs upregulated, in Zmpste24(-/-) MEFs as compared to WT MEFs. Functional studies revealed that miR-365, a significantly down-regulated miRNA in Zmpste24(-/-) MEFs, modulates cellular growth phenotypes in MEFs. Overexpression of miR-365 in Zmpste24(-/-) MEFs increased cellular proliferation and decreased the percentage of SA-β-gal-positive cells, while inhibition of miR-365 function led to an increase of SA-β-gal-positive cells in WT MEFs. Furthermore, we identified Rasd1, a member of the Ras superfamily of small GTPases, as a functional target of miR-365. While expression of miR-365 suppressed Rasd1 3' UTR luciferase-reporter activity, this effect was lost with mutations in the putative 3' UTR target-site. Consistently, expression levels of miR-365 were found to inversely correlate with endogenous Rasd1 levels. These findings suggest that miR-365 is down-regulated in Zmpste24(-/-) MEFs and acts as a novel negative regulator of Rasd1. Our comprehensive miRNA data provide a resource to study gene regulatory networks in MEFs.
Collapse
Affiliation(s)
- Xing-dong Xiong
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China; Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, PR China
| | - Hwa Jin Jung
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Saurabh Gombar
- Departments of Systems Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jung Yoon Park
- Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chun-long Zhang
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China
| | - Huiling Zheng
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China
| | - Jie Ruan
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China; Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, PR China
| | - Jiang-bin Li
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China; Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, PR China
| | - Matt Kaeberlein
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian K Kennedy
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; The Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Zhongjun Zhou
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China
| | - Xinguang Liu
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Institute of Biochemistry & Molecular Biology, Guangdong Medical College, Zhanjiang 524023, PR China; Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan 523808, PR China; Institute of Laboratory Medicine, Guangdong Medical College, Dongguan, Guangdong 523808, PR China.
| | - Yousin Suh
- Institute of Aging Research, Guangdong Medical College, Xin Cheng Avenue 1#, Songshan Lake, Dongguan, Guangdong 523808, PR China; Departments of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
43
|
Localization and expression profile of Group I and II Activators of G-protein Signaling in the kidney. J Mol Histol 2014; 46:123-36. [PMID: 25533045 DOI: 10.1007/s10735-014-9605-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/15/2014] [Indexed: 10/24/2022]
Abstract
Activators of G-protein Signaling (AGS) are a family of accessory proteins that were discovered as modulators of heterotrimeric G-protein subunits. The primary aim of the present study was to localize Group I and II AGS proteins and determine the renal expression profile using immunohistochemistry and quantitative RT-PCR, respectively, during normal and injured states of the kidney. Group I AGS1 was found to be predominantly localized to the proximal tubule, Group II AGS3 and AGS5 were exclusively localized to the distal tubular segments, and Group II AGS6 was ubiquitously expressed in every nephron segment of the rodent kidney. In rat kidneys following ischemia-reperfusion injury (IRI), Group I AGS1 mRNA was dramatically increased after 24 h by fivefold (P < 0.05), whereas Group II AGS3 and AGS4 mRNA was significantly decreased at the same time point (P < 0.05). No significant change in the transcript levels were detected at other time points for any of the AGS genes between control and IRI groups. In polycystic diseased kidneys, mRNA levels for AGS3, AGS4 and AGS6 was significantly increased (P < 0.05) by 75-80 % in PCK rat kidneys. The identification of Group I and II AGS mRNA and protein in the kidney may provide insight into the potential mechanism of action during normal and varying states of renal disease or injury.
Collapse
|
44
|
Wie J, Kim J, Ha K, Zhang YH, Jeon JH, So I. Dexamethasone activates transient receptor potential canonical 4 (TRPC4) channels via Rasd1 small GTPase pathway. Pflugers Arch 2014; 467:2081-91. [PMID: 25502319 DOI: 10.1007/s00424-014-1666-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 12/15/2022]
Abstract
Canonical transient receptor potential 4 (TRPC4) channels are calcium-permeable, nonselective cation channels that are widely distributed in mammalian cells. It is generally speculated that TRPC4 channels are activated by Gq/11-PLC pathway or directly activated by Gi/o proteins. Although many mechanistic studies regarding TRPC4 have dealt with heterotrimeric G proteins, here, we first report the functional relationship between TRPC4 and small GTPase, Rasd1. Rasd1 selectively activated TRPC4 channels, and it was the only Ras protein among Ras protein family that can activate TRPC4 channels. For this to occur, it was found that certain population of functional Gαi1 and Gαi3 proteins are essential. Meanwhile, dexamethasone, a synthetic glucocorticoid and anti-inflammatory drug was known to increase messenger RNA (mRNA) level of Rasd1 in pancreatic β-cells. We have found that dexamethasone triggers TRPC4-like cationic current in INS-1 cells via increasing protein expression level of Rasd1. This relationship among dexamethasone, Rasd1, and TRPC4 could suggest a new therapeutic agent for hospitalized diabetes mellitus (DM) patients with prolonged dexamethasone prescription.
