1
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
2
|
Structural basis for α-bungarotoxin insensitivity of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2019; 160:107660. [PMID: 31163179 DOI: 10.1016/j.neuropharm.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023]
Abstract
The ten types of nicotinic acetylcholine receptor α-subunits show substantial sequence homology, yet some types confer high affinity for α-bungarotoxin, whereas others confer negligible affinity. Combining sequence alignments with structural data reveals three residues unique to α-toxin-refractory α-subunits that coalesce within the 3D structure of the α4β2 receptor and are predicted to fit between loops I and II of α-bungarotoxin. Mutating any one of these residues, Lys189, Ile196 or Lys153, to the α-toxin-permissive counterpart fails to confer α-bungarotoxin binding. However, mutating both Lys189 and Ile196 affords α-bungarotoxin binding with an apparent dissociation constant of 104 nM, while combining mutation of Lys153 reduces the dissociation constant to 22 nM. Analogous residue substitutions also confer high affinity α-bungarotoxin binding upon α-toxin-refractory α2 and α3 subunits. α4β2 receptors engineered to bind α-bungarotoxin exhibit slow rates of α-toxin association and dissociation, and competition by cholinergic ligands typical of muscle nicotinic receptors. Receptors engineered to bind α-bungarotoxin co-sediment with muscle nicotinic receptors on sucrose gradients, and mirror single channel signatures of their α-toxin-refractory counterparts. Thus the inability of α-bungarotoxin to bind to neuronal nicotinic receptors arises from three unique and interdependent residues that coalesce within the receptor's 3D structure.
Collapse
|
3
|
Abstract
Three-finger toxins (TFTs) are well-recognized non-enzymatic venom proteins found in snakes. However, although TFTs exhibit accelerated evolution, the drivers of this evolution remain poorly understood. The structural complexes between long-chain α-neurotoxins, a subfamily of TFTs, and their nicotinic acetylcholine receptor targets have been determined in previous research, providing an opportunity to address such questions. In the current study, we observed several previously identified positively selected sites (PSSs) and the highly variable C-terminal loop of these toxins at the toxin/receptor interface. Of interest, analysis of the molecular adaptation of the toxin-recognition regions in the corresponding receptors provided no statistical evidence for positive selection. However, these regions accumulated abundant amino acid variations in the receptors from the prey of snakes, suggesting that accelerated substitution of TFTs could be a consequence of adaptation to these variations. To the best of our knowledge, this atypical evolution, initially discovered in scorpions, is reported in snake toxins for the first time and may be applicable for the evolution of toxins from other venomous animals.
Collapse
Affiliation(s)
- Xian-Hong Ji
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shang-Fei Zhang
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:
| | - Shun-Yi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; E-mail:
| |
Collapse
|
4
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
5
|
Inter-residue coupling contributes to high-affinity subtype-selective binding of α-bungarotoxin to nicotinic receptors. Biochem J 2013; 454:311-21. [PMID: 23802200 DOI: 10.1042/bj20130638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The crystal structure of a pentameric α7 ligand-binding domain chimaera with bound α-btx (α-bungarotoxin) showed that of the five conserved aromatic residues in α7, only Tyr¹⁸⁴ in loop C of the ligand-binding site was required for high-affinity binding. To determine whether the contribution of Tyr¹⁸⁴ depends on local residues, we generated mutations in an α7/5HT(3A) (5-hydroxytryptamine type 3A) receptor chimaera, individually and in pairs, and measured ¹²⁵I-labelled α-btx binding. The results show that mutations of individual residues near Tyr¹⁸⁴ do not affect α-btx affinity, but pairwise mutations decrease affinity in an energetically coupled manner. Kinetic measurements show that the affinity decreases arise through increases in the α-btx dissociation rate with little change in the association rate. Replacing loop C in α7 with loop C from the α-btx-insensitive α2 or α3 subunits abolishes high-affinity α-btx binding, but preserves acetylcholine-elicited single channel currents. However, in both the α2 and α3 construct, mutating either residue that flanks Tyr¹⁸⁴ to its α7 counterpart restores high-affinity α-btx binding. Analogously, in α7, mutating both residues that flank Tyr¹⁸⁴ to the α2 or α3 counterparts abolishes high-affinity α-btx binding. Thus interaction between Tyr¹⁸⁴ and local residues contributes to high-affinity subtype-selective α-btx binding.
Collapse
|
6
|
Complex between α-bungarotoxin and an α7 nicotinic receptor ligand-binding domain chimaera. Biochem J 2013; 454:303-310. [PMID: 23800261 DOI: 10.1042/bj20130636] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To identify high-affinity interactions between long-chain α-neurotoxins and nicotinic receptors, we determined the crystal structure of the complex between α-btx (α-bungarotoxin) and a pentameric ligand-binding domain constructed from the human α7 AChR (acetylcholine receptor) and AChBP (acetylcholine-binding protein). The complex buries ~2000 Ų (1 Å=0.1 nm) of surface area, within which Arg³⁶ and Phe³² from finger II of α-btx form a π-cation stack that aligns edge-to-face with the conserved Tyr¹⁸⁴ from loop-C of α7, while Asp³⁰ of α-btx forms a hydrogen bond with the hydroxy group of Tyr¹⁸⁴. These inter-residue interactions diverge from those in a 4.2 Å structure of α-ctx (α-cobratoxin) bound to AChBP, but are similar to those in a 1.94 Å structure of α-btx bound to the monomeric α1 extracellular domain, although compared with the monomer-bound complex, the α-btx backbone exhibits a large shift relative to the protein surface. Mutational analyses show that replacing Tyr¹⁸⁴ with a threonine residue abolishes high-affinity α-btx binding, whereas replacing with a phenylalanine residue maintains high affinity. Comparison of the α-btx complex with that coupled to the agonist epibatidine reveals structural rearrangements within the binding pocket and throughout each subunit. The overall findings highlight structural principles by which α-neurotoxins interact with nicotinic receptors.
Collapse
|
7
|
Criado M, Valor LM, Mulet J, Gerber S, Sala S, Sala F. Expression and functional properties of α7 acetylcholine nicotinic receptors are modified in the presence of other receptor subunits. J Neurochem 2012; 123:504-14. [DOI: 10.1111/j.1471-4159.2012.07931.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/30/2012] [Accepted: 08/20/2012] [Indexed: 01/03/2023]
Affiliation(s)
- Manuel Criado
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Luis M. Valor
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - José Mulet
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Susana Gerber
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Salvador Sala
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| | - Francisco Sala
- Instituto de Neurociencias; Universidad Miguel Hernández-CSIC; Alicante Spain
| |
Collapse
|
8
|
Bruederle CE, Gay J, Shyng SL. A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels. Traffic 2011; 12:1242-56. [PMID: 21649805 DOI: 10.1111/j.1600-0854.2011.01227.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ATP-sensitive potassium (K(ATP) ) channel consisting of sulfonylurea receptor 1 (SUR1) and inward-rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2, while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live-cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin-binding peptide labeled with a fluorescent dye. We show that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for K(ATP) channels and support a role of SUR1 in this trafficking process.
Collapse
Affiliation(s)
- Cathrin E Bruederle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
9
|
Tammimäki A, Horton WJ, Stitzel JA. Recent advances in gene manipulation and nicotinic acetylcholine receptor biology. Biochem Pharmacol 2011; 82:808-19. [PMID: 21704022 DOI: 10.1016/j.bcp.2011.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 11/26/2022]
Abstract
Pharmacological and immunological methods have been valuable for both identifying some native nicotinic acetylcholine receptor (nAChR) subtypes that exist in vivo and determining the neurobiological and behavioral role of certain nAChR subtypes. However, these approaches suffer from shortage of subtype specific ligands and reliable immunological reagents. Consequently, genetic approaches have been developed to complement earlier approaches to identify native nAChR subtypes and to assess the contribution of nAChRs to brain function and behavior. In this review we describe how assembly partners, knock-in mice and targeted lentiviral re-expression of genes have been utilized to improve our understanding of nAChR neurobiology. In addition, we summarize emerging genetic tools in nAChR research.
