1
|
Gremmel T, Frelinger AL, Michelson AD. Platelet Physiology. Semin Thromb Hemost 2024; 50:1173-1186. [PMID: 38653463 DOI: 10.1055/s-0044-1786387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Platelets are the smallest blood cells, numbering 150 to 350 × 109/L in healthy individuals. The ability of activated platelets to adhere to an injured vessel wall and form aggregates was first described in the 19th century. Besides their long-established roles in thrombosis and hemostasis, platelets are increasingly recognized as pivotal players in numerous other pathophysiological processes including inflammation and atherogenesis, antimicrobial host defense, and tumor growth and metastasis. Consequently, profound knowledge of platelet structure and function is becoming more important in research and in many fields of modern medicine. This review provides an overview of platelet physiology focusing particularly on the structure, granules, surface glycoproteins, and activation pathways of platelets.
Collapse
Affiliation(s)
- Thomas Gremmel
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, St. Pölten, Austria
- Karl Landsteiner University of Health Sciences, Krems, Austria
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| | - Andrew L Frelinger
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alan D Michelson
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
2
|
Sheriff J, Malone LE, Avila C, Zigomalas A, Bluestein D, Bahou WF. Shear-Induced Platelet Activation is Sensitive to Age and Calcium Availability: A Comparison of Adult and Cord Blood. Cell Mol Bioeng 2020; 13:575-590. [PMID: 33281988 PMCID: PMC7704822 DOI: 10.1007/s12195-020-00628-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 10/24/2022] Open
Abstract
INTRODUCTION Antiplatelet therapy for neonates and infants is often extrapolated from the adult experience, based on limited observation of agonist-induced neonatal platelet hypoactivity and poor understanding of flow shear-mediated platelet activation. Therefore, thrombotic events due to device-associated disturbed flow are inadequately mitigated in critically ill neonates with indwelling umbilical catheters and infants receiving cardiovascular implants. METHODS Whole blood (WB), platelet-rich plasma (PRP), and gel-filtered platelets (GFP) were prepared from umbilical cord and adult blood, and exposed to biochemical agonists or pathological shear stress of 70 dyne/cm2. We evaluated α-granule release, phosphatidylserine (PS) scrambling, and procoagulant response using P-selectin expression, Annexin V binding, and thrombin generation (PAS), respectively. Activation modulation due to depletion of intracellular and extracellular calcium, requisite second messengers, was also examined. RESULTS Similar P-selectin expression was observed for sheared adult and cord platelets, with concordant inhibition due to intracellular and extracellular calcium depletion. Sheared cord platelet Annexin V binding and PAS activity was similar to adult values in GFP, but lower in PRP and WB. Annexin V on sheared cord platelets was calcium-independent, with PAS slightly reduced by intracellular calcium depletion. CONCLUSIONS Increased PS activity on purified sheared cord platelets suggest that their intrinsic function under pathological flow conditions is suppressed by cell-cell or plasmatic components. Although secretory functions of adult and cord platelets retain comparable calcium-dependence, PS exposure in sheared cord platelets is uniquely calcium-independent and distinct from adults. Identification of calcium-regulated developmental disparities in shear-mediated platelet function may provide novel targets for age-specific antiplatelet therapy.
Collapse
Affiliation(s)
- Jawaad Sheriff
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Lisa E. Malone
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Cecilia Avila
- Department of Obstetrics, Gynecology and Reproductive Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Amanda Zigomalas
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, T08-50 Health Sciences Center, Stony Brook University, Stony Brook, NY 11794-8084 USA
| | - Wadie F. Bahou
- Division of Hematology and Oncology, Department of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| |
Collapse
|
3
|
Cardenas EI, Gonzalez R, Breaux K, Da Q, Gutierrez BA, Ramos MA, Cardenas RA, Burns AR, Rumbaut RE, Adachi R. Munc18-2, but not Munc18-1 or Munc18-3, regulates platelet exocytosis, hemostasis, and thrombosis. J Biol Chem 2019; 294:4784-4792. [PMID: 30696774 DOI: 10.1074/jbc.ra118.006922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Platelet degranulation, a form of regulated exocytosis, is crucial for hemostasis and thrombosis. Exocytosis in platelets is mediated by SNARE proteins, and in most mammalian cells this process is controlled by Munc18 (mammalian homolog of Caenorhabditis elegans uncoordinated gene 18) proteins. Platelets express all Munc18 paralogs (Munc18-1, -2, and -3), but their roles in platelet secretion and function have not been fully characterized. Using Munc18-1, -2, and -3 conditional knockout mice, here we deleted expression of these proteins in platelets and assessed granule exocytosis. We measured products secreted by each type of platelet granule and analyzed EM platelet profiles by design-based stereology. We observed that the removal of Munc18-2 ablates the release of alpha, dense, and lysosomal granules from platelets, but we found no exocytic role for Munc18-1 or -3 in platelets. In vitro, Munc18-2-deficient platelets exhibited defective aggregation at low doses of collagen and impaired thrombus formation under shear stress. In vivo, megakaryocyte-specific Munc18-2 conditional knockout mice had a severe hemostatic defect and prolonged arterial and venous bleeding times. They were also protected against arterial thrombosis in a chemically induced model of arterial injury. Taken together, our results indicate that Munc18-2, but not Munc18-1 or Munc18-3, is essential for regulated exocytosis in platelets and platelet participation in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.,the Escuela de Ingenieria y Ciencias, Instituto Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Ricardo Gonzalez
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.,the Escuela de Ingenieria y Ciencias, Instituto Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Keegan Breaux
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Qi Da
- the Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas 77030.,the Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Berenice A Gutierrez
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.,the Escuela de Ingenieria y Ciencias, Instituto Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico
| | - Marco A Ramos
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Rodolfo A Cardenas
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030.,the Escuela de Medicina y Ciencias de la Salud, Instituto Tecnologico de Monterrey, Monterrey, Nuevo León 64710, México, and
| | - Alan R Burns
- the College of Optometry, University of Houston, Houston, Texas 77204
| | - Rolando E Rumbaut
- the Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas 77030.,the Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Roberto Adachi
- From the Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030,
| |
Collapse
|
4
|
|
5
|
Adam F, Kauskot A, Kurowska M, Goudin N, Munoz I, Bordet JC, Huang JD, Bryckaert M, Fischer A, Borgel D, de Saint Basile G, Christophe OD, Ménasché G. Kinesin-1 Is a New Actor Involved in Platelet Secretion and Thrombus Stability. Arterioscler Thromb Vasc Biol 2018. [PMID: 29519941 DOI: 10.1161/atvbaha.117.310373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Platelet secretion is crucial for many physiological platelet responses. Even though several regulators of the fusion machinery for secretory granule exocytosis have been identified in platelets, the underlying mechanisms are not yet fully characterized. APPROACH AND RESULTS By studying a mouse model (cKO [conditional knockout]Kif5b) lacking Kif5b (kinesin-1 heavy chain) in its megakaryocytes and platelets, we evidenced unstable hemostasis characterized by an increase of blood loss associated to a marked tendency to rebleed in a tail-clip assay and thrombus instability in an in vivo thrombosis model. This instability was confirmed in vitro in a whole-blood perfusion assay under blood flow conditions. Aggregations induced by thrombin and collagen were also impaired in cKOKif5b platelets. Furthermore, P-selectin exposure, PF4 (platelet factor 4) secretion, and ATP release after thrombin stimulation were impaired in cKOKif5b platelets, highlighting the role of kinesin-1 in α-granule and dense granule secretion. Importantly, exogenous ADP rescued normal thrombin induced-aggregation in cKOKif5b platelets, which indicates that impaired aggregation was because of defective release of ADP and dense granules. Last, we demonstrated that kinesin-1 interacts with the molecular machinery comprising the granule-associated Rab27 (Ras-related protein Rab-27) protein and the Slp4 (synaptotagmin-like protein 4/SYTL4) adaptor protein. CONCLUSIONS Our results indicate that a kinesin-1-dependent process plays a role for platelet function by acting into the mechanism underlying α-granule and dense granule secretion.
