1
|
Peng W, Merlo LMF, Grabler S, Montgomery JD, Mandik-Nayak L. IDO2 Drives Autoantibody Production and Joint Inflammation in a Preclinical Model of Arthritis by Repressing Runx1 Function in B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1595-1604. [PMID: 39400244 DOI: 10.4049/jimmunol.2400445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
The immunomodulatory enzyme IDO2 is an essential mediator of autoantibody production and joint inflammation in preclinical models of autoimmune arthritis. Although originally identified as a tryptophan-catabolizing enzyme, we recently discovered a previously unknown nonenzymatic pathway is essential for the proarthritic function of IDO2. We subsequently identified Runx1 (Runt-related transcription factor 1) as a potential component of the nonenzymatic pathway IDO2 uses to drive arthritis. In this study, we find that IDO2 directly binds Runx1 and inhibits its localization to the nucleus, implicating Runx1 as a downstream component of IDO2 function. To directly test whether Runx1 mediates the downstream pathway driving B cell activation in arthritis, we bred B cell conditional Runx1-deficient (CD19cre Runx1flox/flox) mice onto the KRN.g7 arthritis model in the presence or absence of IDO2. Runx1 loss did not affect arthritis in the presence of IDO2; however, deleting Runx1 reversed the antiarthritic effect of IDO2 loss in this model. Further studies demonstrated that the IDO2-Runx1 interaction could be blocked with a therapeutic anti-IDO2 mAb in vitro and that Runx1 was required for IDO2 Ig's therapeutic effect in vivo. Taken together, these data demonstrate that IDO2 mediates autoantibody production and joint inflammation by acting as a repressor of Runx1 function in B cells and implicate therapeutic targeting of IDO2-Runx1 binding as a strategy to inhibit autoimmune arthritis and other autoantibody-mediated diseases.
Collapse
Affiliation(s)
- Weidan Peng
- Lankenau Institute for Medical Research, Wynnewood, PA
| | | | | | | | | |
Collapse
|
2
|
Ozturk K, Panwala R, Sheen J, Ford K, Jayne N, Portell A, Zhang DE, Hutter S, Haferlach T, Ideker T, Mali P, Carter H. Interface-guided phenotyping of coding variants in the transcription factor RUNX1. Cell Rep 2024; 43:114436. [PMID: 38968069 PMCID: PMC11345852 DOI: 10.1016/j.celrep.2024.114436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/15/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024] Open
Abstract
Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.
Collapse
Affiliation(s)
- Kivilcim Ozturk
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Jeanna Sheen
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Nathan Jayne
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Dong-Er Zhang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Stephan Hutter
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Torsten Haferlach
- MLL Munich Leukemia Laboratory, Max-Lebsche-Platz 31, 81377 Munich, Germany
| | - Trey Ideker
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Bhushan M, Kumar KR. An unusual case of chronic lymphocytic leukemia with trisomy 12 presenting with prolymphocytic transformation and t(8;21)(q22;q22). Clin Case Rep 2021; 9:2504-2506. [PMID: 33936733 PMCID: PMC8077250 DOI: 10.1002/ccr3.4059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/29/2022] Open
Abstract
First report of t(8;21)(q22;q22) in a patient with CLL. RUNX1-RUNX1T1 fusion gene resulting from the translocation may have played a role in the prolymphocytic transformation.
Collapse
Affiliation(s)
- Mishi Bhushan
- HematopathologyMedical City DallasMedical City Children's HospitalDallasTXUSA
| | - Kirthi R. Kumar
- HematopathologyForward Pathology SolutionsMedical City DallasMedical City Children's HospitalDallasTXUSA
| |
Collapse
|
4
|
Yu J, Kim S, Lee N, Jeon H, Lee J, Takami M, Rho J. Pax5 Negatively Regulates Osteoclastogenesis through Downregulation of Blimp1. Int J Mol Sci 2021; 22:ijms22042097. [PMID: 33672551 PMCID: PMC7923754 DOI: 10.3390/ijms22042097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/23/2022] Open
Abstract
Paired box protein 5 (Pax5) is a crucial transcription factor responsible for B-cell lineage specification and commitment. In this study, we identified a negative role of Pax5 in osteoclastogenesis. The expression of Pax5 was time-dependently downregulated by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) stimulation in osteoclastogenesis. Osteoclast (OC) differentiation and bone resorption were inhibited (68.9% and 48% reductions, respectively) by forced expression of Pax5 in OC lineage cells. Pax5 led to the induction of antiosteoclastogenic factors through downregulation of B lymphocyte-induced maturation protein 1 (Blimp1). To examine the negative role of Pax5 in vivo, we generated Pax5 transgenic (Pax5Tg) mice expressing the human Pax5 transgene under the control of the tartrate-resistant acid phosphatase (TRAP) promoter, which is expressed mainly in OC lineage cells. OC differentiation and bone resorption were inhibited (54.2–76.9% and 24.0–26.2% reductions, respectively) in Pax5Tg mice, thereby contributing to the osteopetrotic-like bone phenotype characterized by increased bone mineral density (13.0–13.6% higher), trabecular bone volume fraction (32.5–38.1% higher), trabecular thickness (8.4–9.0% higher), and trabecular number (25.5–26.7% higher) and decreased trabecular spacing (9.3–10.4% lower) compared to wild-type control mice. Furthermore, the number of OCs was decreased (48.8–65.3% reduction) in Pax5Tg mice. These findings indicate that Pax5 plays a negative role in OC lineage specification and commitment through Blimp1 downregulation. Thus, our data suggest that the Pax5–Blimp1 axis is crucial for the regulation of RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Jiyeon Yu
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Sumi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Nari Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
| | - Jun Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, College of Dentistry, Wonkwang University, Iksan 54538, Korea;
| | - Masamichi Takami
- Department of Pharmacology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawaku 142-8555, Japan;
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea; (J.Y.); (S.K.); (N.L.); (H.J.)
- Correspondence: ; Tel.: +82-42-821-6420; Fax: +82-42-822-7367
| |
Collapse
|
5
|
Kim Y, Kim HS, Sohn J, Ji JD. 1,25-Dihydroxyvitamin D 3 induces human myeloid cell differentiation via the mTOR signaling pathway. Biochem Biophys Res Commun 2019; 519:909-915. [PMID: 31563324 DOI: 10.1016/j.bbrc.2019.09.100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022]
Abstract
1,25-Dihydroxyvitamin D3 or 1,25(OH)2D3 is known to play an important role in the differentiation of human myeloid cells. However, the molecular mechanism underlying the 1,25(OH)2D3-mediated differentiation of human myeloid cells is incompletely understood. Here, we report that 1,25(OH)2D3 induces differentiation of human myeloid cell lines such as U937 and THP-1 cells via the mammalian target of rapamycin (mTOR) signaling pathway. Both the expression of the differentiation marker CD14 and activation of the mTOR signaling pathway were induced by 1,25(OH)2D3 in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 and THP-1 cells. The 1,25(OH)2D3-induced expression of CD14 in PMA-differentiated U937 and THP-1 cells was prevented by mTOR inhibitors, PP242 and Torin1. The 1,25(OH)2D3-induced morphological changes as characteristics of differentiated myeloid cells were also reversed after PP242 and Torin1 treatment. Silencing of either regulatory-associated protein of mTOR (Raptor) or rapamycin-insensitive companion of mTOR (Rictor) in PMA-differentiated THP-1 cells with small-interfering RNA resulted in the inhibition of CD14 expression and morphological changes induced by 1,25(OH)2D3, indicating that both mTORC1 and mTORC2 were important for the differentiation of myeloid THP-1 cells. Previous studies have shown that phosphatidic acid (PA) maintains the stability of the mTOR complex. Here we found that the attenuation of PA production with 1-butanol or a PLD inhibitor prevented the 1,25(OH)2D3-induced upregulation of CD14. Taken together, our results show that 1,25(OH)2D3 enhances the differentiation of human myeloid cells through the mTOR signaling pathway.