Collapse
Affiliation(s)
- Anne Tammimäki
- Institute for Behavioral Genetics, University of Colorado at Boulder, UCB 447, Boulder, CO 80309, United States.
| | | | | |
Collapse
|
10
|
Peng C, Chen W, Sanders T, Chew G, Liu J, Hawrot E, Chi C. Chemical synthesis and characterization of two α4/7-conotoxins. Acta Biochim Biophys Sin (Shanghai) 2010; 42:745-53. [PMID: 20801929 DOI: 10.1093/abbs/gmq074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
α-Conotoxins are small disulfide-constrained peptides that act as potent and selective antagonists on specific subtypes of nicotinic acetylcholine receptors (nAChRs). We previously cloned two α-conotoxins, Mr1.1 from the molluscivorous Conus marmoreus and Lp1.4 from the vermivorous Conus leopardus. Both of them have the typical 4/7-type framework of the subfamily of α-conotoxins that act on neuronal nAChRs. In this work, we chemically synthesized these two toxins and characterized their functional properties. The synthetic Mr1.1 could primarily inhibit acetylcholine (ACh)-evoked currents reversibly in the oocyte-expressed rat α7 nAChR, whereas Lp1.4 was an unexpected specific blocker of the mouse fetal muscle α1β1γδ receptor. Although their inhibition affinities were relatively low, their unique receptor recognition profiles make them valuable tools for toxin-receptor interaction studies. Mr1.1 could also suppress the inflammatory response to pain in vivo, suggesting that it should be further investigated with respect to its molecular role in analgesia and its mechanism or therapeutic target for the treatment of pain.
Collapse
Affiliation(s)
- Can Peng
- Institute of Protein Research, Tongji University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Aldea M, Castillo M, Mulet J, Sala S, Criado M, Sala F. Role of the extracellular transmembrane domain interface in gating and pharmacology of a heteromeric neuronal nicotinic receptor. J Neurochem 2010; 113:1036-45. [DOI: 10.1111/j.1471-4159.2010.06665.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Moise L, Liu J, Pryazhnikov E, Khiroug L, Jeromin A, Hawrot E. K(V)4.2 channels tagged in the S1-S2 loop for alpha-bungarotoxin binding provide a new tool for studies of channel expression and localization. Channels (Austin) 2010; 4:115-23. [PMID: 20139708 DOI: 10.4161/chan.4.2.10878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report the first successful insertion of an engineered, high-affinity alpha-bungarotoxin (Bgtx) binding site into a voltage-gated ion channel, K(V)4.2, using a short, intra-protein embedded sequence (GGWRYYESSLEPYPDGG), derived from a previously described mimotope peptide, HAP. A major benefit to this approach is the ability to live-image the distribution and fate of functional channels on the plasma membrane surface. The Bgtx binding sequence was introduced into the putative extracellular loop between the S1 and S2 transmembrane domains of K(V)4.2. Following co-expression with KChIP3 in tsA201 cells, S1-S2 HAP-tagged channels express at levels comparable to wild-type K(V)4.2, and their activation and inactivation kinetics are minimally altered under most conditions. Binding assays, as well as live staining of surface-expressed K(V)4.2 channels with fluorescent-Bgtx, readily demonstrate specific binding of Bgtx to HAP-tagged K(V)4.2 expressed on the surface of tsA201 cells. Similar live-imaging results were obtained with HAP-tagged K(V)4.2 transfected into hippocampal neurons in primary culture suggesting applicability for future in vivo studies. Furthermore, the activation kinetics of S1-S2-tagged K(V)4.2 channels are minimally affected by the binding of Bgtx, suggesting a limited role if any for the S1-S2 loop in voltage sensing or gating associated conformational changes. Successful functional insertion of the HAP sequence into the S1-S2 linker of K(V)4.2 suggests that other related channels may similarly be amenable to this tagging strategy.
Collapse
Affiliation(s)
- Leonard Moise
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
13
|
Criado M, Castillo M, Mulet J, Sala F, Sala S. Role of loop 9 on the function of neuronal nicotinic receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:654-9. [PMID: 20043866 DOI: 10.1016/j.bbamem.2009.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
We have studied the role of loop 9 in the function of neuronal nicotinic receptors. By systematically mutating the residues in the loop we have determined that the most important amino acids determining the coupling of binding to gating are the ones closer to the transmembrane region. Single mutations at location E173 in homomeric alpha7 receptors destroyed their function by completely abolishing the current while preserving the expression at the membrane. In contrast, heteromeric receptor alpha3beta4 with the same mutations retained some function. We conclude that loop 9 has a different role in the function of homomeric and heteromeric receptors.
Collapse
Affiliation(s)
- Manuel Criado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, 03550-Alicante, Spain
| | | | | | | | | |
Collapse
|
14
|
Criado M, Mulet J, Castillo M, Gerber S, Sala S, Sala F. The loop between β-strands β2 and β3 and its interaction with the N-terminal α-helix is essential for biogenesis of α7 nicotinic receptors. J Neurochem 2010; 112:103-11. [DOI: 10.1111/j.1471-4159.2009.06439.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Caffery PM, Krishnaswamy A, Sanders T, Liu J, Hartlaub H, Klysik J, Cooper E, Hawrot E. Engineering neuronal nicotinic acetylcholine receptors with functional sensitivity to alpha-bungarotoxin: a novel alpha3-knock-in mouse. Eur J Neurosci 2009; 30:2064-76. [PMID: 20128845 DOI: 10.1111/j.1460-9568.2009.07016.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We report here the construction of a novel knock-in mouse expressing chimeric alpha3 nicotinic acetylcholine receptor (nAChR) subunits with pharmacological sensitivity to alpha-bungarotoxin (alphaBTX). Sensitivity was generated by substituting five amino acids in the loop C (beta9-beta10) region of the mouse alpha3 subunit with the corresponding residues from the alpha1 subunit of the muscle type receptor from Torpedo californica. To demonstrate the utility of the underlying concept, expressed alpha3[5] subunits were characterized in the superior cervical ganglia (SCG) of homozygous knock-in mice, where the synaptic architecture of postsynaptic alpha3-containing nAChR clusters could now, for the first time, be directly visualized and interrogated by live-staining with rhodamine-conjugated alphaBTX. Consistent with the postsynaptic localization of ganglionic nAChRs, the alphaBTX-labeled puncta colocalized with a marker for synaptic varicosities. Following in vivo deafferentation, these puncta persisted but with significant changes in intensity and distribution that varied with the length of the recovery period. Compound action potentials and excitatory postsynaptic potentials recorded from SCG of mice homozygous for alpha3[5] were abolished by 100 nmalphaBTX, even in an alpha7 null background, demonstrating that synaptic throughput in the SCG is completely dependent on the alpha3-subunit. In addition, we observed that the genetic background of various inbred and outbred mouse lines greatly affects the functional expression of alpha3[5]-nAChRs, suggesting a powerful new approach for exploring the molecular mechanisms underlying receptor assembly and trafficking. As alphaBTX-sensitive sequences can be readily introduced into other nicotinic receptor subunits normally insensitive to alphaBTX, the findings described here should be applicable to many other receptors.