Collapse
Affiliation(s)
- Frédéric Adam
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Alexandre Kauskot
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Mathieu Kurowska
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Nicolas Goudin
- Cell Imaging Facility, Imagine Institute (N.G.), Paris Descartes University, Sorbonne Paris Cité, France
| | - Isabelle Munoz
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Jean-Claude Bordet
- Laboratoire d'Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France (J.-C.B.).,Laboratoire de Recherche sur l'Hémophilie, UCBL1, Lyon, France (J.-C.B.)
| | - Jian-Dong Huang
- School of Biomedical Sciences, The University of Hong Kong, China (J.-D.H.)
| | - Marijke Bryckaert
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Alain Fischer
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.).,Department of Immunology and Pediatric Hematology (A.F.)
| | - Delphine Borgel
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.).,Biological Hematology Service (D.B.), Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, France; and Collège de France, Paris (A.F.)
| | - Geneviève de Saint Basile
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| | - Olivier D Christophe
- From the INSERM, UMR_S 1176, Paris-Sud University, Université Paris-Saclay, Le Kremlin-Bicêtre, France (F.A., A.K., M.B., D.B., O.D.C.)
| | - Gaël Ménasché
- INSERM, UMR_S 1163, Laboratory of Normal and Pathological Homeostasis of the Immune System, Paris, France (M.K., I.M., A.F., G.d.S.B., G.M.).,Imagine Institute (M.K., I.M., A.F., G.d.S.B., G.M.)
| |
Collapse
|
6
|
Van Ngo H, Bhalla M, Chen DY, Ireton K. A role for host cell exocytosis in InlB-mediated internalisation ofListeria monocytogenes. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12768] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/10/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Hoan Van Ngo
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Manmeet Bhalla
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Da-Yuan Chen
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| | - Keith Ireton
- Department of Microbiology and Immunology; University of Otago; Dunedin New Zealand
| |
Collapse
|
7
|
Abstract
Interest in the biology of mammalian septin proteins has undergone a birth in recent years. Originally identified as critical for yeast budding throughout the 1970s, the septin family is now recognized to extend from yeast to humans and is associated with a variety of events ranging from cytokinesis to vesicle trafficking. An emerging theme for septins is their presence at sites where active membrane or cytoplasmic partitioning is occurring. Here, we briefly review the mammalian septin protein family and focus on a prototypic human and mouse septin, termed SEPT5, that is expressed in the brain, heart, and megakaryocytes. Work from neurobiology laboratories has linked SEPT5 to the exocytic complex of neurons, with implications that SEPT5 regulates neurotransmitter release. Striking similarities exist between neurotransmitter release and the platelet-release reaction, which is a critical step in platelet response to vascular injury. Work from our laboratory has characterized the platelet phenotype from mice containing a targeted deletion of SEPT5. Most strikingly, platelets from SEPT5null animals aggregate and release granular contents in response to subthreshold levels of agonists. Thus, the characterization of a SEPT5-deficient mouse has linked SEPT5 to the Platelet exocytic process and, as such, illustrates it as an important protein for regulating platelet function. Recent data suggest that platelets contain a wide repertoire of different septin proteins and assemble to form macromolecular septin complexes. The mouse platelet provides an experimental framework to define septin function in hemostasis, with implications for neurobiology and beyond.
Collapse
Affiliation(s)
- Constantino Martinez
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | | |
Collapse
|
8
|
Abstract
Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many recent insights into the mechanisms of platelet secretion, many questions remain: have we identified all the important regulators, does calcium directly control the process, and is platelet secretion polarized. In this review, we focus on the mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway leading to membrane fusion and cargo release.
Collapse
Affiliation(s)
- Smita Joshi
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Sidney W Whiteheart
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
9
|
Strauss JA, Shaw CS, Bradley H, Wilson OJ, Dorval T, Pilling J, Wagenmakers AJM. Immunofluorescence microscopy of SNAP23 in human skeletal muscle reveals colocalization with plasma membrane, lipid droplets, and mitochondria. Physiol Rep 2016; 4:e12662. [PMID: 26733245 PMCID: PMC4760398 DOI: 10.14814/phy2.12662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022] Open
Abstract
Synaptosomal-associated protein 23 (SNAP23) is a SNARE protein expressed abundantly in human skeletal muscle. Its established role is to mediate insulin-stimulated docking and fusion of glucose transporter 4 (GLUT4) with the plasma membrane. Recent in vitro research has proposed that SNAP23 may also play a role in the fusion of growing lipid droplets (LDs) and the channeling of LD-derived fatty acids (FAs) into neighboring mitochondria for β-oxidation. This study investigates the subcellular distribution of SNAP23 in human skeletal muscle using immunofluorescence microscopy to confirm that SNAP23 localization supports the three proposed metabolic roles. Percutaneous biopsies were obtained from the m. vastus lateralis of six lean, healthy males in the rested, overnight fasted state. Cryosections were stained with antibodies targeting SNAP23, the mitochondrial marker cytochrome c oxidase and the plasma membrane marker dystrophin, whereas intramuscular LDs were stained using the neutral lipid dye oil red O. SNAP23 displayed areas of intense punctate staining in the intracellular regions of all muscle fibers and continuous intense staining in peripheral regions of the cell. Quantitation of confocal microscopy images showed colocalization of SNAP23 with the plasma membrane marker dystrophin (Pearson's correlation coefficient r = 0.50 ± 0.01). The intense punctate intracellular staining colocalized primarily with the mitochondrial marker cytochrome C oxidase (r = 0.50 ± 0.012) and to a lesser extent with LDs (r = 0.21 ± 0.01) visualized with oil red O. We conclude that the observed subcellular distribution of SNAP23 in human skeletal muscle supports the three aforementioned metabolic roles.
Collapse
Affiliation(s)
- Juliette A Strauss
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Christopher S Shaw
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia
| | - Helen Bradley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston, UK
| | - Oliver J Wilson
- Institute for Sport, Physical Activity and Leisure, Carnegie Faculty, Leeds Beckett University, Leeds, UK
| | | | | | - Anton J M Wagenmakers
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
10
|
Role of Munc13-4 as a Ca2+-dependent tether during platelet secretion. Biochem J 2015; 473:627-39. [PMID: 26637270 DOI: 10.1042/bj20151150] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/04/2015] [Indexed: 11/17/2022]
Abstract
The Munc13 family of exocytosis regulators has multiple Ca(2+)-binding, C2 domains. Here, we probed the mechanism by which Munc13-4 regulates in vitro membrane fusion and platelet exocytosis. We show that Munc13-4 enhances in vitro soluble NSF attachment protein receptor (SNARE)-dependent, proteoliposome fusion in a Ca(2+)- and phosphatidylserine (PS)-dependent manner that was independent of SNARE concentrations. Munc13-4-SNARE interactions, under the conditions used, were minimal in the absence or presence of Ca(2+). However, Munc13-4 was able to bind and cluster liposomes harbouring PS in response to Ca(2+). Interestingly, Ca(2+)-dependent liposome binding/clustering and enhancement of proteoliposome fusion required both Munc13-4 C2 domains, but only the Ca(2+)-liganding aspartate residues of the C2B domain. Analytical ultracentrifugation (AUC) measurements indicated that, in solution, Munc13-4 was a monomeric prolate ellipsoid with dimensions consistent with a molecule that could bridge two fusing membranes. To address the potential role of Munc13-4 as a tethering protein in platelets, we examined mepacrine-stained, dense granule mobility and secretion in platelets from wild-type and Munc13-4 null (Unc13d(Jinx)) mice. In the absence of Munc13-4, dense granules were highly mobile in both resting and stimulated platelets, and stimulation-dependent granule release was absent. These observations suggest that dense granules are stably docked in resting platelets awaiting stimulation and that Munc13-4 plays a vesicle-stabilizing or tethering role in resting platelets and also in activated platelets in response to Ca(2+). In summary, we show that Munc13-4 conveys Ca(2+) sensitivity to platelet SNARE-mediated membrane fusion and reveal a potential mechanism by which Munc13-4 bridges and stabilizes apposing membranes destined for fusion.