Collapse
Affiliation(s)
- Yongjin Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Hee Suk Kim
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea
| | - Jeongwon Sohn
- Department of Biochemistry, College of Medicine, Korea University, Seoul, South Korea.
| | - Jong Dae Ji
- Rheumatology, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
6
|
Chi Y, Huang Z, Chen Q, Xiong X, Chen K, Xu J, Zhang Y, Zhang W. Loss of runx1 function results in B cell immunodeficiency but not T cell in adult zebrafish. Open Biol 2019; 8:rsob.180043. [PMID: 30045885 PMCID: PMC6070721 DOI: 10.1098/rsob.180043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022] Open
Abstract
Transcription factor RUNX1 holds an integral role in multiple-lineage haematopoiesis and is implicated as a cofactor in V(D)J rearrangements during lymphocyte development. Runx1 deficiencies resulted in immaturity and reduction of lymphocytes in mice. In this study, we found that runx1W84X/W84X mutation led to the reduction and disordering of B cells, as well as the failure of V(D)J rearrangements in B cells but not T cells, resulting in antibody-inadequate-mediated immunodeficiency in adult zebrafish. By contrast, T cell development was not affected. The decreased number of B cells mainly results from excessive apoptosis in immature B cells. Disrupted B cell development results in runx1W84X/W84X mutants displaying a similar phenotype to common variable immunodeficiency—a primary immunodeficiency disease primarily characterized by frequent susceptibility to infection and deficient immune response, with marked reduction of antibody production of IgG, IgA and/or IgM. Our studies demonstrated an evolutionarily conserved function of runx1 in maturation and differentiation of B cells in adult zebrafish, which will serve as a valuable model for the study of immune deficiency diseases and their treatments.
Collapse
Affiliation(s)
- Yali Chi
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China.,Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Qi Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Xiaojie Xiong
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Kemin Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, People's Republic of China .,Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, People's Republic of China
| |
Collapse
|
7
|
Liu S, Xing Y, Lu W, Li S, Tian Z, Xing H, Tang K, Xu Y, Rao Q, Wang M, Wang J. RUNX1 inhibits proliferation and induces apoptosis of t(8;21) leukemia cells via KLF4-mediated transactivation of P57. Haematologica 2019; 104:1597-1607. [PMID: 30792202 PMCID: PMC6669147 DOI: 10.3324/haematol.2018.192773] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
RUNX1 is a key transcription factor in hematopoiesis and its disruption is one of the most common aberrations in acute myeloid leukemia. RUNX1 alterations affect its DNA binding capacity and transcriptional activities, leading to the deregulation of transcriptional targets, and abnormal proliferation and differentiation of myeloid cells. Identification of RUNX1 target genes and clarification of their biological functions are of great importance in the search for new therapeutic strategies for RUNX1-altered leukemia. In this study, we identified and confirmed that KLF4, a known tumor suppressor gene, as a direct target of RUNX1, was down-regulated in RUNX1-ETO leukemia. RUNX1 bound to KLF4 promoter in chromatin to activate its transcription, while the leukemogenic RUNX1-ETO fusion protein had little effect on this transactivation. KLF4 was also identified as a novel binding partner of RUNX1. RUNX1 interacted with KLF4 through Runt domain and further co-activated its target genes. However, RUNX1-ETO competed with RUNX1 to bind KLF4 through Runt and ETO domains, and abrogated transcription of KLF4. Finally, overexpression experiments indicated that RUNX1 inhibited proliferation and induced apoptosis of t(8;21) leukemia cells via KLF4-mediated upregulation of P57. These data suggest KLF4 dysregulation mediated by RUNX1-ETO enhances proliferation and retards apoptosis, and provides a potential target for therapy of t(8;21) acute myeloid leukemia.
Collapse
Affiliation(s)
- Shuang Liu
- State Key Laboratory of Experimental Hematology
| | - Yanyan Xing
- State Key Laboratory of Experimental Hematology
| | - Wenting Lu
- State Key Laboratory of Experimental Hematology
| | - Shouyun Li
- State Key Laboratory of Experimental Hematology
| | - Zheng Tian
- State Key Laboratory of Experimental Hematology
| | - Haiyan Xing
- State Key Laboratory of Experimental Hematology
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology
| | - Qing Rao
- State Key Laboratory of Experimental Hematology
| | - Min Wang
- State Key Laboratory of Experimental Hematology
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology .,National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| |
Collapse
|
8
|
van der Kouwe E, Staber PB. RUNX1-ETO: Attacking the Epigenome for Genomic Instable Leukemia. Int J Mol Sci 2019; 20:E350. [PMID: 30654457 PMCID: PMC6358732 DOI: 10.3390/ijms20020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Oncogenic fusion protein RUNX1-ETO is the product of the t(8;21) translocation, responsible for the most common cytogenetic subtype of acute myeloid leukemia. RUNX1, a critical transcription factor in hematopoietic development, is fused with almost the entire ETO sequence with the ability to recruit a wide range of repressors. Past efforts in providing a comprehensive picture of the genome-wide localization and the target genes of RUNX1-ETO have been inconclusive in understanding the underlying mechanism by which it deregulates native RUNX1. In this review; we dissect the current data on the epigenetic impact of RUNX1 and RUNX1-ETO. Both share similarities however, in recent years, research focused on epigenetic factors to explain their differences. RUNX1-ETO impairs DNA repair mechanisms which compromises genomic stability and favors a mutator phenotype. Among an increasing pool of mutated factors, regulators of DNA methylation are frequently found in t(8;21) AML. Together with the alteration of both, histone markers and distal enhancer regulation, RUNX1-ETO might specifically disrupt normal chromatin structure. Epigenetic studies on the fusion protein uncovered new mechanisms contributing to leukemogenesis and hopefully will translate into clinical applications.
Collapse
Affiliation(s)
- Emiel van der Kouwe
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Bernhard Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
9
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
10
|
Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood 2014; 124:2203-12. [PMID: 25150295 DOI: 10.1182/blood-2014-02-554543] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
RUNX1 is a master transcription factor in hematopoiesis and mediates the specification and homeostasis of hematopoietic stem and progenitor cells (HSPCs). Disruptions in RUNX1 are well known to lead to hematologic disease. In this study, we sought to identify and characterize RUNX1 target genes in HSPCs by performing RUNX1 chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) using a murine HSPC line and complementing this data with our previously described gene expression profiling of primary wild-type and RUNX1-deficient HSPCs (Lineage(-)/cKit(+)/Sca1(+)). From this analysis, we identified and confirmed that Hmga2, a known oncogene, as a direct target of RUNX1. Hmga2 was strongly upregulated in RUNX1-deficient HSPCs, and the promoter of Hmga2 was responsive in a cell-type dependent manner upon coexpression of RUNX1. Conditional Runx1 knockout mice exhibit expansion of their HSPCs and myeloid progenitors as hallmark phenotypes. To further validate and establish that Hmga2 plays a role in inducing HSPC expansion, we generated mouse models of HMGA2 and RUNX1 deficiency. Although mice lacking both factors continued to display higher frequencies of HSPCs, the expansion of myeloid progenitors was effectively rescued. The data presented here establish Hmga2 as a transcriptional target of RUNX1 and a critical regulator of myeloid progenitor expansion.
Collapse
|
11
|
Abstract
The t(12;21) chromosomal translocation, targeting the gene encoding the RUNX1 transcription factor, is observed in 25% of pediatric acute lymphoblastic leukemia (ALL) and is an initiating event in the disease. To elucidate the mechanism by which RUNX1 disruption initiates leukemogenesis, we investigated its normal role in murine B-cell development. This study revealed 2 critical functions of Runx1: (1) to promote survival and development of progenitors specified to the B-cell lineage, a function that can be substituted by ectopic Bcl2 expression, and (2) to enable the developmental transition through the pre-B stage triggered by the pre-B-cell antigen receptor (pre-BCR). Gene expression analysis and genomewide Runx1 occupancy studies support the hypothesis that Runx1 reinforces the transcription factor network governing early B-cell survival and development and specifically regulates genes encoding members of the Lyn kinase subfamily (key integrators of interleukin-7 and pre-BCR signaling) and the stage-specific transcription factors SpiB and Aiolos (critical downstream effectors of pre-BCR signaling). Interrogation of expression databases of 257 ALL samples demonstrated the specific down-regulation of the SPIB and IKZF3 genes (the latter encoding AIOLOS) in t(12;21) ALL, providing novel insight into the mechanism by which the translocation blocks B-cell development and promotes leukemia.
Collapse
|
12
|
Chuang LSH, Ito K, Ito Y. RUNX family: Regulation and diversification of roles through interacting proteins. Int J Cancer 2012. [PMID: 23180629 DOI: 10.1002/ijc.27964] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Runt-related transcription factors (RUNX) belong to an ancient family of metazoan genes involved in developmental processes. Through multiple protein-interacting partners, RUNX proteins have been implicated in diverse signaling pathways and cellular processes. The frequent inactivation of RUNX genes in cancer indicates crucial roles for RUNX in tumor suppression. This review discusses the abilities of RUNX proteins, in particular RUNX3, to integrate oncogenic signals or environmental cues and to initiate appropriate tumor suppressive responses.
