1
|
Castro-Ochoa KF, Guerrero-Fonseca IM, Schnoor M. Hematopoietic cell-specific lyn substrate (HCLS1 or HS1): A versatile actin-binding protein in leukocytes. J Leukoc Biol 2019; 105:881-890. [DOI: 10.1002/jlb.mr0618-212r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Leukocytes are constantly produced in the bone marrow and released into the circulation. Many different leukocyte subpopulations exist that exert distinct functions. Leukocytes are recruited to sites of inflammation and combat the cause of inflammation via many different effector functions. Virtually all of these processes depend on dynamic actin remodeling allowing leukocytes to adhere, migrate, phagocytose, and release granules. However, actin dynamics are not possible without actin-binding proteins (ABP) that orchestrate the balance between actin polymerization, branching, and depolymerization. The homologue of the ubiquitous ABP cortactin in hematopoietic cells is hematopoietic cell-specific lyn substrate-1, often called hematopoietic cell-specific protein-1 (HCLS1 or HS1). HS1 has been reported in different leukocytes to regulate Arp2/3-dependent migration. However, more evidence is emerging that HS1 functions go far beyond just being a direct actin modulator. For example, HS1 is important for the activation of GTPases and integrins, and mediates signaling downstream of many receptors including BCR, TCR, and CXCR4. In this review, we summarize current knowledge on HS1 functions and discuss them in a pathophysiologic context.
Collapse
Affiliation(s)
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN , Mexico City, Mexico
| |
Collapse
|
2
|
Koya Y, Liu W, Yamakita Y, Senga T, Shibata K, Yamashita M, Nawa A, Kikkawa F, Kajiyama H. Hematopoietic lineage cell-specific protein 1 (HS1), a hidden player in migration, invasion, and tumor formation, is over-expressed in ovarian carcinoma cells. Oncotarget 2018; 9:32609-32623. [PMID: 30220969 PMCID: PMC6135686 DOI: 10.18632/oncotarget.25975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1), which is the hematopoietic homolog of cortactin, is an actin-binding protein and Lyn substrate. It is upregulated in several cancers and its expression level is associated with increased cell migration, metastasis, and poor prognosis. Here we investigated the expression and roles of HS1 in ovarian carcinoma cells. We analyzed the expression of HS1 in 171 ovarian cancer specimens and determined the association between HS1 expression and clinicopathological characteristics, including patient outcomes. In patients with stage II-IV disease, positive HS1 expression was associated with significantly worse overall survival than negative expression (P < 0.05). HS1 was localized in invadopodia in some ovarian cancer cells and was required for invadopodia formation. Migration and invasion of ovarian cancer cells were suppressed by down-regulation of HS1, but increased in cells that over-expressed exogenous HS1. Furthermore, ovarian cancer cells that expressed HS1 shRNA exhibited reduced tumor formation in a mouse xenograft model. Finally, we found that tyrosine phosphorylation of HS1 was essential for cell migration and invasion. These findings show that HS1 is a useful biomarker for the prognosis of patients with ovarian carcinoma and is a critical regulator of cytoskeleton remodeling involved in cell migration and invasion.
Collapse
Affiliation(s)
- Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Wenting Liu
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Yoshihiko Yamakita
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | | | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University, Banbuntane Hotokukai Hospital, Nakagawa-ku, Nagoya, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
3
|
Wnt5a induces ROR1 to complex with HS1 to enhance migration of chronic lymphocytic leukemia cells. Leukemia 2017; 31:2615-2622. [PMID: 28465529 PMCID: PMC5670028 DOI: 10.1038/leu.2017.133] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/24/2017] [Accepted: 03/17/2017] [Indexed: 01/23/2023]
Abstract
ROR1 (receptor tyrosine kinase-like orphan receptor 1) is a conserved, oncoembryonic surface antigen expressed in chronic lymphocytic leukemia (CLL). We found that ROR1 associates with hematopoietic-lineage-cell-specific protein 1 (HS1) in freshly isolated CLL cells or in CLL cells cultured with exogenous Wnt5a. Wnt5a also induced HS1 tyrosine phosphorylation, recruitment of ARHGEF1, activation of RhoA and enhanced chemokine-directed migration; such effects could be inhibited by cirmtuzumab, a humanized anti-ROR1 mAb. We generated truncated forms of ROR1 and found its extracellular cysteine-rich domain or kringle domain was necessary for Wnt5a-induced HS1 phosphorylation. Moreover, the cytoplamic, and more specifically the proline-rich domain (PRD), of ROR1 was required for it to associate with HS1 and allow for F-actin polymerization in response to Wnt5a. Accordingly, we introduced single amino acid substitutions of proline (P) to alanine (A) in the ROR1 PRD at positions 784, 808, 826, 841 or 850 in potential SH3-binding motifs. In contrast to wild-type ROR1, or other ROR1P→A mutants, ROR1P(841)A had impaired capacity to recruit HS1 and ARHGEF1 to ROR1 in response to Wnt5a. Moreover, Wnt5a could not induce cells expressing ROR1P(841)A to phosphorylate HS1 or activate ARHGEF1, and was unable to enhance CLL-cell motility. Collectively, these studies indicate HS1 plays an important role in ROR1-dependent Wnt5a-enhanced chemokine-directed leukemia-cell migration.
Collapse
|
4
|
Mukherjee S, Kim J, Mooren OL, Shahan ST, Cohan M, Cooper JA. Role of cortactin homolog HS1 in transendothelial migration of natural killer cells. PLoS One 2015; 10:e0118153. [PMID: 25723543 PMCID: PMC4344232 DOI: 10.1371/journal.pone.0118153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 01/08/2015] [Indexed: 12/28/2022] Open
Abstract
Natural Killer (NK) cells perform many functions that depend on actin assembly, including adhesion, chemotaxis, lytic synapse assembly and cytolysis. HS1, the hematopoietic homolog of cortactin, binds to Arp2/3 complex and promotes actin assembly by helping to form and stabilize actin filament branches. We investigated the role of HS1 in transendothelial migration (TEM) by NK cells. Depletion of HS1 led to a decrease in the efficiency of TEM by NK cells, as measured by transwell assays with endothelial cell monolayers on porous filters. Transwell assays involve chemotaxis of NK cells across the filter, so to examine TEM more specifically, we imaged live-cell preparations and antibody-stained fixed preparations, with and without the chemoattractant SDF-1α. We found small to moderate effects of HS1 depletion on TEM, including whether the NK cells migrated via the transcellular or paracellular route. Expression of HS1 mutants indicated that phosphorylation of HS1 tyrosines at positions 222, 378 and 397 was required for rescue in the transwell assay, but HS1 mutations affecting interaction with Arp2/3 complex or SH3-domain ligands had no effect. The GEF Vav1, a ligand of HS1 phosphotyrosine, influenced NK cell transendothelial migration. HS1 and Vav1 also affected the speed of NK cells migrating across the surface of the endothelium. We conclude that HS1 has a role in transendothelial migration of NK cells and that HS1 tyrosine phosphorylation may signal through Vav1.
Collapse
Affiliation(s)
- Suranjana Mukherjee
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joanna Kim
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Olivia L. Mooren
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Stefanie T. Shahan
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Megan Cohan
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John A. Cooper
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lettau M, Kabelitz D, Janssen O. SDF1α-induced interaction of the adapter proteins Nck and HS1 facilitates actin polymerization and migration in T cells. Eur J Immunol 2014; 45:551-61. [PMID: 25359136 DOI: 10.1002/eji.201444473] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 10/07/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022]
Abstract
Noncatalytic region of tyrosine kinase (Nck) is an adapter protein that comprises one SH2 (Src homology) domain and three SH3 domains. Nck links receptors and receptor-associated tyrosine kinases or adapter proteins to proteins that regulate the actin cytoskeleton. Whereas the SH2 domain binds to phosphorylated receptors or associated phosphoproteins, individual interactions of the SH3 domains with proline-based recognition motifs result in the formation of larger protein complexes. In T cells, changes in cell polarity and morphology during T-cell activation and effector function require the T-cell receptor-mediated recruitment and activation of actin-regulatory proteins to initiate cytoskeletal reorganization at the immunological synapse. We previously identified the adapter protein HS1 as a putative Nck-interacting protein. We now demonstrate that the SH2 domain of Nck specifically interacts with HS1 upon phosphorylation of its tyrosine residue 378. We report that in human T cells, ligation of the chemokine receptor CXCR4 by stromal cell-derived factor 1α (SDF1α) induces a rapid and transient phosphorylation of tyrosine 378 of HS1 resulting in an increased association with Nck. Consequently, siRNA-mediated downregulation of HS1 and/or Nck impairs SDF1α-induced actin polymerization and T-cell migration.