Collapse
Affiliation(s)
- Jinhong Wie
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Jinsung Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.,Catholic University of Korea, College of Medicine, Seoul, 137-701, Republic of Korea
| | - Kotdaji Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Yin Hua Zhang
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
45
|
Liu XJ, Li YQ, Chen QY, Xiao SJ, Zeng SE. Up-regulating of RASD1 and Apoptosis of DU-145 Human Prostate Cancer Cells Induced by Formononetin in Vitro. Asian Pac J Cancer Prev 2014; 15:2835-9. [DOI: 10.7314/apjcp.2014.15.6.2835] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Small G Proteins Dexras1 and RHES and Their Role in Pathophysiological Processes. Int J Cell Biol 2014; 2014:308535. [PMID: 24817889 PMCID: PMC3979064 DOI: 10.1155/2014/308535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/18/2014] [Indexed: 11/23/2022] Open
Abstract
Dexras1 and RHES, monomeric G proteins, are members of small GTPase family that are involved in modulation of pathophysiological processes. Dexras1 and RHES levels are modulated by hormones and Dexras1 expression undergoes circadian fluctuations. Both these GTPases are capable of modulating calcium ion channels which in turn can potentially modulate neurosecretion/hormonal release. These two GTPases have been reported to prevent the aberrant cell growth and induce apoptosis in cell lines. Present review focuses on role of these two monomeric GTPases and summarizes their role in pathophysiological processes.
Collapse
|
47
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2014; 85:388-96. [PMID: 24302560 PMCID: PMC3935153 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
48
|
Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110:20575-80. [PMID: 24297897 DOI: 10.1073/pnas.1320454110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adipogenesis, the conversion of precursor cells into adipocytes, is associated with obesity and is mediated by glucocorticoids acting via hitherto poorly characterized mechanisms. Dexras1 is a small G protein of the Ras family discovered on the basis of its marked induction by the synthetic glucocorticoid dexamethasone. We show that Dexras1 mediates adipogenesis and diet-induced obesity. Adipogenic differentiation of 3T3-L1 cells is abolished with Dexras1 depletion, whereas overexpression of Dexras1 elicits adipogenesis. Adipogenesis is markedly reduced in mouse embryonic fibroblasts from Dexras1-deleted mice, whereas adiposity and diet-induced weight gain are diminished in the mutant mice.
Collapse
|
49
|
Sbodio JI, Paul BD, Machamer CE, Snyder SH. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease. Cell Rep 2013; 4:890-7. [PMID: 24012756 PMCID: PMC3801179 DOI: 10.1016/j.celrep.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/02/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease caused by the expansion of polyglutamine repeats in the gene for huntingtin (Htt). In HD, the corpus striatum selectively degenerates despite the uniform expression of mutant huntingtin (mHtt) throughout the brain and body. Striatal selectivity reflects the binding of the striatal-selective protein Rhes to mHtt to augment cytotoxicity, but molecular mechanisms underlying the toxicity have been elusive. Here, we report that the Golgi protein acyl-CoA binding domain containing 3 (ACBD3) mediates mHtt cytotoxicity via a Rhes/mHtt/ACBD3 complex. ACBD3 levels are markedly elevated in the striatum of HD patients, in a striatal cell line harboring polyglutamine repeats, and in the brains of HD mice. Moreover, ACBD3 deletion abolishes HD neurotoxicity, which is increased by ACBD3 overexpression. Enhanced levels of ACBD3 elicited by endoplasmic reticulum, mitochondrial, and Golgi stresses may account for HD-associated augmentation of ACBD3 and neurodegeneration.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD. 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD. 21205, USA
| |
Collapse
|
50
|
Jenkins SA, Ellestad LE, Mukherjee M, Narayana J, Cogburn LA, Porter TE. Glucocorticoid-induced changes in gene expression in embryonic anterior pituitary cells. Physiol Genomics 2013; 45:422-33. [DOI: 10.1152/physiolgenomics.00154.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Within the anterior pituitary gland, glucocorticoids such as corticosterone (CORT) provide negative feedback to inhibit adrenocorticotropic hormone secretion and act to regulate production of other hormones including growth hormone (GH). The ontogeny of GH production during chicken embryonic and rat fetal development is controlled by glucocorticoids. The present study was conducted to characterize effects of glucocorticoids on gene expression within embryonic pituitary cells and to identify genes that are rapidly and directly regulated by glucocorticoids. Chicken embryonic pituitary cells were cultured with CORT for 1.5, 3, 6, 12, and 24 h in the absence and presence of cycloheximide (CHX) to inhibit protein synthesis. RNA was analyzed with custom microarrays containing 14,053 chicken cDNAs, and results for selected genes were confirmed by quantitative reverse transcription real-time PCR (qRT-PCR). Levels of GH mRNA were maximally induced by 6 h of CORT treatment, and this response was blocked by CHX. Expression of 396 genes was affected by CORT, and of these, mRNA levels for 46 genes were induced or repressed within 6 h. Pathway analysis of genes regulated by CORT in the absence of CHX revealed networks of genes associated with endocrine system development and cellular development. Eleven genes that were induced within 6 h in the absence and presence of CHX were identified, and eight were confirmed by qRT-PCR. The expression profiles and canonical pathways defined in this study will be useful for future analyses of glucocorticoid action and regulation of pituitary function.
Collapse
Affiliation(s)
- Sultan A. Jenkins
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Laura E. Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Malini Mukherjee
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Jyoti Narayana
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Tom E. Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| |
Collapse
|