Collapse
|
11
|
Xu X, Sun B. Platelet granule secretion mechanisms: Are they modified in sepsis? Thromb Res 2015; 136:845-50. [DOI: 10.1016/j.thromres.2015.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/19/2015] [Accepted: 09/06/2015] [Indexed: 12/31/2022]
|
12
|
VAMP-7 links granule exocytosis to actin reorganization during platelet activation. Blood 2015; 126:651-60. [PMID: 25999457 DOI: 10.1182/blood-2014-12-618744] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 05/09/2015] [Indexed: 01/30/2023] Open
Abstract
Platelet activation results in profound morphologic changes accompanied by release of granule contents. Recent evidence indicates that fusion of granules with the plasma membrane during activation provides auxiliary membrane to cover growing actin structures. Yet little is known about how membrane fusion is coupled with actin reorganization. Vesicle-associated membrane protein (VAMP)-7 is found on platelet vesicles and possesses an N-terminal longin domain capable of linking exocytosis to cytoskeletal remodeling. We have evaluated platelets from VAMP-7(-/-) mice to determine whether this VAMP isoform contributes to granule release and platelet spreading. VAMP-7(-/-) platelets demonstrated a partial defect in dense granule exocytosis and impaired aggregation. α Granule exocytosis from VAMP-7(-/-) platelets was diminished both in vitro and in vivo during thrombus formation. Consistent with a role of VAMP-7 in cytoskeletal remodeling, spreading on matrices was decreased in VAMP-7(-/-) platelets compared to wild-type controls. Immunoprecipitation of VAMP-7 revealed an association with VPS9-domain ankyrin repeat protein (VARP), an adaptor protein that interacts with both membrane-bound and cytoskeleton proteins and with Arp2/3. VAMP-7, VARP, and Arp2/3 localized to the platelet periphery during spreading. These studies demonstrate that VAMP-7 participates in both platelet granule secretion and spreading and suggest a mechanism whereby VAMP-7 links granule exocytosis with actin reorganization.
Collapse
|
13
|
Golebiewska EM, Harper MT, Williams CM, Savage JS, Goggs R, Fischer von Mollard G, Poole AW. Syntaxin 8 regulates platelet dense granule secretion, aggregation, and thrombus stability. J Biol Chem 2014; 290:1536-45. [PMID: 25404741 PMCID: PMC4340400 DOI: 10.1074/jbc.m114.602615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Platelet secretion not only drives thrombosis and hemostasis, but also mediates a variety of other physiological and pathological processes. The ubiquitous SNARE machinery and a number of accessory proteins have been implicated in regulating secretion in platelet. Although several platelet SNAREs have been identified, further members of the SNARE family may be needed to fine-tune platelet secretion. In this study we identified expression of the t-SNARE syntaxin 8 (STX8) (Qc SNARE) in mouse and human platelets. In mouse studies, whereas STX8 was not essential for α-granule or lysosome secretion, Stx8−/− platelets showed a significant defect in dense granule secretion in response to thrombin and CRP. This was most pronounced at intermediate concentrations of agonists. They also showed an aggregation defect that could be rescued with exogenous ADP and increased embolization in Stx8−/− mice in vivo consistent with an important autocrine and paracrine role for ADP in aggregation and thrombus stabilization. STX8 therefore specifically contributes to dense granule secretion and represents another member of a growing family of genes that play distinct roles in regulating granule release from platelets and thus platelet function in thrombosis and hemostasis.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Matthew T Harper
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Christopher M Williams
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Joshua S Savage
- the School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Goggs
- the Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, and
| | | | - Alastair W Poole
- From the School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom,
| |
Collapse
|
14
|
Pook M, Tamming L, Padari K, Tiido T, Maimets T, Patarroyo M, Juronen E, Jaks V, Ingerpuu S. Platelets store laminins 411/421 and 511/521 in compartments distinct from α- or dense granules and secrete these proteins via microvesicles. J Thromb Haemost 2014; 12:519-27. [PMID: 24450402 DOI: 10.1111/jth.12513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 12/24/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Blood platelets secrete upon activation of laminins 411/421 and 511/521, large adhesive proteins mainly found in the basement membranes of blood vessels and other tissues. At present, the subcellular localization and secretion mechanisms of platelet laminins are largely unknown. OBJECTIVES Our aim was to compare the subcellular localization of laminins 411/421 and 511/521 and specific granule markers in platelets. We also elucidated the role of microvesicles and exosomes in laminin release in platelet activation. METHODS We studied laminin and granule marker protein localization in platelets by using immunofluorescence confocal microscopy and immunoelectron microscopy. Microvesicles and exosomes were separated from material released from platelets on activation by thrombin. The expression of laminins in microvesicles and exosomes was studied by using SDS-PAGE and Western blotting as well as by flow cytometric analysis. The exosomes were immunoprecipitated with magnetic microbeads coated with anti-CD63 antibodies. RESULTS AND CONCLUSIONS We demonstrate that laminins 411/421 and 511/521 are present in compartments of platelets that do not express α-granule, dense granule, or lysosome marker proteins. Moreover, laminins secreted by activated platelets are mostly found in microvesicles shed from the plasma membrane, while their presence in simultaneously released exosomes is minimum.
Collapse
Affiliation(s)
- M Pook
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Lung surfactant is crucial for reducing the surface tension of alveolar space, thus preventing the alveoli from collapse. Lung surfactant is synthesized in alveolar epithelial type II cells and stored in lamellar bodies before being released via the fusion of lamellar bodies with the apical plasma membrane. SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) play an essential role in membrane fusion. We have previously demonstrated the requirement of t-SNARE (target SNARE) proteins, syntaxin 2 and SNAP-23 (N-ethylmaleimide-sensitive factor-attachment protein 23), in regulated surfactant secretion. Here, we characterized the distribution of VAMPs (vesicle-associated membrane proteins) in rat lung and alveolar type II cells. VAMP-2, -3 and -8 are shown in type II cells at both mRNA and protein levels. VAMP-2 and -8 were enriched in LB (lamellar body) fraction. Immunochemistry studies indicated that VAMP-2 was co-localized with the LB marker protein, LB-180. Functionally, the cytoplasmic domain of VAMP-2, but not VAMP-8 inhibited surfactant secretion in type II cells. We suggest that VAMP-2 is the v-SNARE (vesicle SNARE) involved in regulated surfactant secretion.
Collapse
|
16
|
Insulin stimulates syntaxin4 SNARE complex assembly via a novel regulatory mechanism. Mol Cell Biol 2014; 34:1271-9. [PMID: 24469400 DOI: 10.1128/mcb.01203-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insulin stimulates glucose transport into fat and muscle cells by increasing the exocytic trafficking rate of the GLUT4 facilitative glucose transporter from intracellular stores to the plasma membrane. Delivery of GLUT4 to the plasma membrane is mediated by formation of functional SNARE complexes containing syntaxin4, SNAP23, and VAMP2. Here we have used an in situ proximity ligation assay to integrate these two observations by demonstrating for the first time that insulin stimulation causes an increase in syntaxin4-containing SNARE complex formation in adipocytes. Furthermore, we demonstrate that insulin brings about this increase in SNARE complex formation by mobilizing a pool of syntaxin4 held in an inactive state under basal conditions. Finally, we have identified phosphorylation of the regulatory protein Munc18c, a direct target of the insulin receptor, as a molecular switch to coordinate this process. Hence, this report provides molecular detail of how the cell alters membrane traffic in response to an external stimulus, in this case, insulin.
Collapse
|
17
|
Golebiewska EM, Poole AW. Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms? Br J Haematol 2013; 165:204-216. [PMID: 24588354 PMCID: PMC4155865 DOI: 10.1111/bjh.12682] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Upon activation by extracellular matrix components or soluble agonists, platelets release in excess of 300 active molecules from intracellular granules. Those factors can both activate further platelets and mediate a range of responses in other cells. The complex microenvironment of a growing thrombus, as well as platelets' roles in both physiological and pathological processes, require platelet secretion to be highly spatially and temporally regulated to ensure appropriate responses to a range of stimuli. However, how this regulation is achieved remains incompletely understood. In this review we outline the importance of regulated secretion in thrombosis as well as in 'novel' scenarios beyond haemostasis and give a detailed summary of what is known about the molecular mechanisms of platelet exocytosis. We also discuss a number of theories of how different cargoes could be released in a tightly orchestrated manner, allowing complex interactions between platelets and their environment.