Collapse
Affiliation(s)
- Marcus Lettau
- Institute of Immunology, University Hospital Schleswig-Holstein, Kiel, Germany
| | | | | |
Collapse
|
6
|
Gattazzo C, Martini V, Frezzato F, Trimarco V, Tibaldi E, Castelli M, Facco M, Zonta F, Brunati AM, Zambello R, Semenzato G, Trentin L. Cortactin, another player in the Lyn signaling pathway, is over-expressed and alternatively spliced in leukemic cells from patients with B-cell chronic lymphocytic leukemia. Haematologica 2014; 99:1069-77. [PMID: 24532043 DOI: 10.3324/haematol.2013.090183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cortactin, an actin binding protein and Lyn substrate, is up-regulated in several cancers and its level is associated with increased cell migration, metastasis and poor prognosis. The identification that the Src kinase Lyn and its substrate HS1 are over-expressed in B-cell chronic lymphocytic leukemia and involved in resistance to chemotherapy and poor prognosis, prompted us to investigate the role of cortactin, an HS1 homolog, in the pathogenesis and progression of this disorder. In this study, we observed that cortactin is over-expressed in leukemic cells of patients (1.10 ± 0.12) with respect to normal B lymphocytes (0.19 ± 0.06; P=0.0065). Fifty-three percent of our patients expressed the WT mRNA and p80/85 protein isoforms, usually lacking in normal B lymphocytes which express the SV1 variant and the p70/75 protein isoforms. Moreover, we found an association of the cortactin overexpression and negative prognostic factors, including ZAP-70 (P<0.01), CD38 (P<0.01) and somatic hypermutations in the immunoglobulin heavy-chain variable region (P<0.01). Our results show that patients with B-cell chronic lymphocytic leukemia express high levels of cortactin with a particular overexpression of the WT isoform that is lacking in normal B cells, and a correlation to poor prognosis, suggesting that this protein could be relevant in the pathogenesis and aggressiveness of the disease.
Collapse
Affiliation(s)
- Cristina Gattazzo
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Veronica Martini
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Federica Frezzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | | | - Elena Tibaldi
- Department of Molecular Medicine, University of Padova, Italy
| | - Monica Castelli
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy
| | - Monica Facco
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Francesca Zonta
- Department of Molecular Medicine, University of Padova, Italy
| | | | - Renato Zambello
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Departement of Medicine, Hematology and Clinical Immunology Branch, Padova University School of Medicine, Italy Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
7
|
Arneja A, Johnson H, Gabrovsek L, Lauffenburger DA, White FM. Qualitatively different T cell phenotypic responses to IL-2 versus IL-15 are unified by identical dependences on receptor signal strength and duration. THE JOURNAL OF IMMUNOLOGY 2013; 192:123-35. [PMID: 24298013 DOI: 10.4049/jimmunol.1302291] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-2 and IL-15 are common γ-chain family cytokines involved in regulation of T cell differentiation and homeostasis. Despite signaling through the same receptors, IL-2 and IL-15 have non-redundant roles in T cell biology, both physiologically and at the cellular level. The mechanisms by which IL-2 and IL-15 trigger distinct phenotypes in T cells remain elusive. To elucidate these mechanisms, we performed a quantitative comparison of the phosphotyrosine signaling network and resulting phenotypes triggered by IL-2 and IL-15. This study revealed that the signaling networks activated by IL-2 or IL-15 are highly similar and that T cell proliferation and metabolism are controlled in a quantitatively distinct manner through IL-2/15R signal strength independent of the cytokine identity. Distinct phenotypes associated with IL-2 or IL-15 stimulation therefore arise through differential regulation of IL-2/15R signal strength and duration because of differences in cytokine-receptor binding affinity, receptor expression levels, physiological cytokine levels, and cytokine-receptor intracellular trafficking kinetics. These results provide important insights into the function of other shared cytokine and growth factor receptors, quantitative regulation of cell proliferation and metabolism through signal transduction, and improved design of cytokine based clinical immunomodulatory therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Abhinav Arneja
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | | |
Collapse
|
8
|
Abstract
Key Points
HS1 protein activation is differentially regulated by LYN kinase in CLL subsets. Dasatinib targets cytoskeletal activity, BCR signaling and survival of a sizable portion of patients with activated LYN/HS1.
Collapse
|
9
|
Leander R, Dai S, Schlesinger LS, Friedman A. A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection. PLoS Comput Biol 2012; 8:e1002757. [PMID: 23133361 PMCID: PMC3486853 DOI: 10.1371/journal.pcbi.1002757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/05/2012] [Indexed: 02/04/2023] Open
Abstract
Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.
Collapse
Affiliation(s)
- Rachel Leander
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Shipan Dai
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
10
|
Frezzato F, Gattazzo C, Martini V, Trimarco V, Teramo A, Carraro S, Cabrelle A, Ave E, Facco M, Zambello R, Tibaldi E, Brunati AM, Semenzato G, Trentin L. HS1, a Lyn kinase substrate, is abnormally expressed in B-chronic lymphocytic leukemia and correlates with response to fludarabine-based regimen. PLoS One 2012; 7:e39902. [PMID: 22768161 PMCID: PMC3387232 DOI: 10.1371/journal.pone.0039902] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/28/2012] [Indexed: 12/18/2022] Open
Abstract
In B-Chronic Lymphocytic Leukemia (B-CLL) kinase Lyn is overexpressed, active, abnormally distributed, and part of a cytosolic complex involving hematopoietic lineage cell-specific protein 1 (HS1). These aberrant properties of Lyn could partially explain leukemic cells' defective apoptosis, directly or through its substrates, for example, HS1 that has been associated to apoptosis in different cell types. To verify the hypothesis of HS1 involvement in Lyn-mediated leukemic cell survival, we investigated HS1 protein in 71 untreated B-CLL patients and 26 healthy controls. We found HS1 overexpressed in leukemic as compared to normal B lymphocytes (1.38±0.54 vs 0.86±0.29, p<0.01), and when HS1 levels were correlated to clinical parameters we found a higher expression of HS1 in poor-prognosis patients. Moreover, HS1 levels significantly decreased in ex vivo leukemic cells of patients responding to a fludarabine-containing regimen. We also observed that HS1 is partially localized in the nucleus of neoplastic B cells. All these data add new information on HS1 study, hypothesizing a pivotal role of HS1 in Lyn-mediated modulation of leukemic cells' survival and focusing, one more time, the attention on the BCR-Lyn axis as a putative target for new therapeutic strategies in this disorder.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adult
- Aged
- Aged, 80 and over
- Blood Proteins/genetics
- Blood Proteins/metabolism
- Cell Nucleus/drug effects
- Cell Nucleus/enzymology
- Cyclophosphamide/pharmacology
- Cyclophosphamide/therapeutic use
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Male
- Middle Aged
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Subcellular Fractions/drug effects
- Subcellular Fractions/enzymology
- Substrate Specificity/drug effects
- Vidarabine/analogs & derivatives
- Vidarabine/pharmacology
- Vidarabine/therapeutic use
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Federica Frezzato
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Cristina Gattazzo
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Veronica Martini
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Valentina Trimarco
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Antonella Teramo
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Samuela Carraro
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Anna Cabrelle
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
| | - Elisa Ave
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Monica Facco
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Renato Zambello
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Elena Tibaldi
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Gianpietro Semenzato
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| | - Livio Trentin
- Venetian Institute of Molecular Medicine (VIMM), Centro di Eccellenza per la Ricerca Biomedica, Padua, Italy
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padua, Italy
| |
Collapse
|
11
|
Cavnar PJ, Mogen K, Berthier E, Beebe DJ, Huttenlocher A. The actin regulatory protein HS1 interacts with Arp2/3 and mediates efficient neutrophil chemotaxis. J Biol Chem 2012; 287:25466-77. [PMID: 22679023 DOI: 10.1074/jbc.m112.364562] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HS1 is an actin regulatory protein and cortactin homolog that is expressed in hematopoietic cells. Antigen receptor stimulation induces HS1 phosphorylation, and HS1 is essential for T cell activation. HS1 is also expressed in neutrophils; however, the function of HS1 in neutrophils is not known. Here we show that HS1 localizes to the neutrophil leading edge, and is phosphorylated in response to the chemoattractant formyl-Met-Leu-Phe (fMLP) in adherent cells. Using live imaging in microchannels, we show that depletion of endogenous HS1 in the neutrophil-like PLB-985 cell line impairs chemotaxis. We also find that HS1 is necessary for chemoattractant-induced activation of Rac GTPase signaling and Vav1 phosphorylation, suggesting that HS1-mediated Rac activation is necessary for efficient neutrophil chemotaxis. We identify specific phosphorylation sites that mediate HS1-dependent neutrophil motility. Expression of HS1 Y378F, Y397F is sufficient to rescue migration of HS1-deficient neutrophils, however, a triple phospho-mutant Y222F, Y378F, Y397F did not rescue migration of HS1-deficient neutrophils. Moreover, HS1 phosphorylation on Y222, Y378, and Y397 regulates its interaction with Arp2/3. Collectively, our findings identify a novel role for HS1 and its phosphorylation during neutrophil directed migration.