Collapse
|
13
|
Hinoi E, Nakatani E, Yamamoto T, Iezaki T, Takahata Y, Fujita H, Ishiura R, Takamori M, Yoneda Y. The transcription factor paired box-5 promotes osteoblastogenesis through direct induction of Osterix and Osteocalcin. J Bone Miner Res 2012; 27:2526-34. [PMID: 22807088 DOI: 10.1002/jbmr.1708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/14/2012] [Accepted: 07/03/2012] [Indexed: 11/07/2022]
Abstract
Although skeletal abnormalities are seen in mice deficient of particular paired box (Pax) family proteins, little attention has been paid to their role in osteoblastogenesis so far. Here, we investigated the possible involvement of several Pax family members in mechanisms underlying the regulation of differentiation and maturation of osteoblasts. Among different Pax family members tested, Pax5 was not markedly expressed in murine calvarial osteoblasts before culture, but progressively expressed by osteoblasts under differentiation toward maturation. Immunoreactive Pax5 was highly detectable in primary cultured mature osteoblasts on immunoblotting and in osteoblastic cells attached to cancellous bone in mouse tibial sections on immunohistochemistry, respectively. Knockdown by small interfering RNA (siRNA) of endogenous Pax5 led to significant inhibition of the expression of Osteocalcin, and Osterix through deterioration of gene transactivation, in addition to a1(I)Collagen expression and alkaline phosphatase (ALP) staining, without affecting runt-related transcription factor-2 (Runx2) expression and cell viability in osteoblastic MC3T3-E1 cells. The introduction of Pax5 enhanced promoter activities of Osteocalcin and Osterix in a manner dependent on the paired domain in MC3T3-E1 cells. Putative Pax5 binding sites were identified in the 5'-flanking regions of mouse Osteocalcin and Osterix, whereas chromatin immunoprecipitation assay revealed the direct binding of Pax5 to particular regions of Osteocalcin and Osterix promoters in MC3T3-E1 cells. Overexpression of Pax5 significantly increased Osteocalcin, Osterix, and a1(I)Collagen expression, ALP activity, and Ca(2+) accumulation, without affecting Runx2 expression, in MC3T3-E1 cells. In vertebrae of transgenic mice predominantly expressing Pax5 in osteoblasts, a significant increase was seen in the ratio of bone volume over tissue volume and the bone formation rate. These findings suggest that Pax5 could positively regulate osteoblastic differentiation toward maturation in vitro, in addition to promoting bone formation and remodeling in vivo, as one of the transcription factors essential for controlling osteoblastogenesis independently of Runx2.
Collapse
Affiliation(s)
- Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Montero-Ruíz O, Alcántara-Ortigoza MA, Betancourt M, Juárez-Velázquez R, González-Márquez H, Pérez-Vera P. Expression of RUNX1 isoforms and its target gene BLK in childhood acute lymphoblastic leukemia. Leuk Res 2012; 36:1105-11. [PMID: 22748822 DOI: 10.1016/j.leukres.2012.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/16/2012] [Accepted: 05/22/2012] [Indexed: 12/11/2022]
Abstract
Bone marrow samples from children with acute lymphoblastic leukemia were analyzed for the expression of RUNX1a/b/c isoforms. Obtained patterns were associated with genetic abnormalities and the expression of the RUNX1 regulated gene BLK. RUNX1c was present in all patients, but the expected over-expression of RUNX1a was not observed. Over-expression of total RUNT domain isoforms was detected in patients with extra RUNX1 copies, and unexpectedly, in those with t(4;11). Only expression of the total RUNT domain-containing isoforms and BLK presented positive correlation. Results suggest a more complex role of RUNX1 in leukemogenesis than the proposed antagonism between the isoforms.
Collapse
Affiliation(s)
- Oreth Montero-Ruíz
- Laboratorio de Cultivo de Tejidos, Instituto Nacional de Pediatría, México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
15
|
Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17:1120-39. [PMID: 22201794 DOI: 10.2741/3977] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RUNX1 is a transcription factor that regulates critical processes in many aspects of hematopoiesis. RUNX1 is also integral in defining the definitive hematopoietic stem cell. In addition, many hematological diseases like myelodysplastic syndrome and myeloproliferative neoplasms have been associated with mutations in RUNX1. Located on chromosomal 21, the RUNX1 gene is involved in many forms of chromosomal translocations in leukemia. t(8;21) is one of the most common chromosomal translocations found in acute myeloid leukemia (AML), where it results in a fusion protein between RUNX1 and ETO. The RUNX1-ETO fusion protein is found in approximately 12% of all AML patients. In this review, we detail the structural features, functions, and models used to study both RUNX1 and RUNX1-ETO in hematopoiesis over the past two decades.
Collapse
Affiliation(s)
- Kentson Lam
- Moores Cancer Center, Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
16
|
Boyapati A, Ren B, Zhang DE. SERPINB13 is a novel RUNX1 target gene. Biochem Biophys Res Commun 2011; 411:115-20. [PMID: 21723253 DOI: 10.1016/j.bbrc.2011.06.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 06/16/2011] [Indexed: 12/26/2022]
Abstract
RUNX1 is a critical transcription factor during embryogenesis and neoplastic disease. To identify novel transcriptional targets of RUNX1 in the context of chromatin, we performed genome wide location analysis (ChIP-on-chip). Here we report that SERPINB13, a gene downregulated in head and neck cancers, is a novel RUNX1transcriptional target. RUNX1 binds the SERPINB13 promoter in chromatin to repress its transcription. Mutation of either RUNX1 binding site in the SERPINB13 promoter increased the activity of the promoter. Finally, overexpression of RUNX1 and concomitant decrease in SERPINB13 expression led to increased activity of cathepsin K, an enzyme inhibited by SERPINB13. These data demonstrate that RUNX1 is an important regulator of SERPINB13 and cathepsin K activity.
Collapse
Affiliation(s)
- Anita Boyapati
- The Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | | |
Collapse
|
17
|
Abstract
Translocation (12;21), the most frequent chromosomal aberration in childhood acute lymphoblastic leukemia, creates TEL/AML1 fusion gene. Resulting hybrid protein was shown to have a role in pre-leukemia establishment. To address its role for leukemic cell survival, we applied RNA interference to silence TEL/AML1 in leukemic cells. We designed and tested 11 different oligonucleotides targeting the TEL/AML1 fusion site. Using most efficient siRNAs, we achieved an average of 74-86% TEL/AML1 protein knockdown in REH and UOC-B6 leukemic cells, respectively. TEL/AML1 silencing neither decreased cell viability, nor induced apoptosis. On the contrary, it resulted in the modest but significant increase in the S phase fraction and in higher proliferation rate. Opposite effects on cell cycle distribution and proliferation were induced by AML1 silencing, thus, supporting our hypothesis that TEL/AML1 may block AML1-mediated promotion of G1/S progression through the cell cycle. In line with the lack of major effect on phenotype, we found no significant changes in clonogenic potential and global gene expression pattern upon TEL/AML1 depletion. Our data suggest that though TEL/AML1 is important for the (pre)leukemic clone development, it may be dispensable for leukemic cell survival and would not be a suitable target for gene-specific therapy.
Collapse
|
18
|
Advani AS, Lim K, Gibson S, Shadman M, Jin T, Copelan E, Kalaycio M, Sekeres MA, Sobecks R, Hsi E. OCT-2 expression and OCT-2/BOB.1 co-expression predict prognosis in patients with newly diagnosed acute myeloid leukemia. Leuk Lymphoma 2010; 51:606-12. [PMID: 20141429 DOI: 10.3109/10428191003592735] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OCT-2 and its co-activator, BOB.1, are B-cell associated transcription factors expressed in a subset of patients with acute myeloid leukemia (AML). We evaluated OCT-2 and BOB.1 expression by immunohistochemistry in patients with newly diagnosed AML. The median overall survival (OS) for patients with varying levels of OCT-2 expression was statistically different (p = 0.03) (OCT-2 <10%: 21.7 months; OCT-2 10-50%: 18.4 months; OCT-2 >50%: 11.6 months). On multivariate analysis, co-expression of OCT-2/BOB.1 remained predictive for achievement of complete remission (HR 0.44, p = 0.010) and increased risk of relapse (HR 2.30, p = 0.047). OCT-2 (per 10% increase) was associated with a decreased progression-free survival (HR 1.10, p = 0.036) and a trend toward a worse OS (HR 1.10, p = 0.063). OCT-2 may act as a cell survival factor in AML by mediating expression of downstream targets, such as BCL-2. These results will need to be validated prospectively.