Collapse
Affiliation(s)
- Philip M Caffery
- Department of Molecular Pharmacology, Brown University, Providence, RI, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Peng C, Chen W, Han Y, Sanders T, Chew G, Liu J, Hawrot E, Chi C, Wang C. Characterization of a novel alpha4/4-conotoxin, Qc1.2, from vermivorous Conus quercinus. Acta Biochim Biophys Sin (Shanghai) 2009; 41:858-64. [PMID: 19779652 DOI: 10.1093/abbs/gmp077] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As part of continuing studies of the identification of gene organization and cloning of novel alpha-conotoxins, the first alpha4/4-conotoxin identified in a vermivorous Conus species, designated Qc1.2, was originally obtained by cDNA and genomic DNA cloning from Conus quercinus collected in the South China Sea. The predicted mature toxin of Qc1.2 contains 14 amino acid residues with two disulfide bonds (I-III, II-IV connectivity) in a native globular configuration. The mature peptide of Qc1.2 is supposed to contain an N-terminal post-translationally processed pyroglutamate residue and a free carboxyl C-terminus. This peptide was chemically synthesized and refolded for further characterization of its functional properties. The synthetic Qc1.2 has two interconvertible conformations in aqueous solution, which may be due to the cis-trans isomerization of the two successive Pro residues in its first Cys loop. Using the Xenopus oocyte heterologous expression system, Qc1.2 was shown to selectively inhibit both rat neuronal alpha3beta2 and alpha3beta4 subtypes of nicotinic acetylcholine receptors with low potency. A block of about 63% and 37% of the ACh-evoked currents was observed, respectively, and the toxin dissociated rapidly from the receptors. Compared with other characterized alpha-conotoxin members, the unusual structural features in Qc1.2 that confer to its receptor recognition profile are addressed.
Collapse
Affiliation(s)
- Can Peng
- Institute of Protein Research, Tongji University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Paulo JA, Brucker WJ, Hawrot E. Proteomic analysis of an alpha7 nicotinic acetylcholine receptor interactome. J Proteome Res 2009; 8:1849-58. [PMID: 19714875 DOI: 10.1021/pr800731z] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) is well established as the principal high-affinity alpha-bungarotoxin-binding protein in the mammalian brain. We isolated carbachol-sensitive alpha-bungarotoxin-binding complexes from total mouse brain tissue by affinity immobilization followed by selective elution, and these proteins were fractionated by SDS-PAGE. The proteins in subdivided gel lane segments were tryptically digested, and the resulting peptides were analyzed by standard mass spectrometry. We identified 55 proteins in wild-type samples that were not present in comparable brain samples from alpha7 nAChR knockout mice that had been processed in a parallel fashion. Many of these 55 proteins are novel proteomic candidates for interaction partners of the alpha7 nAChR, and many are associated with multiple signaling pathways that may be implicated in alpha7 function in the central nervous system. The newly identified potential protein interactions, together with the general methodology that we introduce for alpha-bungarotoxin-binding protein complexes, form a new platform for many interesting follow-up studies aimed at elucidating the physiological role of neuronal alpha7 nAChRs.
Collapse
Affiliation(s)
- Joao A Paulo
- Graduate Program in Molecular Biology, Cell Biology and Biochemistry and Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
18
|
Castillo M, Mulet J, Aldea M, Gerber S, Sala S, Sala F, Criado M. Role of the N-terminal α-helix in biogenesis of α7 nicotinic receptors. J Neurochem 2009; 108:1399-409. [DOI: 10.1111/j.1471-4159.2009.05924.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Peng C, Han Y, Sanders T, Chew G, Liu J, Hawrot E, Chi C, Wang C. alpha4/7-conotoxin Lp1.1 is a novel antagonist of neuronal nicotinic acetylcholine receptors. Peptides 2008; 29:1700-7. [PMID: 18588930 PMCID: PMC4826758 DOI: 10.1016/j.peptides.2008.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 05/26/2008] [Accepted: 05/27/2008] [Indexed: 11/18/2022]
Abstract
Cone snails comprise approximately 700 species of venomous molluscs which have evolved the ability to generate multiple toxins with varied and exquisite selectivity. alpha-Conotoxin is a powerful tool for defining the composition and function of nicotinic acetylcholine receptors which play a crucial role in excitatory neurotransmission and are important targets for drugs and insecticides. An alpha4/7 conotoxin, Lp1.1, originally identified by cDNA and genomic DNA cloning from Conus leopardus, was found devoid of the highly conserved Pro residue in the first intercysteine loop. To further study this toxin, alpha-Lp1.1 was chemically synthesized and refolded into its globular disulfide isomer. The synthetic Lp1.1 induced seizure and paralysis on freshwater goldfish and selectively reversibly inhibited ACh-evoked currents in Xenopus oocytes expressing rat alpha3beta2 and alpha6alpha3beta2 nAChRs. Comparing the distinct primary structure with other functionally related alpha-conotoxins could indicate structural features in Lp1.1 that may be associated with its unique receptor recognition profile.
Collapse
Affiliation(s)
- Can Peng
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Yuhong Han
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | - Tanya Sanders
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Geoffrey Chew
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Jing Liu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | - Chengwu Chi
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunguang Wang
- Institute of Protein Research, Tongji University, Shanghai 200092, China
- Corresponding author and address: Chunguang Wang, Institute of Protein Research, Tongji University 1239 Siping Road, Shanghai 200092, China Tel.: +86-21-65984347 Fax: +86-21-65988403
| |
Collapse
|
20
|
Osipov AV, Kasheverov IE, Makarova YV, Starkov VG, Vorontsova OV, Ziganshin RK, Andreeva TV, Serebryakova MV, Benoit A, Hogg RC, Bertrand D, Tsetlin VI, Utkin YN. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification. J Biol Chem 2008; 283:14571-80. [PMID: 18381281 DOI: 10.1074/jbc.m802085200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ. Muscle and neuronal nicotinic acetylcholine receptors. FEBS J 2007; 274:3799-845. [PMID: 17651090 DOI: 10.1111/j.1742-4658.2007.05935.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are integral membrane proteins and prototypic members of the ligand-gated ion-channel superfamily, which has precursors in the prokaryotic world. They are formed by the assembly of five transmembrane subunits, selected from a pool of 17 homologous polypeptides (alpha1-10, beta1-4, gamma, delta, and epsilon). There are many nAChR subtypes, each consisting of a specific combination of subunits, which mediate diverse physiological functions. They are widely expressed in the central nervous system, while, in the periphery, they mediate synaptic transmission at the neuromuscular junction and ganglia. nAChRs are also found in non-neuronal/nonmuscle cells (keratinocytes, epithelia, macrophages, etc.). Extensive research has determined the specific function of several nAChR subtypes. nAChRs are now important therapeutic targets for various diseases, including myasthenia gravis, Alzheimer's and Parkinson's diseases, and schizophrenia, as well as for the cessation of smoking. However, knowledge is still incomplete, largely because of a lack of high-resolution X-ray structures for these molecules. Nevertheless, electron microscopy studies on 2D crystals of nAChR from fish electric organs and the determination of the high-resolution X-ray structure of the acetylcholine binding protein (AChBP) from snails, a homolog of the extracellular domain of the nAChR, have been major steps forward and the data obtained have important implications for the design of subtype-specific drugs. Here, we review some of the latest advances in our understanding of nAChRs and their involvement in physiology and pathology.
Collapse
Affiliation(s)
- Dimitra Kalamida
- Department of Pharmacy, University of Patras, Rio Patras, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu L, Chew G, Hawrot E, Chi C, Wang C. Two potent alpha3/5 conotoxins from piscivorous Conus achatinus. Acta Biochim Biophys Sin (Shanghai) 2007; 39:438-44. [PMID: 17558449 DOI: 10.1111/j.1745-7270.2007.00301.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Every cone snail produces a mixture of different conotoxins and secretes them to immobilize their prey and predators. alpha3/5 Conotoxins, isolated from fish-hunting cone snails, target muscle nicotinic acetylcholine receptors. The structure and function of alpha3/5 conotoxin from the piscivorous Conus achatinus have not been studied. We synthesized two pentadecamer peptides, Ac1.1a and Ac1.1b, with appropriate disulfide bonding, based on cDNA sequences of alpha3/5 conotoxins from C. achatinus. Ac1.1a and Ac1.1b differ by only one amino acid residue. They have similar potency on blocking recombinant mouse muscle acetylcholine receptor expressed in Xenopus laevis oocytes, with IC50 values of 36 nM and 26 nM, respectively. For Ac1.1b, deletion of the first three N-terminal amino acids did not change its activity, indicating that the N-terminus is not involved in the interaction with its receptor. Furthermore, our experiments indicate that both toxins strongly prefer the alpha1-delta subunit interface instead of the alpha1-gamma binding site on the mouse muscle nicotinic acetylcholine receptor. These peptides provide additional tools for the study of the structure and function of nicotinic receptor.