Collapse
Affiliation(s)
- Peter J Cavnar
- Departments of Pediatrics and Medical Microbiology and Immunology, 4205 Microbial Sciences Building, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
12
|
Siligardi G, Ruzza P, Hussain R, Cesaro L, Brunati AM, Pinna LA, Donella-Deana A. The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Amino Acids 2011; 42:1361-70. [DOI: 10.1007/s00726-011-0831-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
|
13
|
Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1. Proc Natl Acad Sci U S A 2009; 106:21143-8. [PMID: 19955438 DOI: 10.1073/pnas.0911309106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.
Collapse
|
14
|
Kahner BN, Dorsam RT, Kim S, Shankar H, Kitamura D, Kunapuli SP. Hematopoietic lineage cell-specific protein-1 (HS1) regulates PAR-mediated ERK activation and thromboxane generation in platelets. Platelets 2008; 19:614-23. [PMID: 19012179 DOI: 10.1080/09537100802351057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Thrombin-induced platelet activation leads to tyrosine phosphorylation of hematopoietic lineage cell-specific protein-1 (HS1), a 75 kDa adapter protein expressed exclusively in cells of hematopoietic lineage. We have shown HS1 to be a functionally important signaling molecule downstream of PAR-4 and GPVI collagen receptor. We have thus begun to elucidate PAR signaling pathway of HS1 phosphorylation, and its functional implications. PAR-1 and PAR-4 activating peptides (SFLLRN and AYPGKF, respectively) induced HS1 phosphorylation in a Gq-dependent manner as shown by incubation with the Gq inhibitor, YM254890. Consistently, HS1 phosphorylation was abolished in platelets from Gq deficient mice upon AYPGKF stimulation. Treatment with ADP receptor antagonists did not affect HS1 phosphorylation. Pretreatment of platelets with Src kinase inhibitors abolished HS1 phosphorylation. Further Syk activation, as measured by tyrosine phosphorylation of Syk (residues 525/526), in response to PAR activation was abolished in the presence of Src inhibitors. HS1 null mice show inhibition of PAR-mediated thromboxane A2 generation compared to wild type littermates. Phosphorylation of Erk, a key signaling molecule in thromboxane generation, was also diminished in HS1 null mice platelets. Based on these findings, we conclude that tyrosine phosphorylation of HS1 occurs downstream of both PAR-1 and PAR-4. HS1 phosphorylation is a Gq mediated response regulated by Src kinases. Thus, HS1 may mediate PAR-induced thromboxane generation through regulation of Erk phosphorylation.
Collapse
Affiliation(s)
- Bryan N Kahner
- Department of Physiology, Temple University, School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
15
|
Geldanamycin-induced Lyn dissociation from aberrant Hsp90-stabilized cytosolic complex is an early event in apoptotic mechanisms in B-chronic lymphocytic leukemia. Blood 2008; 112:4665-74. [DOI: 10.1182/blood-2008-02-139139] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Lyn, a tyrosine kinase belonging to the Src family, plays a key role as a switch molecule that couples the B-cell receptor to downstream signaling. In B-CLL cells, Lyn is overexpressed, anomalously present in the cytosol, and displays a high constitutive activity, compared with normal B lymphocytes. The aim of this work was to gain insights into the molecular mechanisms underlying these aberrant properties of Lyn, which have already been demonstrated to be related to defective apoptosis in B-cell chronic lymphocytic leukemia (B-CLL) cells. Herein, Lyn is described to be in an active conformation as integral component of an aberrant cytosolic 600-kDa multiprotein complex in B-CLL cells, associated with several proteins, such as Hsp90 through its catalytic domain, and HS1 and SHP-1L through its SH3 domain. In particular, Hsp90 appears tightly bound to cytosolic Lyn (CL), thus stabilizing the aberrant complex and converting individual transient interactions into stable ones. We also demonstrate that treatment of B-CLL cells with geldanamycin, an Hsp90 inhibitor already reported to induce cell death, is capable of dissociating the CL complex in the early phases of apoptosis and thus inactivating CL itself. These data identify the CL complex as a potential target for therapy in B-CLL.
Collapse
|
16
|
Abstract
Actin dynamics during T-cell activation are controlled by the coordinate action of multiple actin regulatory proteins, functioning downstream of a complex network of kinases and other signaling molecules. The c-Abl nonreceptor tyrosine kinase regulates actin responses in nonhematopoietic cells, but its function in T cells is poorly understood. Using kinase inhibitors, RNAi, and conditional knockout mice, we investigated the role of c-Abl in controlling the T-cell actin response. We find that c-Abl is required for normal actin polymerization and lamellipodial spreading at the immune synapse, and for downstream events leading to efficient interleukin-2 production. c-Abl also plays a key role in signaling chemokine-induced T-cell migration. c-Abl is required for the appropriate function of 2 proteins known to be important for controlling actin responses to T-cell receptor (TCR) engagement, the actin-stabilizing adapter protein HS1, and the Rac1-dependent actin polymerizing protein WAVE2. c-Abl binds to phospho-HS1 via its SH2 domains and is required for full tyrosine phosphorylation of HS1 during T-cell activation. In addition, c-Abl is required for normal localization of WAVE2 to the immune synapse (IS). These studies identify c-Abl as a key player in the signaling cascade, leading to actin reorganization during T-cell activation.
Collapse
|
17
|
Thomas SG, Calaminus SDJ, Auger JM, Watson SP, Machesky LM. Studies on the actin-binding protein HS1 in platelets. BMC Cell Biol 2007; 8:46. [PMID: 17996076 PMCID: PMC2203996 DOI: 10.1186/1471-2121-8-46] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Accepted: 11/09/2007] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The platelet cytoskeleton mediates the dramatic change in platelet morphology that takes place upon activation and stabilizes thrombus formation. The Arp2/3 complex plays a vital role in these processes, providing the protrusive force for lamellipodia formation. The Arp2/3 complex is highly regulated by a number of actin-binding proteins including the haematopoietic-specific protein HS1 and its homologue cortactin. The present study investigates the role of HS1 in platelets using HS1-/- mice. RESULTS The present results demonstrate that HS1 is not required for platelet activation, shape change or aggregation. Platelets from HS1-/- mice spread normally on a variety of adhesion proteins and have normal F-actin and Arp2/3 complex distributions. Clot retraction, an actin-dependent process, is also normal in these mice. Platelet aggregation and secretion is indistinguishable between knock out and littermates and there is no increase in bleeding using the tail bleeding assay. CONCLUSION This study concludes that HS1 does not play a major role in platelet function. It is possible that a role for HS1 is masked by the presence of cortactin.