Collapse
Affiliation(s)
- Anjali S Advani
- Leukemia Program, Department of Hematologic Oncology and Blood Disorders, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
AML1 is overexpressed in patients with myeloproliferative neoplasms and mediates JAK2V617F-independent overexpression of NF-E2. Blood 2010; 116:254-66. [PMID: 20339092 DOI: 10.1182/blood-2009-11-254664] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transcription factor NF-E2 is overexpressed in the majority of patients with polycythemia vera (PV). Concomitantly, 95% of these patients carry the JAK2(V617F) mutation. Although NF-E2 levels correlate with JAK2(V671F) allele burden in some PV cohorts, the molecular mechanism causing aberrant NF-E2 expression has not been described. Here we show that NF-E2 expression is also increased in patients with essential thrombocythemia and primary myelofibrosis independent of the presence of the JAK2(V617F) mutation. Characterization of the NF-E2 promoter revealed multiple functional binding sites for AML1/RUNX-1. Chromatin immunoprecipitation demonstrated AML1 binding to the NF-E2 promoter in vivo. Moreover, AML1 binding to the NF-E2 promoter was significantly increased in granulocytes from PV patients compared with healthy controls. AML1 mRNA expression was elevated in patients with PV, essential thrombocythemia, and primary myelofibrosis both in the presence and absence of JAK2(V617F). In addition, AML1 and NF-E2 expression were highly correlated. RNAi-mediated suppression of either AML1 or of its binding partner CBF-beta significantly decreased NF-E2 expression. Moreover, expression of the leukemic fusion protein AML/ETO drastically decreased NF-E2 protein levels. Our data identify NF-E2 as a novel AML1 target gene and delineate a role for aberrant AML1 expression in mediating elevated NF-E2 expression in MPN patients.
Collapse
|
20
|
Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:411-429. [PMID: 19063916 DOI: 10.1016/j.dci.2008.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 11/11/2008] [Accepted: 11/14/2008] [Indexed: 05/27/2023]
Abstract
The innate immune responses of early vertebrates, such as bony fishes, play a central role in host defence against infectious diseases and one of the most important effector cells of innate immunity are macrophages. In order for macrophages to be effective in host defence they must be present at all times in the tissues of their host and importantly, the host must be capable of rapidly increasing macrophage numbers during times of need. Hematopoiesis is a process of formation and development of mature blood cells, including macrophages. Hematopoiesis is controlled by soluble factors known as cytokines, that influence changes in transcription factors within the target cells, resulting in cell fate changes and the final development of specific effector cells. The processes involved in macrophage development have been largely derived from mammalian model organisms. However, recent advancements have been made in the understanding of macrophage development in bony fish, a group of organisms that rely heavily on their innate immune defences. Our understanding of the growth factors involved in teleost macrophage development, as well as the receptors and regulatory mechanisms in place to control them has increased substantially. Furthermore, model organisms such as the zebrafish have emerged as important instruments in furthering our understanding of the transcriptional control of cell development in fish as well as in mammals. This review highlights the recent advancements in our understanding of teleost macrophage development. We focused on the growth factors identified to be important in the regulation of macrophage development from a progenitor cell into a functional macrophage and discuss the important transcription factors that have been identified to function in teleost hematopoiesis. We also describe the findings of in vivo studies that have reinforced observations made in vitro and have greatly improved the relevance and importance of using teleost fish as model organisms for studying developmental processes.
Collapse
|
21
|
|
22
|
He G, Wu D, Sun A, Xue Y, Jin Z, Qiu H, Tang X, Miao M, Fu Z, Ma X, Wang X, Chen Z, Ruan C. B-Lymphoid and myeloid lineages biphenotypic acute leukemia with t(8;21)(q22;q22). Int J Hematol 2008; 87:132-136. [DOI: 10.1007/s12185-008-0029-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 10/18/2007] [Indexed: 11/27/2022]
|
23
|
Morgan XC, Ni S, Miranker DP, Iyer VR. Predicting combinatorial binding of transcription factors to regulatory elements in the human genome by association rule mining. BMC Bioinformatics 2007; 8:445. [PMID: 18005433 PMCID: PMC2211755 DOI: 10.1186/1471-2105-8-445] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 11/15/2007] [Indexed: 12/20/2022] Open
Abstract
Background Cis-acting transcriptional regulatory elements in mammalian genomes typically contain specific combinations of binding sites for various transcription factors. Although some cis-regulatory elements have been well studied, the combinations of transcription factors that regulate normal expression levels for the vast majority of the 20,000 genes in the human genome are unknown. We hypothesized that it should be possible to discover transcription factor combinations that regulate gene expression in concert by identifying over-represented combinations of sequence motifs that occur together in the genome. In order to detect combinations of transcription factor binding motifs, we developed a data mining approach based on the use of association rules, which are typically used in market basket analysis. We scored each segment of the genome for the presence or absence of each of 83 transcription factor binding motifs, then used association rule mining algorithms to mine this dataset, thus identifying frequently occurring pairs of distinct motifs within a segment. Results Support for most pairs of transcription factor binding motifs was highly correlated across different chromosomes although pair significance varied. Known true positive motif pairs showed higher association rule support, confidence, and significance than background. Our subsets of high-confidence, high-significance mined pairs of transcription factors showed enrichment for co-citation in PubMed abstracts relative to all pairs, and the predicted associations were often readily verifiable in the literature. Conclusion Functional elements in the genome where transcription factors bind to regulate expression in a combinatorial manner are more likely to be predicted by identifying statistically and biologically significant combinations of transcription factor binding motifs than by simply scanning the genome for the occurrence of binding sites for a single transcription factor.
Collapse
Affiliation(s)
- Xochitl C Morgan
- Institute for Cellular and Molecular Biology and Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712-0159, USA.
| | | | | | | |
Collapse
|
24
|
Abstract
The activity of the transcription factor paired box gene 5 (Pax5) is essential for many aspects of B lymphopoiesis including the initial commitment to the lineage, immunoglobulin rearrangement, pre-B cell receptor signalling and maintaining cell identity in mature B cells. Deregulated or reduced Pax5 activity has also been implicated in B-cell malignancies both in human disease and mouse models. Candidate gene approaches and biochemical analysis have revealed that Pax5 regulates B lymphopoiesis by concurrently activating B cell-specific gene expression as well as repressing the expression of genes, many of which are associated with non-B cell lineages. These studies have been recently complemented with more exhaustive microarray studies, which have identified and validated a large panel of Pax5 target genes. These target genes reveal a gene regulatory network, with Pax5 at its centre that controls the B-cell gene expression programme.
Collapse
|
25
|
Cbfbeta-SMMHC impairs differentiation of common lymphoid progenitors and reveals an essential role for RUNX in early B-cell development. Blood 2007; 111:1543-51. [PMID: 17940206 DOI: 10.1182/blood-2007-07-104422] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core-binding factor (CBF)-associated leukemia fusion protein CBFbeta-SMMHC impairs myeloid and lymphoid differentiation. By inhibiting RUNX function, the fusion oncoprotein predisposes specifically to acute myeloid leukemia in both patients and mouse models. We have shown that Cbfbeta-SMMHC expression leads to a sustained reduction of circulating B lymphocytes in the mouse. In this study, we demonstrate that the activation of Cbfbeta-SMMHC reduces pre-pro-B cells approximately 3-fold and pre-B cells more than 10-fold and that this differentiation block is cell-autonomous. The reduction of pre-pro-B cells coincided with an increase in apoptosis in this population. The number of common lymphoid progenitors (CLPs) were not affected; however, the expression of critical early B-cell factors Ebf1, Tcfe2a, and Pax5 was significantly reduced. In addition, Cbfbeta-SMMHC reduced Rag1 and Rag2 expression and impaired V(D)J recombination in the CLPs. Furthermore, CLPs expressing Cbfbeta-SMMHC also show inhibition of B cell-specific genes Cd79a, Igll1, VpreB1, and Blk. These results demonstrate that CBF/RUNX function is essential for the function of CLPs, the survival of pre-pro-B cells, and the establishment of a B lineage-specific transcriptional program. This study also provides a mechanistic basis for the myeloid-lineage bias of CBFbeta-SMMHC-associated leukemia.