Collapse
Affiliation(s)
- Li Liu
- Institute of Protein Research, Tongji University, Shanghai 200092, China
| | | | | | | | | |
Collapse
|
23
|
Tournier JM, Maouche K, Coraux C, Zahm JM, Cloëz-Tayarani I, Nawrocki-Raby B, Bonnomet A, Burlet H, Lebargy F, Polette M, Birembaut P. alpha3alpha5beta2-Nicotinic acetylcholine receptor contributes to the wound repair of the respiratory epithelium by modulating intracellular calcium in migrating cells. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:55-68. [PMID: 16400009 PMCID: PMC1592670 DOI: 10.2353/ajpath.2006.050333] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs), present in human bronchial epithelial cells (HBECs), have been shown in vitro to modulate cell shape. Because cell spreading and migration are important mechanisms involved in the repair of the bronchial epithelium, we investigated the potential role of nAChRs in the wound repair of the bronchial epithelium. In vivo and in vitro, alpha3alpha5beta2-nAChRs accumulated in migrating HBECs involved in repairing a wound, whereas alpha7-nAChRs were predominantly observed in stationary confluent cells. Wound repair was improved in the presence of nAChR agonists, nicotine, and acetylcholine, and delayed in the presence of alpha3beta2 neuronal nAChR antagonists, mecamylamine, alpha-conotoxin MII, and kappa-bungarotoxin; alpha-bungarotoxin, an antagonist of alpha7-nAChR, had no effect. Addition of nicotine to a repairing wound resulted in a dose-dependent transient increase of intracellular calcium in migrating cells that line the wound edge. Mecamylamine and kappa-bungarotoxin inhibited both the cell-migration speed and the nicotine-induced intracellular calcium increase in wound-repairing migrating cells in vitro. On the contrary alpha-bungarotoxin had no significant effect on migrating cells. These results suggest that alpha3alpha5beta2-nAChRs actively contribute to the wound repair process of the respiratory epithelium by modulating intracellular calcium in wound-repairing migrating cells.
Collapse
|
24
|
McCann CM, Bracamontes J, Steinbach JH, Sanes JR. The cholinergic antagonist alpha-bungarotoxin also binds and blocks a subset of GABA receptors. Proc Natl Acad Sci U S A 2006; 103:5149-54. [PMID: 16549768 PMCID: PMC1458809 DOI: 10.1073/pnas.0600847103] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polypeptide snake toxin alpha-bungarotoxin (BTX) has been used in hundreds of studies on the structure, function, and development of the neuromuscular junction because it binds tightly and specifically to the nicotinic acetylcholine receptors (nAChRs) at this synapse. We show here that BTX also binds to and blocks a subset of GABA(A) receptors (GABA(A)Rs) that contain the GABA(A)R beta3 subunit. These results introduce a previously unrecognized tool for analysis of GABA(A)Rs but may complicate interpretation of some studies on neuronal nAChRs.
Collapse
Affiliation(s)
- Corey M. McCann
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
| | - John Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joe Henry Steinbach
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R. Sanes
- *Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138; and
- To whom correspondence should be addressed at:
Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138. E-mail:
| |
Collapse
|
25
|
Celie PHN, Klaassen RV, van Rossum-Fikkert SE, van Elk R, van Nierop P, Smit AB, Sixma TK. Crystal Structure of Acetylcholine-binding Protein from Bulinus truncatus Reveals the Conserved Structural Scaffold and Sites of Variation in Nicotinic Acetylcholine Receptors. J Biol Chem 2005; 280:26457-66. [PMID: 15899893 DOI: 10.1074/jbc.m414476200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of acetylcholine-binding protein (AChBP) from the mollusk Lymnaea stagnalis is the established model for the ligand binding domains of the ligand-gated ion channel family, which includes nicotinic acetylcholine, 5-hydroxytryptamine (5-HT3), gamma-aminobutyric acid (GABA), types A and C, and glycine receptors. Here we present the crystal structure of a remote homolog, AChBP from Bulinus truncatus, which reveals both the conserved structural scaffold and the sites of variation in this receptor family. These include rigid body movements of loops that are close to the transmembrane interface in the receptors and changes in the intermonomer contacts, which alter the pentamer stability drastically. Structural, pharmacological and mutational analysis of both AChBPs shows how 3 amino acid changes in the binding site contribute to a 5-10-fold difference in affinity for nicotinic ligands. Comparison of these structures will be valuable for improving structure-function studies of ligand-gated ion channel receptors, including signal transduction, homology modeling, and drug design.
Collapse
Affiliation(s)
- Patrick H N Celie
- Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
26
|
Nirthanan S, Gwee MCE. Three-finger alpha-neurotoxins and the nicotinic acetylcholine receptor, forty years on. J Pharmacol Sci 2004; 94:1-17. [PMID: 14745112 DOI: 10.1254/jphs.94.1] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The discovery, about forty years ago, of alpha-bungarotoxin, a three-finger alpha-neurotoxin from Bungarus multicinctus venom, enabled the isolation of the nicotinic acetylcholine receptor (nAChR), making it one of the most thoroughly characterized receptors today. Since then, the sites of interaction between alpha-neurotoxins and nAChRs have largely been delineated, revealing the remarkable plasticity of the three-finger toxin fold that has optimally evolved to utilize different combinations of functional groups to generate a panoply of target specificities to discern subtle differences between nAChR subtypes. New facets in toxinology have now broadened the scope for the use of alpha-neurotoxins in scientific discovery. For instance, the development of short, combinatorial library-derived, synthetic peptides that bind with sub-nanomolar affinity to alpha-bungarotoxin and prevent its interaction with muscle nAChRs has led to the in vivo neutralization of experimental alpha-bungarotoxin envenomation, while the successful introduction of pharmatopes bearing "alpha-bungarotoxin-sensitive sites" into toxin-insensitive nAChRs has permitted the use of various alpha-neurotoxin tags to localize and characterize new receptor subtypes. More ambitious strategies can now be envisaged for engineering rationally designed novel activities on three-finger toxin scaffolds to generate lead peptides of therapeutic value that target the nicotinic pharmacopoeia. This review details the progress made towards achieving this goal.
Collapse
|
27
|
Sanders T, Hawrot E. A novel pharmatope tag inserted into the beta4 subunit confers allosteric modulation to neuronal nicotinic receptors. J Biol Chem 2004; 279:51460-5. [PMID: 15448163 DOI: 10.1074/jbc.m409533200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alpha-Bungarotoxin, the classic nicotinic antagonist, has high specificity for muscle type alpha1 subunits in nicotinic acetylcholine receptors. In this study, we show that an 11-amino-acid pharmatope sequence, containing residues important for alpha-bungarotoxin binding to alpha1, confers functional alpha-bungarotoxin sensitivity when strategically placed into a neuronal non-alpha subunit, normally insensitive to this toxin. Remarkably, the mechanism of toxin inhibition is allosteric, not competitive as with neuromuscular nicotinic receptors. Our findings argue that alpha-bungarotoxin binding to the pharmatope, inserted at a subunit-subunit interface diametrically distinct from the agonist binding site, interferes with subunit interface movements critical for receptor activation. Our results, taken together with the structural similarities between nicotinic and GABAA receptors, suggest that this allosteric mechanism is conserved in the Cys-loop ion channel family. Furthermore, as a general strategy, the engineering of allosteric inhibitory sites through pharmatope tagging offers a powerful new tool for the study of membrane proteins.