Collapse
Affiliation(s)
- Steven G Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Simon DJ Calaminus
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jocelyn M Auger
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Stephen P Watson
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Laura M Machesky
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Kahner BN, Dorsam RT, Mada SR, Kim S, Stalker TJ, Brass LF, Daniel JL, Kitamura D, Kunapuli SP. Hematopoietic lineage cell specific protein 1 (HS1) is a functionally important signaling molecule in platelet activation. Blood 2007; 110:2449-56. [PMID: 17579181 PMCID: PMC1988959 DOI: 10.1182/blood-2006-11-056069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Collagen activates platelets through an intracellular signaling cascade downstream of glycoprotein VI (GPVI). We have investigated the contribution of hematopoietic lineage cell-specific protein 1 (HS1) downstream of GPVI in platelet activation. Stimulation of GPVI leads to tyrosine phosphorylation of HS1, which is blocked by Src-family kinase inhibitors. Coimmunoprecipitation experiments revealed that HS1 associates with Syk and phosphatidylinositol 3-kinases. HS1-null mice displayed increased bleeding times and increased time to occlusion in the FeCl(3) in vivo thrombosis model compared with their wild-type littermates. In addition, aggregation and secretion responses were diminished in HS1-null mouse platelets after stimulation of GPVI and protease-activated receptor 4 (PAR-4) agonists compared with wild-type littermate mouse platelets. Finally, Akt phosphorylation was diminished after GPVI or PAR-4 stimulation in platelets from HS1-null mice compared with their wild-type littermates. These results demonstrate that phosphorylation of the HS1 protein occurs downstream of GPVI stimulation and that HS1 plays a significant functional role in platelet activation downstream of GPVI and PARs.
Collapse
Affiliation(s)
- Bryan N Kahner
- Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Luk JM, Lee NPY, Shum CK, Lam BY, Siu AFM, Che CM, Tam PC, Cheung ANY, Yang ZM, Lin YN, Matzuk MM, Lee KF, Yeung WSB. Acrosome-specific gene AEP1: identification, characterization and roles in spermatogenesis. J Cell Physiol 2007; 209:755-66. [PMID: 16924657 DOI: 10.1002/jcp.20746] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Spermatogenesis is a tightly regulated process leading to the development of spermatozoa. To elucidate the molecular spermatogenic mechanisms, we identified an acrosome-specific gene AEP1 in spermatids, which is located in rat chromosome 17p14 with a transcript size of 3,091 bp encoding a signal peptide, zinc finger-like motif, coiled-coil region, several predicted glycosylation and phosphorylation sites. Northern blot and RT-PCR analyses revealed the restricted expression of AEP1 to the testis only. In postnatal rat testes, AEP1 mRNA became detectable from postnatal 25 dpp (round spermatids) and onwards. By using in situ hybridization (ISH) and flow cytometry-fluorescent ISH, only the haploid spermatids yielded the positive AEP1 signal. Immunohistochemistry showed that AEP1 was expressed in the acrosomal cap of late-staged germ cells in rat testis, and co-localized with the acrosomal marker, peanut agglutinin. The spatial expression of AEP1 immunoreactivity in testis was conserved among diverse mammalian species (rat, pig, monkey, human). To further study its roles in spermatogenesis, we showed AEP1 and beta-actin was associated together in complex by co-immunoprecipitation in adult germ cells and by immunofluorescence assay in isolated spermatozoon. In human testes diagnosed with hypospermatogenesis, lower expression of AEP1 was observed, whereas there was no detectable signal in undescended testes. In short, AEP1 is an evolutionary-conserved acrosome-specific gene and likely functions in acrosome-cap formation.
Collapse
Affiliation(s)
- John M Luk
- Department of Surgery, The University of Hong Kong, Jockey Club Clinical Research Center, 21 Sassoon Road, Pokfulam, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gomez TS, McCarney SD, Carrizosa E, Labno CM, Comiskey EO, Nolz JC, Zhu P, Freedman BD, Clark MR, Rawlings DJ, Billadeau DD, Burkhardt JK. HS1 functions as an essential actin-regulatory adaptor protein at the immune synapse. Immunity 2006; 24:741-752. [PMID: 16782030 PMCID: PMC1779661 DOI: 10.1016/j.immuni.2006.03.022] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 01/06/2006] [Accepted: 03/22/2006] [Indexed: 02/06/2023]
Abstract
HS1, the leukocyte-specific homolog of cortactin, regulates F-actin in vitro and is phosphorylated in response to TCR ligation, but its role in lymphocyte activation has not been addressed. We demonstrate that HS1-deficient T cells fail to accumulate F-actin at the immune synapse (IS) and, upon TCR ligation, form actin-rich structures that are disordered and unstable. Early TCR activation events are intact in these cells, but Ca2+ influx and IL-2 gene transcription are defective. Importantly, HS1 tyrosine phosphorylation is required for its targeting to the IS and for its function in regulating actin dynamics and IL-2 promoter activity. Phosphorylation also links HS1 to multiple signaling proteins, including Lck, PLCgamma1, and Vav1, and is essential for the stable recruitment of Vav1 to the IS. Taken together, our studies show that HS1 is indispensable for signaling events leading to actin assembly and IL-2 production during T cell activation.
Collapse
Affiliation(s)
- Timothy S Gomez
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sean D McCarney
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Esteban Carrizosa
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christine M Labno
- Department of Pathology, University of Chicago, Chicago, Illinois 60637
| | - Erin O Comiskey
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jeffrey C Nolz
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Peimin Zhu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Bruce D Freedman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Marcus R Clark
- Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - David J Rawlings
- Department of Pediatrics, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Daniel D Billadeau
- Department of Immunology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
21
|
Abstract
AbstractAngiotensin-converting enzyme (ACE, kininase II) is a plasma membrane zinc metallopeptidase that acts as a key enzyme for the extracellular conversion of vasoactive peptides. Recently, ACE outside-in signalling in endothelial cells has been described. The present study tested the hypothesis that ACE signalling is not restricted to endothelial cells and may act as an additional peptide receptor on human preadipocytes and adipocytes. ACE protein levels were not changed during adipose conversion of human primary preadipocytes. The enzyme was primarily localized to the non-detergent-resistant fraction of the membrane and phosphorylated in non-dividing cells. Antibody arrays of whole cell lysate detected putative ACE-interacting proteins, which all share important roles in cell cycle control and/or apoptosis. These findings suggest that ACE is a versatile molecule, involved both in the regulation of extracellular peptide concentrations and direct intracellular signalling. In human adipose cells ACE may potentially influence exit from the cell cycle, differentiation, and programmed cell death signalling.
Collapse
|
22
|
Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G. 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. J Pept Sci 2006; 12:462-71. [PMID: 16506148 DOI: 10.1002/psc.750] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.
Collapse
Affiliation(s)
- Paolo Ruzza
- Institute of Biomolecular Chemistry, Padua Unit, CNR, Via Marzolo1, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Scielzo C, Ghia P, Conti A, Bachi A, Guida G, Geuna M, Alessio M, Caligaris-Cappio F. HS1 protein is differentially expressed in chronic lymphocytic leukemia patient subsets with good or poor prognoses. J Clin Invest 2005; 115:1644-50. [PMID: 15931393 PMCID: PMC1136999 DOI: 10.1172/jci24276] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Accepted: 04/26/2005] [Indexed: 11/17/2022] Open
Abstract
We used a proteomic approach for identifying molecules involved in the pathogenesis of chronic lymphocytic leukemia (CLL). We investigated 14 patients who were completely concordant for IgV(H) mutational status (unmutated vs. mutated), CD38 expression (positive vs. negative), and clinical behavior (progressive vs. stable); these patients were characterized as having either poor or good prognoses. The 2 patient subsets differed in the expression of hematopoietic lineage cell-specific protein 1 (HS1). In patients with poor prognoses, most HS1 protein was constitutively phosphorylated, whereas only a fraction was phosphorylated in patients with good prognoses. This difference was investigated in a larger cohort of 26 unselected patients. The survival curve of all 40 patients analyzed revealed that patients with predominately phosphorylated HS1 experience a significantly shorter median survival time. As HS1 is a protein pivotal in the signal cascade triggered by B cell receptor (BCR) stimulation, we studied its pattern of expression following BCR engagement. Normal mature B cells stimulated by anti-IgM shifted the non- or less-phosphorylated form of HS1 toward the more phosphorylated form. Naive B cells showed both HS1 forms while memory B cells expressed mainly the phosphorylated fraction. These data indicate a central role for antigen stimulation in CLL and suggest a new therapeutic target for patients with aggressive disease.