Collapse
|
26
|
He G, Wu D, Sun A, Xue Y, Jin Z, Qiu H, Miao M, Tang X, Fu Z, Chen Z. CytCD79a expression in acute leukemia with t(8;21): biphenotypic or myeloid leukemia? ACTA ACUST UNITED AC 2007; 174:76-7. [PMID: 17350472 DOI: 10.1016/j.cancergencyto.2006.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/03/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
|
27
|
Starkova J, Madzo J, Cario G, Kalina T, Ford A, Zaliova M, Hrusak O, Trka J. The identification of (ETV6)/RUNX1-regulated genes in lymphopoiesis using histone deacetylase inhibitors in ETV6/RUNX1-positive lymphoid leukemic cells. Clin Cancer Res 2007; 13:1726-35. [PMID: 17325341 DOI: 10.1158/1078-0432.ccr-06-2569] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chimeric transcription factor ETV6/RUNX1 (TEL/AML1) is believed to cause pathologic block in lymphoid cell development via interaction with corepressor complex and histone deacetylase. We wanted to show the regulatory effect of ETV6/RUNX1 and its reversibility by histone deacetylase inhibitors (HDACi), as well as to identify potential ETV6/RUNX1-regulated genes. EXPERIMENTAL DESIGN We used luciferase assay to show the interaction of ETV6/RUNX1 protein, ETV6/RUNX1-regulated gene, and HDACi. To identify ETV6/RUNX1-regulated genes, we used expression profiling and HDACi in lymphoid cells. Next, using the flow cytometry and quantitative reverse transcription-PCR, we measured differentiation changes in gene and protein expression after HDACi treatment. RESULTS Luciferase assay showed repression of granzyme B expression by ETV6/RUNX1 protein and the reversibility of this effect by HDACi. Proving this regulatory role of ETV6/RUNX1, we identified, using complex statistical analysis, 25 genes that are potentially regulated by ETV6/RUNX1 protein. In four selected genes with known role in the cell cycle regulation (JunD, ACK1, PDGFRB, and TCF4), we confirmed expression changes after HDACi by quantitative analysis. After HDACi treatment, ETV6/RUNX1-positive cells showed immunophenotype changes resembling differentiation process compared with other leukemic cells (BCR/ABL, ETV6/PDGFRB positive). Moreover, ETV6/RUNX1-positive leukemic cells accumulated in G(1)-G(0) phase after HDACi whereas other B-lineage leukemic cell lines showed rather unspecific changes including induction of apoptosis and decreased proliferation. CONCLUSIONS Presented data support the hypothesis that HDACi affect ETV6/RUNX1-positive cells via direct interaction with ETV6/RUNX1 protein and that treatment with HDACi may release aberrant transcription activity caused by ETV6/RUNX1 chimeric transcription factor.
Collapse
Affiliation(s)
- Julia Starkova
- Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology/Oncology, 2nd Medical School, Charles University Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G, Dastugue N, Brousset P. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 2006; 109:3417-23. [PMID: 17179230 DOI: 10.1182/blood-2006-05-025221] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
We report a novel t(7;9)(q11;p13) translocation in 2 patients with B-cell acute lymphoblastic leukemia (B-ALL). By fluorescent in situ hybridization and 3′ rapid amplification of cDNA ends, we showed that the paired box domain of PAX5 was fused with the elastin (ELN) gene. After cloning the full-length cDNA of the chimeric gene, confocal microscopy of transfected NIH3T3 cells and Burkitt lymphoma cells (DG75) demonstrated that PAX5-ELN was localized in the nucleus. Chromatin immunoprecipitation clearly indicated that PAX5-ELN retained the capability to bind CD19 and BLK promoter sequences. To analyze the functions of the chimeric protein, HeLa cells were cotransfected with a luc-CD19 construct, pcDNA3-PAX5, and with increasing amounts of pcDNA3-PAX5-ELN. Thus, in vitro, PAX5-ELN was able to block CD19 transcription. Furthermore, real-time quantitative polymerase chain reaction (RQ-PCR) experiments showed that PAX5-ELN was able to affect the transcription of endogenous PAX5 target genes. Since PAX5 is essential for B-cell differentiation, this translocation may account for the blockage of leukemic cells at the pre–B-cell stage. The mechanism involved in this process appears to be, at least in part, through a dominant-negative effect of PAX5-ELN on the wild-type PAX5 in a setting ofPAX5 haploinsufficiency.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/metabolism
- Burkitt Lymphoma/pathology
- Cell Differentiation/genetics
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- Cell Nucleus/pathology
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 9/genetics
- Elastin/biosynthesis
- Elastin/genetics
- Genes, Dominant
- HeLa Cells
- Humans
- Male
- Mice
- NIH 3T3 Cells
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- PAX5 Transcription Factor/biosynthesis
- PAX5 Transcription Factor/genetics
- Promoter Regions, Genetic/genetics
- Transcription, Genetic/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Marina Bousquet
- INSERM U563, Centre de Physiopathologie de Toulouse Purpan, Place Baylac, 31059 Toulouse Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gibson SE, Dong HY, Advani AS, Hsi ED. Expression of the B cell-associated transcription factors PAX5, OCT-2, and BOB.1 in acute myeloid leukemia: associations with B-cell antigen expression and myelomonocytic maturation. Am J Clin Pathol 2006; 126:916-24. [PMID: 17074681 DOI: 10.1309/ujul60upup3yje93] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The aberrant expression of the B-cell transcription factor PAX5 has been described in a subset of acute myeloid leukemia (AML) with t(8;21)(q22;q22) in association with B-cell antigen expression. However, the expression of other B cell-associated transcription factors, particularly OCT-2 and its B cell-specific coactivator BOB.1, has not been described in AML. In this study, expression of PAX5, OCT-2 and BOB.1 was evaluated by immunohistochemical staining of bone marrow samples from 83 cases of AML. The expression patterns were correlated with t(8;21)(q22;q22), B cell-associated antigen expression, and AML subtype. We confirmed the expression of PAX5 in AML with t(8;21)(q22;q22), but also demonstrated its expression in cases that express B-cell antigens but lack this translocation. Although OCT-2 and BOB.1 were not associated with PAX5 expression, we report expression of OCT-2 in AML with myelomonocytic/monocytic maturation and BOB.1 in normal hematopoietic elements.
Collapse
Affiliation(s)
- Sarah E Gibson
- Department of Clinical Pathology, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
30
|
Valbuena JR, Medeiros LJ, Rassidakis GZ, Hao S, Wu CD, Chen L, Lin P. Expression of B Cell–Specific Activator Protein/PAX5 in Acute Myeloid Leukemia With t(8;21)(q22;q22). Am J Clin Pathol 2006. [DOI: 10.1309/lg0q0vxybetj4vhe] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
31
|
Peterson LF, Boyapati A, Ranganathan V, Iwama A, Tenen DG, Tsai S, Zhang DE. The hematopoietic transcription factor AML1 (RUNX1) is negatively regulated by the cell cycle protein cyclin D3. Mol Cell Biol 2005; 25:10205-19. [PMID: 16287839 PMCID: PMC1291252 DOI: 10.1128/mcb.25.23.10205-10219.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family of cyclin D proteins plays a crucial role in the early events of the mammalian cell cycle. Recent studies have revealed the involvement of AML1 transactivation activity in promoting cell cycle progression through the induction of cyclin D proteins. This information in combination with our previous observation that a region in AML1 between amino acids 213 and 289 is important for its function led us to investigate prospective proteins associating with this region. We identified cyclin D3 by a yeast two-hybrid screen and detected AML1 interaction with the cyclin D family by both in vitro pull-down and in vivo coimmunoprecipitation assays. Furthermore, we demonstrate that cyclin D3 negatively regulates the transactivation activity of AML1 in a dose-dependent manner by competing with CBFbeta for AML1 association, leading to a decreased binding affinity of AML1 for its target DNA sequence. AML1 and its fusion protein AML1-ETO have been shown to shorten and prolong the mammalian cell cycle, respectively. In addition, AML1 promotes myeloid cell differentiation. Thus, our observations suggest that the direct association of cyclin D3 with AML1 functions as a putative feedback mechanism to regulate cell cycle progression and differentiation.