Collapse
Affiliation(s)
- Tanya Sanders
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
28
|
Trombino S, Cesario A, Margaritora S, Granone P, Motta G, Falugi C, Russo P. Alpha7-nicotinic acetylcholine receptors affect growth regulation of human mesothelioma cells: role of mitogen-activated protein kinase pathway. Cancer Res 2004; 64:135-45. [PMID: 14729617 DOI: 10.1158/0008-5472.can-03-1672] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study presents data suggesting that both human mesothelioma (cell lines and human mesothelioma biopsies) and human normal mesothelial cells express receptors for acetylcholine and that stimulation of these receptors by nicotine prompted cell growth via activation of nicotinic cholinergic receptors. Thus, these data demonstrate that: (a) human mesothelioma cells and human biopsies of mesothelioma as well as of normal pleural mesothelial cells express functionally alpha-7 nicotinic acethlycholine receptors, evaluated by alpha-bungarotoxin-FITC binding, receptor binding assay, Western blot, and reverse transcription-PCR; (b) choline acetyltransferase immunostaining is present in mesothelioma cells; (c) mesothelioma cell growth is modulated by the cholinergic system in which agonists (i.e., nicotine) has a proliferative effect, and antagonists (i.e., curare) has an inhibitory effect, evaluated by cell cloning, DNA synthesis and cell cycle; (d) nicotine induces Ca(+2) influx, evaluated by [(45)Ca(2+)] uptake, and consequently activation of mitogen-activated protein kinase pathway (extracellular signal-regulated kinase and p90(RSK) phosphorylation), evaluated by Western blot; and (e) apoptosis mechanisms in mesothelioma cells are under the control of the cholinergic system (nicotine antiapoptotic via induction of nuclear factor-kappaB complexes and phosphorylation of Bad at Ser(112); curare proapoptotic via G(0)-G(1) arrest p21(waf-1) dependent but p53 independent). The involvement of the nonneuronal cholinergic system in mesothelioma appears reasonable and open up new therapeutic strategies.
Collapse
Affiliation(s)
- Sonya Trombino
- Department of Biology, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Tsetlin VI, Hucho F. Snake and snail toxins acting on nicotinic acetylcholine receptors: fundamental aspects and medical applications. FEBS Lett 2003; 557:9-13. [PMID: 14741333 DOI: 10.1016/s0014-5793(03)01454-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This review covers recent data on interactions of nicotinic acetylcholine receptors (AChR) with snake venom proteins (alpha- and kappa-neurotoxins, 'weak' toxins recently shown to act on AChRs), as well as with peptide alpha-conotoxins from Conus snails. Mutations of AChRs and toxins, X-ray/nuclear magnetic resonance structures of alpha-neurotoxin bound to AChR fragments, and the X-ray structure of the acetylcholine-binding protein were used by several groups to build models for the alpha-neurotoxin-AChR complexes. Application of snake toxins and alpha-conotoxins for pharmacological distinction of muscle, neuronal and neuronal-like AChR subtypes and for other medical purposes is briefly discussed.
Collapse
Affiliation(s)
- V I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
30
|
Levandoski MM, Piket B, Chang J. The anthelmintic levamisole is an allosteric modulator of human neuronal nicotinic acetylcholine receptors. Eur J Pharmacol 2003; 471:9-20. [PMID: 12809947 DOI: 10.1016/s0014-2999(03)01796-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L-[-]-2,3,5,6-Tetrahydro-6-phenylimidazo[2,1b]-thiazole hydrochloride (levamisole) is an anthelmintic that targets the nicotinic acetylcholine receptors of parasitic nematodes. We report here the effects of levamisole on human neuronal alpha 3 beta 2 and alpha 3 beta 4 nicotinic receptors, heterologously expressed in Xenopus oocytes and studied with the voltage clamp method. Applied alone, levamisole was a very weak partial agonist for the two subunit combinations. When co-applied with acetylcholine, micromolar concentrations of levamisole potentiated responses, while millimolar concentrations inhibited them; these effects were complex functions of both acetylcholine and levamisole concentrations. The differences in the levamisole effects on the two receptor combinations suggest that the effects are mediated by the beta subunit. Several combinations of agonist and anthelmintic gave the dual potentiation/inhibition behavior, suggesting that the modulatory effects are general. Levamisole inhibition showed macroscopic characteristics of open channel block. Several results led us to conclude that levamisole potentiation occurs through noncompetitive binding to the receptor. We propose pseudo-site binding for noncompetitive potentiation by levamisole.
Collapse
Affiliation(s)
- Mark M Levandoski
- Department of Chemistry, Grinnell College, P.O. Box 805, Grinnell, IA 50112, USA.
| | | | | |
Collapse
|
31
|
Marinou M, Tzartos SJ. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides. Biochem J 2003; 372:543-54. [PMID: 12614199 PMCID: PMC1223412 DOI: 10.1042/bj20021537] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 02/10/2003] [Accepted: 03/04/2003] [Indexed: 02/07/2023]
Abstract
The neuronal alpha7 nicotinic acetylcholine receptor (AChR) binds the neurotoxin alpha-bungarotoxin (alpha-Bgt). Fine mapping of the alpha-Bgt-binding site on the human alpha7 AChR was performed using synthetic peptides covering the entire extracellular domain of the human alpha7 subunit (residues 1-206). Screening of these peptides for (125)I-alpha-Bgt binding resulted in the identification of at least two toxin-binding sites, one at residues 186-197, which exhibited the best (125)I-alpha-Bgt binding, and one at residues 159-165, with weak toxin-binding capacity; these correspond, respectively, to loops C and IV of the agonist-binding site. Toxin binding to the alpha7(186-197) peptide was almost completely inhibited by unlabelled alpha-Bgt or d -tubocurarine. Alanine substitutions within the sequence 186-198 revealed a predominant contribution of aromatic and negatively charged residues to the binding site. This sequence is homologous to the alpha-Bgt binding site of the alpha1 subunit (residues 188-200 in Torpedo AChR). In competition experiments, the soluble peptides alpha7(186-197) and Torpedo alpha1(184-200) inhibited the binding of (125)I-alpha-Bgt to the immobilized alpha7(186-197) peptide, to native Torpedo AChR, and to the extracellular domain of the human alpha1 subunit. These results suggest that the toxin-binding sites of the neuronal alpha7 and muscle-type AChRs bind to identical or overlapping sites on the alpha-Bgt molecule. In support of this, when synthetic alpha-Bgt peptides were tested for binding to the recombinant extracellular domains of the human alpha7 and alpha1 subunits, and to native Torpedo and alpha7 AChR, the results indicated that alpha-Bgt interacts with both neuronal and muscle-type AChRs through its central loop II and C-terminal tail.
Collapse
Affiliation(s)
- Martha Marinou
- Department of Biochemistry, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521 Athens, Greece
| | | |
Collapse
|
32
|
Arredondo J, Nguyen VT, Chernyavsky AI, Bercovich D, Orr-Urtreger A, Kummer W, Lips K, Vetter DE, Grando SA. Central role of alpha7 nicotinic receptor in differentiation of the stratified squamous epithelium. J Cell Biol 2002; 159:325-36. [PMID: 12391028 PMCID: PMC2173052 DOI: 10.1083/jcb.200206096] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Several ganglionic nicotinic acetylcholine receptor (nAChR) types are abundantly expressed in nonneuronal locations, but their functions remain unknown. We found that keratinocyte alpha7 nAChR controls homeostasis and terminal differentiation of epidermal keratinocytes required for formation of the skin barrier. The effects of functional inactivation of alpha7 nAChR on keratinocyte cell cycle progression, differentiation, and apoptosis were studied in cell monolayers treated with alpha-bungarotoxin or antisense oligonucleotides and in the skin of Acra7 homozygous mice lacking alpha7 nAChR channels. Elimination of the alpha7 signaling pathway blocked nicotine-induced influx of 45Ca2+ and also inhibited terminal differentiation of these cells at the transcriptional and/or translational level. On the other hand, inhibition of the alpha7 nAChR pathway favored cell cycle progression. In the epidermis of alpha7-/- mice, the abnormalities in keratinocyte gene expression were associated with phenotypic changes characteristic of delayed epidermal turnover. The lack of alpha7 was associated with up-regulated expression of the alpha3 containing nAChR channels that lack alpha5 subunit, and both homomeric alpha9- and heteromeric alpha9alpha10-made nAChRs. Thus, this study demonstrates that ACh signaling through alpha7 nAChR channels controls late stages of keratinocyte development in the epidermis by regulating expression of the cell cycle progression, apoptosis, and terminal differentiation genes and that these effects are mediated, at least in part, by alterations in transmembrane Ca2+ influx.