Collapse
MESH Headings
- ADP-ribosyl Cyclase/biosynthesis
- ADP-ribosyl Cyclase 1
- Adaptor Proteins, Signal Transducing
- Aged
- Aged, 80 and over
- Antigens, CD/biosynthesis
- B-Lymphocytes/metabolism
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Blood Proteins/biosynthesis
- Blood Proteins/genetics
- Case-Control Studies
- Female
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin M/biosynthesis
- Immunoglobulin M/genetics
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Membrane Glycoproteins
- Middle Aged
- Phosphorylation
- Prognosis
- Protein Processing, Post-Translational/genetics
- Receptors, Antigen, B-Cell/biosynthesis
- Receptors, Antigen, B-Cell/genetics
- Somatic Hypermutation, Immunoglobulin/genetics
Collapse
Affiliation(s)
- Cristina Scielzo
- Department of Oncology, Università Vita e Salute-San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Brunati AM, Deana R, Folda A, Massimino ML, Marin O, Ledro S, Pinna LA, Donella-Deana A. Thrombin-induced tyrosine phosphorylation of HS1 in human platelets is sequentially catalyzed by Syk and Lyn tyrosine kinases and associated with the cellular migration of the protein. J Biol Chem 2005; 280:21029-35. [PMID: 15795233 DOI: 10.1074/jbc.m412634200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thrombin stimulation of platelets triggers Tyr phosphorylation of several signaling proteins, most of which remain unidentified. In this study, we demonstrate for the first time that hematopoietic lineage cell-specific protein 1 (HS1) undergoes a transient Tyr phosphorylation in human platelets stimulated with thrombin. The protein is synergistically phosphorylated by Syk and Lyn tyrosine kinases according to a sequential phosphorylation mechanism. By means of specific inhibitors (PP2, SU6656, and piceatannol) and phosphopeptide-specific antibodies, as well as by coimmunoprecipitation and binding competition experiments, we show that Syk acts as the primary kinase that phosphorylates HS1 at Tyr397 and that Syk phosphorylation is required for HS1 interaction with the Lyn SH2 domain. Upon docking to Syk-phosphorylated HS1, Lyn catalyzes the secondary phosphorylation of the protein at Tyr222. Once the secondary Tyr phosphorylation of HS1 is accomplished the protein dissociates from Lyn and undergoes a dephosphorylation process. HS1 Tyr phosphorylation does not occur when thrombin-induced actin assembly is inhibited by cytochalasin D even under conditions in which Syk and Lyn are still active. Immunofluorescence microscopic analysis shows that the agonist promotes HS1 migration to the plasma membrane and that the inhibition of Lyn-mediated secondary phosphorylation of HS1 abrogates the subcellular translocation of the protein. All together these results indicate that HS1 Tyr phosphorylation catalyzed by Syk and Lyn plays a crucial role in the translocation of the protein to the membrane and is involved in the cytoskeleton rearrangement triggered by thrombin in human platelets.
Collapse
Affiliation(s)
- Anna Maria Brunati
- Department of Biochemistry, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Matsuzaka Y, Okamoto K, Mabuchi T, Iizuka M, Ozawa A, Oka A, Tamiya G, Kulski JK, Inoko H. Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 2005; 343:291-304. [PMID: 15588584 DOI: 10.1016/j.gene.2004.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/01/2004] [Accepted: 09/10/2004] [Indexed: 11/20/2022]
Abstract
We describe the isolation and characterization of a full-length cDNA encoded by a gene that was significantly down-regulated in the affected skin of patients with psoriasis vulgaris. The cDNA was isolated from a keratinocyte cDNA library and its sequence was found to correspond to a hypothetical locus recorded in GenBank with the accession number . The nucleotide sequence of the full-length cDNA was found to have an open reading frame of 1365 amino acids and to span approximately 12 kb of genomic DNA with 39 exons on chromosome 16q22. The deduced amino acid sequence contains four distinct structural regions, an RGD motif, a leucine-rich repeat (LRR) region, a tropomodulin domain, and a proline-rich domain. The gene was consequently designated as RLTPR (RGD, leucine-rich repeat, tropomodulin and proline-rich containing protein). The RLTPR hypothetical protein has a functional domain organization similar to Acan125, a myosin-binding protein expressed by Acanthamoeba castellanni. RT-PCR with RLTPR PCR primers amplified products from cDNAs prepared from all of the 30 different tissues that we examined including thymus, spleen, colon, skin, skin keratinocytes, skin fibroblasts and fetal skin. During the course of screening the human keratinocyte cDNA library, some alternative splicing was also detected in three regions of the RLTPR gene. In addition, sequence analysis of the RLTPR genes from eight psoriasis patients and eight healthy controls revealed a number of synonymous and nonsynonymous SNPs that may be useful markers for future disease association studies.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Hao JJ, Carey GB, Zhan X. Syk-mediated tyrosine phosphorylation is required for the association of hematopoietic lineage cell-specific protein 1 with lipid rafts and B cell antigen receptor signalosome complex. J Biol Chem 2004; 279:33413-20. [PMID: 15166239 DOI: 10.1074/jbc.m313564200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1) is an F-actin- and actin-related proteins 2 and 3 (Arp2/3)-binding protein that undergoes a rapid tyrosine phosphorylation upon B cell antigen receptor (BCR) activation. Density gradient centrifugation of Triton X-100 lysates from B lymphocytes demonstrated that HS1 was translocated in response to BCR cross-linking into lipid raft microdomain along with Arp2/3 complex and Wiskott-Aldrich syndrome protein. HS1-green fluorescent protein was localized in membrane patches enriched with GM1 gangliosides and BCR in the cells treated with anti-IgM antibody. Colocalization of HS1-green fluorescent protein with BCR was also correlated with tyrosine phosphorylation of HS1. Interestingly a murine HS1 mutant at the tyrosine residues Tyr388 and Tyr405 targeted by Syk failed to respond to BCR cross-linking for either translocation into lipid rafts or colocalization with BCR within cells. Furthermore HS1 was unable to translocate into lipid rafts in a chicken B cell line deficient in Syk. Reintroducing a Syk construct into the Syk knock-out cells recovered effectively both tyrosine phosphorylation and translocation of HS1 into lipid rafts. In contrast, translocation of HS1 into rafts was normal in a Lyn knock-out B cell line, and an HS1 mutant at the tyrosine residue Tyr222 targeted by Lyn maintained the ability to partition into rafts upon BCR cross-linking. These data indicate that Syk plays an important role in the translocation of HS1 into lipid rafts and may be responsible for actin assembly recruitment to rafts and subsequent antigen presentations.