Collapse
Affiliation(s)
- Luke F Peterson
- Dept. of Molecular Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F, Falini B. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res 2004; 64:7399-404. [PMID: 15492262 DOI: 10.1158/0008-5472.can-04-1865] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transcription factor PAX5 plays a key role in the commitment of hematopoietic precursors to the B-cell lineage, but its expression in acute leukemias has not been thoroughly investigated. Hereby, we analyzed routine biopsies from 360 acute leukemias of lymphoid (ALLs) and myeloid (AMLs) origin with a specific anti-PAX5 monoclonal antibody. Blasts from 150 B-cell ALLs showed strong PAX5 nuclear expression, paralleling that of CD79a in the cytoplasm. Conversely, PAX5 was not detected in 50 T-cell ALLs, including 20 cases aberrantly coexpressing CD79a. Among 160 cytogenetically/molecularly characterized AMLs, PAX5 was selectively detected in 15 of 42 cases bearing the t(8;21)/AML1-ETO rearrangement. Real-time reverse transcription-PCR studies in t(8;21)-AML showed a similar up-regulation of PAX5 transcript in all of the 8 tested samples (including 4 cases that were negative at anti-PAX5 immunostaining), suggesting that PAX5 is expressed in t(8;21)-AML more widely than shown by immunohistochemistry. Interestingly, PAX5(+) t(8;21)-AML also expressed CD79a and/or CD19 (major transcriptional targets of PAX5 in B-cells) in 10 of 12 evaluable cases. Our results indicate that PAX5 is a more specific marker than CD79a for B-cell ALL diagnosis. Moreover, among AMLs, PAX5 expression selectively clusters with t(8;21), allowing its immunohistochemical recognition in a proportion of cases, and likely explaining a peculiar biological feature of this subset of myeloid leukemias, i.e. the aberrant expression of B-cell genes.
Collapse
MESH Headings
- Antibodies, Monoclonal
- Antigens, CD/biosynthesis
- Antigens, CD19/biosynthesis
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/metabolism
- CD79 Antigens
- Cell Line, Tumor
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 8/genetics
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/biosynthesis
- Humans
- Immunohistochemistry
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/immunology
- Leukemia-Lymphoma, Adult T-Cell/metabolism
- Oncogene Proteins, Fusion/genetics
- PAX5 Transcription Factor
- RUNX1 Translocation Partner 1 Protein
- Receptors, Antigen, B-Cell/biosynthesis
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Translocation, Genetic
Collapse
Affiliation(s)
- Enrico Tiacci
- Institutes of Hematology and Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Maier H, Ostraat R, Gao H, Fields S, Shinton SA, Medina KL, Ikawa T, Murre C, Singh H, Hardy RR, Hagman J. Early B cell factor cooperates with Runx1 and mediates epigenetic changes associated with mb-1 transcription. Nat Immunol 2004; 5:1069-77. [PMID: 15361869 DOI: 10.1038/ni1119] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Accepted: 08/23/2004] [Indexed: 11/08/2022]
Abstract
Cd79a (called mb-1 here) encodes the Ig-alpha signaling component of the B cell receptor. The early B cell-specific mb-1 promoter was hypermethylated at CpG dinucleotides in hematopoietic stem cells but became progressively unmethylated as B cell development proceeded. The transcription factor Pax5 activated endogenous mb-1 transcription in a plasmacytoma cell line, but could not when the promoter was methylated. In this context, early B cell factor (EBF), a transcription factor required for B lymphopoiesis, potentiated activation of mb-1 by Pax5. EBF and the basic helix-loop-helix transcription factor E47 each contributed to epigenetic modifications of the mb-1 promoter, including CpG demethylation and nucleosomal remodeling. EBF function was enhanced by interaction with the transcription factor Runx1. These data suggest a molecular basis for the hierarchical dependence of Pax5 function on EBF and E2A in B lymphocyte development.
Collapse
Affiliation(s)
- Holly Maier
- Integrated Department of Immunology, National Jewish Medical and Research Center, Denver, Colorado 80206, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Runt-related (RUNX) gene family is composed of three members, RUNX1/AML1, RUNX2 and RUNX3, and encodes the DNA-binding (alpha) subunits of the Runt domain transcription factor polyomavirus enhancer-binding protein 2 (PEBP2)/core-binding factor (CBF), which is a heterodimeric transcription factor. RUNX1 is most frequently involved in human acute leukemia. RUNX2 shows oncogenic potential in mouse experimental system. RUNX3 is a strong candidate as a gastric cancer tumor suppressor. The beta subunit gene of PEBP2/CBF is also frequently involved in chromosome rearrangements associated with human leukemia. In this Overview, I will summarize how this growing field has been formed and what are the challenging new frontiers for better understanding of the oncogenic potential of this gene family.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|
35
|
Abstract
A common chromosomal translocation in acute myeloid leukemia (AML) involves the AML1 (acute myeloid leukemia 1, also called RUNX1, core binding factor protein (CBF alpha), and PEBP2 alpha B) gene on chromosome 21 and the ETO (eight-twenty one, also called MTG8) gene on chromosome 8. This translocation generates an AML1-ETO fusion protein. t(8;21) is associated with 12% of de novo AML cases and up to 40% in the AML subtype M2 of the French-American-British classification. Furthermore, it is also reported in a small portion of M0, M1, and M4 AML samples. Despite numerous studies on the function of AML1-ETO, the precise mechanism by which the fusion protein is involved in leukemia development is still not fully understood. In this review, we will discuss structural aspects of the fusion protein and the accumulated knowledge from in vitro analyses on AML1-ETO functions, and outline putative mechanisms of its leukemogenic potential.
Collapse
Affiliation(s)
- Luke F Peterson
- 1Department of Molecular and Experimental Medicine, The Scripps Research Institute, Mail Drop: MEM-L51, La Jolla, CA 92037, USA
| | | |
Collapse
|
36
|
Cho JY, Akbarali Y, Zerbini LF, Gu X, Boltax J, Wang Y, Oettgen P, Zhang DE, Libermann TA. Isoforms of the Ets transcription factor NERF/ELF-2 physically interact with AML1 and mediate opposing effects on AML1-mediated transcription of the B cell-specific blk gene. J Biol Chem 2004; 279:19512-22. [PMID: 14970218 DOI: 10.1074/jbc.m309074200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously isolated different isoforms of a new Ets transcription factor family member, NERF/ELF-2, NERF-2, NERF-1a, and NERF-1b. In contrast to the inhibitory isoforms NERF-1a and NERF-1b, NERF-2 acts as a transactivator of the B cell-specific blk promoter. We now report that NERF-2 and NERF-1 physically interact with AML1 (RUNX1), a frequent target for chromosomal translocations in leukemia. NERF-2 bound to AML1 via an interaction site located in a basic region upstream of the Ets domain. This is in contrast to most other Ets factors such as Ets-1 that bind to AML1 via the Ets domain, suggesting that different Ets factors utilize different domains for interaction with AML1. The interaction between AML1 and NERF-2 led to cooperative transactivation of the blk promoter, whereas the interaction between AML1 and NERF-1a led to repression of AML1-mediated transactivation. To delineate the differences in function of the different NERF isoforms, we determined that the transactivation domain of NERF-2 is encoded by the N-terminal 100 amino acids, which have been replaced in NERF-1a by a 19-amino acid transcriptionally inactive sequence. Furthermore, acidic domains A and B, which are conserved in NERF-2 and the related proteins ELF-1 and MEF/ELF-4, but not in NERF-1a, are largely responsible for NERF-2-mediated transactivation. Because translocation of the Ets factor Tel to AML1 is a frequent event in childhood pre-B leukemia, understanding the interaction of Ets factors with AML1 in the context of a B cell-specific promoter might help to determine the function of Ets factors and AML1 in leukemia.
Collapse
Affiliation(s)
- Je-Yoel Cho
- BIDMC Genomics Center and the New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, 4 Blackfan Circle, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The AML1 transcription factor, identified by the cloning of the translocation t(8;21) breakpoint, is one of the most frequent targets for chromosomal translocations in leukemia. Furthermore, polysomies and point mutations can also alter AML1 function. AML1, also called CBF alpha 2, PEBP alpha 2 or RUNX1, is thus implicated in a great number of acute leukemias via a variety of pathogenic mechanisms and seems to act either as an oncogene or a tumor suppressor gene. Characterization of AML1 knockout mice has shown that AML1 is necessary for normal development of all hematopoietic lineages and alterations in the overal functional level of AML1 can have a profound effect on hematopoiesis. Numerous studies have shown that AML1 plays a vital role in the regulation of expression of many genes involved in hematopoietic cell development, and the impairment of AML1 function disregulates the pathways leading to cellular proliferation and differentiation. However, heterozygous AML1 mutations alone may not be sufficient for the development of leukemia. A cumulative process of mutagenesis involving additional genetic events in functionally related molecules, may be necessary for the development of leukemia and may determine the leukemic phenotype. We review the known AML1 target genes, AML1 interacting proteins, AML1 gene alterations and their effects on AML1 function, and mutations in AML1-related genes associated with leukemia. We discuss the interconnections between all these genes in cell signaling pathways and their importance for future therapeutic developments.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 21/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Drug Design
- Gene Dosage
- Genes, Tumor Suppressor
- Growth Substances/physiology
- Hematopoiesis/genetics
- Humans
- Leukemia/genetics
- Mice
- Mice, Knockout
- Mutagenesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/physiology
- Neoplastic Syndromes, Hereditary/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/physiology
- Oncogenes
- Proto-Oncogene Proteins
- Receptors, Cell Surface/physiology
- Signal Transduction/physiology
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic/physiology
- Translocation, Genetic
Collapse
Affiliation(s)
- Joäelle Michaud
- Genetics and Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | | |
Collapse
|
38
|
Abstract
B lymphocyte development is regulated by the nuclear proteins Early B cell factor (EBF) and Pax-5. EBF and Pax-5 work separately and in concert to activate genes required for B cell differentiation. Recent studies have defined mechanisms by which these two factors control transcription, including chromatin remodeling activities and recruitment of partner proteins. This review addresses the structures, functions, and roles of these proteins in early B cell commitment and development, as well as in later stages of B cell differentiation.