Collapse
Affiliation(s)
- Juan Arredondo
- Department of Dermatology, UC Davis Medical Center, University of California-Davis, 4860 Y Street, Sacramento, CA 95817, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Moise L, Zeng H, Caffery P, Rogowski RS, Hawrot E. STRUCTURE AND FUNCTION OF α-BUNGAROTOXIN. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Zeng H, Hawrot E. NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 2002; 277:37439-45. [PMID: 12133834 DOI: 10.1074/jbc.m205483200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).
Collapse
Affiliation(s)
- Haoyu Zeng
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
35
|
Samson A, Scherf T, Eisenstein M, Chill J, Anglister J. The mechanism for acetylcholine receptor inhibition by alpha-neurotoxins and species-specific resistance to alpha-bungarotoxin revealed by NMR. Neuron 2002; 35:319-32. [PMID: 12160749 DOI: 10.1016/s0896-6273(02)00773-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The structure of a peptide corresponding to residues 182-202 of the acetylcholine receptor alpha1 subunit in complex with alpha-bungarotoxin was solved using NMR spectroscopy. The peptide contains the complete sequence of the major determinant of AChR involved in alpha-bungarotoxin binding. One face of the long beta hairpin formed by the AChR peptide consists of exposed nonconserved residues, which interact extensively with the toxin. Mutations of these receptor residues confer resistance to the toxin. Conserved AChR residues form the opposite face of the beta hairpin, which creates the inner and partially hidden pocket for acetylcholine. An NMR-derived model for the receptor complex with two alpha-bungarotoxin molecules shows that this pocket is occupied by the conserved alpha-neurotoxin residue R36, which forms cation-pi interactions with both alphaW149 and gammaW55/deltaW57 of the receptor and mimics acetylcholine.
Collapse
Affiliation(s)
- Abraham Samson
- Department of Structural Biology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
36
|
Abstract
Although alpha3beta4 subunit combination is clearly prevalent in the nAChRs of autonomic ganglia neurons, the ganglia are strikingly different in the ratio of neurons containing each particular nAChR subunit, as found with immunohistochemical methods and from the analysis of the effects of nAChR subunit-specific antibodies on the ACh-induced membrane currents. In particular, the number of neurons containing alpha3, alpha4, alpha5 or alpha7 subunits is by about three times higher in sympathetic ganglia than in parasympathetic ganglia. This difference may explain why the parasympathetic and sympathetic ganglia markedly differ in their pharmacology. Still, alpha7 subunit makes the highest contribution to ACh-induced membrane current. No correlation between the physiological functions of the ganglia and subunit composition of their nAChRs has been found as yet. High permeability for Ca2+ should permit the nAChRs with alpha7 subunits to influence a variety of Ca2+-dependent events in autonomic neurons. As found with biochemical methods and site-directed mutagenesis, the ACh binding site is formed in the alpha/beta subunits interface by multiple loops containing cysteine, tyrosine and tryptophan amino residues as important for ACh binding. Likewise, both alpha and beta subunits are important for the effects of blocking agents on nAChRs. As found by electrophysiological methods, each neuron of sympathetic and parasympathetic ganglia, as a rule, possesses nAChRs of two groups, "fast" and "slow", with the mean duration of the burst of single channel openings ranging approximately from 5 to 10 and from 25 to 45 ms, respectively. These groups of channels differ from each other with their pharmacology. The burst-like activity of autonomic nAChRs channels is possible only if the disulfide bonds are left intact, otherwise only single openings of the channel are observed. The ionic channel of a nAChRs pentamer is formed by M2 transmembrane segments arranging glutamate, serine, threonine, leucine, and valine rings critical for channel conductance and ionic selectivity. In particular, the mutations V251T and E237A, and insertion of proline or alanine, convert a cation-selective channel into an anion-selective one. The open-channel blockers bind to the nAChR channel at the level where the channel diameter is nearly 12 A, both for "fast" and "slow" channel groups.
Collapse
Affiliation(s)
- Vladimir I Skok
- Department of Autonomic Nervous System and Physiology, Bogomoletz Institute of Physiology, Kiev, Ukraine.
| |
Collapse
|
37
|
Moise L, Piserchio A, Basus VJ, Hawrot E. NMR structural analysis of alpha-bungarotoxin and its complex with the principal alpha-neurotoxin-binding sequence on the alpha 7 subunit of a neuronal nicotinic acetylcholine receptor. J Biol Chem 2002; 277:12406-17. [PMID: 11790782 DOI: 10.1074/jbc.m110320200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a new, higher resolution NMR structure of alpha-bungarotoxin that defines the structure-determining disulfide core and beta-sheet regions. We further report the NMR structure of the stoichiometric complex formed between alpha-bungarotoxin and a recombinantly expressed 19-mer peptide ((178)IPGKRTESFYECCKEPYPD(196)) derived from the alpha7 subunit of the chick neuronal nicotinic acetylcholine receptor. A comparison of these two structures reveals binding-induced stabilization of the flexible tip of finger II in alpha-bungarotoxin. The conformational rearrangements in the toxin create an extensive binding surface involving both sides of the alpha7 19-mer hairpin-like structure. At the contact zone, Ala(7), Ser(9), and Ile(11) in finger I and Arg(36), Lys(38), Val(39), and Val(40) in finger II of alpha-bungarotoxin interface with Phe(186), Tyr(187), Glu(188), and Tyr(194) in the alpha7 19-mer underscoring the importance of receptor aromatic residues as critical neurotoxin-binding determinants. Superimposing the structure of the complex onto that of the acetylcholine-binding protein (1I9B), a soluble homologue of the extracellular domain of the alpha7 receptor, places alpha-bungarotoxin at the peripheral surface of the inter-subunit interface occluding the agonist-binding site. The disulfide-rich core of alpha-bungarotoxin is suggested to be tilted in the direction of the membrane surface with finger II extending into the proposed ligand-binding cavity.
Collapse
Affiliation(s)
- Leonard Moise
- Department of Molecular Pharmacology, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
38
|
Fruchart-Gaillard C, Gilquin B, Antil-Delbeke S, Le Novère N, Tamiya T, Corringer PJ, Changeux JP, Ménez A, Servent D. Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. Proc Natl Acad Sci U S A 2002; 99:3216-21. [PMID: 11867717 PMCID: PMC122499 DOI: 10.1073/pnas.042699899] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To understand how snake neurotoxins interact with nicotinic acetylcholine receptors, we have elaborated an experimentally based model of the alpha-cobratoxin-alpha7 receptor complex. This model was achieved by using (i) a three-dimensional model of the alpha7 extracellular domain derived from the crystallographic structure of the homologous acetylcholine-binding protein, (ii) the previously solved x-ray structure of the toxin, and (iii) nine pairs of residues identified by cycle-mutant experiments to make contacts between the alpha-cobratoxin and alpha7 receptor. Because the receptor loop F occludes entrance of the toxin binding pocket, we submitted this loop to a dynamics simulation and selected a conformation that allowed the toxin to reach its binding site. The three-dimensional structure of the toxin-receptor complex model was validated a posteriori by an additional double-mutant experiment. The model shows that the toxin interacts perpendicularly to the receptor axis, in an equatorial position of the extracellular domain. The tip of the toxin central loop plugs into the receptor between two subunits, just below the functional receptor loop C, the C-terminal tail of the toxin making adjacent additional interactions at the receptor surface. The receptor establishes major contacts with the toxin by its loop C, which is assisted by principal (loops A and B) and complementary (loops D, F, and 1) functional regions. This model explains the antagonistic properties of the toxin toward the neuronal receptor and opens the way to the design of new antagonists.