Collapse
Affiliation(s)
- Jian-Jiang Hao
- Departments of Experimental Pathology and Immunology, Holland Laboratory, American Red Cross, Rockville, Maryland 20855, USA
| | | | | |
Collapse
|
28
|
Blower PE, Yang C, Fligner MA, Verducci JS, Yu L, Richman S, Weinstein JN. Pharmacogenomic analysis: correlating molecular substructure classes with microarray gene expression data. THE PHARMACOGENOMICS JOURNAL 2003; 2:259-71. [PMID: 12196914 DOI: 10.1038/sj.tpj.6500116] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2002] [Accepted: 04/08/2002] [Indexed: 12/31/2022]
Abstract
Genomic studies are producing large databases of molecular information on cancers and other cell and tissue types. Hence, we have the opportunity to link these accumulating data to the drug discovery processes. Our previous efforts at 'information-intensive' molecular pharmacology have focused on the relationship between patterns of gene expression and patterns of drug activity. In the present study, we take the process a step further-relating gene expression patterns, not just to the drugs as entities, but to approximately 27,000 substructures and other chemical features within the drugs. This coupling of genomic information with structure-based data mining can be used to identify classes of compounds for which detailed experimental structure-activity studies may be fruitful. Using a systematic substructure analysis coupled with statistical correlations of compound activity with differential gene expression, we have identified two subclasses of quinones whose patterns of activity in the National Cancer Institute's 60-cell line screening panel (NCI-60) correlate strongly with the expression patterns of particular genes: (i) The growth inhibitory patterns of an electron-withdrawing subclass of benzodithiophenedione-containing compounds over the NCI-60 are highly correlated with the expression patterns of Rab7 and other melanoma-specific genes; (ii) the inhibitory patterns of indolonaphthoquinone-containing compounds are highly correlated with the expression patterns of the hematopoietic lineage-specific gene HS1 and other leukemia genes. As illustrated by these proof-of-principle examples, we introduce here a set of conceptual tools and fluent computational methods for projecting directly from gene expression patterns to drug substructures and vice versa. The analysis is presented in terms of the NCI-60 cell lines and microarray-based gene expression patterns, but the concept and methods are broadly applicable to other large-scale pharmacogenomic database sets as well. The approach (SAT for Structure-Activity-Target) provides a systematic way to mine databases for the design of further structure-activity studies, particularly to aid in target and lead identification.
Collapse
|
29
|
Shimomura Y, Aoki N, Ito K, Ito M. Gene expression of Sh3d19, a novel adaptor protein with five Src homology 3 domains, in anagen mouse hair follicles. J Dermatol Sci 2003; 31:43-51. [PMID: 12615363 DOI: 10.1016/s0923-1811(02)00140-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sh3yl1, which contains one Src homology (SH) 3 domain, has been previously identified from mouse skin and considered to play an important role in hair follicle formation by interacting with other proteins. OBJECTIVE We performed this study to identify proteins capable of associating with Sh3yl1. METHODS We screened a mouse skin cDNA library using the SH3 domain of Sh3yl1 as bait in the yeast two-hybrid system. RESULTS We identified a 420-amino acid-long protein containing a proline-rich stretch and five carboxyl-terminal SH3 domains, which we have termed Sh3d19. We confirmed the interactions between Sh3yl1 and Sh3d19 by in vitro binding assays. Northern blot analysis showed that Sh3d19 transcripts in mouse skin were expressed in accordance with the hair cycle. Furthermore, RNA in situ hybridization studies demonstrated that its transcripts were detected predominantly in the medulla cells at the level corresponding to the keratogenous zone of the hair follicles during the mid and late anagen phases. CONCLUSION Sh3d19 is a novel adaptor protein that may be involved in the development of medulla cells during the anagen phase.
Collapse
Affiliation(s)
- Yutaka Shimomura
- Department of Dermatology, Niigata University School of Medicine, Asahimachi-dori, Niigata 951-8510, Japan.
| | | | | | | |
Collapse
|
30
|
Facchin S, Sarno S, Marin O, Lopreiato R, Sartori G, Pinna LA. Acidophilic character of yeast PID261/BUD32, a putative ancestor of eukaryotic protein kinases. Biochem Biophys Res Commun 2002; 296:1366-71. [PMID: 12207926 DOI: 10.1016/s0006-291x(02)02090-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast piD261/Bud32 and its homologues are present in eukaryotes and in archaea but not in bacteria and are believed to make up a primordial branch of the eukaryotic protein kinase superfamily. Here, we show that, at variance with the majority of Ser/Thr protein kinases which recognize phosphoacceptor sites specified by basic and/or proline residues, piD261 phosphorylates in vitro a number of acidic proteins and peptides, and it recognizes seryl residues specified by carboxylic side chains. These data suggest that recognition of acidic sites might have been a primordial trait of protein kinases, which was modified during evolution to cope with the increasing complexity of protein phosphorylation in eukaryotes.
Collapse
Affiliation(s)
- Sonia Facchin
- Department of Biological Chemistry, and CRIBI, University of Padua, and Venetian Institute for Molecular Medicine, Viale G. Colombo 3, 35121, Padva, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Ruzzene M, Penzo D, Pinna LA. Protein kinase CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole (TBB) induces apoptosis and caspase-dependent degradation of haematopoietic lineage cell-specific protein 1 (HS1) in Jurkat cells. Biochem J 2002; 364:41-7. [PMID: 11988074 PMCID: PMC1222543 DOI: 10.1042/bj3640041] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Incubation of Jurkat cells with 4,5,6,7-tetrabromobenzotriazole (TBB), a specific inhibitor of protein kinase CK2, induces dose-and time-dependent apoptosis as judged by several criteria. TBB-promoted apoptosis is preceded by inhibition of Ser/Thr phosphorylation of haematopoietic lineage cell-specific protein 1 (HS1) and is accompanied by caspase-dependent fragmentation of the same protein. Both effects are also observable if apoptosis is promoted by anti-Fas antibodies and by etoposide. Moreover, in vitro experiments show that HS1, once phosphorylated by CK2, becomes refractory to cleavage by caspase-3. These findings, in conjunction with similar data in the literature concerning two other CK2 protein substrates, Bid and Max, suggest that CK2 may play a general anti-apoptotic role through the generation of phosphorylated sites conferring resistance to caspase cleavage.
Collapse
Affiliation(s)
- Maria Ruzzene
- Dipartimento di Chimica Biologica, Università di Padova, Viale G. Colombo, 3-35121 Padova, Italy
| | | | | |
Collapse
|
32
|
Ruzza P, Donella-Deana A, Calderan A, Brunati A, Massimino ML, Elardo S, Mattiazzo A, Pinna LA, Borin G. Antennapedia/HS1 chimeric phosphotyrosyl peptide: conformational properties, binding capability to c-Fgr SH2 domain and cell permeability. Biopolymers 2002; 60:290-306. [PMID: 11774232 DOI: 10.1002/1097-0282(2001)60:4<290::aid-bip9991>3.0.co;2-m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
With the aim of interfering with the signaling pathways mediated by the SH2 domains of Src-like tyrosine kinases, we synthesized a tyrosyl-phospho decapeptide, corresponding to the sequence 392-401 of HS1 protein, which inhibits the secondary phosphorylation of HS1 protein catalyzed by the Src-like kinases c-Fgr or Lyn. This phospho-peptide was modified to enter cells by coupling to the third helix of Antennapedia homeodomain, which is able to translocate across cell membranes. Here we present CD and fluorescence studies on the conformational behavior in membrane-mimicking environments and on lipid interactions of Antennapedia fragment and its chimeric phosphorylated and unphosphorylated derivatives. These studies evidenced that electrostatic rather than amphiphilic interactions determine the peptide adsorption on lipids. Experiments performed with recombinant protein containing the SH2 domain of c-Fgr fused with GST and with isolated erythrocyte membranes demonstrated that the presence of the N-terminal Antennapedia fragment only slightly affects the binding of the phospho-HS1 peptide to the SH2 domain. In fact, it has been shown that in isolated erythrocyte membranes, both phospho-HS1 peptide and its chimeric derivative greatly affect either the SH2-mediated recruitment of the c-Fgr to the transmembrane protein band 3 and the following phosphorylation of the protein catalyzed by the Src-like kinase c-Fgr. The ability of the chimeric phospho-peptide to enter cells has been demonstrated by confocal microscopy analysis.
Collapse
Affiliation(s)
- P Ruzza
- CNR-Biopolymers Research Center, via Marzolo 1, Padua, 35131 Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Negro A, Brunati AM, Donella-Deana A, Massimino ML, Pinna LA. Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J 2002; 16:210-2. [PMID: 11744621 DOI: 10.1096/fj.01-0517fje] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The presence of aggregated alpha-synuclein molecules is a common denominator in a variety of neurodegenerative disorders. Here, we show that alpha-synuclein (alpha-syn) is an outstanding substrate for the protein tyrosine kinase p72syk (Syk), which phosphorylates three tyrosyl residues in its C-terminal domain (Y-125, Y-133, and Y-136), as revealed from experiments with mutants where these residues have been individually or multiply replaced by phenylalanine. In contrast, only Y-125 is phosphorylated by Lyn and c-Fgr. Eosin-induced multimerization is observed with wild-type alpha-syn, either phosphorylated or not by Lyn, and with all its Tyr to Phe mutants but not with the protein previously phosphorylated by Syk. Syk-mediated phosphorylation also counteracts alpha-syn assembly into filaments as judged from the disappearance of alpha-syn precipitated upon centrifugation at 100,000 x g. We also show that Syk and alpha-syn colocalize in the brain, and upon cotransfection in Chinese hamster ovary cells, alpha-syn becomes Tyr-phosphorylated by Syk. Moreover, Syk and alpha-syn interact with each other as judged from the mammalian two-hybrid system approach. These data suggest that Syk or tyrosine kinase(s) with similar specificity may play an antineurodegenerative role by phosphorylating a-syn, thereby preventing its aggregation.