Collapse
Affiliation(s)
- Holly Maier
- Integrated Department of Immunology, National Jewish Medical and Research Center, 1400 Jackson Street K516B, Denver, CO 80206, USA
| | | |
Collapse
|
39
|
Schwieger M, Löhler J, Friel J, Scheller M, Horak I, Stocking C. AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J Exp Med 2002; 196:1227-40. [PMID: 12417632 PMCID: PMC2194108 DOI: 10.1084/jem.20020824] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The translocation (8;21), generating the AML1-ETO fusion protein, is one of the most frequent chromosomal abnormalities associated with acute myelogenous leukemia (AML). To elucidate its role in oncogenesis, bone marrow (BM) cells were infected with a retroviral vector carrying AML1-ETO and transplanted into mice. In contrast to previous transgenic mouse models, we show that AML1-ETO directly stimulates granulopoiesis, suppresses erythropoiesis, and impairs the maturation of myeloid, B, and T lymphoid cells in vivo. To determine the significance of earlier findings that expression of the tumor suppressor ICSBP is often downregulated in AML myeloblasts, AML1-ETO was introduced into BM cells derived from mice lacking the interferon regulatory factor ICSBP. Our findings demonstrate that AML1-ETO synergizes with an ICSBP deficiency to induce myeloblastic transformation in the BM, reminiscent of AML.
Collapse
Affiliation(s)
- Maike Schwieger
- Department of Cell and Virus Genetics, Heinrich-Pette-Institut für Experimentelle Virologie und Immunologie, D-20251 Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Nancy A Speck
- Department of Biochemisty, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
41
|
Spender LC, Cornish GH, Sullivan A, Farrell PJ. Expression of transcription factor AML-2 (RUNX3, CBF(alpha)-3) is induced by Epstein-Barr virus EBNA-2 and correlates with the B-cell activation phenotype. J Virol 2002; 76:4919-27. [PMID: 11967309 PMCID: PMC136164 DOI: 10.1128/jvi.76.10.4919-4927.2002] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify cell proteins regulated by the Epstein-Barr virus (EBV) transcription factor EBNA-2, we analyzed a cell line with conditional EBNA-2 activity by using microarray expression profiling. This led to the identification of two novel target genes induced by EBNA-2. The first of these, interleukin-16, is an immunomodulatory cytokine involved in the regulation of CD4 T cells. The second, AML-2, is a member of the Runt domain family of transcription factors. Quiescent B cells initially expressed AML-1 but, 48 h after virus infection, the levels of AML-1 decreased dramatically, whereas the amount of AML-2 protein increased. Analysis of a panel of B-cell lines indicated that AML-2 expression is normally predominant in EBV latency III, whereas AML-1 is associated with EBV latency I or EBV-negative cells. The AML genes are the first example of cell transcription factors whose expression correlates with the latency I/III phenotype.
Collapse
Affiliation(s)
- Lindsay C Spender
- Ludwig Institute for Cancer Research, Imperial College Faculty of Medicine, London W2 1PG, United Kingdom
| | | | | | | |
Collapse
|
42
|
Emelyanov AV, Kovac CR, Sepulveda MA, Birshtein BK. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J Biol Chem 2002; 277:11156-64. [PMID: 11799127 DOI: 10.1074/jbc.m111763200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Pax5 (BSAP) is essential for B cell development and acts both as a transcriptional activator and a repressor. Using a yeast two-hybrid assay to identify potential coregulators of Pax5, we identified Daxx, a protein that is highly conserved, ubiquitously expressed, and essential for embryonic mouse development. The interaction between Pax5 and Daxx involves the partial homeodomain of Pax5 and the C-terminal fragment of Daxx. A component of promyelocytic leukemia protein nuclear bodies, Daxx has been implicated in apoptosis and characterized as a transcriptional corepressor. Upon transient transfection assay of Daxx in B cells expressing endogenous Daxx and Pax5, we observed not only transcriptional corepression but also, unexpectedly, coactivation in M12.4.1 and A20 mouse B cell lines. Pax5 domains required for coactivation were identified using 293T cells. Coactivation apparently involves recruitment of the CREB binding protein (CBP), because we precipitated complexes containing Pax5, Daxx, and CBP in B cell lines. These data suggest that Daxx can affect Pax5's roles as an activator or repressor in B cells and describe a role for Daxx as a transcriptional coactivator.
Collapse
Affiliation(s)
- Alexander V Emelyanov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
43
|
Barreda DR, Belosevic M. Transcriptional regulation of hemopoiesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:763-789. [PMID: 11602195 DOI: 10.1016/s0145-305x(01)00035-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The regulation of blood cell formation, or hemopoiesis, is central to the replenishment of mature effector cells of innate and acquired immune responses. These cells fulfil specific roles in the host defense against invading pathogens, and in the maintenance of homeostasis. The development of hemopoietic cells is under stringent control from extracellular and intracellular stimuli that result in the activation of specific downstream signaling cascades. Ultimately, all signal transduction pathways converge at the level of gene expression where positive and negative modulators of transcription interact to delineate the pattern of gene expression and the overall cellular hemopoietic response. Transcription factors, therefore, represent a nodal point of hemopoietic control through the integration of the various signaling pathways and subsequent modulation of the transcriptional machinery. Transcription factors can act both positively and negatively to regulate the expression of a wide range of hemopoiesis-relevant genes including growth factors and their receptors, other transcription factors, as well as various molecules important for the function of developing cells. The expression of these genes is dependent on the complex interactions between transcription factors, co-regulatory molecules, and specific binding sequences on the DNA. Recent advances in various vertebrate and invertebrate systems emphasize the importance of transcription factors for hemopoiesis control and the evolutionary conservation of several of such mechanisms. In this review we outline some of the key issues frequently identified in studies of the transcriptional regulation of hemopoietic gene expression. In teleosts, we expect that the characterization of several of these transcription factors and their regulatory mechanisms will complement recent advances in a number of fish systems where identification of cytokine and other hemopoiesis-relevant factors are currently under investigation.
Collapse
Affiliation(s)
- D R Barreda
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | |
Collapse
|
44
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
45
|
Alcalay M, Orleth A, Sebastiani C, Meani N, Chiaradonna F, Casciari C, Sciurpi MT, Gelmetti V, Riganelli D, Minucci S, Fagioli M, Pelicci PG. Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 2001; 20:5680-94. [PMID: 11607818 DOI: 10.1038/sj.onc.1204642] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of acute myeloid leukemia is associated with the appearance of oncogenic fusion proteins generated as a consequence of specific chromosome translocations. Of the two components of each fusion protein, one is generally a transcription factor, whereas the other partner is more variable in function, but often involved in the control of cell survival and apoptosis. As a consequence, AML-associated fusion proteins function as aberrant transcriptional regulators that interfere with the process of myeloid differentiation, determine a stage-specific arrest of maturation and enhance cell survival in a cell-type specific manner. The abnormal regulation of transcriptional networks occurs through common mechanisms that include recruitment of aberrant co-repressor complexes, alterations in chromatin remodeling, and disruption of specific subnuclear compartments. The identification and analysis of common and specific target genes regulated by AML fusion proteins will be of fundamental importance for the full understanding of acute myeloid leukemogenesis and for the implementation of disease-specific drug design.