Collapse
Affiliation(s)
- Ewelina M Golebiewska
- School of Physiology and Pharmacology, Bristol Heart Institute, University of Bristol, Bristol, UK
| | | |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW This review will provide an overview of several recent advances in the field of platelet granule biology. RECENT FINDINGS The past few years have witnessed a substantial evolution in our knowledge of platelet granules based on a number of discoveries and new experimental approaches. This article will cover recent studies in five areas. First, the vesicle trafficking pathways responsible for α-granule formation are beginning to be assembled as a result of the characterization of patients with α-granule deficiencies. Second, a revision of our understanding of which SNARE isoforms mediate platelet granule exocytosis has occurred following evaluation of patients with defects in platelet granule exocytosis and the generation of mice lacking specific SNAREs. Third, investigators have begun to establish how cargos are segregated among α-granules and determine whether or not different α-granule subpopulations exist in platelets. Fourth, an unanticipated role for α-granules in platelet spreading has been identified. Fifth, single-cell amperometry has revealed secretion kinetics with submillisecond temporal resolution enabling evaluation of the molecular control of the platelet fusion pore. SUMMARY These new observations reveal a previously unappreciated complexity to platelet granule formation and exocytosis and challenge our earlier notions of how these granules are organized within platelets and contribute to the multitude of physiological activities in which platelets function.
Collapse
Affiliation(s)
- Secil Koseoglu
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
19
|
Abstract
Platelet secretion plays a key role in thrombosis, thus the platelet secretory machinery offers a unique target to modulate hemostasis. We report the regulation of platelet secretion via phosphorylation of SNAP-23 at Ser95. Phosphorylation of this t-soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) occurs upon activation of known elements of the platelet signaling cascades (ie, phospholipase C, [Ca(2+)]i, protein kinase C) and requires IκB kinase (IKK)-β. Other elements of the nuclear factor κB/IκB cascade (ie, IKK-α,-β,-γ/NEMO and CARMA/MALT1/Bcl10 complex) are present in anucleate platelets and IκB is phosphorylated upon activation, suggesting that this pathway is active in platelets and implying a nongenomic role for IKK. Inhibition of IKK-β, either pharmacologically (with BMS-345541, BAY11-7082, or TPCA-1) or by genetic manipulation (platelet factor 4 Cre:IKK-β(flox/flox)), blocked SNAP-23 phosphorylation, platelet secretion, and SNARE complex formation; but, had no effect on platelet morphology or other metrics of platelet activation. Consistently, SNAP-23 phosphorylation enhanced membrane fusion of SNARE-containing proteoliposomes. In vivo studies with IKK inhibitors or platelet-specific IKK-β knockout mice showed that blocking IKK-β activity significantly prolonged tail bleeding times, suggesting that currently available IKK inhibitors may affect hemostasis.
Collapse
|
20
|
|
21
|
Abstract
Platelets release numerous bioactive molecules stored in their granules enabling them to exert a wide range of effects on the vascular microenvironment. Are these granule cargo released thematically in a context-specific pattern or via a stochastic, kinetically controlled process? Here we sought to describe the platelet exocytosis using a systematic examination of platelet secretion kinetics. Platelets were stimulated for increasing times with different agonists (ie, thrombin, PAR1-agonist, PAR4-agonist, and convulxin) and micro-ELISA arrays were used to quantify the release of 28 distinct α-granule cargo molecules. Agonist potency directly correlated with the speed and extent of release. PAR4-agonist induced slower release of fewer molecules, whereas thrombin rapidly induced the greatest release. Cargo with opposing actions (eg, proangiogenic and antiangiogenic) had similar release profiles, suggesting limited thematic response to specific agonists. From the release time-course data, rate constants were calculated and used to probe for underlying patterns. Probability density function and operator variance analyses were consistent with 3 classes of release events, differing in their rates. The distribution of cargo into these 3 classes was heterogeneous, suggesting that platelet secretion is a stochastic process potentially controlled by several factors, such as cargo solubility, granule shape, and/or granule-plasma membrane fusion routes.
Collapse
|
22
|
Abstract
The platelet release reaction plays a critical role in thrombosis and contributes to the events that follow hemostasis. Previous studies have shown that platelet secretion is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins from granule and plasma membranes. The SNAREs form transmembrane complexes that mediate membrane fusion and granule cargo release. Although VAMP-8 (v-SNARE) and SNAP-23 (a t-SNARE class) are important for platelet secretion, the identity of the functional syntaxin (another t-SNARE class) has been controversial. Previous studies using anti-syntaxin Abs in permeabilized platelets have suggested roles for both syntaxin-2 and syntaxin-4. In the present study, we tested these conclusions using platelets from syntaxin-knockout mouse strains and from a Familial Hemophagocytic Lymphohistiocytosis type 4 (FHL4) patient. Platelets from syntaxin-2 and syntaxin-4 single- or double-knockout mice had no secretion defect. Platelets from a FHL4 patient deficient in syntaxin-11 had a robust defect in agonist-induced secretion although their morphology, activation, and cargo levels appeared normal. Semiquantitative Western blotting showed that syntaxin-11 is the more abundant syntaxin in both human and murine platelets. Coimmunoprecipitation experiments showed that syntaxin-11 can form SNARE complexes with both VAMP-8 and SNAP-23. The results of the present study indicate that syntaxin-11, but not syntaxin-2 or syntaxin-4, is required for platelet exocytosis.
Collapse
|
23
|
Broos K, Feys HB, De Meyer SF, Vanhoorelbeke K, Deckmyn H. Platelets at work in primary hemostasis. Blood Rev 2011; 25:155-67. [PMID: 21496978 DOI: 10.1016/j.blre.2011.03.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When platelet numbers are low or when their function is disabled, the risk of bleeding is high, which on the one hand indicates that in normal life vascular damage is a rather common event and that hence the role of platelets in maintaining a normal hemostasis is a continuously ongoing physiological process. Upon vascular injury, platelets instantly adhere to the exposed extracellular matrix resulting in platelet activation and aggregation to form a hemostatic plug. This self-amplifying mechanism nevertheless requires a tight control to prevent uncontrolled platelet aggregate formation that eventually would occlude the vessel. Therefore endothelial cells produce inhibitory compounds such as prostacyclin and nitric oxide that limit the growth of the platelet thrombus to the damaged area. With this review, we intend to give an integrated survey of the platelet response to vascular injury in normal hemostasis.
Collapse
Affiliation(s)
- Katleen Broos
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kortrijk, Belgium.
| | | | | | | | | |
Collapse
|
24
|
Chikina MD, Troyanskaya OG. Accurate quantification of functional analogy among close homologs. PLoS Comput Biol 2011; 7:e1001074. [PMID: 21304936 PMCID: PMC3033368 DOI: 10.1371/journal.pcbi.1001074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 01/02/2011] [Indexed: 11/18/2022] Open
Abstract
Correctly evaluating functional similarities among homologous proteins is necessary for accurate transfer of experimental knowledge from one organism to another, and is of particular importance for the development of animal models of human disease. While the fact that sequence similarity implies functional similarity is a fundamental paradigm of molecular biology, sequence comparison does not directly assess the extent to which two proteins participate in the same biological processes, and has limited utility for analyzing families with several parologous members. Nevertheless, we show that it is possible to provide a cross-organism functional similarity measure in an unbiased way through the exclusive use of high-throughput gene-expression data. Our methodology is based on probabilistic cross-species mapping of functionally analogous proteins based on Bayesian integrative analysis of gene expression compendia. We demonstrate that even among closely related genes, our method is able to predict functionally analogous homolog pairs better than relying on sequence comparison alone. We also demonstrate that the landscape of functional similarity is often complex and that definitive “functional orthologs” do not always exist. Even in these cases, our method and the online interface we provide are designed to allow detailed exploration of sources of inferred functional similarity that can be evaluated by the user. Common ancestry is a central tenet of modern biology, as genes from different species often show a high degree of sequence similarity, making it possible to study analogous processes across model organisms. However, many genes belong to large families with several duplicates and the relationship between genes from different species is often not one-to-one, complicating the transfer of experimental knowledge. We present a method that uses a large compendia of high-throughput expression data, that covers many genes that have not been analyzed in any other way, to systematically predict which genes are most likely to participate in the same biological process and thus have analogous function in different organisms. We show that our method agrees well with current experimental knowledge and we use it to investigate several families of genes that demonstrate the complexity of functional analogy.