Collapse
Affiliation(s)
- Alessandro Negro
- Dipartimento di Chimica Biologica and Centro di Studio delle Biomembrane del C.N.R., University of Padova, Padova, Italy
| | | | | | | | | |
Collapse
|
34
|
Abstract
Exposure of cells to a variety of external signals causes rapid changes in plasma membrane morphology. Plasma membrane dynamics, including membrane ruffle and microspike formation, fusion or fission of intracellular vesicles, and the spatial organization of transmembrane proteins, is directly controlled by the dynamic reorganization of the underlying actin cytoskeleton. Two members of the Rho family of small GTPases, Cdc42 and Rac, have been well established as mediators of extracellular signaling events that impact cortical actin organization. Actin-based signaling through Cdc42 and Rac ultimately results in activation of the actin-related protein (Arp) 2/3 complex, which promotes the formation of branched actin networks. In addition, the activity of both receptor and non-receptor protein tyrosine kinases along with numerous actin binding proteins works in concert with Arp2/3-mediated actin polymerization in regulating the formation of dynamic cortical actin-associated structures. In this review we discuss the structure and role of the cortical actin binding protein cortactin in Rho GTPase and tyrosine kinase signaling events, with the emphasis on the roles cortactin plays in tyrosine phosphorylation-based signal transduction, regulating cortical actin assembly, transmembrane receptor organization and membrane dynamics. We also consider how aberrant regulation of cortactin levels contributes to tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- S A Weed
- Department of Craniofacial Biology, University of Colorado Health Sciences Center, Denver, Colorado, CO 80262, USA.
| | | |
Collapse
|
35
|
De Franceschi L, Villa-Moruzzi E, Fumagalli L, Brugnara C, Turrini F, Motta R, Veghini E, Corato C, Alper SL, Berton G. K-Cl cotransport modulation by intracellular Mg in erythrocytes from mice bred for low and high Mg levels. Am J Physiol Cell Physiol 2001; 281:C1385-95. [PMID: 11546677 DOI: 10.1152/ajpcell.2001.281.4.c1385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mg is an important determinant of erythrocyte cation transport system(s) activity. We investigated cation transport in erythrocytes from mice bred for high (MGH) and low (MGL) Mg levels in erythrocytes and plasma. We found that K-Cl cotransport activity was higher in MGL than in MGH erythrocytes, and this could explain their higher mean corpuscular hemoglobin concentration, median density, and reduced cell K content. Although mouse KCC1 protein abundance was comparable in MGL and MGH erythrocytes, activities of Src family tyrosine kinases were higher in MGH than in MGL erythrocytes. In contrast, protein phosphatase (PP) isoform 1 alpha (PP1 alpha) enzymatic activity, which has been suggested to play a positive regulatory role in K-Cl cotransport, was lower in MGH than in MGL erythrocytes. Additionally, we found that the Src family kinase c-Fgr tyrosine phosphorylates PP1 alpha in vitro. These findings suggest that in vivo downregulation of K-Cl cotransport activity by Mg is mediated by enhanced Src family kinase activity, leading to inhibition of the K-Cl cotransport stimulator PP1.
Collapse
Affiliation(s)
- L De Franceschi
- Department of Clinical and Experimental Medicine, University of Verona, Verona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tsuji S, Okamoto M, Yamada K, Okamoto N, Goitsuka R, Arnold R, Kiefer F, Kitamura D. B cell adaptor containing src homology 2 domain (BASH) links B cell receptor signaling to the activation of hematopoietic progenitor kinase 1. J Exp Med 2001; 194:529-39. [PMID: 11514608 PMCID: PMC2193495 DOI: 10.1084/jem.194.4.529] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The B cell adaptor containing src homology 2 domain (BASH; also termed BLNK or SLP-65), is crucial for B cell antigen receptor (BCR)-mediated activation, proliferation, and differentiation of B cells. BCR-mediated tyrosine-phosphorylation of BASH creates binding sites for signaling effectors such as phospholipase Cgamma (PLCgamma)2 and Vav, while the function of its COOH-terminal src homology 2 domain is unknown. We have now identified hematopoietic progenitor kinase (HPK)1, a STE20-related serine/threonine kinase, as a protein that inducibly interacts with the BASH SH2 domain. BCR ligation induced rapid tyrosine-phosphorylation of HPK1 mainly by Syk and Lyn, resulting in its association with BASH and catalytic activation. BCR-mediated activation of HPK1 was impaired in Syk- or BASH-deficient B cells. The functional SH2 domain of BASH and Tyr-379 within HPK1 which we identified as a Syk-phosphorylation site were both necessary for interaction of both proteins and efficient HPK1 activation after BCR stimulation. Furthermore, HPK1 augmented, whereas its kinase-dead mutant inhibited IkappaB kinase beta (IKKbeta) activation by BCR engagement. These results reveal a novel BCR signaling pathway leading to the activation of HPK1 and subsequently IKKbeta, in which BASH recruits tyrosine-phosphorylated HPK1 into the BCR signaling complex.
Collapse
Affiliation(s)
- Sachiyo Tsuji
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
| | - Mariko Okamoto
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
| | - Koichi Yamada
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
| | - Noriaki Okamoto
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
| | - Ryo Goitsuka
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
- Inheritance and Variation Group, PRESTO, Japan Science and Technology Corporation, Chiba 278-0022, Japan
| | - Rudiger Arnold
- Max-Planck-Institute for Physiological and Clinical Research, W.G. Kerckhoff-Institute, D-61231 Bad Nauheim, Germany
| | - Friedemann Kiefer
- Max-Planck-Institute for Physiological and Clinical Research, W.G. Kerckhoff-Institute, D-61231 Bad Nauheim, Germany
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biological Sciences, Science University of Tokyo, Chiba 278-0022, Japan
| |
Collapse
|
37
|
Yin H, Morioka H, Towle CA, Vidal M, Watanabe T, Weissbach L. Evidence that HAX-1 is an interleukin-1 alpha N-terminal binding protein. Cytokine 2001; 15:122-37. [PMID: 11554782 DOI: 10.1006/cyto.2001.0891] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During studies aimed at understanding the function of the N-terminal peptide of interleukin-1 alpha (IL-1 NTP, amino acids 1-112), which is liberated from the remainder of IL-1 alpha during intracellular processing, we identified by yeast two-hybrid analysis a putative interacting protein previously designated as HAX-1. In vitro binding studies and transient transfection experiments confirmed that HAX-1 can associate with the IL-1 NTP. HAX-1 was first identified as a protein that associates with HS1, a target of non-receptor protein tyrosine kinases within haematopoietic cells. Recent data have also revealed interactions between HAX-1 and three disparate proteins, polycystin-2 (derived from the PKD2 gene), a protein linked to polycystic kidney disease, cortactin, and Epstein-Barr virus nuclear antigen leader protein (EBNA-LP). Sequence analysis of different HAX-1 binding domains revealed a putative consensus binding motif that is present in various intracellular proteins. Overlapping peptides comprising the IL-1 NTP were synthesized, and binding experiments revealed that discrete peptides were capable of interacting with HAX-1. HAX-1 may serve to retain the IL-1 NTP in the cytoplasm, and complex formation between the IL-1 NTP and HAX-1 may play a role in motility and/or adhesion of cells.