Collapse
MESH Headings
- Cell Differentiation
- Cell Survival
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Homozygote
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- M Alcalay
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mikkola I, Bruun JA, Holm T, Johansen T. Superactivation of Pax6-mediated transactivation from paired domain-binding sites by dna-independent recruitment of different homeodomain proteins. J Biol Chem 2001; 276:4109-18. [PMID: 11069920 DOI: 10.1074/jbc.m008882200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pax6 genes encode evolutionary conserved transcription factors that act high up in the regulatory hierarchy controlling development of central organs such as the eyes and the central nervous system. These proteins contain two DNA-binding domains. The N-terminal paired domain is separated from a paired-type homeodomain by a linker region, and a transactivation domain is located C-terminal to the homeodomain. Vertebrate Pax6 genes express a paired-less isoform of Pax6 (Pax6DeltaPD) from an internal start codon in the coding region between the paired domain and homeodomain. We now provide evidence for an interaction between the full-length isoform and Pax6DeltaPD, which enhances the transactivation activity of Pax6 from paired domain-binding sites. The paired-like homeodomain protein Rax behaved similarly to Pax6DeltaPD. Both Pax6DeltaPD and Rax bound to the homeodomain of Pax6 in vitro in the absence of specific DNA binding. Coimmunoprecipitation experiments following cotransfection confirmed the existence of complexes between Pax6 and Pax6DeltaPD, Pax6 and Rax, and Pax6DeltaPD and Rax in vivo. Interestingly, the C-terminal subdomain of the paired domain and the homeodomain can interact with each other. The paired domain can also interact with itself. Surprisingly, GST pull-down assays revealed that the homeodomains of such diverse proteins as Chx10, Six3, Lhx2, En-1, Prep1, Prox1, and HoxB1 could all bind to Pax6, and several of these enhanced Pax6-mediated transactivation upon coexpression. Since many homeodomain proteins are coexpressed with Pax6 in several tissues during development, our results indicate the existence of novel regulatory interactions that may be important for fine tuning of gene regulation.
Collapse
Affiliation(s)
- I Mikkola
- Department of Biochemistry, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | |
Collapse
|
47
|
Vilches C, Gardiner CM, Parham P. Gene structure and promoter variation of expressed and nonexpressed variants of the KIR2DL5 gene. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6416-21. [PMID: 11086080 DOI: 10.4049/jimmunol.165.11.6416] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two variants of the novel KIR2DL5 gene (KIR2DL5.1 and.2) were identified in genomic DNA of a single donor. However, only the KIR2DL5.1 variant was transcribed in PBMC. In this study, analysis of seven additional donors reveals two new variants of the KIR2DL5 gene and indicates that transcription, or its lack, are consistently associated with particular variants of this gene. Comparison of the complete nucleotide sequences of the exons and introns of KIR2DL5.1 and KIR2DL5.2 reveals no structural abnormalities, but similar open reading frames for both variants. In contrast, the promoter region of KIR2DL5 shows a high degree of sequence polymorphism that is likely relevant for expression. Substitution within a putative binding site for the transcription factor acute myeloid leukemia gene 1 could determine the lack of expression for some KIR2DL5 variants.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- Gene Expression Regulation/immunology
- Gene Expression Regulation, Neoplastic/immunology
- Genes, Immunoglobulin
- Genetic Variation/immunology
- Humans
- Killer Cells, Natural/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Molecular Sequence Data
- Mutation
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Open Reading Frames/immunology
- Promoter Regions, Genetic/immunology
- Proto-Oncogene Proteins
- Pseudogenes/immunology
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/isolation & purification
- Receptors, KIR
- Sequence Homology, Nucleic Acid
- Transcription Factors/genetics
- Transcription, Genetic/immunology
Collapse
Affiliation(s)
- C Vilches
- Departments of Structural Biology and Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
48
|
Odaka Y, Mally A, Elliott LT, Meyers S. Nuclear import and subnuclear localization of the proto-oncoprotein ETO (MTG8). Oncogene 2000; 19:3584-97. [PMID: 10951564 DOI: 10.1038/sj.onc.1203689] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ETO (MTG8) was first described due to its involvement in the (8;21) translocation frequently observed in acute myeloid leukemias. In the t(8;21) the AML1 gene on chromosome 21 is fused to ETO on chromosome 8. The resultant hybrid protein is comprised of the DNA binding domain of AML-1 and the majority of ETO. This study examines the subnuclear distributions of ETO, AML-1B and AML-1/ETO proteins fused to green fluorescence protein in living cells using fluorescence microscopy. Further, we identified a 40 amino acid portion of ETO (amino acids 241-280) that was sufficient to cause nuclear import of green fluorescent protein. Mutational analysis demonstrated that lysine 265 and/or arginine 266 were required for nuclear import of ETO, but that the surrounding basic residues were not critical. ETO interacted with the nuclear import proteins importin-alpha and beta in vitro, and mutations in ETO that abolish nuclear localization also abolished the in vitro interaction with importin-alpha and beta. These data suggest that ETO enters the nucleus via an importin-mediated pathway. Additionally, ETO and AML-1/ETO co-localized to punctate nuclear bodies distinct from those containing promyelocytic leukemia protein. Nuclear body formation was dependent upon a region of ETO N-terminal to the nuclear localization signal. Thus, ETO and AML-1/ETO reside in potentially novel subnuclear compartments.
Collapse
Affiliation(s)
- Y Odaka
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center School of Medicine, Shreveport 71130, USA
| | | | | | | |
Collapse
|
49
|
Kovac CR, Emelyanov A, Singh M, Ashouian N, Birshtein BK. BSAP (Pax5)-importin alpha 1 (Rch1) interaction identifies a nuclear localization sequence. J Biol Chem 2000; 275:16752-7. [PMID: 10748034 DOI: 10.1074/jbc.m001551200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BSAP (Pax5) is an essential transcription factor for early B cell and central nervous system development. In later B cell development, BSAP has been implicated in the regulation of 3' Ig enhancers and a number of B cell-specific genes. Previous studies have suggested a role for BSAP-interacting proteins in the regulation of the function of BSAP. Using the yeast two-hybrid system, we identified importin alpha1 (Rch1) as a BSAP-interacting protein. Importin alpha proteins have been shown to escort proteins into the nucleus through interaction with a nuclear localization signal (NLS), composed of short stretches of basic amino acids. A predicted NLS in BSAP (NKRKRDE, located at amino acids 195-201 in the central domain) was confirmed to be essential for interaction with importin alpha1 by the yeast two-hybrid assay. Physical interaction between BSAP and importin alpha1 was detected in vitro by a glutathione S-transferase (GST) pulldown assay. The NLS sequence in BSAP conferred nuclear localization to green fluorescent protein (GFP)-BSAP fusion proteins. Although the N-terminal paired (DNA-binding) domain of BSAP also conferred nuclear localization when coupled to green fluorescent protein, this domain did not bind to importin alpha1 in the yeast two-hybrid assay. The NLS sequence in the central domain of BSAP binds to the C-terminal 98-amino acid fragment of importin alpha1.
Collapse
Affiliation(s)
- C R Kovac
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
50
|
Maitra S, Atchison M. BSAP can repress enhancer activity by targeting PU.1 function. Mol Cell Biol 2000; 20:1911-22. [PMID: 10688639 PMCID: PMC110809 DOI: 10.1128/mcb.20.6.1911-1922.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/1999] [Accepted: 12/08/1999] [Indexed: 11/20/2022] Open
Abstract
PU.1 and BSAP are transcription factors crucial for proper B-cell development. Absence of PU.1 results in loss of B, T, and myeloid cells, while absence of BSAP results in an early block in B-cell differentiation. Both of these proteins bind to the immunoglobulin kappa chain 3' enhancer, which is developmentally regulated during B-cell differentiation. We find here that BSAP can repress 3' enhancer activity. This repression can occur in plasmacytoma lines or in a non-B-cell line in which the enhancer is activated by addition of the appropriate enhancer binding transcription factors. We show that the transcription factor PU.1 is a target of the BSAP-mediated repression. Although PU.1 and BSAP can physically interact through their respective DNA binding domains, this interaction does not affect DNA binding. When PU.1 function is assayed in isolation on a multimerized PU.1 binding site, BSAP targets a portion of the PU.1 transactivation domain (residues 7 to 30) for repression. The BSAP inhibitory domain (residues 358 to 385) is needed for this repression. Interestingly, the coactivator protein p300 can eliminate this BSAP-mediated repression. We also show that PU.1 can inhibit BSAP transactivation and that this repression requires PU.1 amino acids 7 to 30. Transfection of p300 resulted in only a partial reversal of PU.1-mediated repression of BSAP. When PU.1 function is assayed in the context of the immunoglobulin kappa chain 3' enhancer and associated binding proteins, BSAP represses PU.1 function by a distinct mechanism. This repression does not require the PU.1 transactivation or PEST domains and cannot be reversed by p300 expression. The possible roles of BSAP and PU.1 antagonistic activities in hematopoietic development are discussed.
Collapse
Affiliation(s)
- S Maitra
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|