Collapse
Affiliation(s)
- Maria D. Chikina
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Olga G. Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
25
|
Brunso L, Segura D, Monreal L, Escolar G, White JG, Diaz-Ricart M. The secretory mechanisms in equine platelets are independent of cytoskeletal polymerization and occur through membrane fusion. Platelets 2010; 21:658-66. [PMID: 20958115 DOI: 10.3109/09537101003716200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Studies in animal models are useful to understand the basic mechanisms involved in hemostasis and the functional differences among species. Ultrastructural observations led us to predict differences in the activation and secretion mechanisms between equine and human platelets. The potential mechanisms involved have been comparatively explored in the present study. Equine and human platelets were activated with thrombin (0.5 U/ml) and collagen (20 µg/ml), for 90 seconds, and samples processed to evaluate: i) ultrastructural changes, by electron microscopy, ii) actin polymerization and cytoskeletal assembly, by polyacrylamide gel electrophoresis, and iii) specific molecules involved in activation and secretion, by western blot. In activated human platelets, centralization of granules, cytoskeletal assembly and fusion of granules with the open canalicular system were observed. In activated equine platelets, granules fused together forming an organelle chain that fused with the surface membrane and released its content directly outside the platelets. Human platelets responded to activation with actin polymerization and the assembly of other contractile proteins to the cytoskeleton. These events were almost undetectable in equine platelets. When exploring the involvement of the synaptosomal-associated protein-23 (SNAP-23), a known regulator of secretory granule/plasma membrane fusion events, it was present in both human and equine platelets. SNAP-23 was shown to be more activated in equine platelets than human platelets in response to activation, especially with collagen. Thus, there are significant differences in the secretion mechanisms between human and equine platelets. While in human platelets, activation and secretion of granules depend on mechanisms of internal contraction and membrane fusion, in equine platelets the fusion mechanisms seem to be predominant.
Collapse
Affiliation(s)
- L Brunso
- Hemoterapia-Hemostasia, CDB, Hospital Clínic, IDIBAPS, Universitat de Barcelona
| | | | | | | | | | | |
Collapse
|
26
|
Woronowicz K, Dilks JR, Rozenvayn N, Dowal L, Blair PS, Peters CG, Woronowicz L, Flaumenhaft R. The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 2010; 49:4533-42. [PMID: 20429610 PMCID: PMC2892908 DOI: 10.1021/bi100541t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by latrunculin A inhibited alpha-granule secretion induced by several different platelet agonists without significantly affecting activation-induced platelet aggregation. In a cell-free secretory system, platelet cytosol was required for alpha-granule secretion. Inhibition of actin polymerization prevented alpha-granule secretion in this system, and purified platelet actin could substitute for platelet cytosol to support alpha-granule secretion. To determine whether SNAREs physically associate with the actin cytoskeleton, we isolated the Triton X-100 insoluble actin cytoskeleton from platelets. VAMP-8 and syntaxin-2 associated only with actin cytoskeletons of activated platelets. Syntaxin-4 and SNAP-23 associated with cytoskeletons isolated from either resting or activated platelets. When syntaxin-4 and SNAP-23 were tested for actin binding in a purified protein system, only syntaxin-4 associated directly with polymerized platelet actin. These data show that the platelet cytoskeleton interacts with select SNAREs and that actin polymerization facilitates alpha-granule release.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - James R. Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nataliya Rozenvayn
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Louisa Dowal
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Price S. Blair
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Lucyna Woronowicz
- Ultrastructure Laboratory, Institute for Basic Research, Staten Island, NY 10314
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
27
|
Abstract
Biogenesis of a specialized organelle that supports intracellular replication of Legionella pneumophila involves the fusion of secretory vesicles exiting the endoplasmic reticulum (ER) with phagosomes containing this bacterial pathogen. Here, we investigated host plasma membrane SNARE proteins to determine whether they play a role in trafficking of vacuoles containing L. pneumophila. Depletion of plasma membrane syntaxins by RNA interference resulted in delayed acquisition of the resident ER protein calnexin and enhanced retention of Rab1 on phagosomes containing virulent L. pneumophila, suggesting that these SNARE proteins are involved in vacuole biogenesis. Plasma membrane-localized SNARE proteins syntaxin 2, syntaxin 3, syntaxin 4 and SNAP23 localized to vacuoles containing L. pneumophila. The ER-localized SNARE protein Sec22b was found to interact with plasma membrane SNAREs on vacuoles containing virulent L. pneumophila, but not on vacuoles containing avirulent mutants of L. pneumophila. The addition of alpha-SNAP and N-ethylmaleimide-sensitive factor (NSF) to the plasma membrane SNARE complexes formed by virulent L. pneumophila resulted in the dissociation of Sec22b, indicating functional pairing between these SNAREs. Thus, L. pneumophila stimulates the non-canonical pairing of plasma membrane t-SNAREs with the v-SNARE Sec22b to promote fusion of the phagosome with ER-derived vesicles. The mechanism by which L. pneumophila promotes pairing of plasma membrane syntaxins and Sec22b could provide unique insight into how the secretory vesicles could provide an additional membrane reserve subverted during phagosome maturation.
Collapse
Affiliation(s)
- Kohei Arasaki
- Section of Microbial Pathogenesis, Yale University School of Medicine, Boyer Center for Molecular Medicine, New Haven, CT 06536, USA
| | | |
Collapse
|
28
|
Munc13-4 is a limiting factor in the pathway required for platelet granule release and hemostasis. Blood 2010; 116:869-77. [PMID: 20435885 DOI: 10.1182/blood-2010-02-270934] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activation-dependent platelet granule release is mediated by integral membrane proteins called soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) and their regulators; however, the mechanisms for this process are ill-defined. To further characterize platelet secretion, we analyzed the function of platelets from Unc13d(Jinx) mice. Platelets from these animals lack the putative vesicle priming factor, Munc13-4, and have a severe secretion defect. Release from dense granules was completely ablated and that from alpha-granules and lysosomes was severely compromised. Unc13d(Jinx) platelets showed attenuated aggregation and, consequently, Unc13d(Jinx) mice had prolonged tail-bleeding times. The secretion defect was not due to altered expression of SNAREs or SNARE regulators, defective granule biogenesis, or faulty platelet activation. The defective release could be rescued by adding recombinant Munc13-4 to permeabilized Unc13d(Jinx) platelets. In wild-type mouse platelets, Munc13-4 levels were lower than those of SNAREs suggesting that Munc13-4 could be a limiting component of the platelets' secretory machinery. Consistently, Munc13-4 levels directly correlated with the extent of granule release from permeabilized platelets and from intact, heterozygous Unc13d(Jinx) platelets. These data highlight the importance of Munc13-4 in platelets and indicate that it is a limiting factor required for platelet secretion and hemostasis.
Collapse
|
29
|
Actin filaments and microtubule dual-granule transport in human adhered platelets: the role of alpha-dystrobrevins. Br J Haematol 2010; 149:124-36. [PMID: 20148881 DOI: 10.1111/j.1365-2141.2010.08085.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Upon activation with physiological stimuli, human platelets undergo morphological changes, centralizing their organelles and secreting effector molecules at the site of vascular injury. Previous studies have indicated that the actin filaments and microtubules of suspension-activated platelets play a critical role in granule movement and exocytosis; however, the participation of these cytoskeleton elements in adhered platelets remains unexplored. alpha- and beta-dystrobrevin members of the dystrophin-associated protein complex in muscle and non-muscle cells have been described as motor protein receptors that might participate in the transport of cellular components in neurons. Recently, we characterized the expression of dystrobrevins in platelets; however, their functional diversity within this cellular model had not been elucidated. The present study examined the contribution of actin filaments and microtubules in granule trafficking during the platelet adhesion process using cytoskeleton-disrupting drugs, quantification of soluble P-selectin, fluorescence resonance transfer energy analysis and immunoprecipitation assays. Likewise, we assessed the interaction of alpha-dystrobrevins with the ubiquitous kinesin heavy chain. Our results strongly suggest that microtubules and actin filaments participate in the transport of alpha and dense granules in the platelet adhesion process, during which alpha-dystrobrevins play the role of regulatory and adaptor proteins that govern trafficking events.