Collapse
Affiliation(s)
- H Yin
- Orthopaedic Research Laboratories, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sergeant S, Waite KA, Heravi J, McPhail LC. Phosphatidic acid regulates tyrosine phosphorylating activity in human neutrophils: enhancement of Fgr activity. J Biol Chem 2001; 276:4737-46. [PMID: 11078731 DOI: 10.1074/jbc.m006571200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human neutrophils, the activation of phospholipase D and the Tyr phosphorylation of proteins are early signaling events upon cell stimulation. We found that the pretreatment of neutrophils with ethanol (0.8%) or 1-butanol (0.3%), which results in the accumulation of phosphatidylalcohol at the expense of phosphatidic acid (PA), decreased the phorbol myristate acetate-stimulated Tyr phosphorylation of endogenous proteins (42, 115 kDa). When neutrophil cytosol was incubated in the presence or absence of PA, these and other endogenous proteins became Tyr-phosphorylated in a PA-dependent manner. In contrast, phosphatidylalcohols exhibited only 25% (phosphatidylethanol) or 5% (phosphatidylbutanol) of the ability of PA to stimulate Tyr phosphorylation in the cell-free assay. Similarly, other phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, polyphosphoinositides, and sphingosine 1-phosphate) showed little ability to stimulate Tyr phosphorylation. These data suggest that PA can function as an intracellular regulator of Tyr phosphorylating activity. Gel filtration chromatography of leukocyte cytosol revealed a peak of PA-dependent Tyr phosphorylating activity distinct from a previously described PA-dependent phosphorylating activity (Waite, K. A., Wallin, R., Qualliotine-Mann, D., and McPhail, L. C. (1997) J. Biol. Chem. 272, 15569-15578). Among the protein Tyr kinases expressed in neutrophils, only Fgr eluted exclusively in the peak of PA-dependent Tyr phosphorylating activity. Importantly, Fgr isolated from unstimulated neutrophil lysates showed increased activity in the presence of PA but not phosphatidylbutanol. Moreover, the pretreatment of neutrophils with 1-butanol decreased Fgr activity in cells stimulated with formyl-methionyl-leucyl phenylalanine plus dihydrocytochalasin B. Together, these results suggest a new second messenger role for PA in the regulation of Tyr phosphorylation.
Collapse
Affiliation(s)
- S Sergeant
- Departments of Biochemistry and Medicine, Division of Infectious Diseases, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | |
Collapse
|
39
|
Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood 2000. [DOI: 10.1182/blood.v96.4.1550.h8001550_1550_1557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of intact human erythrocytes with pervanadate induces Tyr (Y)-phosphorylation of the transmembrane protein band 3; in parallel, the activity of the immunoprecipitated tyrosine kinases Syk and Lyn is increased. When erythrocytes are incubated with pervanadate together with PP1, a specific inhibitor of Src kinases, including Lyn, the Y-phosphorylation of band 3 is only partially reduced. Indeed, the PP1-resistant phosphorylation of band 3 precedes and is a prerequisite for its coimmunoprecipitation with Lyn, which interacts with the phosphoprotein via the SH2 domain of the enzyme, as proven by binding competition experiments. Upon recruitment to primarily phosphorylated band 3, Lyn catalyzes the secondary phosphorylation of the transmembrane protein. These data are consistent with the view that band 3 is phosphorylated in intact erythrocytes by both PP1-resistant (most likely Syk) and PP1-inhibited (most likely Lyn) tyrosine kinases according to a sequential phosphorylation process. Similar radiolabeled peptide maps are obtained by tryptic digestion of32P-band 3 isolated from either pervanadate-treated erythrocytes or red cell membranes incubated with exogenous Syk and Lyn. It has also been demonstrated by means of mass spectrometry that the primary phosphorylation of band 3 occurs at Y8 and Y21, while the secondary phosphorylation affects Y359 and Y904.
Collapse
|
40
|
Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: identification of primary and secondary phosphorylation sites. Blood 2000. [DOI: 10.1182/blood.v96.4.1550] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractTreatment of intact human erythrocytes with pervanadate induces Tyr (Y)-phosphorylation of the transmembrane protein band 3; in parallel, the activity of the immunoprecipitated tyrosine kinases Syk and Lyn is increased. When erythrocytes are incubated with pervanadate together with PP1, a specific inhibitor of Src kinases, including Lyn, the Y-phosphorylation of band 3 is only partially reduced. Indeed, the PP1-resistant phosphorylation of band 3 precedes and is a prerequisite for its coimmunoprecipitation with Lyn, which interacts with the phosphoprotein via the SH2 domain of the enzyme, as proven by binding competition experiments. Upon recruitment to primarily phosphorylated band 3, Lyn catalyzes the secondary phosphorylation of the transmembrane protein. These data are consistent with the view that band 3 is phosphorylated in intact erythrocytes by both PP1-resistant (most likely Syk) and PP1-inhibited (most likely Lyn) tyrosine kinases according to a sequential phosphorylation process. Similar radiolabeled peptide maps are obtained by tryptic digestion of32P-band 3 isolated from either pervanadate-treated erythrocytes or red cell membranes incubated with exogenous Syk and Lyn. It has also been demonstrated by means of mass spectrometry that the primary phosphorylation of band 3 occurs at Y8 and Y21, while the secondary phosphorylation affects Y359 and Y904.
Collapse
|
41
|
Ruzzene M, Brunati AM, Sarno S, Marin O, Donella-Deana A, Pinna LA. Ser/Thr phosphorylation of hematopoietic specific protein 1 (HS1): implication of protein kinase CK2. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3065-72. [PMID: 10806407 DOI: 10.1046/j.1432-1033.2000.01333.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hematopoietic lineage cell-specific protein 1 (HS1), a tyrosine multiphosphorylated protein implicated in receptor-mediated apoptosis and proliferative responses, is shown here to become Ser/Thr phosphorylated upon incubation of platelets with radiolabeled inorganic phosphate. The in vivo Ser/Thr phosphorylation of HS1 is enhanced by okadaic acid and reduced by specific inhibitors of casein kinase (CK)2. In vitro, HS1 is an excellent substrate for either CK2 alpha subunit alone (Km = 47 nM) or CK2 holoenzyme, tested in the presence of polylysine (Km = 400 nM). Phosphorylation reaches a stoichiometry of about 2 mol phosphate per mol HS1 and occurs mainly at threonyl residue(s), mostly located in the N-terminal region, but also at seryl residue(s) residing in the central core of the molecule (208-402), as judged from experiments with deleted forms of HS1. Ser/Thr phosphorylation of HS1, either induced in vivo by okadaic acid or catalysed in vitro by CK2, potentiates subsequent phosphorylation at tyrosyl residues. These data indicate the possibility that regulation of HS1 may also be under the control of Ser/Thr phosphorylation, and suggest that in quiescent cells CK2 could play a role in inducing constitutive Tyr phosphorylation of HS1 in the absence of stimuli that activate the protein tyrosine kinase pathway.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del CNR and CRIBI, University of Padova, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Ruzzene M, Brunati AM, Sarno S, Donella-Deana A, Pinna LA. Hematopoietic lineage cell specific protein 1 associates with and down-regulates protein kinase CK2. FEBS Lett 1999; 461:32-6. [PMID: 10561491 DOI: 10.1016/s0014-5793(99)01409-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The catalytic (alpha) subunit of protein kinase CK2 and the hematopoietic specific protein 1 (HS1) display opposite effects on Ha-ras induced fibroblast transformation, by enhancing and counteracting it, respectively. Here we show the occurrence of physical association between HS1 and CK2alpha as judged from both far Western blot and plasmon resonance (BIAcore) analysis. Association of HS1 with CK2alpha is drastically reduced by the deletion of the HS1 C-terminal region (403-486) containing an SH3 domain. HS1, but not its deletion mutant HS1 Delta324-393, lacking a sequence similar to an acidic stretch of the regulatory beta-subunit of CK2, inhibits calmodulin phosphorylation by CK2alpha. These data indicate that HS1 physically interacts with CK2alpha and down-regulates its activity by a mechanism similar to the beta-subunit.
Collapse
Affiliation(s)
- M Ruzzene
- Dipartimento di Chimica Biologica and Centro per lo Studio delle Biomembrane del CNR, University of Padova, Viale G. Colombo, 335121, Padova, Italy
| | | | | | | | | |
Collapse
|