Collapse
Affiliation(s)
- Carole Fruchart-Gaillard
- Commissariat à l'Energie Atomique, Département d'Ingénierie et d'Etudes des Protéines, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Skok M, Lykhmus E, Bobrovnik S, Tzartos S, Tsouloufis T, Vanderesse R, Coutrot F, Thong Cung M, Marraud M, Krikorian D, Sakarellos-Daitsiotis M. Structure of epitopes recognized by the antibodies to alpha(181-192) peptides of neuronal nicotinic acetylcholine receptors: extrapolation to the structure of acetylcholine-binding domain. J Neuroimmunol 2001; 121:59-66. [PMID: 11730940 DOI: 10.1016/s0165-5728(01)00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the alpha(181-192) peptides of neuronal nicotinic acetylcholine receptor (nAChR) and Ala-substituted peptide analogues, amino acid residues critical for specific monoclonal antibody (mAb) binding were identified. By means of 2D nuclear magnetic resonance (2D-NMR) analysis followed by molecular modeling, it was found that mAb binding resulted in stabilization of the free alpha3(181-192) peptide flexible conformation yielding an extended structure with residues 6-11 of the peptide being in direct contact with the Ab. Since the Ab binds the native AChR as well, it is suggested that the corresponding fragment of AChR alpha3 subunit is exposed to solution and also appears in extended conformation.
Collapse
Affiliation(s)
- M Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry, 9, Leontovicha str., 01030, Kiev, Ukraine.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Picciotto MR, Caldarone BJ, Brunzell DH, Zachariou V, Stevens TR, King SL. Neuronal nicotinic acetylcholine receptor subunit knockout mice: physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 2001; 92:89-108. [PMID: 11916531 DOI: 10.1016/s0163-7258(01)00161-9] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) in the muscle, autonomic ganglia, and brain are targets for pharmacologically administered nicotine. Several of the subunits that combine to form neuronal nicotinic receptors have been deleted by knockout or mutated by knockin in mice using homologous recombination. We will review the biochemical, pharmacological, anatomical, physiological, and behavioral phenotypes of mice with genetically altered neuronal nAChR subunits. Clinically relevant mutations in nAChR genes will also be discussed. In addition, some of the signal transduction pathways activated through nAChRs will be described in order to delineate the longer-term changes that might result from persistent activation or inactivation of nAChRs. Genetically manipulated mice have greatly increased our understanding of the subunit composition and physiological properties of nAChRs in vivo. In addition, these mice have provided a model system to determine the molecular basis for many of the pharmacological actions of nicotine on neurotransmitter release and behavior. Genetic manipulations in mice have also elucidated the role of nAChR subunits in various disease states, and suggest several avenues for drug development.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Takacs Z, Wilhelmsen KC, Sorota S. Snake alpha-neurotoxin binding site on the Egyptian cobra (Naja haje) nicotinic acetylcholine receptor Is conserved. Mol Biol Evol 2001; 18:1800-9. [PMID: 11504859 DOI: 10.1093/oxfordjournals.molbev.a003967] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evolutionary success requires that animal venoms are targeted against phylogenetically conserved molecular structures of fundamental physiological processes. Species producing venoms must be resistant to their action. Venoms of Elapidae snakes (e.g., cobras, kraits) contain alpha-neurotoxins, represented by alpha-bungarotoxin (alpha-BTX) targeted against the nicotinic acetylcholine receptor (nAChR) of the neuromuscular junction. The model which presumes that cobras (Naja spp., Elapidae) have lost their binding site for conspecific alpha-neurotoxins because of the unique amino acid substitutions in their nAChR polypeptide backbone per se is incompatible with the evolutionary theory that (1) the molecular motifs forming the alpha-neurotoxin target site on the nAChR are fundamental for receptor structure and/or function, and (2) the alpha-neurotoxin target site is conserved among Chordata lineages. To test the hypothesis that the alpha-neurotoxin binding site is conserved in Elapidae snakes and to identify the mechanism of resistance against conspecific alpha-neurotoxins, we cloned the ligand binding domain of the Egyptian cobra (Naja haje) nAChR alpha subunit. When expressed as part of a functional Naja/mouse chimeric nAChR in Xenopus oocytes, this domain confers resistance against alpha-BTX but does not alter responses induced by the natural ligand acetylcholine. Further mutational analysis of the Naja/mouse nAChR demonstrated that an N-glycosylation signal in the ligand binding domain that is unique to N. haje is responsible for alpha-BTX resistance. However, when the N-glycosylation signal is eliminated, the nAChR containing the N. haje sequence is inhibited by alpha-BTX with a potency that is comparable to that in mammals. We conclude that the binding site for conspecific alpha-neurotoxin in Elapidae snakes is conserved in the nAChR ligand binding domain polypeptide backbone per se. This conclusion supports the hypothesis that animal toxins are targeted against evolutionarily conserved molecular motifs. Such conservation also calls for a revision of the present model of the alpha-BTX binding site. The approach described here can be used to identify the mechanism of resistance against conspecific venoms in other species and to characterize toxin-receptor coevolution.
Collapse
Affiliation(s)
- Z Takacs
- Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, New York, USA.
| | | | | |
Collapse
|
42
|
Zeng H, Moise L, Grant MA, Hawrot E. The solution structure of the complex formed between alpha-bungarotoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 2001; 276:22930-40. [PMID: 11312275 DOI: 10.1074/jbc.m102300200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The region encompassing residues 181-98 on the alpha1 subunit of the muscle-type nicotinic acetylcholine receptor forms a major determinant for the binding of alpha-neurotoxins. We have prepared an (15)N-enriched 18-amino acid peptide corresponding to the sequence in this region to facilitate structural elucidation by multidimensional NMR. Our aim was to determine the structural basis for the high affinity, stoichiometric complex formed between this cognate peptide and alpha-bungarotoxin, a long alpha-neurotoxin. Resonances in the complex were assigned through heteronuclear and homonuclear NMR experiments, and the resulting interproton distance constraints were used to generate ensemble structures of the complex. Thr(8), Pro(10), Lys(38), Val(39), Val(40), and Pro(69) in alpha-bungarotoxin and Tyr(189), Tyr(190), Thr(191), Cys(192), Asp(195), and Thr(196) in the peptide participate in major intermolecular contacts. A comparison of the free and bound alpha-bungarotoxin structures reveals significant conformational rearrangements in flexible regions of alpha-bungarotoxin, mainly loops I, II, and the C-terminal tail. Furthermore, several of the calculated structures suggest that cation-pi interactions may be involved in binding. The root mean square deviation of the polypeptide backbone in the complex is 2.07 A. This structure provides, to date, the highest resolution description of the contacts between a prototypic alpha-neurotoxin and its cognate recognition sequence.
Collapse
Affiliation(s)
- H Zeng
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
43
|
Bracci L, Lozzi L, Lelli B, Pini A, Neri P. Mimotopes of the nicotinic receptor binding site selected by a combinatorial peptide library. Biochemistry 2001; 40:6611-9. [PMID: 11380255 DOI: 10.1021/bi0023201] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide libraries allow selecting new molecules, defined as mimotopes, which are able to mimic the structural and functional features of a native protein. This technology can be applied for the development of new reagents, which can interfere with the action of specific ligands on their target receptors. In the present study we used a combinatorial library approach to produce synthetic peptides mimicking the snake neurotoxin binding site of nicotinic receptors. On the basis of amino acid sequence comparison of different alpha-bungarotoxin binding receptors, we designed a 14 amino acid combinatorial synthetic peptide library with five invariant, four partially variant, and five totally variant positions. Peptides were synthesized using SPOT synthesis on cellulose membranes, and binding sequences were selected using biotinylated alpha-bungarotoxin. Each variant position was systematically identified, and all possible combinations of the best reacting amino acids in each variant position were tested. The best reactive sequences were identified, produced in soluble form, and tested in BIACORE to compare their kinetic constants. We identified several different peptides that can inhibit the binding of alpha-bungarotoxin to both muscle and neuronal nicotinic receptors. Peptide mimotopes have a toxin-binding affinity that is considerably higher than peptides reproducing native receptor sequences.