Collapse
|
30
|
|
31
|
Abstract
alpha-Granules are essential to normal platelet activity. These unusual secretory granules derive their cargo from both regulated secretory and endocytotic pathways in megakaryocytes. Rare, inheritable defects of alpha-granule formation in mice and man have enabled identification of proteins that mediate cargo trafficking and alpha-granule formation. In platelets, alpha-granules fuse with the plasma membrane upon activation, releasing their cargo and increasing platelet surface area. The mechanisms that control alpha-granule membrane fusion have begun to be elucidated at the molecular level. SNAREs and SNARE accessory proteins that control alpha-granule secretion have been identified. Proteomic studies demonstrate that hundreds of bioactive proteins are released from alpha-granules. This breadth of proteins implies a versatile functionality. While initially known primarily for their participation in thrombosis and hemostasis, the role of alpha-granules in inflammation, atherosclerosis, antimicrobial host defense, wound healing, angiogenesis, and malignancy has become increasingly appreciated as the function of platelets in the pathophysiology of these processes has been defined. This review will consider the formation, release, and physiologic roles of alpha-granules with special emphasis on work performed over the last decade.
Collapse
Affiliation(s)
- Price Blair
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
32
|
Stow JL, Ching Low P, Offenhäuser C, Sangermani D. Cytokine secretion in macrophages and other cells: Pathways and mediators. Immunobiology 2009; 214:601-12. [DOI: 10.1016/j.imbio.2008.11.005] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 01/21/2023]
|
33
|
Feldmann A, Winterstein C, White R, Trotter J, Krämer-Albers EM. Comprehensive analysis of expression, subcellular localization, and cognate pairing of SNARE proteins in oligodendrocytes. J Neurosci Res 2009; 87:1760-72. [DOI: 10.1002/jnr.22020] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
34
|
Abstract
Individuals whose platelets lack dense or alpha-granules suffer various degrees of abnormal bleeding, implying that granule cargo contributes to hemostasis. Despite these clinical observations, little is known regarding the effects of impaired platelet granule secretion on thrombus formation in vivo. In platelets, SNARE proteins mediate the membrane fusion events required for granule cargo release. Endobrevin/VAMP-8 is the primary vesicle-SNARE (v-SNARE) responsible for efficient release of dense and alpha-granule contents; thus, VAMP-8(-/-) mice are a useful model to evaluate the importance of platelet granule secretion in thrombus formation. Thrombus formation, after laser-induced vascular injury, in these mice is delayed and decreased, but not absent. In contrast, thrombus formation is almost completely abolished in the mouse model of Hermansky-Pudlak syndrome, ruby-eye, which lacks dense granules. Evaluation of aggregation of VAMP-8(-/-) and ruby-eye platelets indicates that defective ADP release is the primary abnormality leading to impaired aggregation. These results demonstrate the importance of dense granule release even in the earliest phases of thrombus formation and validate the distal platelet secretory machinery as a potential target for antiplatelet therapies.
Collapse
|
35
|
Abstract
Pleckstrin, the platelet and leukocyte C kinase substrate, is a prominent substrate of PKC in platelets, monocytes, macrophages, lymphocytes, and granulocytes. Pleckstrin accounts for 1% of the total protein in these cells, but it is best known for containing the 2 prototypic Pleckstrin homology, or PH, domains. Overexpressed pleckstrin can affect polyphosphoinositide second messenger-based signaling events; however, its true in vivo role has been unknown. Here, we describe mice containing a null mutation within the pleckstrin gene. Platelets lacking pleckstrin exhibit a marked defect in exocytosis of delta and alpha granules, alphaIIbbeta3 activation, actin assembly, and aggregation after exposure to the PKC stimulant, PMA. Pleckstrin-null platelets aggregate normally in response to thrombin, but they fail to aggregate in response to thrombin in the presence of PI3K inhibitors, suggesting that a PI3K-dependent signaling pathway compensates for the loss of pleckstrin. Although pleckstrin-null platelets merged their granules in response to stimulation of PKC, they failed to empty their contents into the open canalicular system. This might be attributable to impaired actin assembly present in cells lacking pleckstrin. These data show that pleckstrin regulates the fusion of granules to the cell membrane and is an essential component of PKC-mediated exocytosis.
Collapse
|
36
|
Abstract
Protein kinase C (PKC) isoforms have been implicated in several platelet functional responses, but the contribution of individual isoforms has not been thoroughly evaluated. Novel PKC isoform PKC-theta is activated by glycoprotein VI (GPVI) and protease-activated receptor (PAR) agonists, but not by adenosine diphosphate. In human platelets, PKC-theta-selective antagonistic (RACK; receptor for activated C kinase) peptide significantly inhibited GPVI and PAR-induced aggregation, dense and alpha-granule secretion at low agonist concentrations. Consistently, in murine platelets lacking PKC-theta, platelet aggregation and secretion were also impaired. PKC-mediated phosphorylation of tSNARE protein syntaxin-4 was strongly reduced in human platelets pretreated with PKC-theta RACK peptide, which may contribute to the lower levels of granule secretion when PKC-theta function is lost. Furthermore, the level of JON/A binding to activated alpha(IIb)beta(3) receptor was also significantly decreased in PKC-theta(-/-) mice compared with wild-type littermates. PKC-theta(-/-) murine platelets showed significantly lower agonist-induced thromboxane A(2) (TXA(2)) release through reduced extracellular signal-regulated kinase phosphorylation. Finally, PKC-theta(-/-) mice displayed unstable thrombus formation and prolonged arterial occlusion in the FeCl(3) in vivo thrombosis model compared with wild-type mice. In conclusion, PKC-theta isoform plays a significant role in platelet functional responses downstream of PAR and GPVI receptors.
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW In response to agonists produced at vascular lesions, platelets release a host of components from their three granules: dense core, alpha, and lysosome. This releasate activates other platelets, promotes wound repair, and initiates inflammatory responses. Although widely accepted, the specific mechanisms underlying platelet secretion are only now coming to light. This review focuses on the core machinery required for platelet secretion. RECENT FINDINGS Proteomic analyses have provided a catalog of the components released from activated platelets. Experiments using a combination of in-vitro secretion assays and knockout mice have led to assignments of both vesicle-soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (v-SNARE) and target membrane SNARE to each of the three secretion events. SNARE knockout mice are also proving to be useful models for probing the role of platelet exocytosis in vivo. Other studies are beginning to identify SNARE regulators, which control when and where SNAREs interact during platelet activation. SUMMARY A complex set of protein-protein interactions control the membrane fusion events required for the platelet release reaction. SNARE proteins are the core elements but the proteins that control SNARE interactions represent key points at which platelet signaling cascades could affect secretion and thrombosis.
Collapse
Affiliation(s)
- Qiansheng Ren
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | | | | |
Collapse
|
38
|
Diaz-Ricart M, Palomo M, Fuste B, Lopez-Vilchez I, Carbo C, Perez-Pujol S, White JG, Escolar G. Inhibition of tyrosine kinase activity prevents the adhesive and cohesive properties of platelets and the expression of procoagulant activity in response to collagen. Thromb Res 2008; 121:873-83. [PMID: 17904203 DOI: 10.1016/j.thromres.2007.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Platelet activation leads to signal transduction mechanisms, in which phosphotyrosine proteins play a relevant role. MATERIAL AND METHODS Platelet suspensions were independently activated by collagen and thrombin in the absence and in the presence of two tyrosine kinase inhibitors, tyrphostin 47 and genistein. Samples were processed to visualize morphological changes by electron microscopy, to evaluate changes in cytoskeletal assembly, to analyze modifications in the expression of activation dependent antigens, and the procoagulant activity at the surface level by flow cytometry. Additional experiments applying flow conditions were performed to assess the effect of inhibiting tyrosine phosphorylation on primary platelet adhesion and fibrin formation. RESULTS Inhibition of tyrosine phosphorylation blocked shape change and cytoskeletal assembly induced by collagen, and inhibited, though partially, those effects due to thrombin. Both activating agents induced the expression of the intraplatelet antigens CD62P and CD63 at the surface, although only collagen promoted expression of anionic phospholipids. Both tyrphostin 47 and genistein prevented those effects. The extent of platelet adhesion on both collagen-coated and subendothelial surfaces was significantly diminished by the presence of the tyrosine kinase inhibitors assayed. Fibrin formation was also significantly reduced. CONCLUSIONS Platelet shape change and secretion during platelet activation depends on tyrosine phosphorylation. In addition, primary adhesion of platelets induces signaling through tyrosine kinases to achieve full spreading, and results in the exposure of a procoagulant surface on platelets.
Collapse
Affiliation(s)
- Maribel Diaz-Ricart
- Servicio de Hemoterapia-Hemostasia, Hospital Clínic, IDIBAPS, Universidad de Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hu C, Hardee D, Minnear F. Membrane fusion by VAMP3 and plasma membrane t-SNAREs. Exp Cell Res 2007; 313:3198-209. [PMID: 17651732 PMCID: PMC2696983 DOI: 10.1016/j.yexcr.2007.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2006] [Revised: 05/15/2007] [Accepted: 06/11/2007] [Indexed: 11/16/2022]
Abstract
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.
Collapse
Affiliation(s)
- Chuan Hu
- Department of Physiology and Pharmacology, West Virginia University Health Sciences Center, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
40
|
Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM. SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood 2007; 110:1492-501. [PMID: 17485553 PMCID: PMC1975852 DOI: 10.1182/blood-2006-11-055772] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SNARE proteins direct membrane fusion events required for platelet granule secretion. These proteins are oriented in cell membranes such that most of the protein resides in a cytosolic compartment. Evaluation of SNARE protein localization in activated platelets using immunonanogold staining and electron microscopy, however, demonstrated expression of SNAP-23 and syntaxin-2 on the extracellular surface of the platelet plasma membrane. Flow cytometry of intact platelets confirmed trypsin-sensitive SNAP-23 and syntaxin-2 localization to the extracellular surface of the plasma membrane. Acyl-protein thioesterase 1 and botulinum toxin C light chain released SNAP-23 and syntaxin-2, respectively, from the surface of intact platelets. When resting platelets were incubated with both acyl-protein thioesterase 1 and botulinum toxin C light chain, a complex that included both SNAP-23 and syntaxin-2 was detected in supernatants, indicating that extracellular SNARE proteins retain their ability to bind one another. These observations represent the first description of SNARE proteins on the extracellular surface of a cell.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
41
|
Sim DS, Dilks JR, Flaumenhaft R. Platelets possess and require an active protein palmitoylation pathway for agonist-mediated activation and in vivo thrombus formation. Arterioscler Thromb Vasc Biol 2007; 27:1478-85. [PMID: 17303775 DOI: 10.1161/atvbaha.106.139287] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Several platelet proteins are palmitoylated, but whether protein palmitoylation functions in platelet activation is unknown. We sought to determine the role of platelet protein palmitoylation in platelet activation and thrombus formation. METHODS AND RESULTS Platelet proteins were depalmitoylated by infusing acyl-protein thioesterase 1 into permeabilized platelets. In intact platelets, platelet protein palmitoylation was blocked using the protein palmitoylation inhibitor cerulein. The effects of inhibiting platelet protein palmitoylation on platelet function and on thrombus formation in vivo were evaluated. When infused into permeabilized platelets, acyl-protein thioesterase 1 reduced total platelet protein palmitoylation and inhibited protease-activated receptor-1-mediated alpha-granule secretion with an IC50 of 175 nmol/L and maximal inhibition of > or = 90%. G(alpha q) and SNAP-23, membrane-associated proteins that are constitutively palmitoylated, translocated to the cytosol when permeabilized platelets were exposed to recombinant acyl-protein thioesterase 1. The protein palmitoylation inhibitor cerulein also inhibited platelet granule secretion and aggregation. Studies using intravital microscopy showed that incubation with cerulein decreased the rate of platelet accumulation into thrombi formed after laser-induced injury of mouse arterioles and inhibited maximal platelet accumulation by >60%. CONCLUSION These studies show that platelets possess a protein palmitoylation machinery that is required for both platelet activation and platelet accumulation into thrombi. These studies show that inhibition of platelet protein palmitoylation blocks platelet aggregation and granule secretion. In a murine model of thrombus formation, inhibition of protein palmitoylation markedly inhibits platelet accumulation into thrombi at sites of vascular injury.
Collapse
Affiliation(s)
- Derek S Sim
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
42
|
Stow JL, Manderson AP, Murray RZ. SNAREing immunity: the role of SNAREs in the immune system. Nat Rev Immunol 2007; 6:919-29. [PMID: 17124513 DOI: 10.1038/nri1980] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The trafficking of molecules and membranes within cells is a prerequisite for all aspects of cellular immune functions, including the delivery and recycling of cell-surface proteins, secretion of immune mediators, ingestion of pathogens and activation of lymphocytes. SNARE (soluble-N-ethylmaleimide-sensitive-factor accessory-protein receptor)-family members mediate membrane fusion during all steps of trafficking, and function in almost all aspects of innate and adaptive immune responses. Here, we provide an overview of the roles of SNAREs in immune cells, offering insight into one level at which precision and tight regulation are instilled on immune responses.
Collapse
Affiliation(s)
- Jennifer L Stow
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | |
Collapse
|
43
|
|
44
|
Ren Q, Barber HK, Crawford GL, Karim ZA, Zhao C, Choi W, Wang CC, Hong W, Whiteheart SW. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol Biol Cell 2006; 18:24-33. [PMID: 17065550 PMCID: PMC1751319 DOI: 10.1091/mbc.e06-09-0785] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Platelet secretion is critical to hemostasis. Release of granular cargo is mediated by soluble NSF attachment protein receptors (SNAREs), but despite consensus on t-SNAREs usage, it is unclear which Vesicle Associated Membrane Protein (VAMPs: synaptobrevin/VAMP-2, cellubrevin/VAMP-3, TI-VAMP/VAMP-7, and endobrevin/VAMP-8) is required. We demonstrate that VAMP-8 is required for release from dense core granules, alpha granules, and lysosomes. Platelets from VAMP-8-/- mice have a significant defect in agonist-induced secretion, though signaling, morphology, and cargo levels appear normal. In contrast, VAMP-2+/-, VAMP-3-/-, and VAMP-2+/-/VAMP-3-/- platelets showed no defect. Consistently, tetanus toxin had no effect on secretion from permeabilized mouse VAMP-3-/- platelets or human platelets, despite cleavage of VAMP-2 and/or -3. Tetanus toxin does block the residual release from permeabilized VAMP-8-/- platelets, suggesting a secondary role for VAMP-2 and/or -3. These data imply a ranked redundancy of v-SNARE usage in platelets and suggest that VAMP-8-/- mice will be a useful in vivo model to study platelet exocytosis in hemostasis and vascular inflammation.
Collapse
Affiliation(s)
- Qiansheng Ren
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Holly Kalani Barber
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Garland L. Crawford
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Zubair A. Karim
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Chunxia Zhao
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Wangsun Choi
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| | - Cheng-Chun Wang
- Membrane Biology Laboratory, Institute of Molecular and Cellular Biology, Proteos, Singapore 138673, Singapore
| | - Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cellular Biology, Proteos, Singapore 138673, Singapore
| | - Sidney W. Whiteheart
- *Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536; and
| |
Collapse
|
45
|
Mollinedo F, Calafat J, Janssen H, Martín-Martín B, Canchado J, Nabokina SM, Gajate C. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. THE JOURNAL OF IMMUNOLOGY 2006; 177:2831-41. [PMID: 16920918 DOI: 10.4049/jimmunol.177.5.2831] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mobilization of human neutrophil granules is critical for the innate immune response against infection and for the outburst of inflammation. Human neutrophil-specific and tertiary granules are readily exocytosed upon cell activation, whereas azurophilic granules are mainly mobilized to the phagosome. These cytoplasmic granules appear to be under differential secretory control. In this study, we show that combinatorial soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes with vesicle-associated membrane proteins (VAMPs), 23-kDa synaptosome-associated protein (SNAP-23), and syntaxin 4 underlie the differential mobilization of granules in human neutrophils. Specific and tertiary granules contained VAMP-1, VAMP-2, and SNAP-23, whereas the azurophilic granule membranes were enriched in VAMP-1 and VAMP-7. Ultrastructural, coimmunoprecipitation, and functional assays showed that SNARE complexes containing VAMP-1, VAMP-2, and SNAP-23 mediated the rapid exocytosis of specific/tertiary granules, whereas VAMP-1 and VAMP-7 mainly regulated the secretion of azurophilic granules. Plasma membrane syntaxin 4 acted as a general target SNARE for the secretion of the distinct granule populations. These data indicate that at least two SNARE complexes, made up of syntaxin 4/SNAP-23/VAMP-1 and syntaxin 4/SNAP-23/VAMP-2, are involved in the exocytosis of specific and tertiary granules, whereas interactions between syntaxin 4 and VAMP-1/VAMP-7 are involved in the exocytosis of azurophilic granules. Our data indicate that quantitative and qualitative differences in SNARE complex formation lead to the differential mobilization of the distinct cytoplasmic granules in human neutrophils, and a higher capability to form diverse SNARE complexes renders specific/tertiary granules prone to exocytosis.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Cientificas-Universidad de Salamanca, Salamanca, Spain.