Collapse
Affiliation(s)
- L Bracci
- Department of Molecular Biology, Division of Biological Chemistry, University of Siena, Via Fiorentina 1, 53100 Siena, Italy.
| | | | | | | | | |
Collapse
|
44
|
Samson AO, Chill JH, Rodriguez E, Scherf T, Anglister J. NMR mapping and secondary structure determination of the major acetylcholine receptor alpha-subunit determinant interacting with alpha-bungarotoxin. Biochemistry 2001; 40:5464-73. [PMID: 11331011 DOI: 10.1021/bi0022689] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The alpha-subunit of the nicotinic acetylcholine receptor (alphaAChR) contains a binding site for alpha-bungarotoxin (alpha-BTX), a snake-venom-derived alpha-neurotoxin. Previous studies have established that the segment comprising residues 173-204 of alphaAChR contains the major determinant interacting with the toxin, but the precise boundaries of this determinant have not been clearly defined to date. In this study, we applied NMR dynamic filtering to determine the exact sequence constituting the major alphaAChR determinant interacting with alpha-BTX. Two overlapping synthetic peptides corresponding to segments 179-200 and 182-202 of the alphaAChR were complexed with alpha-BTX. HOHAHA and ROESY spectra of these complexes acquired with long mixing times highlight the residues of the peptide that do not interact with the toxin and retain considerable mobility upon binding to alpha-BTX. These results, together with changes in the chemical shifts of the peptide protons upon complex formation, suggest that residues 184-200 form the contact region. At pH 4, the molecular mass of the complex determined by dynamic light scattering (DLS) was found to be 11.2 kDa, in excellent agreement with the expected molecular mass of a 1:1 complex, while at pH >5 the DLS measurement of 20 kDa molecular mass indicated dimerization of the complex. These results were supported by T(2) measurements. Complete resonance assignment of the 11.2 kDa complex of alpha-BTX bound to the alphaAChR peptide comprising residues 182-202 was obtained at pH 4 using homonuclear 2D NMR spectra measured at 800 MHz. The secondary structures of both alpha-BTX and the bound alphaAChR peptide were determined using 2D (1)H NMR experiments. The peptide folds into a beta-hairpin conformation, in which residues (R)H186-(R)V188 and (R)Y198-(R)D200 form the two beta-strands. Residues (R)Y189-(R)T191 form an intermolecular beta-sheet with residues (B)K38-(B)V40 of the second finger of alpha-BTX. These results accurately pinpoint the alpha-BTX-binding site on the alphaAChR and pave the way to structure determination of this important alphaAChR determinant involved in binding acetylcholine and cholinergic agonists and antagonists.
Collapse
Affiliation(s)
- A O Samson
- Department of Structural Biology and Chemical Services, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
45
|
Rogers JP, Luginbühl P, Pemberton K, Harty P, Wemmer DE, Stevens RC. Structure-activity relationships in a peptidic alpha7 nicotinic acetylcholine receptor antagonist. J Mol Biol 2000; 304:911-26. [PMID: 11124036 DOI: 10.1006/jmbi.2000.4247] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Conotoxins are small disulfide-constrained peptide toxins which act as antagonists at specific subtypes of nicotinic acetylcholine receptors (nACh receptors). In this study, we analyzed the structures and activities of three mutants of alpha-conotoxin ImI, a 12 amino acid peptide active at alpha7 nACh receptors, in order to gain insight into the primary and tertiary structural requirements of neuronal alpha-conotoxin specificity. NMR solution structures were determined for mutants R11E, R7L, and D5N, resulting in representative ensembles of 20 conformers with average pairwise RMSD values of 0.46, 0.52, and 0.62 A from their mean structures, respectively, for the backbone atoms N, C(alpha), and C' of residues 2-11. The R11E mutant was found to have activity near that of wild-type ImI, while R7L and D5N demonstrated activities reduced by at least two orders of magnitude. Comparison of the structures reveals a common two-loop architecture, with variations observed in backbone and side-chain dihedral angles as well as surface electrostatic potentials upon mutation. Correlation of these structures and activities with those from previously published studies emphasizes that existing hypotheses regarding the molecular determinants of alpha-conotoxin specificity are not adequate for explaining peptide activity, and suggests that more subtle features, visualized here at the atomic level, are important for receptor binding. These data, in conjunction with reported characterizations of the acetylcholine binding site, support a model of toxin activity in which a single solvent-accessible toxin side-chain anchors the complex, with supporting weak interactions determining both the efficacy and the subtype specificity of the inhibitory activity.
Collapse
Affiliation(s)
- J P Rogers
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | | | | | | | | | | |
Collapse
|
46
|
Spura A, Riel RU, Freedman ND, Agrawal S, Seto C, Hawrot E. Biotinylation of substituted cysteines in the nicotinic acetylcholine receptor reveals distinct binding modes for alpha-bungarotoxin and erabutoxin a. J Biol Chem 2000; 275:22452-60. [PMID: 10791957 DOI: 10.1074/jbc.m001283200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although previous results indicate that alpha-subunit residues Trp(187), Val(188), Phe(189), Tyr(190), and Pro(194) of the mouse nicotinic acetylcholine receptor are solvent-accessible and are in a position to contribute to the alpha-bungarotoxin (alpha-Bgtx) binding site (Spura, A., Russin, T. S., Freedman, N. D., Grant, M., McLaughlin, J. T., and Hawrot, E. (1999) Biochemistry 38, 4912-4921), little is known about the accessibility of other residues within this region. By determining second-order rate constants for the reaction of cysteine mutants at alpha184-alpha197 with the thiol-specific biotin derivative (+)-biotinyl-3-maleimidopropionamidyl-3,6-dioxaoctanediamine , we now show that only very subtle differences in reactivity (approximately 10-fold) are detectable, arguing that the entire region is solvent-exposed. Importantly, biotinylation in the presence of saturating concentrations of the long neurotoxin alpha-Bgtx is significantly retarded for positions alphaW187C, alphaF189C, and reduced wild-type receptors (alphaCys(192) and alphaCys(193)), further emphasizing their major contribution to the alpha-Bgtx binding site. Interestingly, although biotinylation of position alphaV188C is not affected by the presence of alpha-Bgtx, erabutoxin a, which is a member of the short neurotoxin family, inhibits biotinylation at position alphaV188C, but not at alphaW187C or alphaF189C. Taken together, these results indicate that short and long neurotoxins establish interactions with distinct amino acids on the nicotinic acetylcholine receptor.
Collapse
Affiliation(s)
- A Spura
- Department of Molecular Pharmacology, Division of Biology and Medicine, Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
47
|
Chang L, Lin S, Wang J, Hu WP, Wu B, Huang H. Structure-function studies on Taiwan cobra long neurotoxin homolog. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1480:293-301. [PMID: 11004569 DOI: 10.1016/s0167-4838(00)00082-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel long neurotoxin homolog was purified from Naja naja atra (Taiwan cobra) venom using the combination of ion exchange chromatography and reverse phase high performance liquid chromatography. The determined protein sequence was essentially the same as that deduced from the cDNA amplified by reverse transcriptase-polymerase chain reaction. The long neurotoxin homolog exhibited an activity that inhibited acetylcholine-induced muscle contractions, as with N. naja atra cobrotoxin. The degree of inhibition caused by the addition of long neurotoxin homolog was approximately 70% of that observed with the addition of cobrotoxin. Unlike the well-known short and long neurotoxins, this neurotoxin homolog contained two additional cysteine residues forming a disulfide linkage in the N-terminal region. Circular dichroism measurement and computer models of the neurotoxin reveal that its secondary structure was not abundant in beta-sheet as noted with short and long neurotoxins. This less ordered structure may be associated with the lower activity noted with the long neurotoxin homolog. Together with the finding that the known long neurotoxin homologs exclusively appear in the venoms of the Naja and Bungarus genera, the long neurotoxin homologs should represent an evolutionary branch from the long and short neurotoxins in the Elapidae family.
Collapse
Affiliation(s)
- L Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| | | | | | | | | | | |
Collapse
|