| | | | | | | | | | | | | |
Collapse
|
46
|
Morrell CN, Matsushita K, Lowenstein CJ. A novel inhibitor of N-ethylmaleimide-sensitive factor decreases leukocyte trafficking and peritonitis. J Pharmacol Exp Ther 2005; 314:155-61. [PMID: 15778265 DOI: 10.1124/jpet.104.082529] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial exocytosis is an early stage in the process of leukocyte trafficking. N-ethylmaleimide-sensitive factor (NSF) plays a critical role in regulating exocytosis. We hypothesized that inhibitors of NSF decrease endothelial exocytosis and vascular inflammation. We designed a novel fusion polypeptide consisting of a human immunodeficiency virus transactivator of transcription (TAT) protein transduction domain joined to a NSF homohexamerization domain. We show that this TAT-NSF polypeptide inhibits the ATPase activity and the disassembly activity of NSF. Furthermore, the TAT-NSF polypeptide decreases endothelial cell exocytosis and reduces leukocyte adherence to endothelial cells in culture. Finally, the TAT-NSF polypeptide inhibits leukocyte rolling on murine venules in vivo and inhibits leukocyte trafficking into the peritoneal cavity in a murine model of experimental peritonitis. These data suggest that NSF is a critical regulator of leukocyte trafficking in vivo. Novel compounds that inhibit the exocytic machinery in endothelial cells may be useful anti-inflammatory drugs.
Collapse
Affiliation(s)
- Craig N Morrell
- Department of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
47
|
Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM. The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood 2005; 105:3879-87. [PMID: 15671445 DOI: 10.1182/blood-2004-04-1392] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractStimulation of platelets with strong agonists results in centralization of cytoplasmic organelles and secretion of granules. These observations have led to the supposition that cytoskeletal contraction facilitates granule release by promoting the interaction of granules with one another and with membranes of the open canalicular system. Yet, the influence of the actin cytoskeleton in controlling the membrane fusion events that mediate granule secretion remains largely unknown. To evaluate the role of the actin cytoskeleton in platelet granule secretion, we have assessed the effects of latrunculin A and cytochalasin E on granule secretion. Exposure of platelets to low concentrations of these reagents resulted in acceleration and augmentation of agonist-induced α-granule secretion with comparatively modest effects on dense granule secretion. In contrast, exposure of platelets to high concentrations of latrunculin A inhibited agonist-induced α-granule secretion but stimulated dense granule secretion. Incubation of permeabilized platelets with low concentrations of latrunculin A primed platelets for Ca2+- or guanosine triphosphate (GTP)-γ-S-induced α-granule secretion. Latrunculin A-dependent α-granule secretion was inhibited by antibodies directed at vesicle-associated membrane protein (VAMP), demonstrating that latrunculin A supports soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein-dependent membrane fusion. These results indicate that the actin cytoskeleton interferes with platelet exocytosis and differentially regulates α-granule and dense granule secretion.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Tadokoro S, Nakanishi M, Hirashima N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J Cell Sci 2005; 118:2239-46. [PMID: 15870114 DOI: 10.1242/jcs.02338] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that soluble N-ethyl maleimide-sensitive factor attachment protein receptor (SNARE) proteins are involved in exocytotic release in mast cells as in neurotransmitter release. However, the roles of the proteins that regulate the structure and activity of SNARE proteins are poorly understood. Complexin is one such regulatory protein and is involved in neurotransmitter release, although ideas about its role are still controversial. In this study, we investigated the expression and role of complexin in the regulation of exocytotic release (degranulation) in mast cells. We found that complexin II, but not complexin I, is expressed in mast cells. We obtained RBL-2H3 cells that expressed a low level of complexin II and found that antigen-induced degranulation was suppressed in these cells. No significant changes in the Ca2+ response or expression levels of syntaxins and synaptotagmin were observed in knockdown cells. An immunocytochemical study revealed that complexin II was distributed throughout the cytoplasm before antigen stimulation. However, the distribution of complexin II changed dramatically with stimulation and it became localized on the plasma membrane. This change in the intracellular distribution was observed even in the absence of extracellular Ca2+, while exocytotic release was inhibited almost completely under this condition. The degranulation induced by phorbol 12-myristate 13-acetate and A23187 depended on the extracellular Ca2+ concentration, and its sensitivity to Ca2+ was decreased in knockdown cells. These results suggest that complexin II regulates exocytosis positively by translocating to the plasma membrane and enhancing the Ca2+ sensitivity of fusion machinery, although this translocation to the plasma membrane is not sufficient to trigger exocytotic membrane fusion.
Collapse
Affiliation(s)
- Satoshi Tadokoro
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
49
|
Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 2005; 57:1068-72. [PMID: 15860348 DOI: 10.1016/j.biopsych.2005.01.008] [Citation(s) in RCA: 448] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent reports have suggested a role for brain-derived neurotrophic factor (BDNF) in psychiatric disorders. Decreased serum BDNF levels have been reported in major depression, but the cause of this decrease has not yet been investigated. The goal of this study was to assess blood BDNF and a platelet activation index, PF4. METHODS Forty-three drug-free patients (27 female, 16 male) diagnosed with major depression and 35 healthy control subjects (18 female, 17 male) were assessed for plasma, serum, and blood BDNF content. Brain-derived neurotrophic factor and PF4 were assayed with enzyme-linked immunosorbent assay methods, and severity of depression was evaluated with the Montgomery-Asberg Depression Rating Scale. RESULTS Serum and plasma BDNF levels were decreased in depressed patients compared with control subjects. In whole blood, BDNF levels were unaltered in the depressed subjects compared with control subjects. The serum/blood BDNF ratio was lower in patients with major depression. Increased plasma but not serum PF4 levels were observed in depressed subjects compared with control subjects. CONCLUSIONS Our results suggest that an alteration of serum or plasma BDNF is not due to the change in blood BDNF but rather is probably related to mechanisms of BDNF release. Secretion of BDNF seems to be independent of platelet reactivity; other mechanisms are therefore probably involved and need to be elucidated.
Collapse
Affiliation(s)
- Félicien Karege
- Service of Neuropsychiatry, Geneva University Hospitals (Belle-Idée), Chêne-Bourg (Geneva), Switzerland.
| | | | | | | | | | | |
Collapse
|
50
|
Hong W. SNAREs and traffic. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:120-44. [PMID: 15893389 DOI: 10.1016/j.bbamcr.2005.03.014] [Citation(s) in RCA: 360] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 03/24/2005] [Accepted: 03/28/2005] [Indexed: 01/05/2023]
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) are now generally accepted to be the major players in the final stage of the docking and the subsequent fusion of diverse vesicle-mediated transport events. The SNARE-mediated process is conserved evolutionally from yeast to human, as well as mechanistically and structurally across different transport events in eukaryotic cells. In the post-genomic era, a fairly complete list of "all" SNAREs in several organisms (including human) can now be made. This review aims to summarize the key properties and the mechanism of action of SNAREs in mammalian cells.
Collapse
Affiliation(s)
- Wanjin Hong
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, Singapore.
| |
Collapse
|